Blockchain-based healthcare management system with two-side verifiability

The lack of data outsourcing in healthcare management systems slows down the intercommunication and information sharing between different entities. A standard solution is outsourcing the electronic health record (EHR) to a cloud service provider (CSP). The outsourcing of the EHR should be performed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one Jg. 17; H. 4; S. e0266916
Hauptverfasser: Tan, Tian Lim, Salam, Iftekhar, Singh, Madhusudan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 14.04.2022
Public Library of Science (PLoS)
Schlagworte:
ISSN:1932-6203, 1932-6203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lack of data outsourcing in healthcare management systems slows down the intercommunication and information sharing between different entities. A standard solution is outsourcing the electronic health record (EHR) to a cloud service provider (CSP). The outsourcing of the EHR should be performed securely without compromising the CSP functionalities. Searchable encryption would be a viable approach to ensure the confidentiality of the data without compromising searchability and accessibility. However, most existing searchable encryption solutions use centralised architecture. These systems have trust issues as not all the CSPs are fully trusted or honest. To address these problems, we explore blockchain technology with smart contract applications to construct a decentralised system with auditable yet immutable data storage and access. First, we propose a blockchain-based searchable encryption scheme for EHR storage and updates in a decentralised fashion. The proposed scheme supports confidentiality of the outsourced EHR, keyword search functionalities, verifiability of the user and the server, storage immutability, and dynamic updates of EHRs. Next, we implement a prototype using JavaScript and Solidity on the Ethereum platform to demonstrate the practicality of the proposed solution. Finally, we compare the performance and security of the proposed scheme against existing solutions. The result indicates that the proposed scheme is practical while providing the desired security features and functional requirements.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0266916