Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image
This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small targets in remote sensing images. Firstly, the application effects of R-CNN (Region-Convolutional Neural Network), FRCN (Fast Region-Convolu...
Saved in:
| Published in: | PloS one Vol. 16; no. 10; p. e0259283 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
29.10.2021
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small targets in remote sensing images. Firstly, the application effects of R-CNN (Region-Convolutional Neural Network), FRCN (Fast Region-Convolutional Neural Network), and R-FCN (Region-Based-Fully Convolutional Network) in image feature extraction are analyzed after introducing the relevant region proposal network. Secondly, YOLO-v5 algorithm is established on the basis of YOLO algorithm. Besides, the multi-scale anchor mechanism of Faster R-CNN is utilized to improve the detection ability of YOLO-v5 algorithm for small targets in the image in the process of image detection, and realize the high adaptability of YOLO-v5 algorithm to different sizes of images. Finally, the proposed detection method YOLO-v5 algorithm + R-FCN is compared with other algorithms in NWPU VHR-10 data set and Vaihingen data set. The experimental results show that the YOLO-v5 + R-FCN detection method has the optimal detection ability among many algorithms, especially for small targets in remote sensing images such as tennis courts, vehicles, and storage tanks. Moreover, the YOLO-v5 + R-FCN detection method can achieve high recall rates for different types of small targets. Furthermore, due to the deeper network architecture, the YOL v5 + R-FCN detection method has a stronger ability to extract the characteristics of image targets in the detection of remote sensing images. Meanwhile, it can achieve more accurate feature recognition and detection performance for the densely arranged target images in remote sensing images. This research can provide reference for the application of remote sensing technology in China, and promote the application of satellites for target detection tasks in related fields. |
|---|---|
| AbstractList | This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small targets in remote sensing images. Firstly, the application effects of R-CNN (Region-Convolutional Neural Network), FRCN (Fast Region-Convolutional Neural Network), and R-FCN (Region-Based-Fully Convolutional Network) in image feature extraction are analyzed after introducing the relevant region proposal network. Secondly, YOLO-v5 algorithm is established on the basis of YOLO algorithm. Besides, the multi-scale anchor mechanism of Faster R-CNN is utilized to improve the detection ability of YOLO-v5 algorithm for small targets in the image in the process of image detection, and realize the high adaptability of YOLO-v5 algorithm to different sizes of images. Finally, the proposed detection method YOLO-v5 algorithm + R-FCN is compared with other algorithms in NWPU VHR-10 data set and Vaihingen data set. The experimental results show that the YOLO-v5 + R-FCN detection method has the optimal detection ability among many algorithms, especially for small targets in remote sensing images such as tennis courts, vehicles, and storage tanks. Moreover, the YOLO-v5 + R-FCN detection method can achieve high recall rates for different types of small targets. Furthermore, due to the deeper network architecture, the YOL v5 + R-FCN detection method has a stronger ability to extract the characteristics of image targets in the detection of remote sensing images. Meanwhile, it can achieve more accurate feature recognition and detection performance for the densely arranged target images in remote sensing images. This research can provide reference for the application of remote sensing technology in China, and promote the application of satellites for target detection tasks in related fields. This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small targets in remote sensing images. Firstly, the application effects of R-CNN (Region-Convolutional Neural Network), FRCN (Fast Region-Convolutional Neural Network), and R-FCN (Region-Based-Fully Convolutional Network) in image feature extraction are analyzed after introducing the relevant region proposal network. Secondly, YOLO-v5 algorithm is established on the basis of YOLO algorithm. Besides, the multi-scale anchor mechanism of Faster R-CNN is utilized to improve the detection ability of YOLO-v5 algorithm for small targets in the image in the process of image detection, and realize the high adaptability of YOLO-v5 algorithm to different sizes of images. Finally, the proposed detection method YOLO-v5 algorithm + R-FCN is compared with other algorithms in NWPU VHR-10 data set and Vaihingen data set. The experimental results show that the YOLO-v5 + R-FCN detection method has the optimal detection ability among many algorithms, especially for small targets in remote sensing images such as tennis courts, vehicles, and storage tanks. Moreover, the YOLO-v5 + R-FCN detection method can achieve high recall rates for different types of small targets. Furthermore, due to the deeper network architecture, the YOL v5 + R-FCN detection method has a stronger ability to extract the characteristics of image targets in the detection of remote sensing images. Meanwhile, it can achieve more accurate feature recognition and detection performance for the densely arranged target images in remote sensing images. This research can provide reference for the application of remote sensing technology in China, and promote the application of satellites for target detection tasks in related fields.This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small targets in remote sensing images. Firstly, the application effects of R-CNN (Region-Convolutional Neural Network), FRCN (Fast Region-Convolutional Neural Network), and R-FCN (Region-Based-Fully Convolutional Network) in image feature extraction are analyzed after introducing the relevant region proposal network. Secondly, YOLO-v5 algorithm is established on the basis of YOLO algorithm. Besides, the multi-scale anchor mechanism of Faster R-CNN is utilized to improve the detection ability of YOLO-v5 algorithm for small targets in the image in the process of image detection, and realize the high adaptability of YOLO-v5 algorithm to different sizes of images. Finally, the proposed detection method YOLO-v5 algorithm + R-FCN is compared with other algorithms in NWPU VHR-10 data set and Vaihingen data set. The experimental results show that the YOLO-v5 + R-FCN detection method has the optimal detection ability among many algorithms, especially for small targets in remote sensing images such as tennis courts, vehicles, and storage tanks. Moreover, the YOLO-v5 + R-FCN detection method can achieve high recall rates for different types of small targets. Furthermore, due to the deeper network architecture, the YOL v5 + R-FCN detection method has a stronger ability to extract the characteristics of image targets in the detection of remote sensing images. Meanwhile, it can achieve more accurate feature recognition and detection performance for the densely arranged target images in remote sensing images. This research can provide reference for the application of remote sensing technology in China, and promote the application of satellites for target detection tasks in related fields. |
| Audience | Academic |
| Author | Liu, Han Long, Yilin Wang, Xiaodong Li, Jinglun Wang, Zhuohua Wu, Wentong Chang, Yi Li, Lingling |
| AuthorAffiliation | 1 Basic Research and Development Department of Xi’an FiberHome software and technology CO., LTD, Xi’an City, China Ministry of Natural Resources North Sea Bureau, CHINA 3 School of Artificial Intelligence, Xidian University, Xi’an, China 2 School of Automation and Information Engineering University, Xi’an University of Technology, Xi’an City, China |
| AuthorAffiliation_xml | – name: 1 Basic Research and Development Department of Xi’an FiberHome software and technology CO., LTD, Xi’an City, China – name: 2 School of Automation and Information Engineering University, Xi’an University of Technology, Xi’an City, China – name: Ministry of Natural Resources North Sea Bureau, CHINA – name: 3 School of Artificial Intelligence, Xidian University, Xi’an, China |
| Author_xml | – sequence: 1 givenname: Wentong surname: Wu fullname: Wu, Wentong – sequence: 2 givenname: Han orcidid: 0000-0002-6618-1380 surname: Liu fullname: Liu, Han – sequence: 3 givenname: Lingling surname: Li fullname: Li, Lingling – sequence: 4 givenname: Yilin surname: Long fullname: Long, Yilin – sequence: 5 givenname: Xiaodong surname: Wang fullname: Wang, Xiaodong – sequence: 6 givenname: Zhuohua surname: Wang fullname: Wang, Zhuohua – sequence: 7 givenname: Jinglun surname: Li fullname: Li, Jinglun – sequence: 8 givenname: Yi surname: Chang fullname: Chang, Yi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34714878$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk12L1DAUhousuB_6D0QDgujFjGmTJq0XwrL4MbA44Bd4FdI06WRNkzFJd92f4L82nenIzrKI7UXCyXPek_NycpwdWGdllj3O4TxHNH914QZvuZmvU3gOi7IuKnQvO8prVMxIAdHBjf1hdhzCBYQlqgh5kB0iTHNc0eoo-326XhsteNTOAqeAcYIboAZjrsGZs5fODONRin2Ug98s8cr5H0C4vtFWtuBKxxX4vjxfgssScNM5nwI90BaEnhsDIvedjKCVUYpdFS97FyUI0gZtO6B73smH2X3FTZCPpvUk-_ru7ZezD7Pz5fvF2en5TJC6iDPVYlQIUsiSqhxKAmGNqhwTBVVDOVIE5zkWvC5q1RIhREkxhQgJ2jRQVapBJ9nTre7auMAmFwMryqpCOa5plYjFlmgdv2Brn67nr5njmm0CzneM-6iFkQxyXELaQIpljqUqOG9RXTeEY0yVakjSejNVG5petkLamFzcE90_sXrFOnfJqrIsK0yTwItJwLufgwyR9ToIaQy30g3jvWs4zgMaaz27hd7d3UR1PDWgrXKprhhF2SmpICmq9CVqfgeV_lb2WqSRUzrF9xJe7iUkJspfseNDCGzx-dP_s8tv--zzG-xKchNXYZrKsA8-uen0X4t3s56A11tAeBeCl4oJHTeDn1rThuWQjUbuTGPjw2LTw0rJ-FbyTv-faX8ADxco7w |
| CitedBy_id | crossref_primary_10_1007_s11760_025_04675_7 crossref_primary_10_3390_electronics11111743 crossref_primary_10_3390_bdcc6040106 crossref_primary_10_1186_s40494_024_01268_4 crossref_primary_10_3390_rs16132416 crossref_primary_10_3390_s23083852 crossref_primary_10_3389_fphy_2024_1517177 crossref_primary_10_1016_j_cviu_2024_104261 crossref_primary_10_1016_j_compag_2025_110401 crossref_primary_10_1016_j_procs_2025_04_252 crossref_primary_10_35633_inmateh_75_07 crossref_primary_10_1007_s10664_025_10679_1 crossref_primary_10_3389_fnbot_2023_1226125 crossref_primary_10_3390_su14105872 crossref_primary_10_1080_00051144_2024_2362575 crossref_primary_10_25300_MISQ_2025_18944 crossref_primary_10_1007_s00521_024_09582_5 crossref_primary_10_1007_s12596_023_01243_5 crossref_primary_10_1016_j_eswa_2023_120187 crossref_primary_10_1016_j_aquaculture_2025_742395 crossref_primary_10_1016_j_compag_2023_108603 crossref_primary_10_1371_journal_pone_0291288 crossref_primary_10_1080_00150193_2023_2198454 crossref_primary_10_3390_rs14153684 crossref_primary_10_1016_j_engappai_2023_106656 crossref_primary_10_1088_1361_6501_ad6627 crossref_primary_10_1109_ACCESS_2023_3270710 crossref_primary_10_3389_fevo_2022_840464 crossref_primary_10_1109_ACCESS_2023_3324146 crossref_primary_10_3390_drones8040145 crossref_primary_10_1088_1361_6501_ad41fe crossref_primary_10_3390_rs16203810 crossref_primary_10_3390_rs14081901 crossref_primary_10_3390_electronics11152344 crossref_primary_10_3390_su14094930 crossref_primary_10_1016_j_infrared_2024_105344 crossref_primary_10_1007_s10586_023_04109_4 crossref_primary_10_1016_j_scitotenv_2022_156064 crossref_primary_10_3389_fbuil_2025_1563483 crossref_primary_10_14775_ksmpe_2024_23_06_013 crossref_primary_10_1049_cim2_12104 crossref_primary_10_1016_j_optlaseng_2024_108176 crossref_primary_10_3390_agriengineering5020050 crossref_primary_10_3390_pr10112274 crossref_primary_10_2217_fon_2022_0593 crossref_primary_10_1016_j_ecoinf_2025_103000 crossref_primary_10_3390_rs15040883 crossref_primary_10_3390_app132011473 crossref_primary_10_3390_land12122142 crossref_primary_10_3390_s24092676 crossref_primary_10_1109_JSTARS_2024_3417702 crossref_primary_10_1088_1742_6596_2762_1_012005 crossref_primary_10_1109_ACCESS_2023_3262703 crossref_primary_10_1186_s40537_025_01206_6 crossref_primary_10_1515_eng_2024_0056 crossref_primary_10_1109_TPDS_2025_3555329 crossref_primary_10_1109_JSEN_2023_3281585 crossref_primary_10_3390_diagnostics12112591 crossref_primary_10_3390_electronics12214448 crossref_primary_10_3390_electronics13091620 crossref_primary_10_1109_JSTARS_2025_3535090 crossref_primary_10_3390_s23125640 crossref_primary_10_1016_j_measurement_2024_116212 crossref_primary_10_1109_TCE_2025_3527678 crossref_primary_10_1109_ACCESS_2024_3464741 crossref_primary_10_3390_electronics13163301 crossref_primary_10_1109_JSTARS_2023_3339235 crossref_primary_10_3233_IDA_227154 crossref_primary_10_1109_ACCESS_2025_3543858 crossref_primary_10_1016_j_conbuildmat_2023_134594 crossref_primary_10_1016_j_jksuci_2023_101859 crossref_primary_10_1051_itmconf_20257003008 crossref_primary_10_1109_JSEN_2025_3586705 crossref_primary_10_1186_s13058_025_01981_3 crossref_primary_10_3390_electronics12051257 crossref_primary_10_3103_S0147688224700527 crossref_primary_10_3390_a16050227 crossref_primary_10_1017_dsj_2025_10021 crossref_primary_10_1007_s10489_024_06003_x crossref_primary_10_1007_s11042_024_18866_w crossref_primary_10_3390_f14030616 crossref_primary_10_3390_rs14215545 crossref_primary_10_1007_s00500_023_08139_3 crossref_primary_10_1117_1_JEI_33_4_043012 crossref_primary_10_1109_ACCESS_2024_3365584 crossref_primary_10_1016_j_engappai_2023_107775 crossref_primary_10_1016_j_undsp_2024_07_003 crossref_primary_10_3390_s24051507 crossref_primary_10_3390_bioengineering10121385 crossref_primary_10_1007_s00371_023_02892_0 crossref_primary_10_3390_electronics11172669 crossref_primary_10_1063_5_0196580 crossref_primary_10_3390_electronics13224400 crossref_primary_10_3390_su16093775 crossref_primary_10_1007_s00521_024_10529_z crossref_primary_10_3389_fmicb_2022_1008346 crossref_primary_10_1109_ACCESS_2024_3459868 crossref_primary_10_1016_j_ymssp_2025_112386 crossref_primary_10_1109_JSTARS_2024_3389958 crossref_primary_10_1109_JSTARS_2022_3213438 crossref_primary_10_3390_rs15153755 crossref_primary_10_3390_info13010005 crossref_primary_10_1088_2631_8695_add857 crossref_primary_10_1109_JSTARS_2022_3233043 crossref_primary_10_3390_s22145283 crossref_primary_10_1016_j_bdr_2024_100449 crossref_primary_10_1080_00305316_2024_2361081 crossref_primary_10_3390_agriculture14122263 crossref_primary_10_3390_rs15102680 crossref_primary_10_1038_s41598_025_92771_6 crossref_primary_10_3389_fpls_2024_1360419 crossref_primary_10_1364_AO_509549 crossref_primary_10_3390_atmos14121820 crossref_primary_10_3390_s23115039 crossref_primary_10_1108_ECAM_02_2024_0149 crossref_primary_10_1016_j_compag_2024_109286 crossref_primary_10_1108_IJICC_01_2024_0020 crossref_primary_10_32604_cmc_2024_048998 crossref_primary_10_3389_fpls_2025_1591989 crossref_primary_10_1038_s41598_025_89421_2 crossref_primary_10_3390_app131810188 crossref_primary_10_7717_peerj_cs_2271 crossref_primary_10_3390_s23249759 crossref_primary_10_1007_s12596_023_01445_x crossref_primary_10_1016_j_eswa_2024_124244 crossref_primary_10_1007_s11227_022_04402_w crossref_primary_10_1109_MIS_2024_3399053 crossref_primary_10_1515_jpm_2023_0041 crossref_primary_10_3389_fphy_2024_1364372 crossref_primary_10_1016_j_biosystemseng_2024_09_016 crossref_primary_10_1088_1361_6501_adb76a crossref_primary_10_3390_app14051787 crossref_primary_10_3390_s23187719 crossref_primary_10_1051_0004_6361_202348026 crossref_primary_10_1007_s00371_024_03705_8 crossref_primary_10_1088_1742_6596_2661_1_012001 crossref_primary_10_1093_ijlct_ctae130 crossref_primary_10_1108_IR_02_2025_0075 crossref_primary_10_1007_s10661_024_13242_5 crossref_primary_10_3390_agronomy13020577 crossref_primary_10_1007_s40333_023_0091_7 crossref_primary_10_1109_TAES_2024_3476459 crossref_primary_10_1007_s11760_025_04059_x crossref_primary_10_3390_inventions8060153 crossref_primary_10_1002_itl2_70050 crossref_primary_10_3390_app15073778 crossref_primary_10_1007_s11554_025_01695_x crossref_primary_10_3390_sym15030663 crossref_primary_10_3233_JIFS_230150 crossref_primary_10_3788_LOP250445 crossref_primary_10_1016_j_eswa_2024_125210 crossref_primary_10_1016_j_heliyon_2024_e33016 crossref_primary_10_1109_JSEN_2025_3543520 crossref_primary_10_3390_plants13070972 crossref_primary_10_1109_JPHOT_2024_3361433 crossref_primary_10_1088_1402_4896_ad8cad crossref_primary_10_3390_app12146922 crossref_primary_10_3390_wevj14100269 crossref_primary_10_1007_s11696_024_03715_9 crossref_primary_10_1109_ACCESS_2023_3329250 crossref_primary_10_1145_3702640 crossref_primary_10_1007_s11042_023_15062_0 crossref_primary_10_1111_jcal_12956 crossref_primary_10_1016_j_mtcomm_2024_109814 crossref_primary_10_3390_electronics14071413 crossref_primary_10_3390_s24072256 crossref_primary_10_7717_peerj_cs_3102 crossref_primary_10_1109_ACCESS_2024_3438551 crossref_primary_10_1111_jfr3_12975 crossref_primary_10_1049_ell2_13145 crossref_primary_10_1016_j_cropro_2025_107284 crossref_primary_10_3390_agriculture12101630 crossref_primary_10_3390_su15031866 |
| Cites_doi | 10.1007/s11063-018-9895-4 10.1134/S0361768820080113 10.1007/s11063-019-10077-x 10.1016/j.micpro.2021.103910 10.1016/j.techsoc.2020.101231 10.1504/IJISTA.2019.10021691 10.1177/1729881419842991 10.1109/TGRS.2019.2951636 10.1007/s42401-020-00077-4 10.3788/gzxb20194807.0701002 10.1007/s12559-019-09667-7 10.1155/2020/8873079 10.1109/TASLP.2020.2963954 10.1016/j.neucom.2019.01.088 10.1038/s41598-020-64229-4 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2021 Public Library of Science 2021 Wu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Wu et al 2021 Wu et al |
| Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Wu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Wu et al 2021 Wu et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pone.0259283 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef Agricultural Science Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2588314978 oai_doaj_org_article_0a4507b074e14ef2aad399b6a447ffb6 PMC8555847 A680628888 34714878 10_1371_journal_pone_0259283 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 PUEGO 5PM - 02 AAPBV ABPTK BBAFP KM |
| ID | FETCH-LOGICAL-c692t-fd432c62e57f10e600938146f0fb7a3f64114ca929fd6ccc5747033c7bb0f8fb3 |
| IEDL.DBID | FPL |
| ISICitedReferencesCount | 222 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000755042500045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Sun Sep 04 00:10:44 EDT 2022 Fri Oct 03 12:28:07 EDT 2025 Tue Nov 04 01:57:02 EST 2025 Fri Sep 05 12:13:59 EDT 2025 Tue Oct 07 08:04:58 EDT 2025 Sat Nov 29 13:03:34 EST 2025 Sat Nov 29 10:07:21 EST 2025 Wed Nov 26 10:33:34 EST 2025 Wed Nov 26 09:52:00 EST 2025 Thu May 22 21:23:28 EDT 2025 Thu Apr 03 07:03:11 EDT 2025 Sat Nov 29 06:06:10 EST 2025 Tue Nov 18 22:15:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-fd432c62e57f10e600938146f0fb7a3f64114ca929fd6ccc5747033c7bb0f8fb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Correction/Retraction-3 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-6618-1380 |
| OpenAccessLink | http://dx.doi.org/10.1371/journal.pone.0259283 |
| PMID | 34714878 |
| PQID | 2588314978 |
| PQPubID | 1436336 |
| PageCount | e0259283 |
| ParticipantIDs | plos_journals_2588314978 doaj_primary_oai_doaj_org_article_0a4507b074e14ef2aad399b6a447ffb6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8555847 proquest_miscellaneous_2590137136 proquest_journals_2588314978 gale_infotracmisc_A680628888 gale_infotracacademiconefile_A680628888 gale_incontextgauss_ISR_A680628888 gale_incontextgauss_IOV_A680628888 gale_healthsolutions_A680628888 pubmed_primary_34714878 crossref_citationtrail_10_1371_journal_pone_0259283 crossref_primary_10_1371_journal_pone_0259283 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-29 |
| PublicationDateYYYYMMDD | 2021-10-29 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2021 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | M Fortuna-Cervantes J (pone.0259283.ref027) 2020; 46 K Eyal (pone.0259283.ref013) 2019; 18 B Rohman (pone.0259283.ref011) 2019; 18 M Dawson (pone.0259283.ref002) 2020; 10 W Liu (pone.0259283.ref012) 2021; 82 MS Ali (pone.0259283.ref016) 2019; 49 T Zhang (pone.0259283.ref024) 2019; 38 G Tian (pone.0259283.ref010) 2019; 345 I Arif (pone.0259283.ref020) 2020; 61 Z Yao (pone.0259283.ref017) 2019; 31 T Yi (pone.0259283.ref019) 2019; 49 Y Wei (pone.0259283.ref015) 2020; 6 C Parra (pone.0259283.ref026) 2020; 113 A N Gorban (pone.0259283.ref018) 2020; 12 W Sun (pone.0259283.ref025) 2019; 24 X Wang (pone.0259283.ref007) 2020; 3 Y Dong (pone.0259283.ref014) 2020; 51 W U Jun-An (pone.0259283.ref029) 2019; 48 T Fan (pone.0259283.ref009) 2020; 18 H Zhou (pone.0259283.ref028) 2021; 23 C Liu (pone.0259283.ref003) 2020; 1 F Ma (pone.0259283.ref021) 2020; 111 Z Meng (pone.0259283.ref023) 2020; 1651 X Lu (pone.0259283.ref031) 2020; 58 S Zhang (pone.0259283.ref001) 2021; 4 A Jamali (pone.0259283.ref004) 2020; 12 S Freitas (pone.0259283.ref008) 2019; 16 Z Wang (pone.0259283.ref030) 2020; 28 W Jiang (pone.0259283.ref006) 2021; 12 X Gao (pone.0259283.ref005) 2017; 55 X Gao (pone.0259283.ref022) 2017; 55 |
| References_xml | – volume: 6 start-page: 136 issue: 3 year: 2020 ident: pone.0259283.ref015 article-title: The Application of Deep Convolution Neural Network to Building Extraction in Remote Sensing Images publication-title: World Scientific Research Journal – volume: 49 start-page: 1649 issue: 3 year: 2019 ident: pone.0259283.ref016 article-title: Event Triggered Finite Time H_∞ Boundedness of Uncertain Markov Jump Neural Networks with Distributed Time Varying Delays publication-title: Neural Processing Letters doi: 10.1007/s11063-018-9895-4 – volume: 1651 start-page: 012192 issue: 1 year: 2020 ident: pone.0259283.ref023 article-title: Automatic music transcription based on convolutional neural network, constant Q transform and MFCC publication-title: Journal of Physics: Conference Series – volume: 38 start-page: 117 issue: 02 year: 2019 ident: pone.0259283.ref024 article-title: A separation method of singing and accompaniment combining discriminative training deep neural network publication-title: Chinese Journal of Acoustics – volume: 46 start-page: 536 issue: 8 year: 2020 ident: pone.0259283.ref027 article-title: Object Detection in Aerial Navigation using Wavelet Transform and Convolutional Neural Networks: A First Approach publication-title: Programming and Computer Software doi: 10.1134/S0361768820080113 – volume: 51 start-page: 83 issue: 1 year: 2020 ident: pone.0259283.ref014 article-title: Robust Output Feedback Stabilization for Uncertain Discrete-Time Stochastic Neural Networks with Time-Varying Delay publication-title: Neural Processing Letters doi: 10.1007/s11063-019-10077-x – volume: 31 start-page: 1 issue: 3 year: 2019 ident: pone.0259283.ref017 article-title: Predicting movie box-office revenues using deep neural networks publication-title: Neural Computing and Applications – volume: 82 start-page: 103910 year: 2021 ident: pone.0259283.ref012 article-title: Beach Sports Image Detection Based on Heterogeneous Multi-Processor and Convolutional Neural Network publication-title: Microprocessors and Microsystems doi: 10.1016/j.micpro.2021.103910 – volume: 49 start-page: 1 issue: 15 year: 2019 ident: pone.0259283.ref019 article-title: Exponential Stability of Pseudo Almost Periodic Solutions for Fuzzy Cellular Neural Networks with Time-Varying Delays publication-title: Neural Processing Letters – volume: 61 start-page: 101231 year: 2020 ident: pone.0259283.ref020 article-title: Barriers in adoption of internet banking: A structural equation modeling—Neural network approach publication-title: Technology in Society doi: 10.1016/j.techsoc.2020.101231 – volume: 23 start-page: 1 issue: 6 year: 2021 ident: pone.0259283.ref028 article-title: Research on Fast Pedestrian Detection Algorithm Based on Autoencoding Neural Network and AdaBoost publication-title: Complexity – volume: 18 start-page: 377 issue: 4 year: 2019 ident: pone.0259283.ref011 article-title: Neural network-based adaptive selection CFAR for radar target detection in various environments publication-title: International Journal of Intelligent Systems Technologies and Applications doi: 10.1504/IJISTA.2019.10021691 – volume: 12 start-page: 1 issue: 2 year: 2020 ident: pone.0259283.ref004 article-title: Improving land use land cover mapping of a neural network with three optimizers of multi-verse optimizer, genetic algorithm, and derivative-free function publication-title: Egyptian Journal of Remote Sensing and Space Science – volume: 18 start-page: 280 issue: 01 year: 2020 ident: pone.0259283.ref009 article-title: Research and realization of video target detection system based on deep learning publication-title: International Journal of Wavelets, Multiresolution and Information Processing – volume: 1 start-page: 1 year: 2020 ident: pone.0259283.ref003 article-title: Bottom-up broadcast neural network for music genre classification publication-title: Multimedia Tools and Applications – volume: 16 issue: 3 year: 2019 ident: pone.0259283.ref008 article-title: Convolutional neural network target detection in hyperspectral imaging for maritime surveillance publication-title: International Journal of Advanced Robotic Systems doi: 10.1177/1729881419842991 – volume: 113 start-page: 23 year: 2020 ident: pone.0259283.ref026 article-title: Improving approximate neural networks for perception tasks through specialized optimization publication-title: Future Generation Computer Systems – volume: 58 start-page: 1985 issue: 3 year: 2020 ident: pone.0259283.ref031 article-title: Sound Active Attention Framework for Remote Sensing Image Captioning publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2019.2951636 – volume: 24 start-page: 1 issue: 11 year: 2019 ident: pone.0259283.ref025 article-title: Small-scale moving target detection in aerial image by deep inverse reinforcement learning publication-title: Soft Computing – volume: 55 start-page: 344 issue: 11 year: 2017 ident: pone.0259283.ref005 article-title: Optimization analysis of urban function regional planning based on big data and GIS technology publication-title: Boletín Técnico – volume: 4 start-page: 101 issue: 2 year: 2021 ident: pone.0259283.ref001 article-title: Aerial image detection and recognition system based on deep neural network publication-title: Aerospace Systems doi: 10.1007/s42401-020-00077-4 – volume: 18 start-page: 925 issue: 3 year: 2019 ident: pone.0259283.ref013 article-title: Knowledge extraction from neural networks using the all-permutations fuzzy rule base: the LED display recognition problem publication-title: IEEE transactions on neural networks – volume: 48 start-page: 701002 issue: 7 year: 2019 ident: pone.0259283.ref029 article-title: Convolutional Neural Network Target Recognition for Missile-borne Linear Array LiDAR publication-title: Guangzi Xuebao/Acta Photonica Sinica doi: 10.3788/gzxb20194807.0701002 – volume: 12 start-page: 388 issue: 1 year: 2020 ident: pone.0259283.ref018 article-title: How deep should be the depth of convolutional neural networks: a backyard dog case study publication-title: Cognitive Computation doi: 10.1007/s12559-019-09667-7 – volume: 3 start-page: 1 issue: 6 year: 2020 ident: pone.0259283.ref007 article-title: Spatiotemporal Fusion of Remote Sensing Image Based on Deep Learning publication-title: Journal of Sensors doi: 10.1155/2020/8873079 – volume: 111 start-page: 7 issue: 15 year: 2020 ident: pone.0259283.ref021 article-title: Detection and diagnosis of chronic kidney disease using deep learning-based heterogeneous modified artificial neural network publication-title: Future Generation Computer Systems – volume: 12 start-page: 1 issue: 1 year: 2021 ident: pone.0259283.ref006 article-title: A method of radar target detection based on convolutional neural network publication-title: Neural Computing and Applications – volume: 28 start-page: 1 year: 2020 ident: pone.0259283.ref030 article-title: Neural Stance Detection With Hierarchical Linguistic Representations publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASLP.2020.2963954 – volume: 55 start-page: 11 year: 2017 ident: pone.0259283.ref022 article-title: Optimization analysis of urban function regional planning based on big data and GIS technology publication-title: Boletín Técnico – volume: 345 start-page: 3 issue: 14 year: 2019 ident: pone.0259283.ref010 article-title: ObjectFusion: An object detection and segmentation framework with RGB-D SLAM and convolutional neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.088 – volume: 10 start-page: 2 issue: 1 year: 2020 ident: pone.0259283.ref002 article-title: Artificial Neural Networks Solve Musical Problems With Fourier Phase Spaces publication-title: Scientific Reports doi: 10.1038/s41598-020-64229-4 |
| SSID | ssj0053866 |
| Score | 2.7234483 |
| Snippet | This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0259283 |
| SubjectTerms | Accuracy Adaptability Algorithms Analysis Artificial intelligence Artificial neural networks Biology and Life Sciences Computer and Information Sciences Computer architecture Datasets Earth Sciences Engineering and Technology Feature extraction Feature recognition Genetic algorithms Geographic information systems Image detection Neural networks Neural Networks, Computer Object recognition Pattern Recognition, Automated - methods Pattern Recognition, Automated - standards Physical Sciences R&D Remote sensing Research & development Research and Analysis Methods Satellite Imagery - methods Satellite Imagery - standards Satellites Signal processing Social Sciences Storage tanks Target detection Workloads |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQtQdeEBsfKwwwCAl4yJbEjpM8lokJpGlFfGk8WbFjl0ppUjVtJf4E_mvuHDcsaNJ44CmSfXbau_N9OOefCXlZWs5BT2wQqkQEnCtYUhDDBTrSgluFRyudpM_Ti4vs8jL_eOWqL6wJ6-CBO8adhAWHkEWBpzMRNzYuihJ8qhIF56mFydD6QtSzS6Y6GwyrWAh_UI6l0YmXy_Gyqc0xePk8ztjAETm8_t4qj5ZV014Xcv5dOXnFFZ3dJXd8DEkn3W_fJ7dMfUD2_Spt6WsPJf3mHvk1-fN9mjaWOs9Fccv9Jz1t6q3XO2hDkA73cFXhFPQQUmZTUtynpd-n51O6TWhRzZoVNCzovKbtoqgq2lWS09KsXU2Xe8vKgPwNbbE2vp7R-QJs1n3y9ezdl9P3gb98IdAij9eBLUGGWsQmSW0UGoFbH7hdaEOr0oJZwSGT0gVEV7YUWusE8pKQMZ0qFdrMKvaAjGpg9yGh1mob6ZJrhijBWaLCMlcMZg1VmIc2HxO2k4TUHpkcL8iopPvclkKG0jFWovykl9-YBP2oZYfMcQP9WxRyT4u42q4BtE16bZM3aduYPEMVkd0h1d46yInI3MXNWTYmLxwFYmvUWLwzKzZtKz9Mv_0D0edPA6JXnsg2wA5d-AMT8J8Qs2tAeTSgBAuhB92HqNA7rrQyTrKMRXi3IIzcKfn13c_7bpwUC_Jq02yQJkewyogBSx52a6LnLIOAB_JgGJ0OVsuA9cOeev7DQZtnCD_H00f_Q1aPye0YC5Ag0IjzIzJarzbmCdnT2_W8XT119uI3RShyyQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELeg8MALY3xsHQMMQgIesiWx4yRPqExMIE3rxJfGUxQ7dlepTUqTVuJP4L_mznEzgiZA4qlSfE6d8935fD7_jpDnheEc5MR4voyEx7kElQIfzlOBEtxIvFppZ_okPj1Nzs_TMxdwq11a5cYmWkNdVApj5IdhlCQswHporxffPKwahaerroTGdXIDURKYTd0721hi0GUh3HU5FgeHbnYOFlWpD2CtT8OE9ZYji9rf2ebBYlbVVzmev-dP_rIgHW_976fcIbedK0pHrexsk2u6vEu2nbLX9KVDpH51j_wYXR5z08pQuwBSjNx_p0dVuXbiC88Q68P-2ORyCuOBnbcuKIZ76dfxyZiuI5rPJjCc5mJOpyWt5_lsRtuEdFroxqaG2X9ZahAjTWtMsS8ndDoH03effD5---nonedqOHhKpGHjmQJEQYlQR7EJfC0wgoJRR-MbGefMCA4bMpWDk2YKoZSKYHvjM6ZiKX2TGMkekEEJ87VLqDHKBKrgiiHYcBJJv0glg7f60k99kw4J20xlphzAOdbZmGX21C6GjU7L2AwFIHMCMCRe12vRAnz8hf4NSklHi_Dc9kG1nGRO2zM_5-BnS3DPdMC1CfO8AEdQipzz2IAGDMkTlLGsvevaGZlsJBJb_zlJhuSZpUCIjhJzgCb5qq6z9-Mv_0D08UOP6IUjMhWwQ-Xu3gV8E0J_9Sj3e5RgaFSveRc1YsOVOruUY-i5kfSrm592zfhSzOsrdbVCmhQxLwMGLNlplarjLAO_CbbT0DvuqVuP9f2WcnphEdITRLHj8d6fh_WQ3AoxQwk8kTDdJ4NmudKPyE21bqb18rE1JT8B2OyAnQ priority: 102 providerName: ProQuest |
| Title | Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34714878 https://www.proquest.com/docview/2588314978 https://www.proquest.com/docview/2590137136 https://pubmed.ncbi.nlm.nih.gov/PMC8555847 https://doaj.org/article/0a4507b074e14ef2aad399b6a447ffb6 http://dx.doi.org/10.1371/journal.pone.0259283 |
| Volume | 16 |
| WOSCitedRecordID | wos000755042500045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYxwMvwPhaYRSDkICHlHw4dvLYVquY1rVRB9PGS5Q4canUJlXTVuJP4L_mzk0zMm0CXq6SfU7S8519Z59_JuR9ohgDPVGGGbvcYCwGkwIfzpCW5EzFeLRS9_RADIfe5aUfXAeKN3bwHWF9LmXaXuRZ2oYZ2ocJcY_s2w7nmMLVDwa7kRdsl_PyeNxdLWvTj0bpr8bixmKWF7c5mjfzJf-YgPqP_vfTH5OHpatJO1vdOCD30uwJOSiNuaAfS8TpT0_Jr871NjbNFdUTHMWV-Z-0l2ebUj2hDLE89I9OHqegrhBZpwnF5Vx6NRqM6Mal0WySL6FgTqcZLebRbEa3Cec0SVc69Uu_ZZmCmqS0wBT6bEKncxjanpFv_eOvvS9GeUeDIblvrwyVQFdLbqeuUJaZclwhwVVFZapYRI7iDAIuGYETphIupXQhfDEdR4o4NpWnYuc5aWQgnkNClZLKkgmTDoIJe25sJn7swFPN2PRN5TeJs-u6UJYA5niPxizUu3ICApmtYEOUd1jKu0mMqtViC-DxF_4uakXFi_DbugA6NiytOTQjBn50DO5XarFU2VGUgKMX84gxoUDDm-QN6lS4PctaDSJhh3v6fmfPa5J3mgMhODLM8ZlE66IIT0YX_8B0Pq4xfSiZVA7ikFF5rgL-E0J71TiPapwwkMha9SFawE4qRWi7nudYeAUhtNxZxe3Vb6tqfCjm7WVpvkYeHzEtLQdE8mJrRJVkHfCLIFyG1qJmXjXR12uy6Q-NgO4hSh0TL-_-4lfkgY3ZR-Bl2P4RaayW6_Q1uS83q2mxbJE9Mb5Aeik09YB6PatF9rvHw2Dc0iszLT24AD3ttoGemadIRaDpOdDA_Q4tgpOz4Oo3ATl7bA |
| linkProvider | Public Library of Science |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGQYIXYHytMJhBIOAhWxI7Xw8IlcG0aaVFY0zjKcRO3FVqk9K0RfsT-Gf4G7lznI6gCXjZA0-V4rMbX-53Ptv3QcjTVHEOcqIsW3i-xbkASIENZ0lH-lwJDK3UX7ob9Hrh8XH0YYX8qGNh0K2y1olaUaeFxDPyLdcLQ-ZgPbTXk68WVo3C29W6hEYlFvvZ6TfYspWv9t7C933mujvvDrd3LVNVwJJ-5M4slcLLSd_NvEA5dubjnh7PwZStRJAw5XPYIsgEzAaV-lJKDwxumzEZCGGrUAkG414il0GPO-hCFhwc1ZofdIfvm_A8FjhbRho2J0WebYJtEbkhayx_ukrAci1oTUZFeZ6h-7u_5i8L4M6N_411N8l1Y2rTToWNVbKS5bfIqlFmJX1hMm6_vE2-d86u8WmhqF7gKd5MnNLtIl8YeMIzzGWif7TzPIX5CzDTU4rH2fRzv9unC48mowFMf3YypsOcluNkNKKVwz1Ns5l2fdP_Ms0AJhktMYQgH9DhGFT7HfLpQlhyl7RykI81QpWSypEplwyTKYeesNNIMBjVFnZkq6hNWC06sTQJ3LGOyCjWt5IBbOQqxsYocLERuDaxlr0mVQKTv9C_Qalc0mL6cf2gmA5io81iO-GwjxBgfmYOz5SbJCkYusJPOA8UILxNNlCm4yqWd6lE444f6vrWYdgmTzQFpiDJ0cdpkMzLMt7rH_0D0ceDBtFzQ6QKYIdMTFwJzAlTmzUo1xuUoEhlo3kNEVhzpYzPcAM9a2Sd3_x42YyDot9inhVzpIkwp6fDgCX3KhAvOcvALuQh9g4a8G6wvtmSD090BvgQs_Tx4P6fX2uDXN09fN-Nu3u9_QfkmoveWGB1udE6ac2m8-whuSIXs2E5faTVGCVfLhr8PwFeF91b |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGQYgXYHytMJhBIOAhaxK7-XhAqHRUTKvaCQYaTyF24q5Sm5SmLdqfwL_EX8ed42YETcDLHniqFJ_d-HK_89m-D0KeJopzkBNl2aLtWZwLgBTYcJZ0pMeVwNBK_aX7_mAQHB-HhxvkxzoWBt0q1zpRK-okl3hG3nLbQcAcrIfWUsYt4nCv93r21cIKUnjTui6nUYrIQXr6DbZvxav9PfjWz1y39_ao-84yFQYs6YXuwlIJvKj03LTtK8dOPdzf45mYspXwY6Y8DtsFGYMJoRJPStkG49tmTPpC2CpQgsG4l8hln4EUY5R6t3IvAT3ieSZUj_lOy0jG7izP0l2wM0I3YLWlUFcMqNaFxmySF-cZvb_7bv6yGPZu_M9svEmuGxOcdkrMbJKNNLtFNo2SK-gLk4n75W3yvXN2vU9zRfXCT3FGp7SbZysDW3iGOU70j3aqp8ALAeZ7QvGYm34e9od01abxZATTX5xM6TijxTSeTGjpiE-TdKFd4vS_zFOAT0oLDC3IRnQ8BZV_h3y8EJbcJY0MZGWLUKWkcmTCJcMky0Fb2EkoGIxqCzu0VdgkbC1GkTSJ3bG-yCTSt5U-bPBKxkYofJERviaxql6zMrHJX-jfoIRWtJiWXD_I56PIaLnIjjnsLwSYpanDU-XGcQIGsPBizn0FyG-SHZTvqIzxrZRr1PECXfc6CJrkiabA1CQZSucoXhZFtD_89A9EH97XiJ4bIpUDO2Rs4k1gTpjyrEa5XaMEBStrzVuIxjVXiugMQ9BzjbLzmx9XzTgo-jNmab5EmhBzfToMWHKvBHTFWQb2Ig-wt1-Deo319ZZsfKIzwweYvY_79__8WjvkKmA-6u8PDh6Qay46aYEx5obbpLGYL9OH5IpcLcbF_JHWaJR8uWjs_wQadOW2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+local+fully+Convolutional+Neural+Network+combined+with+YOLO+v5+algorithm+in+small+target+detection+of+remote+sensing+image&rft.jtitle=PloS+one&rft.au=Wu%2C+Wentong&rft.au=Liu%2C+Han&rft.au=Wang%2C+Xiaodong&rft.au=Li%2C+Jinglun&rft.date=2021-10-29&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=10&rft.spage=e0259283&rft_id=info:doi/10.1371%2Fjournal.pone.0259283&rft.externalDBID=n%2Fa&rft.externalDocID=A680628888 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |