Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image

This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small targets in remote sensing images. Firstly, the application effects of R-CNN (Region-Convolutional Neural Network), FRCN (Fast Region-Convolu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 16; číslo 10; s. e0259283
Hlavní autoři: Wu, Wentong, Liu, Han, Li, Lingling, Long, Yilin, Wang, Xiaodong, Wang, Zhuohua, Li, Jinglun, Chang, Yi
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 29.10.2021
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small targets in remote sensing images. Firstly, the application effects of R-CNN (Region-Convolutional Neural Network), FRCN (Fast Region-Convolutional Neural Network), and R-FCN (Region-Based-Fully Convolutional Network) in image feature extraction are analyzed after introducing the relevant region proposal network. Secondly, YOLO-v5 algorithm is established on the basis of YOLO algorithm. Besides, the multi-scale anchor mechanism of Faster R-CNN is utilized to improve the detection ability of YOLO-v5 algorithm for small targets in the image in the process of image detection, and realize the high adaptability of YOLO-v5 algorithm to different sizes of images. Finally, the proposed detection method YOLO-v5 algorithm + R-FCN is compared with other algorithms in NWPU VHR-10 data set and Vaihingen data set. The experimental results show that the YOLO-v5 + R-FCN detection method has the optimal detection ability among many algorithms, especially for small targets in remote sensing images such as tennis courts, vehicles, and storage tanks. Moreover, the YOLO-v5 + R-FCN detection method can achieve high recall rates for different types of small targets. Furthermore, due to the deeper network architecture, the YOL v5 + R-FCN detection method has a stronger ability to extract the characteristics of image targets in the detection of remote sensing images. Meanwhile, it can achieve more accurate feature recognition and detection performance for the densely arranged target images in remote sensing images. This research can provide reference for the application of remote sensing technology in China, and promote the application of satellites for target detection tasks in related fields.
AbstractList This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small targets in remote sensing images. Firstly, the application effects of R-CNN (Region-Convolutional Neural Network), FRCN (Fast Region-Convolutional Neural Network), and R-FCN (Region-Based-Fully Convolutional Network) in image feature extraction are analyzed after introducing the relevant region proposal network. Secondly, YOLO-v5 algorithm is established on the basis of YOLO algorithm. Besides, the multi-scale anchor mechanism of Faster R-CNN is utilized to improve the detection ability of YOLO-v5 algorithm for small targets in the image in the process of image detection, and realize the high adaptability of YOLO-v5 algorithm to different sizes of images. Finally, the proposed detection method YOLO-v5 algorithm + R-FCN is compared with other algorithms in NWPU VHR-10 data set and Vaihingen data set. The experimental results show that the YOLO-v5 + R-FCN detection method has the optimal detection ability among many algorithms, especially for small targets in remote sensing images such as tennis courts, vehicles, and storage tanks. Moreover, the YOLO-v5 + R-FCN detection method can achieve high recall rates for different types of small targets. Furthermore, due to the deeper network architecture, the YOL v5 + R-FCN detection method has a stronger ability to extract the characteristics of image targets in the detection of remote sensing images. Meanwhile, it can achieve more accurate feature recognition and detection performance for the densely arranged target images in remote sensing images. This research can provide reference for the application of remote sensing technology in China, and promote the application of satellites for target detection tasks in related fields.
This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small targets in remote sensing images. Firstly, the application effects of R-CNN (Region-Convolutional Neural Network), FRCN (Fast Region-Convolutional Neural Network), and R-FCN (Region-Based-Fully Convolutional Network) in image feature extraction are analyzed after introducing the relevant region proposal network. Secondly, YOLO-v5 algorithm is established on the basis of YOLO algorithm. Besides, the multi-scale anchor mechanism of Faster R-CNN is utilized to improve the detection ability of YOLO-v5 algorithm for small targets in the image in the process of image detection, and realize the high adaptability of YOLO-v5 algorithm to different sizes of images. Finally, the proposed detection method YOLO-v5 algorithm + R-FCN is compared with other algorithms in NWPU VHR-10 data set and Vaihingen data set. The experimental results show that the YOLO-v5 + R-FCN detection method has the optimal detection ability among many algorithms, especially for small targets in remote sensing images such as tennis courts, vehicles, and storage tanks. Moreover, the YOLO-v5 + R-FCN detection method can achieve high recall rates for different types of small targets. Furthermore, due to the deeper network architecture, the YOL v5 + R-FCN detection method has a stronger ability to extract the characteristics of image targets in the detection of remote sensing images. Meanwhile, it can achieve more accurate feature recognition and detection performance for the densely arranged target images in remote sensing images. This research can provide reference for the application of remote sensing technology in China, and promote the application of satellites for target detection tasks in related fields.This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small targets in remote sensing images. Firstly, the application effects of R-CNN (Region-Convolutional Neural Network), FRCN (Fast Region-Convolutional Neural Network), and R-FCN (Region-Based-Fully Convolutional Network) in image feature extraction are analyzed after introducing the relevant region proposal network. Secondly, YOLO-v5 algorithm is established on the basis of YOLO algorithm. Besides, the multi-scale anchor mechanism of Faster R-CNN is utilized to improve the detection ability of YOLO-v5 algorithm for small targets in the image in the process of image detection, and realize the high adaptability of YOLO-v5 algorithm to different sizes of images. Finally, the proposed detection method YOLO-v5 algorithm + R-FCN is compared with other algorithms in NWPU VHR-10 data set and Vaihingen data set. The experimental results show that the YOLO-v5 + R-FCN detection method has the optimal detection ability among many algorithms, especially for small targets in remote sensing images such as tennis courts, vehicles, and storage tanks. Moreover, the YOLO-v5 + R-FCN detection method can achieve high recall rates for different types of small targets. Furthermore, due to the deeper network architecture, the YOL v5 + R-FCN detection method has a stronger ability to extract the characteristics of image targets in the detection of remote sensing images. Meanwhile, it can achieve more accurate feature recognition and detection performance for the densely arranged target images in remote sensing images. This research can provide reference for the application of remote sensing technology in China, and promote the application of satellites for target detection tasks in related fields.
Audience Academic
Author Liu, Han
Long, Yilin
Wang, Xiaodong
Li, Jinglun
Wang, Zhuohua
Wu, Wentong
Chang, Yi
Li, Lingling
AuthorAffiliation 1 Basic Research and Development Department of Xi’an FiberHome software and technology CO., LTD, Xi’an City, China
Ministry of Natural Resources North Sea Bureau, CHINA
3 School of Artificial Intelligence, Xidian University, Xi’an, China
2 School of Automation and Information Engineering University, Xi’an University of Technology, Xi’an City, China
AuthorAffiliation_xml – name: 1 Basic Research and Development Department of Xi’an FiberHome software and technology CO., LTD, Xi’an City, China
– name: 2 School of Automation and Information Engineering University, Xi’an University of Technology, Xi’an City, China
– name: Ministry of Natural Resources North Sea Bureau, CHINA
– name: 3 School of Artificial Intelligence, Xidian University, Xi’an, China
Author_xml – sequence: 1
  givenname: Wentong
  surname: Wu
  fullname: Wu, Wentong
– sequence: 2
  givenname: Han
  orcidid: 0000-0002-6618-1380
  surname: Liu
  fullname: Liu, Han
– sequence: 3
  givenname: Lingling
  surname: Li
  fullname: Li, Lingling
– sequence: 4
  givenname: Yilin
  surname: Long
  fullname: Long, Yilin
– sequence: 5
  givenname: Xiaodong
  surname: Wang
  fullname: Wang, Xiaodong
– sequence: 6
  givenname: Zhuohua
  surname: Wang
  fullname: Wang, Zhuohua
– sequence: 7
  givenname: Jinglun
  surname: Li
  fullname: Li, Jinglun
– sequence: 8
  givenname: Yi
  surname: Chang
  fullname: Chang, Yi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34714878$$D View this record in MEDLINE/PubMed
BookMark eNqNk12L1DAUhousuB_6D0QDgujFjGmTJq0XwrL4MbA44Bd4FdI06WRNkzFJd92f4L82nenIzrKI7UXCyXPek_NycpwdWGdllj3O4TxHNH914QZvuZmvU3gOi7IuKnQvO8prVMxIAdHBjf1hdhzCBYQlqgh5kB0iTHNc0eoo-326XhsteNTOAqeAcYIboAZjrsGZs5fODONRin2Ug98s8cr5H0C4vtFWtuBKxxX4vjxfgssScNM5nwI90BaEnhsDIvedjKCVUYpdFS97FyUI0gZtO6B73smH2X3FTZCPpvUk-_ru7ZezD7Pz5fvF2en5TJC6iDPVYlQIUsiSqhxKAmGNqhwTBVVDOVIE5zkWvC5q1RIhREkxhQgJ2jRQVapBJ9nTre7auMAmFwMryqpCOa5plYjFlmgdv2Brn67nr5njmm0CzneM-6iFkQxyXELaQIpljqUqOG9RXTeEY0yVakjSejNVG5petkLamFzcE90_sXrFOnfJqrIsK0yTwItJwLufgwyR9ToIaQy30g3jvWs4zgMaaz27hd7d3UR1PDWgrXKprhhF2SmpICmq9CVqfgeV_lb2WqSRUzrF9xJe7iUkJspfseNDCGzx-dP_s8tv--zzG-xKchNXYZrKsA8-uen0X4t3s56A11tAeBeCl4oJHTeDn1rThuWQjUbuTGPjw2LTw0rJ-FbyTv-faX8ADxco7w
CitedBy_id crossref_primary_10_1007_s11760_025_04675_7
crossref_primary_10_3390_electronics11111743
crossref_primary_10_3390_bdcc6040106
crossref_primary_10_1186_s40494_024_01268_4
crossref_primary_10_3390_rs16132416
crossref_primary_10_3390_s23083852
crossref_primary_10_3389_fphy_2024_1517177
crossref_primary_10_1016_j_cviu_2024_104261
crossref_primary_10_1016_j_compag_2025_110401
crossref_primary_10_1016_j_procs_2025_04_252
crossref_primary_10_35633_inmateh_75_07
crossref_primary_10_1007_s10664_025_10679_1
crossref_primary_10_3389_fnbot_2023_1226125
crossref_primary_10_3390_su14105872
crossref_primary_10_1080_00051144_2024_2362575
crossref_primary_10_25300_MISQ_2025_18944
crossref_primary_10_1007_s00521_024_09582_5
crossref_primary_10_1007_s12596_023_01243_5
crossref_primary_10_1016_j_eswa_2023_120187
crossref_primary_10_1016_j_aquaculture_2025_742395
crossref_primary_10_1016_j_compag_2023_108603
crossref_primary_10_1371_journal_pone_0291288
crossref_primary_10_1080_00150193_2023_2198454
crossref_primary_10_3390_rs14153684
crossref_primary_10_1016_j_engappai_2023_106656
crossref_primary_10_1088_1361_6501_ad6627
crossref_primary_10_1109_ACCESS_2023_3270710
crossref_primary_10_3389_fevo_2022_840464
crossref_primary_10_1109_ACCESS_2023_3324146
crossref_primary_10_3390_drones8040145
crossref_primary_10_1088_1361_6501_ad41fe
crossref_primary_10_3390_rs16203810
crossref_primary_10_3390_rs14081901
crossref_primary_10_3390_electronics11152344
crossref_primary_10_3390_su14094930
crossref_primary_10_1016_j_infrared_2024_105344
crossref_primary_10_1007_s10586_023_04109_4
crossref_primary_10_1016_j_scitotenv_2022_156064
crossref_primary_10_3389_fbuil_2025_1563483
crossref_primary_10_14775_ksmpe_2024_23_06_013
crossref_primary_10_1049_cim2_12104
crossref_primary_10_1016_j_optlaseng_2024_108176
crossref_primary_10_3390_agriengineering5020050
crossref_primary_10_3390_pr10112274
crossref_primary_10_2217_fon_2022_0593
crossref_primary_10_1016_j_ecoinf_2025_103000
crossref_primary_10_3390_rs15040883
crossref_primary_10_3390_app132011473
crossref_primary_10_3390_land12122142
crossref_primary_10_3390_s24092676
crossref_primary_10_1109_JSTARS_2024_3417702
crossref_primary_10_1088_1742_6596_2762_1_012005
crossref_primary_10_1109_ACCESS_2023_3262703
crossref_primary_10_1186_s40537_025_01206_6
crossref_primary_10_1515_eng_2024_0056
crossref_primary_10_1109_TPDS_2025_3555329
crossref_primary_10_1109_JSEN_2023_3281585
crossref_primary_10_3390_diagnostics12112591
crossref_primary_10_3390_electronics12214448
crossref_primary_10_3390_electronics13091620
crossref_primary_10_1109_JSTARS_2025_3535090
crossref_primary_10_3390_s23125640
crossref_primary_10_1016_j_measurement_2024_116212
crossref_primary_10_1109_TCE_2025_3527678
crossref_primary_10_1109_ACCESS_2024_3464741
crossref_primary_10_3390_electronics13163301
crossref_primary_10_1109_JSTARS_2023_3339235
crossref_primary_10_3233_IDA_227154
crossref_primary_10_1109_ACCESS_2025_3543858
crossref_primary_10_1016_j_conbuildmat_2023_134594
crossref_primary_10_1016_j_jksuci_2023_101859
crossref_primary_10_1051_itmconf_20257003008
crossref_primary_10_1109_JSEN_2025_3586705
crossref_primary_10_1186_s13058_025_01981_3
crossref_primary_10_3390_electronics12051257
crossref_primary_10_3103_S0147688224700527
crossref_primary_10_3390_a16050227
crossref_primary_10_1017_dsj_2025_10021
crossref_primary_10_1007_s10489_024_06003_x
crossref_primary_10_1007_s11042_024_18866_w
crossref_primary_10_3390_f14030616
crossref_primary_10_3390_rs14215545
crossref_primary_10_1007_s00500_023_08139_3
crossref_primary_10_1117_1_JEI_33_4_043012
crossref_primary_10_1109_ACCESS_2024_3365584
crossref_primary_10_1016_j_engappai_2023_107775
crossref_primary_10_1016_j_undsp_2024_07_003
crossref_primary_10_3390_s24051507
crossref_primary_10_3390_bioengineering10121385
crossref_primary_10_1007_s00371_023_02892_0
crossref_primary_10_3390_electronics11172669
crossref_primary_10_1063_5_0196580
crossref_primary_10_3390_electronics13224400
crossref_primary_10_3390_su16093775
crossref_primary_10_1007_s00521_024_10529_z
crossref_primary_10_3389_fmicb_2022_1008346
crossref_primary_10_1109_ACCESS_2024_3459868
crossref_primary_10_1016_j_ymssp_2025_112386
crossref_primary_10_1109_JSTARS_2024_3389958
crossref_primary_10_1109_JSTARS_2022_3213438
crossref_primary_10_3390_rs15153755
crossref_primary_10_3390_info13010005
crossref_primary_10_1088_2631_8695_add857
crossref_primary_10_1109_JSTARS_2022_3233043
crossref_primary_10_3390_s22145283
crossref_primary_10_1016_j_bdr_2024_100449
crossref_primary_10_1080_00305316_2024_2361081
crossref_primary_10_3390_agriculture14122263
crossref_primary_10_3390_rs15102680
crossref_primary_10_1038_s41598_025_92771_6
crossref_primary_10_3389_fpls_2024_1360419
crossref_primary_10_1364_AO_509549
crossref_primary_10_3390_atmos14121820
crossref_primary_10_3390_s23115039
crossref_primary_10_1108_ECAM_02_2024_0149
crossref_primary_10_1016_j_compag_2024_109286
crossref_primary_10_1108_IJICC_01_2024_0020
crossref_primary_10_32604_cmc_2024_048998
crossref_primary_10_3389_fpls_2025_1591989
crossref_primary_10_1038_s41598_025_89421_2
crossref_primary_10_3390_app131810188
crossref_primary_10_7717_peerj_cs_2271
crossref_primary_10_3390_s23249759
crossref_primary_10_1007_s12596_023_01445_x
crossref_primary_10_1016_j_eswa_2024_124244
crossref_primary_10_1007_s11227_022_04402_w
crossref_primary_10_1109_MIS_2024_3399053
crossref_primary_10_1515_jpm_2023_0041
crossref_primary_10_3389_fphy_2024_1364372
crossref_primary_10_1016_j_biosystemseng_2024_09_016
crossref_primary_10_1088_1361_6501_adb76a
crossref_primary_10_3390_app14051787
crossref_primary_10_3390_s23187719
crossref_primary_10_1051_0004_6361_202348026
crossref_primary_10_1007_s00371_024_03705_8
crossref_primary_10_1088_1742_6596_2661_1_012001
crossref_primary_10_1093_ijlct_ctae130
crossref_primary_10_1108_IR_02_2025_0075
crossref_primary_10_1007_s10661_024_13242_5
crossref_primary_10_3390_agronomy13020577
crossref_primary_10_1007_s40333_023_0091_7
crossref_primary_10_1109_TAES_2024_3476459
crossref_primary_10_1007_s11760_025_04059_x
crossref_primary_10_3390_inventions8060153
crossref_primary_10_1002_itl2_70050
crossref_primary_10_3390_app15073778
crossref_primary_10_1007_s11554_025_01695_x
crossref_primary_10_3390_sym15030663
crossref_primary_10_3233_JIFS_230150
crossref_primary_10_3788_LOP250445
crossref_primary_10_1016_j_eswa_2024_125210
crossref_primary_10_1016_j_heliyon_2024_e33016
crossref_primary_10_1109_JSEN_2025_3543520
crossref_primary_10_3390_plants13070972
crossref_primary_10_1109_JPHOT_2024_3361433
crossref_primary_10_1088_1402_4896_ad8cad
crossref_primary_10_3390_app12146922
crossref_primary_10_3390_wevj14100269
crossref_primary_10_1007_s11696_024_03715_9
crossref_primary_10_1109_ACCESS_2023_3329250
crossref_primary_10_1145_3702640
crossref_primary_10_1007_s11042_023_15062_0
crossref_primary_10_1111_jcal_12956
crossref_primary_10_1016_j_mtcomm_2024_109814
crossref_primary_10_3390_electronics14071413
crossref_primary_10_3390_s24072256
crossref_primary_10_7717_peerj_cs_3102
crossref_primary_10_1109_ACCESS_2024_3438551
crossref_primary_10_1111_jfr3_12975
crossref_primary_10_1049_ell2_13145
crossref_primary_10_1016_j_cropro_2025_107284
crossref_primary_10_3390_agriculture12101630
crossref_primary_10_3390_su15031866
Cites_doi 10.1007/s11063-018-9895-4
10.1134/S0361768820080113
10.1007/s11063-019-10077-x
10.1016/j.micpro.2021.103910
10.1016/j.techsoc.2020.101231
10.1504/IJISTA.2019.10021691
10.1177/1729881419842991
10.1109/TGRS.2019.2951636
10.1007/s42401-020-00077-4
10.3788/gzxb20194807.0701002
10.1007/s12559-019-09667-7
10.1155/2020/8873079
10.1109/TASLP.2020.2963954
10.1016/j.neucom.2019.01.088
10.1038/s41598-020-64229-4
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Wu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Wu et al 2021 Wu et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Wu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Wu et al 2021 Wu et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0259283
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

CrossRef
Agricultural Science Database

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm
EISSN 1932-6203
ExternalDocumentID 2588314978
oai_doaj_org_article_0a4507b074e14ef2aad399b6a447ffb6
PMC8555847
A680628888
34714878
10_1371_journal_pone_0259283
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
PUEGO
5PM
-
02
AAPBV
ABPTK
BBAFP
KM
ID FETCH-LOGICAL-c692t-fd432c62e57f10e600938146f0fb7a3f64114ca929fd6ccc5747033c7bb0f8fb3
IEDL.DBID M7P
ISICitedReferencesCount 222
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000755042500045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Sun Sep 04 00:10:44 EDT 2022
Fri Oct 03 12:28:07 EDT 2025
Tue Nov 04 01:57:02 EST 2025
Fri Sep 05 12:13:59 EDT 2025
Tue Oct 07 08:04:58 EDT 2025
Sat Nov 29 13:03:34 EST 2025
Sat Nov 29 10:07:21 EST 2025
Wed Nov 26 10:33:34 EST 2025
Wed Nov 26 09:52:00 EST 2025
Thu May 22 21:23:28 EDT 2025
Thu Apr 03 07:03:11 EDT 2025
Sat Nov 29 06:06:10 EST 2025
Tue Nov 18 22:15:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-fd432c62e57f10e600938146f0fb7a3f64114ca929fd6ccc5747033c7bb0f8fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-6618-1380
OpenAccessLink https://www.proquest.com/docview/2588314978?pq-origsite=%requestingapplication%
PMID 34714878
PQID 2588314978
PQPubID 1436336
PageCount e0259283
ParticipantIDs plos_journals_2588314978
doaj_primary_oai_doaj_org_article_0a4507b074e14ef2aad399b6a447ffb6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8555847
proquest_miscellaneous_2590137136
proquest_journals_2588314978
gale_infotracmisc_A680628888
gale_infotracacademiconefile_A680628888
gale_incontextgauss_ISR_A680628888
gale_incontextgauss_IOV_A680628888
gale_healthsolutions_A680628888
pubmed_primary_34714878
crossref_citationtrail_10_1371_journal_pone_0259283
crossref_primary_10_1371_journal_pone_0259283
PublicationCentury 2000
PublicationDate 2021-10-29
PublicationDateYYYYMMDD 2021-10-29
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M Fortuna-Cervantes J (pone.0259283.ref027) 2020; 46
K Eyal (pone.0259283.ref013) 2019; 18
B Rohman (pone.0259283.ref011) 2019; 18
M Dawson (pone.0259283.ref002) 2020; 10
W Liu (pone.0259283.ref012) 2021; 82
MS Ali (pone.0259283.ref016) 2019; 49
T Zhang (pone.0259283.ref024) 2019; 38
G Tian (pone.0259283.ref010) 2019; 345
I Arif (pone.0259283.ref020) 2020; 61
Z Yao (pone.0259283.ref017) 2019; 31
T Yi (pone.0259283.ref019) 2019; 49
Y Wei (pone.0259283.ref015) 2020; 6
C Parra (pone.0259283.ref026) 2020; 113
A N Gorban (pone.0259283.ref018) 2020; 12
W Sun (pone.0259283.ref025) 2019; 24
X Wang (pone.0259283.ref007) 2020; 3
Y Dong (pone.0259283.ref014) 2020; 51
W U Jun-An (pone.0259283.ref029) 2019; 48
T Fan (pone.0259283.ref009) 2020; 18
H Zhou (pone.0259283.ref028) 2021; 23
C Liu (pone.0259283.ref003) 2020; 1
F Ma (pone.0259283.ref021) 2020; 111
Z Meng (pone.0259283.ref023) 2020; 1651
X Lu (pone.0259283.ref031) 2020; 58
S Zhang (pone.0259283.ref001) 2021; 4
A Jamali (pone.0259283.ref004) 2020; 12
S Freitas (pone.0259283.ref008) 2019; 16
Z Wang (pone.0259283.ref030) 2020; 28
W Jiang (pone.0259283.ref006) 2021; 12
X Gao (pone.0259283.ref005) 2017; 55
X Gao (pone.0259283.ref022) 2017; 55
References_xml – volume: 6
  start-page: 136
  issue: 3
  year: 2020
  ident: pone.0259283.ref015
  article-title: The Application of Deep Convolution Neural Network to Building Extraction in Remote Sensing Images
  publication-title: World Scientific Research Journal
– volume: 49
  start-page: 1649
  issue: 3
  year: 2019
  ident: pone.0259283.ref016
  article-title: Event Triggered Finite Time H_∞ Boundedness of Uncertain Markov Jump Neural Networks with Distributed Time Varying Delays
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-018-9895-4
– volume: 1651
  start-page: 012192
  issue: 1
  year: 2020
  ident: pone.0259283.ref023
  article-title: Automatic music transcription based on convolutional neural network, constant Q transform and MFCC
  publication-title: Journal of Physics: Conference Series
– volume: 38
  start-page: 117
  issue: 02
  year: 2019
  ident: pone.0259283.ref024
  article-title: A separation method of singing and accompaniment combining discriminative training deep neural network
  publication-title: Chinese Journal of Acoustics
– volume: 46
  start-page: 536
  issue: 8
  year: 2020
  ident: pone.0259283.ref027
  article-title: Object Detection in Aerial Navigation using Wavelet Transform and Convolutional Neural Networks: A First Approach
  publication-title: Programming and Computer Software
  doi: 10.1134/S0361768820080113
– volume: 51
  start-page: 83
  issue: 1
  year: 2020
  ident: pone.0259283.ref014
  article-title: Robust Output Feedback Stabilization for Uncertain Discrete-Time Stochastic Neural Networks with Time-Varying Delay
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-019-10077-x
– volume: 31
  start-page: 1
  issue: 3
  year: 2019
  ident: pone.0259283.ref017
  article-title: Predicting movie box-office revenues using deep neural networks
  publication-title: Neural Computing and Applications
– volume: 82
  start-page: 103910
  year: 2021
  ident: pone.0259283.ref012
  article-title: Beach Sports Image Detection Based on Heterogeneous Multi-Processor and Convolutional Neural Network
  publication-title: Microprocessors and Microsystems
  doi: 10.1016/j.micpro.2021.103910
– volume: 49
  start-page: 1
  issue: 15
  year: 2019
  ident: pone.0259283.ref019
  article-title: Exponential Stability of Pseudo Almost Periodic Solutions for Fuzzy Cellular Neural Networks with Time-Varying Delays
  publication-title: Neural Processing Letters
– volume: 61
  start-page: 101231
  year: 2020
  ident: pone.0259283.ref020
  article-title: Barriers in adoption of internet banking: A structural equation modeling—Neural network approach
  publication-title: Technology in Society
  doi: 10.1016/j.techsoc.2020.101231
– volume: 23
  start-page: 1
  issue: 6
  year: 2021
  ident: pone.0259283.ref028
  article-title: Research on Fast Pedestrian Detection Algorithm Based on Autoencoding Neural Network and AdaBoost
  publication-title: Complexity
– volume: 18
  start-page: 377
  issue: 4
  year: 2019
  ident: pone.0259283.ref011
  article-title: Neural network-based adaptive selection CFAR for radar target detection in various environments
  publication-title: International Journal of Intelligent Systems Technologies and Applications
  doi: 10.1504/IJISTA.2019.10021691
– volume: 12
  start-page: 1
  issue: 2
  year: 2020
  ident: pone.0259283.ref004
  article-title: Improving land use land cover mapping of a neural network with three optimizers of multi-verse optimizer, genetic algorithm, and derivative-free function
  publication-title: Egyptian Journal of Remote Sensing and Space Science
– volume: 18
  start-page: 280
  issue: 01
  year: 2020
  ident: pone.0259283.ref009
  article-title: Research and realization of video target detection system based on deep learning
  publication-title: International Journal of Wavelets, Multiresolution and Information Processing
– volume: 1
  start-page: 1
  year: 2020
  ident: pone.0259283.ref003
  article-title: Bottom-up broadcast neural network for music genre classification
  publication-title: Multimedia Tools and Applications
– volume: 16
  issue: 3
  year: 2019
  ident: pone.0259283.ref008
  article-title: Convolutional neural network target detection in hyperspectral imaging for maritime surveillance
  publication-title: International Journal of Advanced Robotic Systems
  doi: 10.1177/1729881419842991
– volume: 113
  start-page: 23
  year: 2020
  ident: pone.0259283.ref026
  article-title: Improving approximate neural networks for perception tasks through specialized optimization
  publication-title: Future Generation Computer Systems
– volume: 58
  start-page: 1985
  issue: 3
  year: 2020
  ident: pone.0259283.ref031
  article-title: Sound Active Attention Framework for Remote Sensing Image Captioning
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2019.2951636
– volume: 24
  start-page: 1
  issue: 11
  year: 2019
  ident: pone.0259283.ref025
  article-title: Small-scale moving target detection in aerial image by deep inverse reinforcement learning
  publication-title: Soft Computing
– volume: 55
  start-page: 344
  issue: 11
  year: 2017
  ident: pone.0259283.ref005
  article-title: Optimization analysis of urban function regional planning based on big data and GIS technology
  publication-title: Boletín Técnico
– volume: 4
  start-page: 101
  issue: 2
  year: 2021
  ident: pone.0259283.ref001
  article-title: Aerial image detection and recognition system based on deep neural network
  publication-title: Aerospace Systems
  doi: 10.1007/s42401-020-00077-4
– volume: 18
  start-page: 925
  issue: 3
  year: 2019
  ident: pone.0259283.ref013
  article-title: Knowledge extraction from neural networks using the all-permutations fuzzy rule base: the LED display recognition problem
  publication-title: IEEE transactions on neural networks
– volume: 48
  start-page: 701002
  issue: 7
  year: 2019
  ident: pone.0259283.ref029
  article-title: Convolutional Neural Network Target Recognition for Missile-borne Linear Array LiDAR
  publication-title: Guangzi Xuebao/Acta Photonica Sinica
  doi: 10.3788/gzxb20194807.0701002
– volume: 12
  start-page: 388
  issue: 1
  year: 2020
  ident: pone.0259283.ref018
  article-title: How deep should be the depth of convolutional neural networks: a backyard dog case study
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-019-09667-7
– volume: 3
  start-page: 1
  issue: 6
  year: 2020
  ident: pone.0259283.ref007
  article-title: Spatiotemporal Fusion of Remote Sensing Image Based on Deep Learning
  publication-title: Journal of Sensors
  doi: 10.1155/2020/8873079
– volume: 111
  start-page: 7
  issue: 15
  year: 2020
  ident: pone.0259283.ref021
  article-title: Detection and diagnosis of chronic kidney disease using deep learning-based heterogeneous modified artificial neural network
  publication-title: Future Generation Computer Systems
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: pone.0259283.ref006
  article-title: A method of radar target detection based on convolutional neural network
  publication-title: Neural Computing and Applications
– volume: 28
  start-page: 1
  year: 2020
  ident: pone.0259283.ref030
  article-title: Neural Stance Detection With Hierarchical Linguistic Representations
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2020.2963954
– volume: 55
  start-page: 11
  year: 2017
  ident: pone.0259283.ref022
  article-title: Optimization analysis of urban function regional planning based on big data and GIS technology
  publication-title: Boletín Técnico
– volume: 345
  start-page: 3
  issue: 14
  year: 2019
  ident: pone.0259283.ref010
  article-title: ObjectFusion: An object detection and segmentation framework with RGB-D SLAM and convolutional neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.088
– volume: 10
  start-page: 2
  issue: 1
  year: 2020
  ident: pone.0259283.ref002
  article-title: Artificial Neural Networks Solve Musical Problems With Fourier Phase Spaces
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-64229-4
SSID ssj0053866
Score 2.7234483
Snippet This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0259283
SubjectTerms Accuracy
Adaptability
Algorithms
Analysis
Artificial intelligence
Artificial neural networks
Biology and Life Sciences
Computer and Information Sciences
Computer architecture
Datasets
Earth Sciences
Engineering and Technology
Feature extraction
Feature recognition
Genetic algorithms
Geographic information systems
Image detection
Neural networks
Neural Networks, Computer
Object recognition
Pattern Recognition, Automated - methods
Pattern Recognition, Automated - standards
Physical Sciences
R&D
Remote sensing
Research & development
Research and Analysis Methods
Satellite Imagery - methods
Satellite Imagery - standards
Satellites
Signal processing
Social Sciences
Storage tanks
Target detection
Workloads
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQxAMviPG1jgEGIQEP2ZLYsZ3HMjGBhFbEl8ZT5Dh2qdQmVdNW4k_gv-bOccOCJo0HnirZlzS5O9-Hc_4dIS-kqTSTSRWlLMsjDi4oKqU1UZpXCTdpblWlfLMJeX6uLi7yj5dafWFNWAcP3DHuJNYcQpYSPJ1NuHWp1hX41FJozqVzpQfbhqhnl0x1NhhWsRDhoBw8yUmQy_Gyqe0xePk8VWzgiDxef2-V95bzpr0q5Py7cvKSKzq7Q26HGJKOu2ffJzdsfZfsh1Xa0lcBSvr1PfJr_Of7NG0c9Z6L4pb7T3ra1NugdzCGIB3-x1eFU9BDSJltRXGfln6ffJjQbUb1fNqsYGBBZzVtF3o-p10lOa3s2td0-X9ZWZC_pS3WxtdTOluAzbpPvp69_XL6LgrNFyIj8nQduYqz1IjUZtIlsRW49YHbhS52pdTMCQ6ZlNEQXblKGGMyyEtixowsy9gpV7IHZK8Gdh8QqhB_uMqcSqzmwiS5NE5kLos5z-H21YiwnSQKE5DJsUHGvPCf2yRkKB1jC5RfEeQ3IlF_1bJD5riG_g0KuadFXG0_ANpWBG0rrtO2EXmKKlJ0h1R761CMhfKNm5UakeeeArE1aizemepN2xbvJ9_-gejzpwHRy0DkGmCH0eHABLwTYnYNKI8GlGAhzGD6ABV6x5W2SDOlWIK9BeHKnZJfPf2sn8abYkFebZsN0uQIVpkwYMnDbk30nGUQ8EAeDFfLwWoZsH44U89-eGhzhfBzXB7-D1k9IrdSLECCQCPNj8jeerWxj8lNs13P2tUTby9-Aw9Icso
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLag8MALMC5bYYBBSMBDRi6O7TyWiQmkaZ24aTxFjmOXSm1SNW0lfgL_mnMcNyPTJuCpkn3sJifnah9_JuSl0KVKRFQGcZJmAQMXFBTC6CDOyojpODOylO6yCXFyIs_OstPzRPHCDj7M8tbz9GBRV-YAPHQGDvE6uREnnGMJ19Hp8dbygu5y7o_HXTWy534cSn9niweLWd1cFmherJf8wwEd3fnfR79LbvtQk45a2dgh10x1j-x4ZW7oa484_eY--TU638amtaXOwVFcmf9JD-tq48UT2hDLw_244nEK4gqZtSkpLufS7-PjMd2kVM0m9RIa5nRa0WauZjPaFpzT0qxc6Zf7l6UBMTG0wRL6akKnczBtD8jXo_dfDj8E_o6GQPMsXgW2ZEmseWxSYaPQcFwhwVVFG9pCqMRyBgmXVhCE2ZJrrVNIX8Ik0aIoQittkTwkgwrYs0eoRJjiMrUyMopxHWVCW57aNGQsg-nLIUm2ny7XHsAc79GY5W5XTkAi0zI2R37nnt9DEnSjFi2Ax1_o36FUdLQIv-0a4MPmXpvzUDGIowsIv0zEjI2VKiHQK7hiTFhb8CF5hjKVt2dZOyOSj7h09ztLOSQvHAVCcFRY4zNR66bJP46__QPR5089oleeyNbADq38uQp4J4T26lHu9yjBkOhe9x5qwJYrTR6nUiYRXkEII7dacXn3864bJ8W6vcrUa6TJENMySoAlu60SdZxNIC6CdBlGi5569Vjf76mmPxwCukSUOiYeXf3Ej8mtGKuPIMqIs30yWC3X5gm5qTerabN86szGbynUbt4
  priority: 102
  providerName: Public Library of Science
Title Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image
URI https://www.ncbi.nlm.nih.gov/pubmed/34714878
https://www.proquest.com/docview/2588314978
https://www.proquest.com/docview/2590137136
https://pubmed.ncbi.nlm.nih.gov/PMC8555847
https://doaj.org/article/0a4507b074e14ef2aad399b6a447ffb6
http://dx.doi.org/10.1371/journal.pone.0259283
Volume 16
WOSCitedRecordID wos000755042500045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health Medical collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (subscription)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYxwMvwPhaYRSDkICHdEmcxM4T6qZNTPuKNpg6XqLEsbtKbVKarhJ_Av81d67bETQBEi9XKT6njn0-n8_n3xHylssiY9wrHJ-FsRPAEuTkXEnHjwsvkH6sRCFMsgl-ciL6_TixDrfahlUudaJR1EUl0Ue-7YdCMA_zoX2cfHMwaxSertoUGmtkHVESmAndS5aaGOZyFNnrctCebTs63UlVqi6s9bEvWGM5Mqj9K93cmoyq-jbD8_f4yV8WpP0H__spD8l9a4rS3kJ2NsgdVT4iG3ay1_S9RaT-8Jj86N0cc9NKU7MAUvTcf6e7VTm34gvPEOvD_JjgcgrtgZ23Kii6e-nl6dEpnYc0Gw2gObOrMR2WtB5noxFdBKTTQs1MaJj5l6kCMVK0xhD7ckCHY1B9T8iX_b3Pu58cm8PBkVHszxxdBMyXka9Crj1XRehBQa-jdnXOM6ajADZkMgMjTReRlDKE7Y3LmOR57mqhc_aUtEoYr01CBcIYF6EWnsqCSHoxlzoKdegGQQyvL9qELYcylRbgHPNsjFJzasdho7Po2BQFILUC0CbOqtZkAfDxF_4dlJIVL8JzmwfVdJDa2Z66WQB2dg7mmfICpf0sK8AQzKMsCLjWedQmr1DG0sVd15WSSXuRMPmfhWiTN4YDITpKjAEaZNd1nR6cXvwD0_lZg-mdZdIVdIfM7L0L-CaE_mpwbjU4QdHIRvEmzohlr9TpjRxDzaWk3178elWML8W4vlJV18gTI-alx6BLni0m1apnGdhNsJ2G2rwx3Rpd3ywph1cGIV0gil3An_-5WS_IPR8jlMAS8eMt0ppNr9VLclfOZ8N62iFr_OwCaZ8bKoCKXa9D1nf2TpKzjvHeAN1PjoAe7nSBHruHHaOCDD0HmoRfoUZycJxc_gS6yY07
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwELdGQYIXYPxbYTCDQMBDtsZxYucBoTKYNq1saIxpPIXEsbtKbVKatmgfgS_DZ-TOSTqCJuBlDzxVis9pfb37-Wyff0fIU6HS2BNu6jDPDx0OU5CTCK0cFqYuVyzUMpW22ITY25PHx-GHJfKjvguDaZU1JlqgTnOFe-QbzJfSc7Ee2uvxVwerRuHpal1CozSLXX36DZZsxaudt_D_PmNs693h5rZTVRVwVBCyqWNS7jEVMO0L43Z0gGt63AczHZOI2DMBhyWCiiFsMGmglPIh4O54nhJJ0jHSJB689xK5DDjuYgqZODiqkR-wIwiq63kw_o3KGtbHeabXIbYImfQa05-tErCYC1rjYV6cF-j-nq_5ywS4deN_U91Ncr0KtWm39I1lsqSzW2S5ArOCvqgYt1_eJt-7Z8f4NDfUTvAUTyZO6WaezSv3hGfIZWI_bPI8hfEnEKanFLez6ef93j6d-zQe9mH405MRHWS0GMXDIS0T7mmqpzb1zX7LRIObaFrgFYKsTwcjgPY75NOFqOQuaWVgHyuESqRpTn0jXR3zQLmhUCbwjd_hPITXp23i1aYTqYrAHeuIDCN7KilgIVcqNkKDiyqDaxNn0WtcEpj8Rf4NWuVCFunH7YN80o8qNIs6MYd1RALhp3a5NiyOUwh0kyDmXBiTBG2yhjYdlXd5FyAadQNp61tL2SZPrARSkGSY49SPZ0UR7ewf_YPQx4OG0PNKyOSgDhVX90pgTEht1pBcbUgCkKpG8wp6YK2VIjrzG-hZe9b5zY8XzfhSzFvMdD5DmRA5PV0PVHKvdOKFZj2IC7nE3qLh3g3VN1uywYllgJfI0sfF_T__rDVydfvwfS_q7eztPiDXGGZjQdTFwlXSmk5m-iG5oubTQTF5ZGGMki8X7fw_AaBY3Vw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKQYgLUP66UKhBIOCQdmM7sXNAqLRUVK3aij-VU0gce7vSNlk226I-Aq_E0zHjeFOCEHDpgVOkeOysZ2fGY3vmG0IeS11kXIZFwHiUBAKWoCCXRgcsKUKhWWJUoVyxCbm7qw4Okv058n2WC4NhlTOb6Ax1UWk8I19lkVI8xHpoq9aHRexvbL4cfwmwghTetM7KaTQism1Ov8L2rX6xtQH_9RPGNl-_X38T-AoDgY4TNg1sITjTMTORtGHfxLi_xzMx27e5zLiNBWwXdAYuhC1irXUEznefcy3zvG-VzTmMe4FclBykGLPU19vwErAjcexT9YAXq14yVsZVaVbAz0iY4p2l0FUMaNeF-fGoqn_n9P4au_nTYrh57X9m43Vy1bvgdK3RmQUyZ8obZMEbuZo-80jcz2-Sb2tn1_u0stQt_BRndErXq_LEqy28Q4wT93BB9RR4kYP7XlA85qaf9nb26ElEs9EApj89PKLDktZH2WhEm0B8WpipC4lzX5kYUB9Da0wtKAd0eAQm_xb5cC4suU3mS5CVRUIVwjcXkVWhyUSsw0RqG0c26guRwPBFj_CZGKXaA7tjfZFR6m4rJWzwGsamKHypF74eCdpe4wbY5C_0r1BCW1qEJXcvqskg9VYu7WcC9hc5uKUmFMayLCvAAc7jTAhpbR73yDLKd9rk-LbGNV2Llat7rVSPPHIUCE1SonQOsuO6Trf2Pv4D0bu3HaKnnshWwA6d-XwTmBNCnnUolzqUYGB1p3kRtXHGlTo90yHoOdOy3zc_bJtxUIxnLE11jDQJYn2GHFhyp1HolrMc_EWhsLfsqHqH9d2WcnjokOEVovcJeffPP2uZXAadT3e2drfvkSsMg7TAGWPJEpmfTo7NfXJJn0yH9eSBs2iUfD5v3f8BZnTltw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+local+fully+Convolutional+Neural+Network+combined+with+YOLO+v5+algorithm+in+small+target+detection+of+remote+sensing+image&rft.jtitle=PloS+one&rft.au=Wu%2C+Wentong&rft.au=Liu%2C+Han&rft.au=Li%2C+Lingling&rft.au=Long%2C+Yilin&rft.date=2021-10-29&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=10&rft.spage=e0259283&rft_id=info:doi/10.1371%2Fjournal.pone.0259283&rft.externalDocID=A680628888
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon