Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging

Single-molecule manipulation studies have revealed that double-stranded DNA undergoes a structural transition when subjected to tension. At forces that depend on the attachment geometry of the DNA (65 pN or 110 pN), it elongates approximately 1.7-fold and its elastic properties change dramatically....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 106; H. 43; S. 18231
Hauptverfasser: van Mameren, Joost, Gross, Peter, Farge, Geraldine, Hooijman, Pleuni, Modesti, Mauro, Falkenberg, Maria, Wuite, Gijs J L, Peterman, Erwin J G
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 27.10.2009
Schlagworte:
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Single-molecule manipulation studies have revealed that double-stranded DNA undergoes a structural transition when subjected to tension. At forces that depend on the attachment geometry of the DNA (65 pN or 110 pN), it elongates approximately 1.7-fold and its elastic properties change dramatically. The nature of this overstretched DNA has been under debate. In one model, the DNA cooperatively unwinds, while base pairing remains intact. In a competing model, the hydrogen bonds between base pairs break and two single DNA strands are formed, comparable to thermal DNA melting. Here, we resolve the structural basis of DNA overstretching using a combination of fluorescence microscopy, optical tweezers, and microfluidics. In DNA molecules undergoing the transition, we visualize double- and single-stranded segments using specific fluorescent labels. Our data directly demonstrate that overstretching comprises a gradual conversion from double-stranded to single-stranded DNA, irrespective of the attachment geometry. We found that these conversions favorably initiate from nicks or free DNA ends. These discontinuities in the phosphodiester backbone serve as energetically favorable nucleation points for melting. When both DNA strands are intact and no nicks or free ends are present, the overstretching force increases from 65 to 110 pN and melting initiates throughout the molecule, comparable to thermal melting. These results provide unique insights in the thermodynamics of DNA and DNA-protein interactions.
AbstractList Single-molecule manipulation studies have revealed that double-stranded DNA undergoes a structural transition when subjected to tension. At forces that depend on the attachment geometry of the DNA (65 pN or 110 pN), it elongates approximately 1.7-fold and its elastic properties change dramatically. The nature of this overstretched DNA has been under debate. In one model, the DNA cooperatively unwinds, while base pairing remains intact. In a competing model, the hydrogen bonds between base pairs break and two single DNA strands are formed, comparable to thermal DNA melting. Here, we resolve the structural basis of DNA overstretching using a combination of fluorescence microscopy, optical tweezers, and microfluidics. In DNA molecules undergoing the transition, we visualize double- and single-stranded segments using specific fluorescent labels. Our data directly demonstrate that overstretching comprises a gradual conversion from double-stranded to single-stranded DNA, irrespective of the attachment geometry. We found that these conversions favorably initiate from nicks or free DNA ends. These discontinuities in the phosphodiester backbone serve as energetically favorable nucleation points for melting. When both DNA strands are intact and no nicks or free ends are present, the overstretching force increases from 65 to 110 pN and melting initiates throughout the molecule, comparable to thermal melting. These results provide unique insights in the thermodynamics of DNA and DNA-protein interactions.Single-molecule manipulation studies have revealed that double-stranded DNA undergoes a structural transition when subjected to tension. At forces that depend on the attachment geometry of the DNA (65 pN or 110 pN), it elongates approximately 1.7-fold and its elastic properties change dramatically. The nature of this overstretched DNA has been under debate. In one model, the DNA cooperatively unwinds, while base pairing remains intact. In a competing model, the hydrogen bonds between base pairs break and two single DNA strands are formed, comparable to thermal DNA melting. Here, we resolve the structural basis of DNA overstretching using a combination of fluorescence microscopy, optical tweezers, and microfluidics. In DNA molecules undergoing the transition, we visualize double- and single-stranded segments using specific fluorescent labels. Our data directly demonstrate that overstretching comprises a gradual conversion from double-stranded to single-stranded DNA, irrespective of the attachment geometry. We found that these conversions favorably initiate from nicks or free DNA ends. These discontinuities in the phosphodiester backbone serve as energetically favorable nucleation points for melting. When both DNA strands are intact and no nicks or free ends are present, the overstretching force increases from 65 to 110 pN and melting initiates throughout the molecule, comparable to thermal melting. These results provide unique insights in the thermodynamics of DNA and DNA-protein interactions.
Single-molecule manipulation studies have revealed that double-stranded DNA undergoes a structural transition when subjected to tension. At forces that depend on the attachment geometry of the DNA (65 pN or 110 pN), it elongates approximately 1.7-fold and its elastic properties change dramatically. The nature of this overstretched DNA has been under debate. In one model, the DNA cooperatively unwinds, while base pairing remains intact. In a competing model, the hydrogen bonds between base pairs break and two single DNA strands are formed, comparable to thermal DNA melting. Here, we resolve the structural basis of DNA overstretching using a combination of fluorescence microscopy, optical tweezers, and microfluidics. In DNA molecules undergoing the transition, we visualize double- and single-stranded segments using specific fluorescent labels. Our data directly demonstrate that overstretching comprises a gradual conversion from double-stranded to single-stranded DNA, irrespective of the attachment geometry. We found that these conversions favorably initiate from nicks or free DNA ends. These discontinuities in the phosphodiester backbone serve as energetically favorable nucleation points for melting. When both DNA strands are intact and no nicks or free ends are present, the overstretching force increases from 65 to 110 pN and melting initiates throughout the molecule, comparable to thermal melting. These results provide unique insights in the thermodynamics of DNA and DNA-protein interactions.
Author Hooijman, Pleuni
Farge, Geraldine
Falkenberg, Maria
Gross, Peter
Wuite, Gijs J L
Peterman, Erwin J G
van Mameren, Joost
Modesti, Mauro
Author_xml – sequence: 1
  givenname: Joost
  surname: van Mameren
  fullname: van Mameren, Joost
  organization: Department of Physics and Astronomy and Laser Centre, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
– sequence: 2
  givenname: Peter
  surname: Gross
  fullname: Gross, Peter
– sequence: 3
  givenname: Geraldine
  surname: Farge
  fullname: Farge, Geraldine
– sequence: 4
  givenname: Pleuni
  surname: Hooijman
  fullname: Hooijman, Pleuni
– sequence: 5
  givenname: Mauro
  surname: Modesti
  fullname: Modesti, Mauro
– sequence: 6
  givenname: Maria
  surname: Falkenberg
  fullname: Falkenberg, Maria
– sequence: 7
  givenname: Gijs J L
  surname: Wuite
  fullname: Wuite, Gijs J L
– sequence: 8
  givenname: Erwin J G
  surname: Peterman
  fullname: Peterman, Erwin J G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19841258$$D View this record in MEDLINE/PubMed
BookMark eNpNkL1PwzAQxS1URD9gZkPeWEixncS1x6rlS6pgoXPkOOc2yImLHVfqf08iisR07-73dHp3UzRqXQsI3VIyp2SRPh5aFeZEkixljBJ-gSaUSJrwTJLRPz1G0xC-CCEyF-QKjakUGWW5mCC3bb06gq3bHe72gEPno-6iB-wMXr8vcRX9wNwRfM-g0_uhLU84hkE00Xa1dtb5BzwMLCSNs6CjBWxsdB6ChlYDrhu16_k1ujTKBrg51xnaPj99rl6TzcfL22q5STSXrEsACCvTXDPGFK8yUXEuueyvBJ6nUhrNdSlyVVZKUqqoAEO4oSYXgumspMBm6P5378G77wihK5q6T2KtasHFUCzSVLIFZaJ33p2dsWygKg6-j-pPxd-P2A-wHW1G
CitedBy_id crossref_primary_10_1002_chir_22521
crossref_primary_10_1016_j_plrev_2010_06_005
crossref_primary_10_1016_j_bpj_2010_04_046
crossref_primary_10_1016_j_plrev_2010_06_001
crossref_primary_10_1038_nchembio_1082
crossref_primary_10_1016_j_sbi_2020_05_010
crossref_primary_10_1038_nprot_2013_016
crossref_primary_10_1093_nar_gku441
crossref_primary_10_1093_nar_gkw187
crossref_primary_10_1038_ncomms11810
crossref_primary_10_1088_1361_6501_aaac51
crossref_primary_10_1002_cyto_a_23589
crossref_primary_10_1016_j_plrev_2010_06_009
crossref_primary_10_1016_j_plrev_2010_06_008
crossref_primary_10_1016_j_jbc_2023_104874
crossref_primary_10_1016_j_bbrc_2018_01_087
crossref_primary_10_1016_j_jsb_2016_06_022
crossref_primary_10_1017_S0033583517000130
crossref_primary_10_1039_C4CP00208C
crossref_primary_10_1039_C5IB00127G
crossref_primary_10_1002_pro_3152
crossref_primary_10_1038_s41598_019_53151_z
crossref_primary_10_1002_cphc_201200154
crossref_primary_10_7554_eLife_54098
crossref_primary_10_1209_0295_5075_117_38005
crossref_primary_10_1093_nar_gkw237
crossref_primary_10_1038_ncomms8304
crossref_primary_10_1088_1478_3975_7_3_031001
crossref_primary_10_1039_D1NR07582A
crossref_primary_10_7554_eLife_46515
crossref_primary_10_1016_j_devcel_2012_10_002
crossref_primary_10_1016_j_bpj_2015_11_015
crossref_primary_10_1021_ja3054755
crossref_primary_10_1038_nphys2002
crossref_primary_10_1140_epje_i2012_12110_2
crossref_primary_10_1016_j_physa_2012_09_022
crossref_primary_10_1093_nar_gkae1183
crossref_primary_10_1080_14786435_2011_557671
crossref_primary_10_1016_j_celrep_2024_114852
crossref_primary_10_1038_s41594_018_0123_8
crossref_primary_10_1146_annurev_biophys_030822_032904
crossref_primary_10_1073_pnas_2107871119
crossref_primary_10_14348_molcells_2021_0182
crossref_primary_10_1039_C6CP02981G
crossref_primary_10_1093_nar_gkw604
crossref_primary_10_1093_nar_gkt699
crossref_primary_10_1016_j_copbio_2013_08_013
crossref_primary_10_1016_j_ymeth_2019_06_019
crossref_primary_10_15252_embj_201798162
crossref_primary_10_1093_pnasnexus_pgad417
crossref_primary_10_1038_s42004_020_0267_4
crossref_primary_10_1016_j_bpj_2012_11_3804
crossref_primary_10_1016_j_jmps_2016_02_013
crossref_primary_10_1038_s41594_022_00760_4
crossref_primary_10_1007_s00249_023_01669_6
crossref_primary_10_1007_s11467_012_0261_0
crossref_primary_10_1042_BST20120298
crossref_primary_10_1002_adbi_202300105
crossref_primary_10_1016_j_bpj_2014_09_014
crossref_primary_10_1093_nar_gkr726
crossref_primary_10_3390_nano5010246
crossref_primary_10_1038_s41467_022_34928_9
crossref_primary_10_1093_nar_gkq598
crossref_primary_10_1183_09031936_00139813
crossref_primary_10_1073_pnas_1213172109
crossref_primary_10_1016_j_ijnonlinmec_2011_10_008
crossref_primary_10_1073_pnas_2216240119
crossref_primary_10_1093_nar_gkv087
crossref_primary_10_1038_s41598_018_34360_4
crossref_primary_10_1017_S0033583513000073
crossref_primary_10_1016_j_jmps_2011_07_003
crossref_primary_10_1039_D1NR04748E
crossref_primary_10_1063_1_4752190
crossref_primary_10_1016_j_colsurfb_2010_11_002
crossref_primary_10_1021_ja5090805
crossref_primary_10_1016_j_cbpa_2019_08_006
crossref_primary_10_1016_j_ymeth_2016_03_027
crossref_primary_10_1093_nar_gkae560
crossref_primary_10_1016_j_mee_2017_11_011
crossref_primary_10_1021_acsomega_4c09605
crossref_primary_10_1080_00107514_2021_1930707
crossref_primary_10_1016_j_cell_2015_11_054
crossref_primary_10_1038_s41594_019_0188_z
crossref_primary_10_1016_j_plrev_2010_07_008
crossref_primary_10_1007_s10867_013_9333_9
crossref_primary_10_1073_pnas_1608110113
crossref_primary_10_1038_s41598_017_16864_7
crossref_primary_10_1038_s41598_017_18091_6
crossref_primary_10_1038_nature18643
crossref_primary_10_1016_j_molcel_2013_07_016
crossref_primary_10_1016_j_plrev_2010_07_001
crossref_primary_10_1093_nar_gkt1297
crossref_primary_10_1039_D3NR03214K
crossref_primary_10_1142_S140292511100160X
crossref_primary_10_1073_pnas_1109824109
crossref_primary_10_1016_j_bpj_2011_08_007
crossref_primary_10_3389_fcell_2021_672191
crossref_primary_10_1016_j_bpj_2025_06_041
crossref_primary_10_1073_pnas_1213740110
crossref_primary_10_1007_s13538_025_01787_w
crossref_primary_10_1038_ncomms2882
crossref_primary_10_1002_cphc_201402443
crossref_primary_10_1002_jbio_200900107
crossref_primary_10_1016_j_bpj_2013_08_007
crossref_primary_10_1038_ncomms2001
crossref_primary_10_1093_nar_gkx761
crossref_primary_10_3389_fmolb_2021_693710
crossref_primary_10_1016_j_cell_2019_06_032
crossref_primary_10_1088_0965_0393_22_4_045004
crossref_primary_10_1007_s12551_016_0236_4
crossref_primary_10_1016_j_bpj_2010_07_039
crossref_primary_10_1209_0295_5075_91_28003
crossref_primary_10_1371_journal_pone_0079237
crossref_primary_10_3390_mi11020192
crossref_primary_10_1093_nar_gkq309
crossref_primary_10_3389_fphy_2019_00195
crossref_primary_10_1073_pnas_1213676110
crossref_primary_10_3390_photonics11030248
crossref_primary_10_1016_j_bpj_2025_03_005
crossref_primary_10_1371_journal_pone_0194357
crossref_primary_10_1093_nar_gkv554
crossref_primary_10_1017_S0033583522000087
crossref_primary_10_1039_C4IB00163J
crossref_primary_10_1039_D0NR06865A
crossref_primary_10_1016_j_bbrc_2010_11_015
crossref_primary_10_1016_j_physa_2017_11_020
crossref_primary_10_1021_ja108952v
crossref_primary_10_1016_j_virusres_2014_06_002
crossref_primary_10_1039_c0cp02844d
crossref_primary_10_1038_nmeth_3183
crossref_primary_10_1088_1361_648X_aa6c50
crossref_primary_10_1016_j_actbio_2022_11_046
crossref_primary_10_1371_journal_pbio_1002213
crossref_primary_10_1073_pnas_1218677110
crossref_primary_10_1002_wcms_46
crossref_primary_10_1073_pnas_0910269106
crossref_primary_10_1002_ijch_201400074
crossref_primary_10_1093_nar_gkq034
crossref_primary_10_1016_j_jmb_2021_166861
crossref_primary_10_1038_srep18486
crossref_primary_10_1016_j_bpj_2011_06_039
crossref_primary_10_1093_nar_gkq1278
crossref_primary_10_1093_nar_gks1031
crossref_primary_10_1073_pnas_1407197111
crossref_primary_10_1209_0295_5075_95_48009
crossref_primary_10_1021_ja408767p
crossref_primary_10_1140_epjp_s13360_020_00907_6
crossref_primary_10_1007_s00726_013_1474_4
crossref_primary_10_1016_j_molcel_2010_11_027
crossref_primary_10_1002_smtd_202000565
crossref_primary_10_1016_j_ijsolstr_2016_02_040
crossref_primary_10_1016_j_molliq_2021_118343
crossref_primary_10_1093_nar_gkt1227
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.0904322106
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 19841258
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
VXZ
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YIF
YIN
YKV
YSK
ZCA
~02
~KM
7X8
ADQXQ
ADXHL
ID FETCH-LOGICAL-c692t-ee02b35c222a6d48d66969432e65399fc6cb85abda911a18ef06f1f5882c4b1e2
IEDL.DBID 7X8
ISICitedReferencesCount 232
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271222500036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Oct 02 06:30:03 EDT 2025
Wed Feb 19 01:46:09 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-ee02b35c222a6d48d66969432e65399fc6cb85abda911a18ef06f1f5882c4b1e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2775282
PMID 19841258
PQID 733927128
PQPubID 23479
ParticipantIDs proquest_miscellaneous_733927128
pubmed_primary_19841258
PublicationCentury 2000
PublicationDate 2009-10-27
PublicationDateYYYYMMDD 2009-10-27
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10-27
  day: 27
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2009
References 10048891 - Biophys Chem. 1998 Dec 14;75(3):229-33
10201403 - Nat Struct Biol. 1999 Apr;6(4):346-9
5455134 - Nature. 1970 Sep 26;227(5265):1313-8
18424499 - Biophys J. 2008 Aug;95(3):1248-55
19246398 - Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4231-6
11259306 - Biophys J. 2001 Apr;80(4):1932-9
19846782 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18047-8
12634053 - J Mol Biol. 2003 Mar 28;327(3):571-8
16356925 - Nucleic Acids Res. 2005;33(22):7029-38
17994031 - Nat Methods. 2007 Dec;4(12):1031-6
8990123 - Nature. 1997 Jan 9;385(6612):176-81
11159456 - Biophys J. 2001 Feb;80(2):894-900
9033597 - Nat Struct Biol. 1997 Feb;4(2):153-7
15324091 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70(1 Pt 1):011910
12975372 - J Biol Chem. 2003 Dec 5;278(49):48627-32
1614866 - Nucleic Acids Res. 1992 Jun 11;20(11):2803-12
7020585 - Annu Rev Biophys Bioeng. 1981;10:87-114
12867987 - Nature. 2003 Jul 17;424(6946):338-41
11159455 - Biophys J. 2001 Feb;80(2):882-93
8157639 - J Biol Chem. 1994 Apr 15;269(15):11121-32
12023240 - Biophys J. 2002 Jun;82(6):3160-9
8628993 - Science. 1996 Feb 9;271(5250):792-4
15886396 - Nucleic Acids Res. 2005;33(8):2676-84
11159454 - Biophys J. 2001 Feb;80(2):874-81
15123421 - J Mol Biol. 2004 May 21;339(1):67-75
13054692 - Nature. 1953 Apr 25;171(4356):737-8
8628994 - Science. 1996 Feb 9;271(5250):795-9
4039816 - Nucleic Acids Res. 1985 Mar 11;13(5):1703-16
15095865 - J Mol Biol. 2004 Feb 27;336(4):851-70
16241765 - Phys Rev Lett. 2005 Oct 7;95(15):158102
1439819 - Science. 1992 Nov 13;258(5085):1122-6
19060884 - Nature. 2009 Feb 5;457(7230):745-8
References_xml – reference: 15123421 - J Mol Biol. 2004 May 21;339(1):67-75
– reference: 7020585 - Annu Rev Biophys Bioeng. 1981;10:87-114
– reference: 16241765 - Phys Rev Lett. 2005 Oct 7;95(15):158102
– reference: 12634053 - J Mol Biol. 2003 Mar 28;327(3):571-8
– reference: 15095865 - J Mol Biol. 2004 Feb 27;336(4):851-70
– reference: 1439819 - Science. 1992 Nov 13;258(5085):1122-6
– reference: 9033597 - Nat Struct Biol. 1997 Feb;4(2):153-7
– reference: 8628993 - Science. 1996 Feb 9;271(5250):792-4
– reference: 12867987 - Nature. 2003 Jul 17;424(6946):338-41
– reference: 8628994 - Science. 1996 Feb 9;271(5250):795-9
– reference: 16356925 - Nucleic Acids Res. 2005;33(22):7029-38
– reference: 18424499 - Biophys J. 2008 Aug;95(3):1248-55
– reference: 11259306 - Biophys J. 2001 Apr;80(4):1932-9
– reference: 12023240 - Biophys J. 2002 Jun;82(6):3160-9
– reference: 5455134 - Nature. 1970 Sep 26;227(5265):1313-8
– reference: 15886396 - Nucleic Acids Res. 2005;33(8):2676-84
– reference: 8157639 - J Biol Chem. 1994 Apr 15;269(15):11121-32
– reference: 1614866 - Nucleic Acids Res. 1992 Jun 11;20(11):2803-12
– reference: 11159455 - Biophys J. 2001 Feb;80(2):882-93
– reference: 4039816 - Nucleic Acids Res. 1985 Mar 11;13(5):1703-16
– reference: 19846782 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18047-8
– reference: 8990123 - Nature. 1997 Jan 9;385(6612):176-81
– reference: 10201403 - Nat Struct Biol. 1999 Apr;6(4):346-9
– reference: 11159456 - Biophys J. 2001 Feb;80(2):894-900
– reference: 19246398 - Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4231-6
– reference: 12975372 - J Biol Chem. 2003 Dec 5;278(49):48627-32
– reference: 17994031 - Nat Methods. 2007 Dec;4(12):1031-6
– reference: 11159454 - Biophys J. 2001 Feb;80(2):874-81
– reference: 13054692 - Nature. 1953 Apr 25;171(4356):737-8
– reference: 15324091 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70(1 Pt 1):011910
– reference: 19060884 - Nature. 2009 Feb 5;457(7230):745-8
– reference: 10048891 - Biophys Chem. 1998 Dec 14;75(3):229-33
SSID ssj0009580
Score 2.4526
Snippet Single-molecule manipulation studies have revealed that double-stranded DNA undergoes a structural transition when subjected to tension. At forces that depend...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 18231
SubjectTerms DNA - chemistry
Microfluidic Analytical Techniques
Microscopy, Fluorescence
Nucleic Acid Conformation
Nucleic Acid Denaturation
Optical Tweezers
Transition Temperature
Title Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/19841258
https://www.proquest.com/docview/733927128
Volume 106
WOSCitedRecordID wos000271222500036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctoAwsQHmWlzwwgISp83KSCVVAxQBRByp1qxzbQZXapCQtEt-eOydFLIiBJUOkSNb5fP5ffP4dIZeQx2ZC6oBpzT1IUIKUpQ5MCJeIxfVdw5Wd6ecwSaLRKB40tTlVU1a5iok2UOtC4T_ybujBTh5CNL2bvzNsGoWHq00HjXXS8kDJoFOHo-gHczeqYQSxw4Qf8xXZJ_S681xWtzxGHh3kPOJ3eWm3mf7OPwe4S7YbfUl7tUO0yZrJ90i7WcEVvWow09f7pBjm2HoIr6NTUIG0JskuS0OLjD4kPVrfYKRY44k3Sha26pKmnxRr5d-oLUVE5nV5Q_HF1LBZ3WvX0Gy6LEoLilKGTma2E9IBGfYfX--fWNN-gSkRuwtmDHdTL1CgIKTQfqSFiEUMFjMWZ5spodIokKmWEDClE5mMi8zJAtDsyk8d4x6SjbzIzTGhSDlCqg7Xnva1RcxrrZCFYxDwJzqErmw6BvfGMwuZm2JZjb-t2iFH9byM5zWGYwxu5oM8i07-_viUbNlTINhz3PCMtDJY2uacbKqPxaQqL6zbwDMZvHwBVDzNwQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+structure+of+DNA+during+overstretching+by+using+multicolor%2C+single-molecule+fluorescence+imaging&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=van+Mameren%2C+Joost&rft.au=Gross%2C+Peter&rft.au=Farge%2C+Geraldine&rft.au=Hooijman%2C+Pleuni&rft.date=2009-10-27&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=106&rft.issue=43&rft.spage=18231&rft_id=info:doi/10.1073%2Fpnas.0904322106&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon