Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging
Single-molecule manipulation studies have revealed that double-stranded DNA undergoes a structural transition when subjected to tension. At forces that depend on the attachment geometry of the DNA (65 pN or 110 pN), it elongates approximately 1.7-fold and its elastic properties change dramatically....
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 106; H. 43; S. 18231 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
27.10.2009
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Single-molecule manipulation studies have revealed that double-stranded DNA undergoes a structural transition when subjected to tension. At forces that depend on the attachment geometry of the DNA (65 pN or 110 pN), it elongates approximately 1.7-fold and its elastic properties change dramatically. The nature of this overstretched DNA has been under debate. In one model, the DNA cooperatively unwinds, while base pairing remains intact. In a competing model, the hydrogen bonds between base pairs break and two single DNA strands are formed, comparable to thermal DNA melting. Here, we resolve the structural basis of DNA overstretching using a combination of fluorescence microscopy, optical tweezers, and microfluidics. In DNA molecules undergoing the transition, we visualize double- and single-stranded segments using specific fluorescent labels. Our data directly demonstrate that overstretching comprises a gradual conversion from double-stranded to single-stranded DNA, irrespective of the attachment geometry. We found that these conversions favorably initiate from nicks or free DNA ends. These discontinuities in the phosphodiester backbone serve as energetically favorable nucleation points for melting. When both DNA strands are intact and no nicks or free ends are present, the overstretching force increases from 65 to 110 pN and melting initiates throughout the molecule, comparable to thermal melting. These results provide unique insights in the thermodynamics of DNA and DNA-protein interactions. |
|---|---|
| AbstractList | Single-molecule manipulation studies have revealed that double-stranded DNA undergoes a structural transition when subjected to tension. At forces that depend on the attachment geometry of the DNA (65 pN or 110 pN), it elongates approximately 1.7-fold and its elastic properties change dramatically. The nature of this overstretched DNA has been under debate. In one model, the DNA cooperatively unwinds, while base pairing remains intact. In a competing model, the hydrogen bonds between base pairs break and two single DNA strands are formed, comparable to thermal DNA melting. Here, we resolve the structural basis of DNA overstretching using a combination of fluorescence microscopy, optical tweezers, and microfluidics. In DNA molecules undergoing the transition, we visualize double- and single-stranded segments using specific fluorescent labels. Our data directly demonstrate that overstretching comprises a gradual conversion from double-stranded to single-stranded DNA, irrespective of the attachment geometry. We found that these conversions favorably initiate from nicks or free DNA ends. These discontinuities in the phosphodiester backbone serve as energetically favorable nucleation points for melting. When both DNA strands are intact and no nicks or free ends are present, the overstretching force increases from 65 to 110 pN and melting initiates throughout the molecule, comparable to thermal melting. These results provide unique insights in the thermodynamics of DNA and DNA-protein interactions.Single-molecule manipulation studies have revealed that double-stranded DNA undergoes a structural transition when subjected to tension. At forces that depend on the attachment geometry of the DNA (65 pN or 110 pN), it elongates approximately 1.7-fold and its elastic properties change dramatically. The nature of this overstretched DNA has been under debate. In one model, the DNA cooperatively unwinds, while base pairing remains intact. In a competing model, the hydrogen bonds between base pairs break and two single DNA strands are formed, comparable to thermal DNA melting. Here, we resolve the structural basis of DNA overstretching using a combination of fluorescence microscopy, optical tweezers, and microfluidics. In DNA molecules undergoing the transition, we visualize double- and single-stranded segments using specific fluorescent labels. Our data directly demonstrate that overstretching comprises a gradual conversion from double-stranded to single-stranded DNA, irrespective of the attachment geometry. We found that these conversions favorably initiate from nicks or free DNA ends. These discontinuities in the phosphodiester backbone serve as energetically favorable nucleation points for melting. When both DNA strands are intact and no nicks or free ends are present, the overstretching force increases from 65 to 110 pN and melting initiates throughout the molecule, comparable to thermal melting. These results provide unique insights in the thermodynamics of DNA and DNA-protein interactions. Single-molecule manipulation studies have revealed that double-stranded DNA undergoes a structural transition when subjected to tension. At forces that depend on the attachment geometry of the DNA (65 pN or 110 pN), it elongates approximately 1.7-fold and its elastic properties change dramatically. The nature of this overstretched DNA has been under debate. In one model, the DNA cooperatively unwinds, while base pairing remains intact. In a competing model, the hydrogen bonds between base pairs break and two single DNA strands are formed, comparable to thermal DNA melting. Here, we resolve the structural basis of DNA overstretching using a combination of fluorescence microscopy, optical tweezers, and microfluidics. In DNA molecules undergoing the transition, we visualize double- and single-stranded segments using specific fluorescent labels. Our data directly demonstrate that overstretching comprises a gradual conversion from double-stranded to single-stranded DNA, irrespective of the attachment geometry. We found that these conversions favorably initiate from nicks or free DNA ends. These discontinuities in the phosphodiester backbone serve as energetically favorable nucleation points for melting. When both DNA strands are intact and no nicks or free ends are present, the overstretching force increases from 65 to 110 pN and melting initiates throughout the molecule, comparable to thermal melting. These results provide unique insights in the thermodynamics of DNA and DNA-protein interactions. |
| Author | Hooijman, Pleuni Farge, Geraldine Falkenberg, Maria Gross, Peter Wuite, Gijs J L Peterman, Erwin J G van Mameren, Joost Modesti, Mauro |
| Author_xml | – sequence: 1 givenname: Joost surname: van Mameren fullname: van Mameren, Joost organization: Department of Physics and Astronomy and Laser Centre, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands – sequence: 2 givenname: Peter surname: Gross fullname: Gross, Peter – sequence: 3 givenname: Geraldine surname: Farge fullname: Farge, Geraldine – sequence: 4 givenname: Pleuni surname: Hooijman fullname: Hooijman, Pleuni – sequence: 5 givenname: Mauro surname: Modesti fullname: Modesti, Mauro – sequence: 6 givenname: Maria surname: Falkenberg fullname: Falkenberg, Maria – sequence: 7 givenname: Gijs J L surname: Wuite fullname: Wuite, Gijs J L – sequence: 8 givenname: Erwin J G surname: Peterman fullname: Peterman, Erwin J G |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19841258$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkL1PwzAQxS1URD9gZkPeWEixncS1x6rlS6pgoXPkOOc2yImLHVfqf08iisR07-73dHp3UzRqXQsI3VIyp2SRPh5aFeZEkixljBJ-gSaUSJrwTJLRPz1G0xC-CCEyF-QKjakUGWW5mCC3bb06gq3bHe72gEPno-6iB-wMXr8vcRX9wNwRfM-g0_uhLU84hkE00Xa1dtb5BzwMLCSNs6CjBWxsdB6ChlYDrhu16_k1ujTKBrg51xnaPj99rl6TzcfL22q5STSXrEsACCvTXDPGFK8yUXEuueyvBJ6nUhrNdSlyVVZKUqqoAEO4oSYXgumspMBm6P5378G77wihK5q6T2KtasHFUCzSVLIFZaJ33p2dsWygKg6-j-pPxd-P2A-wHW1G |
| CitedBy_id | crossref_primary_10_1002_chir_22521 crossref_primary_10_1016_j_plrev_2010_06_005 crossref_primary_10_1016_j_bpj_2010_04_046 crossref_primary_10_1016_j_plrev_2010_06_001 crossref_primary_10_1038_nchembio_1082 crossref_primary_10_1016_j_sbi_2020_05_010 crossref_primary_10_1038_nprot_2013_016 crossref_primary_10_1093_nar_gku441 crossref_primary_10_1093_nar_gkw187 crossref_primary_10_1038_ncomms11810 crossref_primary_10_1088_1361_6501_aaac51 crossref_primary_10_1002_cyto_a_23589 crossref_primary_10_1016_j_plrev_2010_06_009 crossref_primary_10_1016_j_plrev_2010_06_008 crossref_primary_10_1016_j_jbc_2023_104874 crossref_primary_10_1016_j_bbrc_2018_01_087 crossref_primary_10_1016_j_jsb_2016_06_022 crossref_primary_10_1017_S0033583517000130 crossref_primary_10_1039_C4CP00208C crossref_primary_10_1039_C5IB00127G crossref_primary_10_1002_pro_3152 crossref_primary_10_1038_s41598_019_53151_z crossref_primary_10_1002_cphc_201200154 crossref_primary_10_7554_eLife_54098 crossref_primary_10_1209_0295_5075_117_38005 crossref_primary_10_1093_nar_gkw237 crossref_primary_10_1038_ncomms8304 crossref_primary_10_1088_1478_3975_7_3_031001 crossref_primary_10_1039_D1NR07582A crossref_primary_10_7554_eLife_46515 crossref_primary_10_1016_j_devcel_2012_10_002 crossref_primary_10_1016_j_bpj_2015_11_015 crossref_primary_10_1021_ja3054755 crossref_primary_10_1038_nphys2002 crossref_primary_10_1140_epje_i2012_12110_2 crossref_primary_10_1016_j_physa_2012_09_022 crossref_primary_10_1093_nar_gkae1183 crossref_primary_10_1080_14786435_2011_557671 crossref_primary_10_1016_j_celrep_2024_114852 crossref_primary_10_1038_s41594_018_0123_8 crossref_primary_10_1146_annurev_biophys_030822_032904 crossref_primary_10_1073_pnas_2107871119 crossref_primary_10_14348_molcells_2021_0182 crossref_primary_10_1039_C6CP02981G crossref_primary_10_1093_nar_gkw604 crossref_primary_10_1093_nar_gkt699 crossref_primary_10_1016_j_copbio_2013_08_013 crossref_primary_10_1016_j_ymeth_2019_06_019 crossref_primary_10_15252_embj_201798162 crossref_primary_10_1093_pnasnexus_pgad417 crossref_primary_10_1038_s42004_020_0267_4 crossref_primary_10_1016_j_bpj_2012_11_3804 crossref_primary_10_1016_j_jmps_2016_02_013 crossref_primary_10_1038_s41594_022_00760_4 crossref_primary_10_1007_s00249_023_01669_6 crossref_primary_10_1007_s11467_012_0261_0 crossref_primary_10_1042_BST20120298 crossref_primary_10_1002_adbi_202300105 crossref_primary_10_1016_j_bpj_2014_09_014 crossref_primary_10_1093_nar_gkr726 crossref_primary_10_3390_nano5010246 crossref_primary_10_1038_s41467_022_34928_9 crossref_primary_10_1093_nar_gkq598 crossref_primary_10_1183_09031936_00139813 crossref_primary_10_1073_pnas_1213172109 crossref_primary_10_1016_j_ijnonlinmec_2011_10_008 crossref_primary_10_1073_pnas_2216240119 crossref_primary_10_1093_nar_gkv087 crossref_primary_10_1038_s41598_018_34360_4 crossref_primary_10_1017_S0033583513000073 crossref_primary_10_1016_j_jmps_2011_07_003 crossref_primary_10_1039_D1NR04748E crossref_primary_10_1063_1_4752190 crossref_primary_10_1016_j_colsurfb_2010_11_002 crossref_primary_10_1021_ja5090805 crossref_primary_10_1016_j_cbpa_2019_08_006 crossref_primary_10_1016_j_ymeth_2016_03_027 crossref_primary_10_1093_nar_gkae560 crossref_primary_10_1016_j_mee_2017_11_011 crossref_primary_10_1021_acsomega_4c09605 crossref_primary_10_1080_00107514_2021_1930707 crossref_primary_10_1016_j_cell_2015_11_054 crossref_primary_10_1038_s41594_019_0188_z crossref_primary_10_1016_j_plrev_2010_07_008 crossref_primary_10_1007_s10867_013_9333_9 crossref_primary_10_1073_pnas_1608110113 crossref_primary_10_1038_s41598_017_16864_7 crossref_primary_10_1038_s41598_017_18091_6 crossref_primary_10_1038_nature18643 crossref_primary_10_1016_j_molcel_2013_07_016 crossref_primary_10_1016_j_plrev_2010_07_001 crossref_primary_10_1093_nar_gkt1297 crossref_primary_10_1039_D3NR03214K crossref_primary_10_1142_S140292511100160X crossref_primary_10_1073_pnas_1109824109 crossref_primary_10_1016_j_bpj_2011_08_007 crossref_primary_10_3389_fcell_2021_672191 crossref_primary_10_1016_j_bpj_2025_06_041 crossref_primary_10_1073_pnas_1213740110 crossref_primary_10_1007_s13538_025_01787_w crossref_primary_10_1038_ncomms2882 crossref_primary_10_1002_cphc_201402443 crossref_primary_10_1002_jbio_200900107 crossref_primary_10_1016_j_bpj_2013_08_007 crossref_primary_10_1038_ncomms2001 crossref_primary_10_1093_nar_gkx761 crossref_primary_10_3389_fmolb_2021_693710 crossref_primary_10_1016_j_cell_2019_06_032 crossref_primary_10_1088_0965_0393_22_4_045004 crossref_primary_10_1007_s12551_016_0236_4 crossref_primary_10_1016_j_bpj_2010_07_039 crossref_primary_10_1209_0295_5075_91_28003 crossref_primary_10_1371_journal_pone_0079237 crossref_primary_10_3390_mi11020192 crossref_primary_10_1093_nar_gkq309 crossref_primary_10_3389_fphy_2019_00195 crossref_primary_10_1073_pnas_1213676110 crossref_primary_10_3390_photonics11030248 crossref_primary_10_1016_j_bpj_2025_03_005 crossref_primary_10_1371_journal_pone_0194357 crossref_primary_10_1093_nar_gkv554 crossref_primary_10_1017_S0033583522000087 crossref_primary_10_1039_C4IB00163J crossref_primary_10_1039_D0NR06865A crossref_primary_10_1016_j_bbrc_2010_11_015 crossref_primary_10_1016_j_physa_2017_11_020 crossref_primary_10_1021_ja108952v crossref_primary_10_1016_j_virusres_2014_06_002 crossref_primary_10_1039_c0cp02844d crossref_primary_10_1038_nmeth_3183 crossref_primary_10_1088_1361_648X_aa6c50 crossref_primary_10_1016_j_actbio_2022_11_046 crossref_primary_10_1371_journal_pbio_1002213 crossref_primary_10_1073_pnas_1218677110 crossref_primary_10_1002_wcms_46 crossref_primary_10_1073_pnas_0910269106 crossref_primary_10_1002_ijch_201400074 crossref_primary_10_1093_nar_gkq034 crossref_primary_10_1016_j_jmb_2021_166861 crossref_primary_10_1038_srep18486 crossref_primary_10_1016_j_bpj_2011_06_039 crossref_primary_10_1093_nar_gkq1278 crossref_primary_10_1093_nar_gks1031 crossref_primary_10_1073_pnas_1407197111 crossref_primary_10_1209_0295_5075_95_48009 crossref_primary_10_1021_ja408767p crossref_primary_10_1140_epjp_s13360_020_00907_6 crossref_primary_10_1007_s00726_013_1474_4 crossref_primary_10_1016_j_molcel_2010_11_027 crossref_primary_10_1002_smtd_202000565 crossref_primary_10_1016_j_ijsolstr_2016_02_040 crossref_primary_10_1016_j_molliq_2021_118343 crossref_primary_10_1093_nar_gkt1227 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.0904322106 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 19841258 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DOOOF DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA VXZ W8F WH7 WOQ WOW X7M XSW Y6R YBH YIF YIN YKV YSK ZCA ~02 ~KM 7X8 ADQXQ ADXHL |
| ID | FETCH-LOGICAL-c692t-ee02b35c222a6d48d66969432e65399fc6cb85abda911a18ef06f1f5882c4b1e2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 232 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271222500036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Thu Oct 02 06:30:03 EDT 2025 Wed Feb 19 01:46:09 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 43 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-ee02b35c222a6d48d66969432e65399fc6cb85abda911a18ef06f1f5882c4b1e2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2775282 |
| PMID | 19841258 |
| PQID | 733927128 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_733927128 pubmed_primary_19841258 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-10-27 |
| PublicationDateYYYYMMDD | 2009-10-27 |
| PublicationDate_xml | – month: 10 year: 2009 text: 2009-10-27 day: 27 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2009 |
| References | 10048891 - Biophys Chem. 1998 Dec 14;75(3):229-33 10201403 - Nat Struct Biol. 1999 Apr;6(4):346-9 5455134 - Nature. 1970 Sep 26;227(5265):1313-8 18424499 - Biophys J. 2008 Aug;95(3):1248-55 19246398 - Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4231-6 11259306 - Biophys J. 2001 Apr;80(4):1932-9 19846782 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18047-8 12634053 - J Mol Biol. 2003 Mar 28;327(3):571-8 16356925 - Nucleic Acids Res. 2005;33(22):7029-38 17994031 - Nat Methods. 2007 Dec;4(12):1031-6 8990123 - Nature. 1997 Jan 9;385(6612):176-81 11159456 - Biophys J. 2001 Feb;80(2):894-900 9033597 - Nat Struct Biol. 1997 Feb;4(2):153-7 15324091 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70(1 Pt 1):011910 12975372 - J Biol Chem. 2003 Dec 5;278(49):48627-32 1614866 - Nucleic Acids Res. 1992 Jun 11;20(11):2803-12 7020585 - Annu Rev Biophys Bioeng. 1981;10:87-114 12867987 - Nature. 2003 Jul 17;424(6946):338-41 11159455 - Biophys J. 2001 Feb;80(2):882-93 8157639 - J Biol Chem. 1994 Apr 15;269(15):11121-32 12023240 - Biophys J. 2002 Jun;82(6):3160-9 8628993 - Science. 1996 Feb 9;271(5250):792-4 15886396 - Nucleic Acids Res. 2005;33(8):2676-84 11159454 - Biophys J. 2001 Feb;80(2):874-81 15123421 - J Mol Biol. 2004 May 21;339(1):67-75 13054692 - Nature. 1953 Apr 25;171(4356):737-8 8628994 - Science. 1996 Feb 9;271(5250):795-9 4039816 - Nucleic Acids Res. 1985 Mar 11;13(5):1703-16 15095865 - J Mol Biol. 2004 Feb 27;336(4):851-70 16241765 - Phys Rev Lett. 2005 Oct 7;95(15):158102 1439819 - Science. 1992 Nov 13;258(5085):1122-6 19060884 - Nature. 2009 Feb 5;457(7230):745-8 |
| References_xml | – reference: 15123421 - J Mol Biol. 2004 May 21;339(1):67-75 – reference: 7020585 - Annu Rev Biophys Bioeng. 1981;10:87-114 – reference: 16241765 - Phys Rev Lett. 2005 Oct 7;95(15):158102 – reference: 12634053 - J Mol Biol. 2003 Mar 28;327(3):571-8 – reference: 15095865 - J Mol Biol. 2004 Feb 27;336(4):851-70 – reference: 1439819 - Science. 1992 Nov 13;258(5085):1122-6 – reference: 9033597 - Nat Struct Biol. 1997 Feb;4(2):153-7 – reference: 8628993 - Science. 1996 Feb 9;271(5250):792-4 – reference: 12867987 - Nature. 2003 Jul 17;424(6946):338-41 – reference: 8628994 - Science. 1996 Feb 9;271(5250):795-9 – reference: 16356925 - Nucleic Acids Res. 2005;33(22):7029-38 – reference: 18424499 - Biophys J. 2008 Aug;95(3):1248-55 – reference: 11259306 - Biophys J. 2001 Apr;80(4):1932-9 – reference: 12023240 - Biophys J. 2002 Jun;82(6):3160-9 – reference: 5455134 - Nature. 1970 Sep 26;227(5265):1313-8 – reference: 15886396 - Nucleic Acids Res. 2005;33(8):2676-84 – reference: 8157639 - J Biol Chem. 1994 Apr 15;269(15):11121-32 – reference: 1614866 - Nucleic Acids Res. 1992 Jun 11;20(11):2803-12 – reference: 11159455 - Biophys J. 2001 Feb;80(2):882-93 – reference: 4039816 - Nucleic Acids Res. 1985 Mar 11;13(5):1703-16 – reference: 19846782 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18047-8 – reference: 8990123 - Nature. 1997 Jan 9;385(6612):176-81 – reference: 10201403 - Nat Struct Biol. 1999 Apr;6(4):346-9 – reference: 11159456 - Biophys J. 2001 Feb;80(2):894-900 – reference: 19246398 - Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4231-6 – reference: 12975372 - J Biol Chem. 2003 Dec 5;278(49):48627-32 – reference: 17994031 - Nat Methods. 2007 Dec;4(12):1031-6 – reference: 11159454 - Biophys J. 2001 Feb;80(2):874-81 – reference: 13054692 - Nature. 1953 Apr 25;171(4356):737-8 – reference: 15324091 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70(1 Pt 1):011910 – reference: 19060884 - Nature. 2009 Feb 5;457(7230):745-8 – reference: 10048891 - Biophys Chem. 1998 Dec 14;75(3):229-33 |
| SSID | ssj0009580 |
| Score | 2.4526 |
| Snippet | Single-molecule manipulation studies have revealed that double-stranded DNA undergoes a structural transition when subjected to tension. At forces that depend... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 18231 |
| SubjectTerms | DNA - chemistry Microfluidic Analytical Techniques Microscopy, Fluorescence Nucleic Acid Conformation Nucleic Acid Denaturation Optical Tweezers Transition Temperature |
| Title | Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19841258 https://www.proquest.com/docview/733927128 |
| Volume | 106 |
| WOSCitedRecordID | wos000271222500036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctoAwsQHmWlzwwgISp83KSCVVAxQBRByp1qxzbQZXapCQtEt-eOydFLIiBJUOkSNb5fP5ffP4dIZeQx2ZC6oBpzT1IUIKUpQ5MCJeIxfVdw5Wd6ecwSaLRKB40tTlVU1a5iok2UOtC4T_ybujBTh5CNL2bvzNsGoWHq00HjXXS8kDJoFOHo-gHczeqYQSxw4Qf8xXZJ_S681xWtzxGHh3kPOJ3eWm3mf7OPwe4S7YbfUl7tUO0yZrJ90i7WcEVvWow09f7pBjm2HoIr6NTUIG0JskuS0OLjD4kPVrfYKRY44k3Sha26pKmnxRr5d-oLUVE5nV5Q_HF1LBZ3WvX0Gy6LEoLilKGTma2E9IBGfYfX--fWNN-gSkRuwtmDHdTL1CgIKTQfqSFiEUMFjMWZ5spodIokKmWEDClE5mMi8zJAtDsyk8d4x6SjbzIzTGhSDlCqg7Xnva1RcxrrZCFYxDwJzqErmw6BvfGMwuZm2JZjb-t2iFH9byM5zWGYwxu5oM8i07-_viUbNlTINhz3PCMtDJY2uacbKqPxaQqL6zbwDMZvHwBVDzNwQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+structure+of+DNA+during+overstretching+by+using+multicolor%2C+single-molecule+fluorescence+imaging&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=van+Mameren%2C+Joost&rft.au=Gross%2C+Peter&rft.au=Farge%2C+Geraldine&rft.au=Hooijman%2C+Pleuni&rft.date=2009-10-27&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=106&rft.issue=43&rft.spage=18231&rft_id=info:doi/10.1073%2Fpnas.0904322106&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |