Development of an effective clustering algorithm for older fallers

Falls are common and often lead to serious physical and psychological consequences for older persons. The occurrence of falls are usually attributed to the interaction between multiple risk factors. The clinical evaluation of falls risks is time-consuming as a result, hence limiting its availability...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 17; číslo 11; s. e0277966
Hlavní autoři: Goh, Choon-Hian, Wong, Kam Kang, Tan, Maw Pin, Ng, Siew-Cheok, Chuah, Yea Dat, Kwan, Ban-Hoe
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 28.11.2022
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Falls are common and often lead to serious physical and psychological consequences for older persons. The occurrence of falls are usually attributed to the interaction between multiple risk factors. The clinical evaluation of falls risks is time-consuming as a result, hence limiting its availability. The purpose of this study was, therefore, to develop a clustering-based algorithm to determine falls risk. Data from the Malaysian Elders Longitudinal Research (MELoR), comprising 1411 subjects aged ≥55 years, were utilized. The proposed algorithm was developed through the stages of: data pre-processing, feature identification and extraction with either t-Distributed Stochastic Neighbour Embedding (t-SNE) or principal component analysis (PCA)), clustering (K-means clustering, Hierarchical clustering, and Fuzzy C-means clustering) and characteristics interpretation with statistical analysis. A total of 1279 subjects and 9 variables were selected for clustering after the data pre-possessing stage. Using feature extraction with the t-SNE and the K-means clustering algorithm, subjects were clustered into low, intermediate A, intermediate B and high fall risk groups which corresponded with fall occurrence of 13%, 19%, 21% and 31% respectively. Slower gait, poorer balance, weaker muscle strength, presence of cardiovascular disorder, poorer cognitive performance, and advancing age were the key variables identified. The proposed fall risk clustering algorithm grouped the subjects according to features. Such a tool could serve as a case identification or clinical decision support tool for clinical practice to enhance access to falls prevention efforts.
AbstractList Falls are common and often lead to serious physical and psychological consequences for older persons. The occurrence of falls are usually attributed to the interaction between multiple risk factors. The clinical evaluation of falls risks is time-consuming as a result, hence limiting its availability. The purpose of this study was, therefore, to develop a clustering-based algorithm to determine falls risk. Data from the Malaysian Elders Longitudinal Research (MELoR), comprising 1411 subjects aged ≥55 years, were utilized. The proposed algorithm was developed through the stages of: data pre-processing, feature identification and extraction with either t-Distributed Stochastic Neighbour Embedding (t-SNE) or principal component analysis (PCA)), clustering (K-means clustering, Hierarchical clustering, and Fuzzy C-means clustering) and characteristics interpretation with statistical analysis. A total of 1279 subjects and 9 variables were selected for clustering after the data pre-possessing stage. Using feature extraction with the t-SNE and the K-means clustering algorithm, subjects were clustered into low, intermediate A, intermediate B and high fall risk groups which corresponded with fall occurrence of 13%, 19%, 21% and 31% respectively. Slower gait, poorer balance, weaker muscle strength, presence of cardiovascular disorder, poorer cognitive performance, and advancing age were the key variables identified. The proposed fall risk clustering algorithm grouped the subjects according to features. Such a tool could serve as a case identification or clinical decision support tool for clinical practice to enhance access to falls prevention efforts.
Falls are common and often lead to serious physical and psychological consequences for older persons. The occurrence of falls are usually attributed to the interaction between multiple risk factors. The clinical evaluation of falls risks is time-consuming as a result, hence limiting its availability. The purpose of this study was, therefore, to develop a clustering-based algorithm to determine falls risk. Data from the Malaysian Elders Longitudinal Research (MELoR), comprising 1411 subjects aged [greater than or equal to]55 years, were utilized. The proposed algorithm was developed through the stages of: data pre-processing, feature identification and extraction with either t-Distributed Stochastic Neighbour Embedding (t-SNE) or principal component analysis (PCA)), clustering (K-means clustering, Hierarchical clustering, and Fuzzy C-means clustering) and characteristics interpretation with statistical analysis. A total of 1279 subjects and 9 variables were selected for clustering after the data pre-possessing stage. Using feature extraction with the t-SNE and the K-means clustering algorithm, subjects were clustered into low, intermediate A, intermediate B and high fall risk groups which corresponded with fall occurrence of 13%, 19%, 21% and 31% respectively. Slower gait, poorer balance, weaker muscle strength, presence of cardiovascular disorder, poorer cognitive performance, and advancing age were the key variables identified. The proposed fall risk clustering algorithm grouped the subjects according to features. Such a tool could serve as a case identification or clinical decision support tool for clinical practice to enhance access to falls prevention efforts.
Falls are common and often lead to serious physical and psychological consequences for older persons. The occurrence of falls are usually attributed to the interaction between multiple risk factors. The clinical evaluation of falls risks is time-consuming as a result, hence limiting its availability. The purpose of this study was, therefore, to develop a clustering-based algorithm to determine falls risk. Data from the Malaysian Elders Longitudinal Research (MELoR), comprising 1411 subjects aged ≥55 years, were utilized. The proposed algorithm was developed through the stages of: data pre-processing, feature identification and extraction with either t-Distributed Stochastic Neighbour Embedding (t-SNE) or principal component analysis (PCA)), clustering (K-means clustering, Hierarchical clustering, and Fuzzy C-means clustering) and characteristics interpretation with statistical analysis. A total of 1279 subjects and 9 variables were selected for clustering after the data pre-possessing stage. Using feature extraction with the t-SNE and the K-means clustering algorithm, subjects were clustered into low, intermediate A, intermediate B and high fall risk groups which corresponded with fall occurrence of 13%, 19%, 21% and 31% respectively. Slower gait, poorer balance, weaker muscle strength, presence of cardiovascular disorder, poorer cognitive performance, and advancing age were the key variables identified. The proposed fall risk clustering algorithm grouped the subjects according to features. Such a tool could serve as a case identification or clinical decision support tool for clinical practice to enhance access to falls prevention efforts.Falls are common and often lead to serious physical and psychological consequences for older persons. The occurrence of falls are usually attributed to the interaction between multiple risk factors. The clinical evaluation of falls risks is time-consuming as a result, hence limiting its availability. The purpose of this study was, therefore, to develop a clustering-based algorithm to determine falls risk. Data from the Malaysian Elders Longitudinal Research (MELoR), comprising 1411 subjects aged ≥55 years, were utilized. The proposed algorithm was developed through the stages of: data pre-processing, feature identification and extraction with either t-Distributed Stochastic Neighbour Embedding (t-SNE) or principal component analysis (PCA)), clustering (K-means clustering, Hierarchical clustering, and Fuzzy C-means clustering) and characteristics interpretation with statistical analysis. A total of 1279 subjects and 9 variables were selected for clustering after the data pre-possessing stage. Using feature extraction with the t-SNE and the K-means clustering algorithm, subjects were clustered into low, intermediate A, intermediate B and high fall risk groups which corresponded with fall occurrence of 13%, 19%, 21% and 31% respectively. Slower gait, poorer balance, weaker muscle strength, presence of cardiovascular disorder, poorer cognitive performance, and advancing age were the key variables identified. The proposed fall risk clustering algorithm grouped the subjects according to features. Such a tool could serve as a case identification or clinical decision support tool for clinical practice to enhance access to falls prevention efforts.
Audience Academic
Author Tan, Maw Pin
Kwan, Ban-Hoe
Goh, Choon-Hian
Wong, Kam Kang
Ng, Siew-Cheok
Chuah, Yea Dat
AuthorAffiliation 3 Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
4 Department Medical Sciences, Faculty of Healthcare and Medical Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
5 Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
1 Department of Mechatronics and BioMedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
2 Centre for Healthcare Science and Technology, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
6 Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
Hefei University of Technology, CHINA
AuthorAffiliation_xml – name: 6 Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
– name: 5 Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
– name: 2 Centre for Healthcare Science and Technology, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
– name: 1 Department of Mechatronics and BioMedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
– name: Hefei University of Technology, CHINA
– name: 3 Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
– name: 4 Department Medical Sciences, Faculty of Healthcare and Medical Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
Author_xml – sequence: 1
  givenname: Choon-Hian
  orcidid: 0000-0002-8914-8524
  surname: Goh
  fullname: Goh, Choon-Hian
– sequence: 2
  givenname: Kam Kang
  surname: Wong
  fullname: Wong, Kam Kang
– sequence: 3
  givenname: Maw Pin
  surname: Tan
  fullname: Tan, Maw Pin
– sequence: 4
  givenname: Siew-Cheok
  surname: Ng
  fullname: Ng, Siew-Cheok
– sequence: 5
  givenname: Yea Dat
  orcidid: 0000-0002-8823-6936
  surname: Chuah
  fullname: Chuah, Yea Dat
– sequence: 6
  givenname: Ban-Hoe
  orcidid: 0000-0001-7094-8612
  surname: Kwan
  fullname: Kwan, Ban-Hoe
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36441703$$D View this record in MEDLINE/PubMed
BookMark eNqNk9uL1DAUxousuBf9D0QLgujDjLl0ktYHYV1vAwsL3l5Dmp50MmSaMUkH_e9NnY5Ml0UkDwmnv-9Lv0POeXbSuQ6y7DFGc0w5frV2ve-knW9TeY4I5xVj97IzXFEyYwTRk6PzaXYewhqhBS0Ze5CdUlYUmCN6lr19BzuwbruBLuZO57LLQWtQ0ewgV7YPEbzp2lza1nkTV5tcO58724DPtbQWfHiY3U-nAI_G_SL79uH916tPs-ubj8ury-uZYhWJM-ANUbyRtCRK1ZRgVEJV6aqmUEoKlYICASyQojWUigFgpBlVtUpyqiihF9nTve_WuiDG-EEQXqCyQAgViVjuicbJtdh6s5H-l3DSiD8F51shfTTKguAU1RWhJUcVLpRCUlO2aAqsNWaScJq83oy39fUGGpX646WdmE6_dGYlWrcTFUcFw2UyeDEaePejhxDFxgQF1soOXL__7wojRoZkz26hd6cbqVamAKbTLt2rBlNxyUmJC0aqgZrfQaXVwMao9Fa0SfWJ4OVEkJgIP2Mr-xDE8svn_2dvvk_Z50fsCqSNq-BsH43rwhR8ctzpvy0-PNIEvN4DyrsQPGihTJSDT4pmrMBIDBNxaJoYJkKME5HExS3xwf-fst9ebg7W
CitedBy_id crossref_primary_10_3390_s24051427
Cites_doi 10.1136/bmjopen-2017-019579
10.1186/s12859-019-3027-7
10.1109/ICGTSPICC.2016.7955260
10.1016/j.apmr.2005.03.004
10.1093/bioinformatics/btm344
10.1111/coin.12377
10.1007/s41999-019-00162-8
10.1590/S1413-35552012005000041
10.1515/JISYS.2004.13.3.249
10.1007/978-3-642-30157-5_45
10.1109/ICCSA.2019.000-1
10.1080/09638280410001704304
10.1016/j.jamda.2012.03.009
10.23915/distill.00002
10.1016/j.compbiomed.2005.04.003
10.17700/jai.2015.6.3.196
10.1093/ptj/80.9.896
10.1016/S0895-4356(01)00349-3
10.1111/j.1532-5415.2005.00580.x
10.1111/j.1532-5415.2004.52366.x
10.1007/s40471-019-00211-7
10.1111/j.1365-2648.2006.04061.x
10.1186/s12877-018-0779-2
10.1136/ip.2004.005835
ContentType Journal Article
Copyright Copyright: © 2022 Goh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2022 Public Library of Science
2022 Goh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Goh et al 2022 Goh et al
Copyright_xml – notice: Copyright: © 2022 Goh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 Goh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Goh et al 2022 Goh et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0277966
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest : Agricultural & Environmental Science Collection [unlimited simultaneous users]
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database (NC LIVE)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
ProQuest Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE




MEDLINE - Academic

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Development of an effective clustering algorithm for older fallers
EISSN 1932-6203
ExternalDocumentID 2740840004
oai_doaj_org_article_730b923870914cc0af365d41ff16a273
PMC9704618
A728146294
36441703
10_1371_journal_pone_0277966
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Malaysia
GeographicLocations_xml – name: Malaysia
GrantInformation_xml – fundername: ;
  grantid: MELOR,UM.C/625/1/HIR/MOHE/ARTS/02
– fundername: ;
  grantid: (UTAR) (IPSR/RMC/UTARRF/2020-C1/G01)
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
PUEGO
5PM
AAPBV
ABPTK
ID FETCH-LOGICAL-c692t-e7d2c7da382ccb32108e99f9b3e8a3e9ce40ee50c3be8c6ee10f63cbcc693c323
IEDL.DBID 7RV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000925006300071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Sun Oct 01 00:11:45 EDT 2023
Fri Oct 03 12:39:23 EDT 2025
Tue Nov 04 02:07:28 EST 2025
Thu Oct 02 09:14:59 EDT 2025
Tue Oct 07 08:01:51 EDT 2025
Sat Nov 29 12:58:41 EST 2025
Sat Nov 29 10:18:18 EST 2025
Wed Nov 26 09:38:21 EST 2025
Wed Nov 26 09:46:55 EST 2025
Thu May 22 21:08:44 EDT 2025
Wed Feb 19 02:25:01 EST 2025
Sat Nov 29 05:48:26 EST 2025
Tue Nov 18 22:44:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Copyright: © 2022 Goh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-e7d2c7da382ccb32108e99f9b3e8a3e9ce40ee50c3be8c6ee10f63cbcc693c323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-8823-6936
0000-0002-8914-8524
0000-0001-7094-8612
OpenAccessLink https://www.proquest.com/docview/2740840004?pq-origsite=%requestingapplication%
PMID 36441703
PQID 2740840004
PQPubID 1436336
PageCount e0277966
ParticipantIDs plos_journals_2740840004
doaj_primary_oai_doaj_org_article_730b923870914cc0af365d41ff16a273
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9704618
proquest_miscellaneous_2740910622
proquest_journals_2740840004
gale_infotracmisc_A728146294
gale_infotracacademiconefile_A728146294
gale_incontextgauss_ISR_A728146294
gale_incontextgauss_IOV_A728146294
gale_healthsolutions_A728146294
pubmed_primary_36441703
crossref_citationtrail_10_1371_journal_pone_0277966
crossref_primary_10_1371_journal_pone_0277966
PublicationCentury 2000
PublicationDate 2022-11-28
PublicationDateYYYYMMDD 2022-11-28
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References Z Cebeci (pone.0277966.ref027) 2015; 6
S Khalid (pone.0277966.ref011) 2019; 6
JA Stevens (pone.0277966.ref002) 2005; 11
Y Saeys (pone.0277966.ref023) 2007; 23
L. Derksen (pone.0277966.ref025) 2019
A Tromp (pone.0277966.ref006) 2001; 54
ZM Hira (pone.0277966.ref009) 2015
D Alex (pone.0277966.ref014) 2018; 8
J Verghese (pone.0277966.ref036) 2006; 54
J Whitney (pone.0277966.ref007) 2012; 13
L Seppala (pone.0277966.ref038) 2019; 10
H Motoda (pone.0277966.ref010) 2002; 5
Horton K. Gender (pone.0277966.ref008) 2007; 57
B Williams (pone.0277966.ref031) 2017
Springer (pone.0277966.ref024) 2016
pone.0277966.ref004
C-H Goh (pone.0277966.ref015) 2017; 96
C Benfares (pone.0277966.ref037) 2021; 37
MR Lin (pone.0277966.ref032) 2004; 52
S Panda (pone.0277966.ref026) 2012
N-P Yang (pone.0277966.ref034) 2018; 18
K. Shihab (pone.0277966.ref018) 2004; 13
JI Thomas (pone.0277966.ref033) 2005; 86
LZ Rubenstein (pone.0277966.ref003) 2006; 90
pone.0277966.ref013
MD Miller (pone.0277966.ref035) 2003; 60
L Van der Maaten (pone.0277966.ref021) 2008; 9
T Sieri (pone.0277966.ref001) 2004; 26
JD Álvarez (pone.0277966.ref012) 2019; 20
MA Malarvizhi (pone.0277966.ref022) 2018; 119
TS Alexandre (pone.0277966.ref029) 2012; 16
C Pfortmueller (pone.0277966.ref005) 2014; 105
M Wattenberg (pone.0277966.ref020) 2016; 1
A Shumway-Cook (pone.0277966.ref028) 2000; 80
C-H Goh (pone.0277966.ref016) 2016; 95
I Pratama (pone.0277966.ref030) 2018
J Fortin (pone.0277966.ref017) 2006; 36
pone.0277966.ref019
References_xml – ident: pone.0277966.ref004
– volume: 96
  issue: 42
  year: 2017
  ident: pone.0277966.ref015
  article-title: Standing beat-to-beat blood pressure variability is reduced among fallers in the Malaysian Elders Longitudinal Study
  publication-title: Medicine
– volume: 8
  start-page: e019579
  issue: 7
  year: 2018
  ident: pone.0277966.ref014
  article-title: Cross-sectional analysis of ethnic differences in fall prevalence in urban dwellers aged 55 years and over in the Malaysian Elders Longitudinal Research study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-019579
– volume: 20
  start-page: 1
  issue: 1
  year: 2019
  ident: pone.0277966.ref012
  article-title: An application of machine learning with feature selection to improve diagnosis and classification of neurodegenerative disorders
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-3027-7
– ident: pone.0277966.ref019
  doi: 10.1109/ICGTSPICC.2016.7955260
– volume: 86
  start-page: 1636
  issue: 8
  year: 2005
  ident: pone.0277966.ref033
  article-title: A pilot study to explore the predictive validity of 4 measures of falls risk in frail elderly patients
  publication-title: Archives of Physical Medicine and Rehabilitation
  doi: 10.1016/j.apmr.2005.03.004
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: pone.0277966.ref023
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 60
  start-page: 248
  issue: 4
  year: 2003
  ident: pone.0277966.ref035
  article-title: A clinically relevant criterion for grip strength: relationship with falling in a sample of older adults.
  publication-title: Nutrition and Dietetics
– volume: 9
  issue: 11
  year: 2008
  ident: pone.0277966.ref021
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– volume: 37
  start-page: 1619
  issue: 4
  year: 2021
  ident: pone.0277966.ref037
  article-title: A clinical support system for classification and prediction of depression using machine learning methods
  publication-title: Computational Intelligence
  doi: 10.1111/coin.12377
– volume: 10
  start-page: 275
  issue: 2
  year: 2019
  ident: pone.0277966.ref038
  article-title: EuGMS task and finish group on fall-risk-increasing drugs (FRIDs): position on knowledge dissemination, management, and future research
  publication-title: European Geriatric Medicine.
  doi: 10.1007/s41999-019-00162-8
– volume: 16
  start-page: 381
  issue: 5
  year: 2012
  ident: pone.0277966.ref029
  article-title: Accuracy of Timed Up and Go Test for screening risk of falls among community-dwelling elderly
  publication-title: Brazilian Journal of Physical Therapy
  doi: 10.1590/S1413-35552012005000041
– volume: 13
  start-page: 249
  issue: 3
  year: 2004
  ident: pone.0277966.ref018
  article-title: Improving clustering performance by using feature selection and extraction techniques
  publication-title: Journal of Intelligent Systems
  doi: 10.1515/JISYS.2004.13.3.249
– volume: 90
  start-page: 807
  issue: 5
  year: 2006
  ident: pone.0277966.ref003
  article-title: Falls and their prevention in elderly people: what does the evidence show?
  publication-title: Medical Clinics
– start-page: 451
  volume-title: Advances in Computer Science, Engineering & Applications
  year: 2012
  ident: pone.0277966.ref026
  doi: 10.1007/978-3-642-30157-5_45
– ident: pone.0277966.ref013
  doi: 10.1109/ICCSA.2019.000-1
– volume: 26
  start-page: 718
  issue: 12
  year: 2004
  ident: pone.0277966.ref001
  article-title: Fall risk assessment in very old males and females living in nursing homes
  publication-title: Disability and Rehabilitation
  doi: 10.1080/09638280410001704304
– volume: 13
  start-page: 535
  issue: 6
  year: 2012
  ident: pone.0277966.ref007
  article-title: Understanding risk of falls in people with cognitive impairment living in residential care
  publication-title: Journal of the American Medical Directors Association
  doi: 10.1016/j.jamda.2012.03.009
– volume: 1
  start-page: e2
  issue: 10
  year: 2016
  ident: pone.0277966.ref020
  article-title: How to use t-SNE effectively.
  publication-title: Distill
  doi: 10.23915/distill.00002
– volume: 105
  start-page: 275
  issue: 4
  year: 2014
  ident: pone.0277966.ref005
  article-title: Reducing fall risk in the elderly: risk factors and fall prevention, a systematic review
  publication-title: Minerva Medica
– volume: 36
  start-page: 941
  issue: 9
  year: 2006
  ident: pone.0277966.ref017
  article-title: Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2005.04.003
– volume: 6
  start-page: 13
  issue: 3
  year: 2015
  ident: pone.0277966.ref027
  article-title: Comparison of k-means and fuzzy c-means algorithms on different cluster structures
  publication-title: Journal of Agricultural Informatics
  doi: 10.17700/jai.2015.6.3.196
– volume: 5
  start-page: 2
  issue: 67–72
  year: 2002
  ident: pone.0277966.ref010
  article-title: Feature selection, extraction and construction
  publication-title: Communication of IICM (Institute of Information and Computing Machinery, Taiwan)
– year: 2016
  ident: pone.0277966.ref024
  article-title: editors. t-SNE based visualisation and clustering of geological domain
  publication-title: International Conference on Neural Information Processing
– volume: 80
  start-page: 896
  issue: 9
  year: 2000
  ident: pone.0277966.ref028
  article-title: Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test.
  publication-title: Physical Therapy
  doi: 10.1093/ptj/80.9.896
– volume: 54
  start-page: 837
  issue: 8
  year: 2001
  ident: pone.0277966.ref006
  article-title: Fall-risk screening test: a prospective study on predictors for falls in community-dwelling elderly
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/S0895-4356(01)00349-3
– start-page: 2015
  year: 2015
  ident: pone.0277966.ref009
  article-title: A review of feature selection and feature extraction methods applied on microarray data
  publication-title: Advances in Bioinformatics
– volume: 54
  start-page: 255
  issue: 2
  year: 2006
  ident: pone.0277966.ref036
  article-title: Epidemiology of gait disorders in community‐residing older adults
  publication-title: Journal of the American Geriatrics Society
  doi: 10.1111/j.1532-5415.2005.00580.x
– volume: 52
  start-page: 1343
  issue: 8
  year: 2004
  ident: pone.0277966.ref032
  article-title: Psychometric comparisons of the timed up and go, one‐leg stand, functional reach, and Tinetti balance measures in community‐dwelling older people
  publication-title: Journal of the American Geriatrics Society
  doi: 10.1111/j.1532-5415.2004.52366.x
– year: 2019
  ident: pone.0277966.ref025
  article-title: Visualising high-dimensional datasets using PCA and t-SNE in Python
  publication-title: Medium
– volume: 119
  start-page: 16255
  issue: 12
  year: 2018
  ident: pone.0277966.ref022
  article-title: Data mining’s role in mining medical datasets for disease assessments–a case study
  publication-title: International Journal of Pure and Applied Mathematics
– year: 2018
  ident: pone.0277966.ref030
  article-title: Correlation between hand grip strength and functional mobility in elderly patients
  publication-title: Journal of Physics: Conference Series
– volume: 6
  start-page: 364
  issue: 3
  year: 2019
  ident: pone.0277966.ref011
  article-title: Machine Learning for Feature Selection and Cluster Analysis in Drug Utilisation Research
  publication-title: Current Epidemiology Reports
  doi: 10.1007/s40471-019-00211-7
– volume: 95
  issue: 19
  year: 2016
  ident: pone.0277966.ref016
  article-title: Evaluation of two new indices of blood pressure variability using postural change in older fallers
  publication-title: Medicine
– start-page: 2017
  year: 2017
  ident: pone.0277966.ref031
  article-title: Real-time fall risk assessment using functional reach test
  publication-title: International Journal of Telemedicine and Applications
– volume: 57
  start-page: 69
  issue: 1
  year: 2007
  ident: pone.0277966.ref008
  article-title: the risk of falling: a sociological approach
  publication-title: Journal of Advanced Nursing
  doi: 10.1111/j.1365-2648.2006.04061.x
– volume: 18
  start-page: 90
  issue: 1
  year: 2018
  ident: pone.0277966.ref034
  article-title: Relationship between muscle strength and fall episodes among the elderly: the Yilan study, Taiwan.
  publication-title: BMC Geriatrics
  doi: 10.1186/s12877-018-0779-2
– volume: 11
  start-page: 115
  issue: 2
  year: 2005
  ident: pone.0277966.ref002
  article-title: Gender differences for non-fatal unintentional fall related injuries among older adults.
  publication-title: Injury Prevention
  doi: 10.1136/ip.2004.005835
SSID ssj0053866
Score 2.4115689
Snippet Falls are common and often lead to serious physical and psychological consequences for older persons. The occurrence of falls are usually attributed to the...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0277966
SubjectTerms Aged
Aged, 80 and over
Algorithms
Analysis
Balance
Biology and Life Sciences
Clinical decision making
Clinical medicine
Cluster Analysis
Clustering
Cognitive ability
Data collection
Datasets
Decision support systems
Embedding
Falls
Falls (Accidents)
Feature extraction
Feature selection
Gait
Health aspects
Health risks
Hospitals
Humans
Hypothesis testing
Medicine and Health Sciences
Missing data
Muscle Strength
Older people
Physical Sciences
Physiological aspects
Principal Component Analysis
Principal components analysis
Research and Analysis Methods
Risk analysis
Risk Factors
Risk groups
Statistical analysis
Stochasticity
Vector quantization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQigMXRHk1UMAgJOCQNrEdP44togIJFcRLvVmJY7crLclqs8vvZybxhg2qVA5c1-No9_O8vJn5hpCXhVShKphIIbryVJRwYa2CEmmusyIwGSAn6XlmP6qzM31-bj7vjPrCmrCBHngA7gg0sIIkBNTK5MK5rAxcFrXIQ8hlCbEXvW-mzPYyNfhgsGIpY6McV_lRPJfDZdv4Q3xraXpWxD-BqOfrH73ybLlou6tSzr8rJ3dC0ekdcjvmkPR4-O575IZv7pK9aKUdfR2ppN_cIyc7NUG0DbRs6FDAAT6OusUGWRIgdtFycdGu5uvLnxRyWNri5G4acMrKqrtPvp---_b2fRqnJqROGrZOvaqZU3XJNXOuwhYd7Y0JpuJel9wb50XmfZE5XnntpPd5FiR3lYPt3HHGH5BZAzjtE6qFUMGJwvMsCHiUBrzr3GWYBMjA64TwLYTWRUpxnGyxsP17MgVXiwERi8DbCHxC0nHXcqDUuEb-BE9nlEVC7P4DUBMb1cRepyYJeYZna4fu0tGs7bFi-CcoMyIhL3oJJMVosOrmotx0nf3w6cc_CH39MhF6FYVCC3C4MnY6wG9Csq2J5MFEEkzbTZb3URO3qHSWKZHBjRwcG-zcaufVy8_HZXwoVtI1vt0MMpAiSsYS8nBQ5hFZjskxhICEqImaT6CfrjTzy56T3Chk7teP_sdZPSa3GDaZ5HnK9AGZrVcb_4TcdL_W8271tDf0352RVjQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZg4cCFUl5NKWAQEnBISWzHdo4tYgVSVSpe6s1KHLtdaUlWm11-PzOJNzRVK-C6HkfOZB6f1zOfCXmVSeXLjIkYsiuPRQEb1tIrEac6yTyTHjBJxzN7pI6P9elpfvJno3jpBJ-r9F3Q6f6iqd0-njgCQL9JbjEuJW62pidHm8gLvitlaI-7buYo_XQs_UMsnizmTXsV0LxcL3khAU23_nfp98jdADXpQW8b2-SGq--T7eDMLX0TGKffPiCHF0qHaONpUdO-zgNCIbXzNZIpQIqjxfysWc5W5z8pQF3a4AXf1ONlLMv2Ifk-_fDt_cc4XK4QW5mzVexUxayqCq6ZtSV28miX5z4vudMFd7l1InEuSywvnbbSuTTxktvSwnRuOeOPyKSG99ohVAuhvBWZ44kX8CgNkKhKbYJYQXpeRYRvdG5sYB7HCzDmpjtOU7AD6TViUFEmKCoi8TBr0TNv_EX-ED_nIIu82d0P8EVMcEMD8awESAtBKk-FtUnhucwqkXqfygKWHZHnaAymb0IdvN8cKIb_lbJcRORlJ4HcGTUW55wV67Y1nz7_-Aehr19GQq-DkG9AHbYIDRHwTsjJNZLcG0lCBLCj4R003Y1WWsOUSGDjDvEPZm7M-erhF8MwPhQL7mrXrHsZQJKSsYg87q1_0CxHDA2ZIiJq5Bcj1Y9H6tl5R12eKyT417vXr_gJucOwwyRNY6b3yGS1XLun5Lb9tZq1y2edv_8GQuFTtw
  priority: 102
  providerName: Public Library of Science
Title Development of an effective clustering algorithm for older fallers
URI https://www.ncbi.nlm.nih.gov/pubmed/36441703
https://www.proquest.com/docview/2740840004
https://www.proquest.com/docview/2740910622
https://pubmed.ncbi.nlm.nih.gov/PMC9704618
https://doaj.org/article/730b923870914cc0af365d41ff16a273
http://dx.doi.org/10.1371/journal.pone.0277966
Volume 17
WOSCitedRecordID wos000925006300071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Materials Science Database (NC LIVE)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELeg44EXYHwtMEpASMBDusROYucJrdMqpm0l6mAqvESJY3eTSlKalr-fu8TNFjQBEi_3UJ_T5O58Ptvn3xHyJgi5zgLqOzC7MsdPYcGaae47nnADTUMNMUmNM3vCx2MxnUax2XCrTFrlxifWjjovJe6R78HqyYXFCOj0w-KHg1Wj8HTVlNC4TbY8jI3BnvnkfOOJYSyHobkux7i3Z7QzWJSFGuDZZVRjI15NRzVqf-ube4t5Wd0UeP6eP3ltQhrd_99PeUDumVDU3m9sZ5vcUsVDsm0Ge2W_M4jU7x-R4bXUIrvUdlrYTR4IuEpbztcItgBToJ3OZ_A_q4vvNoTCdokFwG2NxVqW1WPyZXT4-eCjY4ovODKM6MpRPKeS5ykTVMoMb_oIFUU6ypgSKVORVL6rVOBKlikhQ6U8V4dMZhK6M8koe0J6BQh6h9jC97mWfqCYq314lICQKfeki7FEqFluEbbRQSINMjkWyJgn9XEbhxVKI5EENZcYzVnEaXstGmSOv_APUb0tL-Jq1z-Uy1lihmkC_i6DkBecWOT5UrqpZmGQ-57WXpjCa1vkJRpH0lxSbb1Dss8p7qXSyLfI65oDsTUKTN6ZpeuqSo4-nf8D09mkw_TWMOkSxCFTc2ECvgkxuzqcux1O8BCy07yDpryRSpVcGSD03Jjozc2v2mZ8KCbkFapcNzwQaYaUWuRpMxpayTKMsWEmsQjvjJOO6LstxeVFDW0ecSwAIJ79-bWek7sUb6F4nkPFLumtlmv1gtyRP1eX1bJf-wCkU15TAVQceH2yNTwcx5N-ve0CdBSfAD0eDoCeusdIeVzTM6Bx8A16xEen8ddfG41x5g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqBQkuQHk1UKhBIOCQNrEdOzkg1AJVqy5LBQVVXELi2NtKS7JsdkH8KX4jM3m1QRVw6YFrPI7i8cw343gehDwKpLJpwIQL1pW7IoEDa2qVcP3QCyyTFnySqs7sUI1G4eFhtL9Efra5MBhW2WJiBdRZofEf-Qacnjw4jMCevph-dbFrFN6uti00arHYMz--w5GtfL77Cvb3MWPbrw9e7rhNVwFXy4jNXaMyplWW8JBpnWIKS2iiyEYpN2HCTaSN8IwJPM1TE2ppjO9ZyXWqYTrXHAsdAORfEIJ5qEX7wacW-QE7pGzS87jyNxppWJ8WuVnHu9KoqsV4Yv6qLgGdLRhMJ0V5lqP7e7zmKQO4ffV_Y901cqVxtelmrRvLZMnk18lyA2YlfdpU3H52g2ydCp2ihaVJTus4FzAFVE8WWEwCTDxNJmNY1_zoCwVXnxbY4JxabEYzK2-SD-eylltkkMPGrhAaCqGsFoHhnhXwqhBcwszXHvpK0vLMIbzd81g3ldexAcgkrq4TFZzAao7EKClxIykOcbtZ07ryyF_ot1CcOlqsG149KGbjuIGhGPA8BZceQDryhdZeYrkMMuFb68sEPtshayiMcZ2E26FfvKkY_itmkXDIw4oCa4fkGJw0ThZlGe--_fgPRO_f9YieNES2AHbopEkIgTVhTbIe5WqPEhBQ94ZXUHVarpTxicDDzFYlzh5-0A3jSzHgMDfFoqYBT1oy5pDbtfZ1nOV4hgBL6RDV08se6_sj-fFRVbo9UtjgILzz589aI5d2Dt4M4-HuaO8uucww48b3XRauksF8tjD3yEX9bX5czu5X-EPJ5_PW2l_dBcVc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqBSEuQHk1UKhBIOCQbmI7cXJAqKWsWLVaVrxUcQmJY28rLcmy2QXx1_h1zCTOtkEVcOmBazyO4vE84_E3hDwKQmmygAkXvCt3RQoJa2akcP3ICwwLDcQkNc7sgRyNosPDeLxGfrZ3YbCssrWJtaHOS4X_yPuQPXmQjMCe9o0tixjvDV7MvrrYQQpPWtt2Go2I7Osf3yF9q54P92CvHzM2ePX-5WvXdhhwVRizhatlzpTMUx4xpTK8zhLpODZxxnWUch0rLTytA0_xTEcq1Nr3TMhVpmA6VxxBD8D8X5CQY2I54Tj41HoBsCNhaK_qcen3rWRsz8pCb-O5aVzjMp64wrpjwMov9GbTsjor6P29dvOUMxxc_Z_ZeI1csSE43Wl0Zp2s6eI6WbdGrqJPLRL3sxtk91RJFS0NTQva1L-Ai6BqukSQCXD9NJ1OYF2Loy8UUgBaYuNzarBJzby6ST6cy1pukV4Bm7xBaCSENEoEmntGwKsiCBVzX3kYQ4WG5w7h7f4nyiKyY2OQaVIfM0rIzBqOJCg1iZUah7irWbMGkeQv9LsoWitaxBOvH5TzSWLNUwJ2PoNQH4x37AulvNTwMMiFb4wfpvDZDtlCwUyay7krq5jsSIb_kFksHPKwpkBMkQLFapIuqyoZvvn4D0Tv3naInlgiUwI7VGovisCaEKusQ7nZoQTLqDrDG6hGLVeq5ET4YWarHmcPP1gN40uxELHQ5bKhgQg7ZMwhtxtNXHGWY24BHtQhsqOjHdZ3R4rjoxrSPZbY-CC68-fP2iKXQFmTg-Fo_y65zPAiju-7LNokvcV8qe-Ri-rb4ria369NESWfz1tpfwF4DM4m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+an+effective+clustering+algorithm+for+older+fallers&rft.jtitle=PloS+one&rft.au=Goh%2C+Choon-Hian&rft.au=Wong%2C+Kam+Kang&rft.au=Tan%2C+Maw+Pin&rft.au=Ng%2C+Siew-Cheok&rft.date=2022-11-28&rft.eissn=1932-6203&rft.volume=17&rft.issue=11&rft.spage=e0277966&rft_id=info:doi/10.1371%2Fjournal.pone.0277966&rft_id=info%3Apmid%2F36441703&rft.externalDocID=36441703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon