Adaptive dimensionality reduction for neural network-based online principal component analysis

“Principal Component Analysis” (PCA) is an established linear technique for dimensionality reduction. It performs an orthonormal transformation to replace possibly correlated variables with a smaller set of linearly independent variables, the so-called principal components, which capture a large por...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 16; no. 3; p. e0248896
Main Authors: Migenda, Nico, Möller, Ralf, Schenck, Wolfram
Format: Journal Article
Language:English
Published: United States Public Library of Science 30.03.2021
Public Library of Science (PLoS)
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract “Principal Component Analysis” (PCA) is an established linear technique for dimensionality reduction. It performs an orthonormal transformation to replace possibly correlated variables with a smaller set of linearly independent variables, the so-called principal components, which capture a large portion of the data variance. The problem of finding the optimal number of principal components has been widely studied for offline PCA. However, when working with streaming data, the optimal number changes continuously. This requires to update both the principal components and the dimensionality in every timestep. While the continuous update of the principal components is widely studied, the available algorithms for dimensionality adjustment are limited to an increment of one in neural network-based and incremental PCA. Therefore, existing approaches cannot account for abrupt changes in the presented data. The contribution of this work is to enable in neural network-based PCA the continuous dimensionality adjustment by an arbitrary number without the necessity to learn all principal components. A novel algorithm is presented that utilizes several PCA characteristics to adaptivly update the optimal number of principal components for neural network-based PCA. A precise estimation of the required dimensionality reduces the computational effort while ensuring that the desired amount of variance is kept. The computational complexity of the proposed algorithm is investigated and it is benchmarked in an experimental study against other neural network-based and incremental PCA approaches where it produces highly competitive results.
AbstractList "Principal Component Analysis" (PCA) is an established linear technique for dimensionality reduction. It performs an orthonormal transformation to replace possibly correlated variables with a smaller set of linearly independent variables, the so-called principal components, which capture a large portion of the data variance. The problem of finding the optimal number of principal components has been widely studied for offline PCA. However, when working with streaming data, the optimal number changes continuously. This requires to update both the principal components and the dimensionality in every timestep. While the continuous update of the principal components is widely studied, the available algorithms for dimensionality adjustment are limited to an increment of one in neural network-based and incremental PCA. Therefore, existing approaches cannot account for abrupt changes in the presented data. The contribution of this work is to enable in neural network-based PCA the continuous dimensionality adjustment by an arbitrary number without the necessity to learn all principal components. A novel algorithm is presented that utilizes several PCA characteristics to adaptivly update the optimal number of principal components for neural network-based PCA. A precise estimation of the required dimensionality reduces the computational effort while ensuring that the desired amount of variance is kept. The computational complexity of the proposed algorithm is investigated and it is benchmarked in an experimental study against other neural network-based and incremental PCA approaches where it produces highly competitive results.
"Principal Component Analysis" (PCA) is an established linear technique for dimensionality reduction. It performs an orthonormal transformation to replace possibly correlated variables with a smaller set of linearly independent variables, the so-called principal components, which capture a large portion of the data variance. The problem of finding the optimal number of principal components has been widely studied for offline PCA. However, when working with streaming data, the optimal number changes continuously. This requires to update both the principal components and the dimensionality in every timestep. While the continuous update of the principal components is widely studied, the available algorithms for dimensionality adjustment are limited to an increment of one in neural network-based and incremental PCA. Therefore, existing approaches cannot account for abrupt changes in the presented data. The contribution of this work is to enable in neural network-based PCA the continuous dimensionality adjustment by an arbitrary number without the necessity to learn all principal components. A novel algorithm is presented that utilizes several PCA characteristics to adaptivly update the optimal number of principal components for neural network-based PCA. A precise estimation of the required dimensionality reduces the computational effort while ensuring that the desired amount of variance is kept. The computational complexity of the proposed algorithm is investigated and it is benchmarked in an experimental study against other neural network-based and incremental PCA approaches where it produces highly competitive results."Principal Component Analysis" (PCA) is an established linear technique for dimensionality reduction. It performs an orthonormal transformation to replace possibly correlated variables with a smaller set of linearly independent variables, the so-called principal components, which capture a large portion of the data variance. The problem of finding the optimal number of principal components has been widely studied for offline PCA. However, when working with streaming data, the optimal number changes continuously. This requires to update both the principal components and the dimensionality in every timestep. While the continuous update of the principal components is widely studied, the available algorithms for dimensionality adjustment are limited to an increment of one in neural network-based and incremental PCA. Therefore, existing approaches cannot account for abrupt changes in the presented data. The contribution of this work is to enable in neural network-based PCA the continuous dimensionality adjustment by an arbitrary number without the necessity to learn all principal components. A novel algorithm is presented that utilizes several PCA characteristics to adaptivly update the optimal number of principal components for neural network-based PCA. A precise estimation of the required dimensionality reduces the computational effort while ensuring that the desired amount of variance is kept. The computational complexity of the proposed algorithm is investigated and it is benchmarked in an experimental study against other neural network-based and incremental PCA approaches where it produces highly competitive results.
Streaming data is possibly subject to noise, drift or other influences, so that the optimal dimensionality has to be adjusted continuously in order to maintain the desired amount of variance in PCA. [...]for an online method to be effective, it is necessary to continuously add or remove dimensions with each data point when appropriate [6]. [...]training many unnecessary components increases the computational effort. [...]the efficient adjustment of dimensionality by an arbitrary number after the presentation of each data point is necessary. Objectives and structure The contribution of this work is the continuous dimensionality adjustment in neural network-based PCA by arbitrary steps, without the constraint to learn all principal components at every timestep. [...]stopping rules previously not directly applicable to neural network-based PCA are extended for online learning. On the downside, it is costly to update non-linear methods continuously and they have many hyperparameters to tune. [...]linear techniques are preferable for many applications, and the focus of this work lies on further improving linear methods, in particular in a streaming setting in which the subspace is updated without knowledge of the data history [23].
Streaming data is possibly subject to noise, drift or other influences, so that the optimal dimensionality has to be adjusted continuously in order to maintain the desired amount of variance in PCA. [...]for an online method to be effective, it is necessary to continuously add or remove dimensions with each data point when appropriate [6]. [...]training many unnecessary components increases the computational effort. [...]the efficient adjustment of dimensionality by an arbitrary number after the presentation of each data point is necessary. Objectives and structure The contribution of this work is the continuous dimensionality adjustment in neural network-based PCA by arbitrary steps, without the constraint to learn all principal components at every timestep. [...]stopping rules previously not directly applicable to neural network-based PCA are extended for online learning. On the downside, it is costly to update non-linear methods continuously and they have many hyperparameters to tune. [...]linear techniques are preferable for many applications, and the focus of this work lies on further improving linear methods, in particular in a streaming setting in which the subspace is updated without knowledge of the data history [23].
Audience Academic
Author Schenck, Wolfram
Migenda, Nico
Möller, Ralf
AuthorAffiliation 2 Computer Engineering Group, Faculty of Technology, Bielefeld University, Bielefeld, Germany
Fuzhou University, CHINA
1 Center for Applied Data Science Gütersloh, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Bielefeld, Germany
AuthorAffiliation_xml – name: Fuzhou University, CHINA
– name: 1 Center for Applied Data Science Gütersloh, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Bielefeld, Germany
– name: 2 Computer Engineering Group, Faculty of Technology, Bielefeld University, Bielefeld, Germany
Author_xml – sequence: 1
  givenname: Nico
  orcidid: 0000-0002-7223-1735
  surname: Migenda
  fullname: Migenda, Nico
– sequence: 2
  givenname: Ralf
  surname: Möller
  fullname: Möller, Ralf
– sequence: 3
  givenname: Wolfram
  orcidid: 0000-0003-3300-2048
  surname: Schenck
  fullname: Schenck, Wolfram
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33784333$$D View this record in MEDLINE/PubMed
BookMark eNqNk12L1DAUhousuB_6D0QLgujFjEnTpqkXwrD4MbCw4NelIU1OZzK2yZikq_PvTXe6y3RZRHqR9uQ57znnbXKaHBlrIEmeYjTHpMRvNrZ3RrTzbQzPUZYzVtEHyQmuSDajGSJHB-_Hyan3G4QKwih9lBwTUrKcEHKS_FgosQ36ClKlOzBe26ipwy51oHoZ4mfaWJca6J1o4xJ-W_dzVgsPKrWm1QbSrdNG6m3clrYbujEhFVFl57V_nDxsROvhybieJd8-vP96_ml2cflxeb64mElaZWGmRCGwKBmhCKjI6xrVGagqzwABQjXDIOoMoUbWCilGUaWAoQpDXuIclygjZ8nzve62tZ6P1nieFajEWSQHYrknlBUbHnvuhNtxKzS_Dli34sIFLVvgVQE5LpAQQKucxIbqnJGSsFrWjSSyilrvxmp93YGSceLozkR0umP0mq_sFWcIVfl1u69GAWd_9eAD77SX0LbCgO33fdPoDGIRfXEHvX-6kVqJOIA2jY115SDKF7SgJStIUURqfg8VHwWdlvHPNTrGJwmvJwmRCfAnrETvPV9--fz_7OX3KfvygF2DaMPa27Yfzpufgs8Onb61-OYARyDfA9JZ7x00twhGfLgnN3bx4WTy8Z7EtLd30qQOYigfHdHtv5P_AmbKGjE
CitedBy_id crossref_primary_10_1016_j_ecolind_2023_110211
crossref_primary_10_1038_s41598_022_13147_8
crossref_primary_10_1109_ACCESS_2025_3543741
crossref_primary_10_1080_00295639_2024_2397256
crossref_primary_10_1155_2021_9732156
crossref_primary_10_1016_j_jece_2025_116859
crossref_primary_10_1109_ACCESS_2025_3590073
crossref_primary_10_1111_1750_3841_70285
crossref_primary_10_3390_jcs8100416
crossref_primary_10_1016_j_eswa_2023_121779
crossref_primary_10_1002_env_2772
crossref_primary_10_3390_agronomy12020446
crossref_primary_10_1371_journal_pone_0317098
crossref_primary_10_1007_s12666_022_02571_z
crossref_primary_10_3390_s22093129
crossref_primary_10_1007_s12155_022_10420_6
crossref_primary_10_1016_j_hazadv_2023_100379
crossref_primary_10_3390_electronics14112281
crossref_primary_10_1007_s42770_023_01154_4
crossref_primary_10_1016_j_jclepro_2021_127875
crossref_primary_10_1016_j_eswa_2022_118157
crossref_primary_10_1007_s13399_022_02818_1
crossref_primary_10_1109_ACCESS_2024_3517321
crossref_primary_10_3390_rs16030565
crossref_primary_10_1088_2631_8695_add084
crossref_primary_10_1007_s11695_025_07894_6
crossref_primary_10_1038_s41598_025_11607_5
crossref_primary_10_1007_s12206_022_0744_z
crossref_primary_10_1016_j_chemolab_2025_105342
crossref_primary_10_1080_07391102_2024_2321249
crossref_primary_10_1016_j_cma_2024_117309
Cites_doi 10.1088/0954-898X_3_1_008
10.1049/cp:19991170
10.1007/s11263-007-0075-7
10.1007/BF02289162
10.1016/S0925-2312(02)00671-9
10.1007/BF00275687
10.1109/TETC.2014.2330516
10.1109/72.822524
10.1109/ICPR.2002.1048133
10.1016/0893-6080(89)90044-0
10.1109/ICIT.2019.8755116
10.1007/978-3-319-78024-5_1
10.1109/IGARSS.2001.978197
10.1109/SmartCloud.2016.33
10.1111/insr.12220
10.1109/INFOCOMTECH.2018.8722348
10.1007/978-3-030-33607-3_9
10.1007/978-981-10-2915-8
10.1007/978-3-642-29347-4_1
10.1145/2689746.2689747
10.1016/j.laa.2005.07.021
10.1109/TGRS.2005.863297
10.1016/j.neucom.2003.09.014
10.1016/j.neucom.2015.08.104
10.1109/TNN.2007.891193
10.1109/TVCG.2019.2934433
10.1504/IJAPR.2016.079733
10.1103/PhysRevLett.73.814
10.1109/IC3.2013.6612229
10.5244/C.12.29
10.1109/72.363480
10.1007/s00530-015-0494-1
10.1142/S0129065700000429
10.1142/S0129065789000475
10.1007/3-540-31662-0_33
10.2307/2530946
10.1007/978-0-387-39351-3
10.1109/TNN.2003.820439
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Migenda et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Migenda et al 2021 Migenda et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Migenda et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Migenda et al 2021 Migenda et al
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0248896
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
CrossRef


PubMed
Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Adaptive dimensionality reduction for neural network-based online PCA
EISSN 1932-6203
ExternalDocumentID 2507120912
oai_doaj_org_article_95e4150aae6943e6ab483738bcbfc3c9
PMC8009402
A656785355
33784333
10_1371_journal_pone_0248896
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: ;
  grantid: 34.EFRE-0300119
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
AAPBV
ABPTK
BBAFP
N95
ID FETCH-LOGICAL-c692t-da5a1a78360e6a4bb0b2ed942e0e00b81eab200fcbd0d8609de8091e471417023
IEDL.DBID FPL
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000636359600049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Sun Jan 01 07:45:42 EST 2023
Tue Oct 14 19:07:55 EDT 2025
Tue Nov 04 01:59:18 EST 2025
Fri Sep 05 12:27:42 EDT 2025
Tue Oct 07 07:43:24 EDT 2025
Sat Nov 29 13:19:36 EST 2025
Sat Nov 29 10:26:05 EST 2025
Wed Nov 26 09:33:10 EST 2025
Wed Nov 26 10:18:39 EST 2025
Thu May 22 21:00:54 EDT 2025
Wed Feb 19 02:27:51 EST 2025
Tue Nov 18 22:39:58 EST 2025
Sat Nov 29 05:37:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-da5a1a78360e6a4bb0b2ed942e0e00b81eab200fcbd0d8609de8091e471417023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-3300-2048
0000-0002-7223-1735
OpenAccessLink http://dx.doi.org/10.1371/journal.pone.0248896
PMID 33784333
PQID 2507120912
PQPubID 1436336
PageCount e0248896
ParticipantIDs plos_journals_2507120912
doaj_primary_oai_doaj_org_article_95e4150aae6943e6ab483738bcbfc3c9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8009402
proquest_miscellaneous_2507669208
proquest_journals_2507120912
gale_infotracmisc_A656785355
gale_infotracacademiconefile_A656785355
gale_incontextgauss_ISR_A656785355
gale_incontextgauss_IOV_A656785355
gale_healthsolutions_A656785355
pubmed_primary_33784333
crossref_primary_10_1371_journal_pone_0248896
crossref_citationtrail_10_1371_journal_pone_0248896
PublicationCentury 2000
PublicationDate 2021-03-30
PublicationDateYYYYMMDD 2021-03-30
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pone.0248896.ref009
pone.0248896.ref008
pone.0248896.ref007
pone.0248896.ref006
A Tharwat (pone.0248896.ref014) 2020
L Guttman (pone.0248896.ref044) 1954; 19
pone.0248896.ref049
pone.0248896.ref048
pone.0248896.ref003
pone.0248896.ref002
pone.0248896.ref001
J Karhunen (pone.0248896.ref019) 2000; 10
pone.0248896.ref043
pone.0248896.ref042
AD Gordon (pone.0248896.ref052) 1984; 40
R Möller (pone.0248896.ref034) 2002; 49
R Möller (pone.0248896.ref020) 2004; 62
L Van Der Maaten (pone.0248896.ref005) 2009; 10
IT Jolliffe (pone.0248896.ref011) 2016; 374
M Brand (pone.0248896.ref040) 2006; vol. 415
JP Cunningham (pone.0248896.ref010) 2015; 16
pone.0248896.ref039
pone.0248896.ref037
pone.0248896.ref036
TD Sanger (pone.0248896.ref030) 1989; 2
J Cheng Lv (pone.0248896.ref046) 2007; 18
E Oja (pone.0248896.ref029) 1989; 01
X Kong (pone.0248896.ref028) 2017
Wang Jing (pone.0248896.ref015) 2006; 44
H Cardot (pone.0248896.ref017) 2017; 86
pone.0248896.ref027
pone.0248896.ref026
pone.0248896.ref024
J Stevens (pone.0248896.ref045) 2002; 47
pone.0248896.ref023
pone.0248896.ref022
JA Lee (pone.0248896.ref021) 2007
A Tharwat (pone.0248896.ref012) 2016; 3
E Oja (pone.0248896.ref041) 1982; 15
pone.0248896.ref018
S Ouyang (pone.0248896.ref032) 2000; 11
pone.0248896.ref016
P Hancock (pone.0248896.ref047) 1970; 3
pone.0248896.ref013
pone.0248896.ref051
S Bannour (pone.0248896.ref031) 1995; 6
pone.0248896.ref050
L Kuang (pone.0248896.ref035) 2014; 2
KL Du (pone.0248896.ref025) 2014
Y Wang (pone.0248896.ref038) 2016; 184
R Möller (pone.0248896.ref033) 2004; 15
L Gao (pone.0248896.ref004) 2015; 23
References_xml – volume: 3
  start-page: 61
  year: 1970
  ident: pone.0248896.ref047
  article-title: The Principal Components of Natural Images
  publication-title: Network: Computation in Neural Systems
  doi: 10.1088/0954-898X_3_1_008
– ident: pone.0248896.ref018
  doi: 10.1049/cp:19991170
– year: 2020
  ident: pone.0248896.ref014
  article-title: Independent component analysis: An introduction
  publication-title: Applied Computing and Informatics
– ident: pone.0248896.ref027
  doi: 10.1007/s11263-007-0075-7
– volume: 19
  start-page: 149
  issue: 2
  year: 1954
  ident: pone.0248896.ref044
  article-title: Some necessary conditions for common-factor analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289162
– volume: 49
  start-page: 429
  issue: 1-4
  year: 2002
  ident: pone.0248896.ref034
  article-title: Interlocking of learning and orthonormalization in RRLSA
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00671-9
– volume: 15
  start-page: 267
  issue: 3
  year: 1982
  ident: pone.0248896.ref041
  article-title: Simplified neuron model as a principal component analyzer
  publication-title: Journal of Mathematical Biology
  doi: 10.1007/BF00275687
– volume: 2
  start-page: 280
  issue: 3
  year: 2014
  ident: pone.0248896.ref035
  article-title: A Tensor-Based Approach for Big Data Representation and Dimensionality Reduction
  publication-title: IEEE Transactions on Emerging Topics in Computing
  doi: 10.1109/TETC.2014.2330516
– volume: 16
  start-page: 2859
  issue: 89
  year: 2015
  ident: pone.0248896.ref010
  article-title: Linear Dimensionality Reduction: Survey, Insights, and Generalizations
  publication-title: Journal of Machine Learning Research
– volume: 11
  start-page: 215
  year: 2000
  ident: pone.0248896.ref032
  article-title: Robust recursive least squares learning algorithm for principal component analysis
  publication-title: Neural Networks, IEEE Transactions on
  doi: 10.1109/72.822524
– ident: pone.0248896.ref009
  doi: 10.1109/ICPR.2002.1048133
– volume: 2
  start-page: 459
  issue: 6
  year: 1989
  ident: pone.0248896.ref030
  article-title: Optimal unsupervised learning in a single-layer linear feedforward neural network
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90044-0
– ident: pone.0248896.ref037
  doi: 10.1109/ICIT.2019.8755116
– ident: pone.0248896.ref024
  doi: 10.1007/978-3-319-78024-5_1
– ident: pone.0248896.ref016
  doi: 10.1109/IGARSS.2001.978197
– volume: 47
  year: 2002
  ident: pone.0248896.ref045
  article-title: Applied Multivariate Statistics For The Social Sciences
  publication-title: The Psychologist
– ident: pone.0248896.ref050
– ident: pone.0248896.ref036
  doi: 10.1109/SmartCloud.2016.33
– volume: 86
  start-page: 29
  issue: 1
  year: 2017
  ident: pone.0248896.ref017
  article-title: Online Principal Component Analysis in High Dimension: Which Algorithm to Choose?
  publication-title: International Statistical Review
  doi: 10.1111/insr.12220
– ident: pone.0248896.ref043
  doi: 10.1109/INFOCOMTECH.2018.8722348
– ident: pone.0248896.ref006
  doi: 10.1007/978-3-030-33607-3_9
– volume-title: Principal Component Analysis Networks and Algorithms
  year: 2017
  ident: pone.0248896.ref028
  doi: 10.1007/978-981-10-2915-8
– ident: pone.0248896.ref042
  doi: 10.1007/978-3-642-29347-4_1
– ident: pone.0248896.ref022
  doi: 10.1145/2689746.2689747
– volume: vol. 415
  start-page: 20
  issue: no. 1
  year: 2006
  ident: pone.0248896.ref040
  article-title: Fast low-rank modifications of the thin singular value decomposition
  publication-title: Linear Algebra and its Applications
  doi: 10.1016/j.laa.2005.07.021
– ident: pone.0248896.ref049
– volume: 44
  start-page: 1586
  issue: 6
  year: 2006
  ident: pone.0248896.ref015
  article-title: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2005.863297
– volume: 10
  start-page: 66
  year: 2009
  ident: pone.0248896.ref005
  article-title: Dimensionality reduction: a comparative review
  publication-title: J Mach Learn Res
– volume: 62
  start-page: 305
  year: 2004
  ident: pone.0248896.ref020
  article-title: An extension of neural gas to local PCA
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2003.09.014
– volume: 184
  start-page: 232
  year: 2016
  ident: pone.0248896.ref038
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.104
– ident: pone.0248896.ref051
– volume: 18
  start-page: 910
  year: 2007
  ident: pone.0248896.ref046
  article-title: Determination of the Number of Principal Directions in a Biologically Plausible PCA Model
  publication-title: IEEE transactions on neural networks
  doi: 10.1109/TNN.2007.891193
– ident: pone.0248896.ref026
  doi: 10.1109/TVCG.2019.2934433
– volume: 3
  start-page: 197
  year: 2016
  ident: pone.0248896.ref012
  article-title: Principal component analysis—a tutorial
  publication-title: International Journal of Applied Pattern Recognition
  doi: 10.1504/IJAPR.2016.079733
– ident: pone.0248896.ref039
– ident: pone.0248896.ref048
  doi: 10.1103/PhysRevLett.73.814
– ident: pone.0248896.ref023
– ident: pone.0248896.ref001
  doi: 10.1109/IC3.2013.6612229
– volume-title: Neural Networks and Statistical Learning
  year: 2014
  ident: pone.0248896.ref025
– ident: pone.0248896.ref008
  doi: 10.5244/C.12.29
– volume: 6
  start-page: 457
  issue: 2
  year: 1995
  ident: pone.0248896.ref031
  article-title: Principal component extraction using recursive least squares learning
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.363480
– volume: 23
  start-page: 303
  issue: 3
  year: 2015
  ident: pone.0248896.ref004
  article-title: Learning in high-dimensional multimedia data: the state of the art
  publication-title: Multimedia Systems
  doi: 10.1007/s00530-015-0494-1
– volume: 10
  start-page: 439
  issue: 06
  year: 2000
  ident: pone.0248896.ref019
  article-title: Local Linear Independent Component Analysis Based on Clustering
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065700000429
– volume: 01
  start-page: 61
  issue: 01
  year: 1989
  ident: pone.0248896.ref029
  article-title: Neural Networks, Principal Components, and Subspaces
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065789000475
– ident: pone.0248896.ref013
– ident: pone.0248896.ref002
  doi: 10.1007/3-540-31662-0_33
– volume: 374
  issue: 2065
  year: 2016
  ident: pone.0248896.ref011
  article-title: Principal component analysis: a review and recent developments
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 40
  start-page: 874
  issue: 3
  year: 1984
  ident: pone.0248896.ref052
  article-title: Classification and Regression Trees
  publication-title: Biometrics
  doi: 10.2307/2530946
– ident: pone.0248896.ref003
– ident: pone.0248896.ref007
– volume-title: Nonlinear Dimensionality Reduction
  year: 2007
  ident: pone.0248896.ref021
  doi: 10.1007/978-0-387-39351-3
– volume: 15
  start-page: 214
  issue: 1
  year: 2004
  ident: pone.0248896.ref033
  article-title: Coupled principal component analysis
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2003.820439
SSID ssj0053866
Score 2.564282
Snippet “Principal Component Analysis” (PCA) is an established linear technique for dimensionality reduction. It performs an orthonormal transformation to replace...
"Principal Component Analysis" (PCA) is an established linear technique for dimensionality reduction. It performs an orthonormal transformation to replace...
Streaming data is possibly subject to noise, drift or other influences, so that the optimal dimensionality has to be adjusted continuously in order to maintain...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0248896
SubjectTerms Algorithms
Biology and Life Sciences
Computer and Information Sciences
Computer applications
Data points
Datasets
Distance learning
Eigenvalues
Electronic data processing
Machine learning
Methods
Neural networks
Physical Sciences
Principal components analysis
Research and Analysis Methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQigMXRHk1UMAgJOCQ1rETxzkuiAokVBCPqicsO_aWSlU22uzy-5mxvdEGVSoHrvHEiefh-bI785mQl6JqbFXaInc1K_NS2Ta32I2mKicN8rGp0F9x-qk-OVFnZ82XnaO-sCYs0gNHxR01lYccw4zxsimFl8YiB7qASe2iFW1o3QPUs_2YinswRLGUqVFO1MVRssthv-z8IbJ4KSTp30lEga9_3JVn_eVyuApy_l05uZOKju-Q2wlD0nl89z1yw3d3yV6K0oG-TlTSb-6Rn3NnetzQqEMW_8jAAbibrpCxFW1CAbRSJLWECbtYEp5jZnM0cmjQPv4aD8NYfQ4r69bUJCaT--TH8fvv7z7k6USFvJUNX-fOVKYwoXEDNFlayyz3rim5Z54xqwpvLITNorWOOSVZ47wCQOEhg5VFDen9AZl18KR9QlkNBrELB-C8QdY-w0rDuZXCgeW9qjIiturVbaIbx1MvLnX4D62Gz46oLY2vrpNRMpKPd_WRbuMa-bdouVEWybLDBXAhnVxIX-dCGXmGdtex83QMeT0HrFsDnKlgMS-CBBJmdFiRc242w6A_fj79B6FvXydCr5LQYgnqaE3qgoA1IRHXRPJgIglh306G99FLt1oZNEdkz8FaHO7ceu7Vw8_HYZwUq-w6v9xEGQmOwlRGHkZHHzUrMGyFEBmpJyEwUf10pLv4FfjKFZavMv7of9jqMbnFsaoIu0LZAZmtVxv_hNxsf68vhtXTsAn8ATZlY38
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg4cAFKK-mFAgICTikdew8nBNaEBVIqFQ8qooDll9bKlVJutnl9zMTO6FBFSBxjSeJPS9PnJlvCHnK80rnmU4TW9IsyYQ2icZqNJHbQiEem-jrKw7fl_v74uioOggHbl1Iqxx8Yu-obWPwjHyXYeDCYHdjL9uzBLtG4d_V0ELjMrmCKAlomAf518ETgy0XRSiX42W6G6Sz0za120EsL4FQ_ee2ox61f_TNs_a06S4KPH_Pnzy3Ie3d-N-l3CTXQygaz73ubJBLrr5FNoKxd_HzgEj94jb5NreqRb8YW2wG4IE8IHyPlwj8iqKNIfaNERsTHlj7zPIEN0gbeyiOuPWH-jCMSezAmnoVqwCIcod82Xvz-fXbJDRmSExRsVViVa5S1dd_uEJlWlPNnK0y5qijVIvUKQ3WtzDaUisKWlknYLkONsIsLSFKuEtmNbxpk8S0dEWlFxZi_ArB_xTNFGO64BYUyIk8InyQjzQBtRybZ5zK_ldcCV8vnlsSpy6DVCOSjHe1HrXjL_SvUPQjLWJu9xea5bEMJiyr3EG0Q5WCGWccFq4RjZ-DeuuF4aaKyCNUHOkLWEfPIecQMpcQFeWwmCc9BeJu1JjYc6zWXSfffTj8B6JPHydEzwLRogF2GBWKKWBNiOc1odyeUIL3MJPhTVTzgSud_KWccOegvhcPPx6H8aGYrFe7Zu1pClAUKiJyz1vKyFmO1s85j0g5saEJ66cj9cn3HvZcYBYsZVt_ntZ9co1h2hGWjdJtMlst1-4BuWp-rE665cPeP_wEonVxAQ
  priority: 102
  providerName: ProQuest
Title Adaptive dimensionality reduction for neural network-based online principal component analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/33784333
https://www.proquest.com/docview/2507120912
https://www.proquest.com/docview/2507669208
https://pubmed.ncbi.nlm.nih.gov/PMC8009402
https://doaj.org/article/95e4150aae6943e6ab483738bcbfc3c9
http://dx.doi.org/10.1371/journal.pone.0248896
Volume 16
WOSCitedRecordID wos000636359600049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYxwMvwPhaYZSAkICHFCdObOexnVYxbStRB1XhgciOXZg0pVXT8vdzl7iBTJuAl3uIz4l9vjufk7tfCHnN4kTHkQ58I2jkR1LnvsZqNBkbrhCPTVb1FdNTMR7L2SxJfx8Ur3zBZyJ472TaXy4K20cELpnwHbIbMs4xhWuUnm49L9gu56487qaere2nQulvfHFnebkorws0r-ZL_rEBje7979Dvk7su1PQGtW7skVu2eED2nDGX3luHOP3uIfk2MGqJfs8zCPZfA3VAeO6tENgVl86D2NZD7Eu4YVFnjvu4ARqvhtrwlvVLe2jGJHUYSbH2lAM8eUQ-j44-HX7w3Y8X_Jwn4do3KlaBquo7LFeR1lSH1iRRaKmlVMvAKg3WNc-1oUZymhgrIe6wsNFFgYAo4DHpFPCkfeJRYXmi5wZi-ATB_RSNVBhqzgwoiJVxl7DtemS5QyXHn2NcZtWnNgGnk1paGQ49c0LsEr_ptaxROf7CP8SlbngRU7u6AKuVORPNkthCNEOVghFHDCauEW2fgfrqec7ypEteoKJkdYFq4xmyAYTEAqKeGCbzquJAXI0CE3e-q01ZZscfp__AdD5pMb1xTPMFiCNXrlgC5oR4XS3OgxYneIe81byPar2VSpmFeAAIYbVC6LlV9eubXzbNeFNMxivsYlPzcFAUKrvkSW0ZjWQZWjdjrEtEy2Zaom-3FBc_KlhziVmuNHx684ifkTshphRhSSg9IJ31amOfk9v5z_VFueqRHTGZIp2Jikqg8jDokd3h0Tid9KrXLb3KYwA9GfaBntETpCKt6DnQNP4KPdLjs_TLLwoUbAA
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqBQkuQHl1S6EBgYBDWq-d5wGh5VF11WVBUKo9YezY21aqkrDZBfGn-I3MxE5oUAVceuC6njzszHyeWc98Q8hDHqYqDNTA1zEN_CBRma-wGi0JdSSRjy2p6ysOxvFkkkyn6bsV8qOphcG0ygYTa6DWRYb_kW8zdFwY7G7sefnFx65ReLratNCwarFnvn-DkK16NnoF3_cRYzuv91_u-q6rgJ9FKVv4WoZyIOviBRPJQCmqmNFpwAw1lKpkYKQC1ZllSlOdRDTVJoHHGkDxYBDXRAcA-RcAx2NMIYunbYAH2BFFrjyPx4Ntpw1bZZGbLeQOS7A1wKntr-4S0O4FvfKkqM5ydH_P1zy1Ae5c_d-W7hq54lxtb2htY5WsmPw6WXVgVnlPHOP20xvk01DLEnHf09jswBKVQHjizZHYFlXXA9_eQ-5PuGFuM-d9dAC0Z6lGvNIeWsAwJunDp8gXnnSELzfJx3OZ5y3Sy-FJa8SjsYlSNdMQw6RIbihpIBlTEddgICYJ-4Q3-iAyx8qOzUFORH3UGEN0ZldL4KsLp0V94rdXlZaV5C_yL1DVWlnkFK9_KOaHwkGUSEMD3hyVEt444DBxhd0GOJivmmU8S_tkExVV2ALdFhnFEEKCGLy-ECbzoJZAXpEcE5cO5bKqxOjtwT8IfXjfEXrshGYFLEcmXbEIzAn5yjqSGx1JQMesM7yGZtWsSiV-GQNc2ZjL2cP322G8KSYj5qZYWpkIFIUmfXLbWma7shzRjXPeJ3HHZjtL3x3Jj49qWvcEs3wpW__za22SS7v7b8ZiPJrs3SGXGaZYYYks3SC9xXxp7pKL2dfFcTW_V2OTRz6ft0X_BHPAzZQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VASEuQHk1UOiCQMDBzWbXzwNCgRIRtQoRj6rigNn1bkqlyjZxAuKv8euY8a5NjSrg0gPX7NjZHc_TnvmGkAciSFTgq6GnI-Z7fqwyT2E3WhzoUCIeW1z3V-zvRdNpfHCQzNbIj6YXBssqG5tYG2pdZPiOfMAxcOHg3fhg7soiZjvjZ-UXDydI4ZfWZpyGFZFd8_0bpG_V08kOPOuHnI9fvnvxynMTBrwsTPjS0zKQQ1k3MphQ-koxxY1OfG6YYUzFQyMViNE8U5rpOGSJNjFswYBF94dRDXoA5v9cBDkmJn6z4EPjBcCOhKFr1RPRcOAkY7sscrONOGIxjgk44QrriQGtX-iVx0V1WtD7e-3mCWc4vvw_s_EKueRCcDqyOrNO1kx-law7I1fRxw6J-8k18nGkZYn-gGocgmABTCBtoQsEvEWRphDzU8QEhRvmtqLew8BAUwtBQkv7MQOWsXgfHku-pNIBwVwn78_knDdIL4d_2iCURSZM1FxDbpMg6KFkvuRchUKD4pg46BPRyEaaObR2HBpynNafICPI2iy3Utx66iSqT7z2qtKilfyF_jmKXUuLWOP1D8XiMHWmK00CA1EekxJ27As4uMIpBALUWs0zkSV9soVCm9rG3dZipiNIFSKIBgM4zP2aAvFGchS5Q7mqqnTyev8fiN6-6RA9ckTzAtiRSddEAmdCHLMO5WaHEqxm1lneQBVruFKlvxQDrmxU5_Tle-0y3hSLFHNTrCxNCILC4j65abW05axAqyeE6JOoo78d1ndX8qPPNdx7jNW_jN_687a2yAVQ5HRvMt29TS5yrLzCzlm2SXrLxcrcIeezr8ujanG3NlOUfDprhf4JVbXWhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+dimensionality+reduction+for+neural+network-based+online+principal+component+analysis&rft.jtitle=PloS+one&rft.au=Migenda%2C+Nico&rft.au=M%C3%B6ller%2C+Ralf&rft.au=Schenck%2C+Wolfram&rft.date=2021-03-30&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=3&rft.spage=e0248896&rft_id=info:doi/10.1371%2Fjournal.pone.0248896&rft.externalDocID=A656785355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon