Endobiont Viruses Sensed by the Human Host – Beyond Conventional Antiparasitic Therapy
Wide-spread protozoan parasites carry endosymbiotic dsRNA viruses with uncharted implications to the human host. Among them, Trichomonas vaginalis, a parasite adapted to the human genitourinary tract, infects globally ∼250 million each year rendering them more susceptible to devastating pregnancy co...
Uložené v:
| Vydané v: | PloS one Ročník 7; číslo 11; s. e48418 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Public Library of Science
07.11.2012
Public Library of Science (PLoS) |
| Predmet: | |
| ISSN: | 1932-6203, 1932-6203 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Wide-spread protozoan parasites carry endosymbiotic dsRNA viruses with uncharted implications to the human host. Among them, Trichomonas vaginalis, a parasite adapted to the human genitourinary tract, infects globally ∼250 million each year rendering them more susceptible to devastating pregnancy complications (especially preterm birth), HIV infection and HPV-related cancer. While first-line antibiotic treatment (metronidazole) commonly kills the protozoan pathogen, it fails to improve reproductive outcome. We show that endosymbiotic Trichomonasvirus, highly prevalent in T. vaginalis clinical isolates, is sensed by the human epithelial cells via Toll-like receptor 3, triggering Interferon Regulating Factor -3, interferon type I and proinflammatory cascades previously implicated in preterm birth and HIV-1 susceptibility. Metronidazole treatment amplified these proinflammatory responses. Thus, a new paradigm targeting the protozoan viruses along with the protozoan host may prevent trichomoniasis-attributable inflammatory sequelae. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Current address: Xenia Chepa-Lotrea: NIH, NIDDK, Liver Disease Branch Immunology, Section, Bethesda, Maryland, United States of America Current address: Northeastern University, Boston, Massachusetts, United States of America Current address: Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America Performed the experiments: RNF YL HSY ORB XCL. Analyzed the data: RNF YL HSY RM ORB. Wrote the paper: RNF. Conceived and designed the experiments, immunology and cell biology: RNF; virology: MLN. Contributed reagents/materials/analysis tools, LPS and primary TV isolates: BNS DHB GH; virion isolation and RT-PCR: YT TK RPG; TVV dsRNA and RNAse treatments: YT; TV culture: DHB GH XCL RM ORB RNF; TV cloning: RNF; Western blot: ORB; qNPA: HSY; luciferase and immunoassays: YL HSY RM ORB. Reviewed and approved the manuscript: RNF YL HSY YT GH RPG XCL ORB RM TK DHB BNS MLN. Recruited clinical subjects: BNS. |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0048418 |