A Data-Driven Algorithm Integrating Clinical and Laboratory Features for the Diagnosis and Prognosis of Necrotizing Enterocolitis

Necrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model available for NEC, the diagnosis and outcome prediction of NEC is made on clinical grounds. The objective in this study was to develop and va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one Jg. 9; H. 2; S. e89860
Hauptverfasser: Ji, Jun, Ling, Xuefeng B., Zhao, Yingzhen, Hu, Zhongkai, Zheng, Xiaolin, Xu, Zhening, Wen, Qiaojun, Kastenberg, Zachary J., Li, Ping, Abdullah, Fizan, Brandt, Mary L., Ehrenkranz, Richard A., Harris, Mary Catherine, Lee, Timothy C., Simpson, B. Joyce, Bowers, Corinna, Moss, R. Lawrence, Sylvester, Karl G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 28.02.2014
Public Library of Science (PLoS)
Schlagworte:
ISSN:1932-6203, 1932-6203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Necrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model available for NEC, the diagnosis and outcome prediction of NEC is made on clinical grounds. The objective in this study was to develop and validate new NEC scoring systems for automated staging and prognostic forecasting. A six-center consortium of university based pediatric teaching hospitals prospectively collected data on infants under suspicion of having NEC over a 7-year period. A database comprised of 520 infants was utilized to develop the NEC diagnostic and prognostic models by dividing the entire dataset into training and testing cohorts of demographically matched subjects. Developed on the training cohort and validated on the blind testing cohort, our multivariate analyses led to NEC scoring metrics integrating clinical data. Machine learning using clinical and laboratory results at the time of clinical presentation led to two nec models: (1) an automated diagnostic classification scheme; (2) a dynamic prognostic method for risk-stratifying patients into low, intermediate and high NEC scores to determine the risk for disease progression. We submit that dynamic risk stratification of infants with NEC will assist clinicians in determining the need for additional diagnostic testing and guide potential therapies in a dynamic manner. http://translationalmedicine.stanford.edu/cgi-bin/NEC/index.pl and smartphone application upon request.
AbstractList Background Necrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model available for NEC, the diagnosis and outcome prediction of NEC is made on clinical grounds. The objective in this study was to develop and validate new NEC scoring systems for automated staging and prognostic forecasting. Study design A six-center consortium of university based pediatric teaching hospitals prospectively collected data on infants under suspicion of having NEC over a 7-year period. A database comprised of 520 infants was utilized to develop the NEC diagnostic and prognostic models by dividing the entire dataset into training and testing cohorts of demographically matched subjects. Developed on the training cohort and validated on the blind testing cohort, our multivariate analyses led to NEC scoring metrics integrating clinical data. Results Machine learning using clinical and laboratory results at the time of clinical presentation led to two NEC models: (1) an automated diagnostic classification scheme; (2) a dynamic prognostic method for risk-stratifying patients into low, intermediate and high NEC scores to determine the risk for disease progression. We submit that dynamic risk stratification of infants with NEC will assist clinicians in determining the need for additional diagnostic testing and guide potential therapies in a dynamic manner. Algorithm availability
Background Necrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model available for NEC, the diagnosis and outcome prediction of NEC is made on clinical grounds. The objective in this study was to develop and validate new NEC scoring systems for automated staging and prognostic forecasting. Study design A six-center consortium of university based pediatric teaching hospitals prospectively collected data on infants under suspicion of having NEC over a 7-year period. A database comprised of 520 infants was utilized to develop the NEC diagnostic and prognostic models by dividing the entire dataset into training and testing cohorts of demographically matched subjects. Developed on the training cohort and validated on the blind testing cohort, our multivariate analyses led to NEC scoring metrics integrating clinical data. Results Machine learning using clinical and laboratory results at the time of clinical presentation led to two NEC models: (1) an automated diagnostic classification scheme; (2) a dynamic prognostic method for risk-stratifying patients into low, intermediate and high NEC scores to determine the risk for disease progression. We submit that dynamic risk stratification of infants with NEC will assist clinicians in determining the need for additional diagnostic testing and guide potential therapies in a dynamic manner. Algorithm availability http://translationalmedicine.stanford.edu/cgi-bin/NEC/index.pl and smartphone application upon request.
Necrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model available for NEC, the diagnosis and outcome prediction of NEC is made on clinical grounds. The objective in this study was to develop and validate new NEC scoring systems for automated staging and prognostic forecasting. A six-center consortium of university based pediatric teaching hospitals prospectively collected data on infants under suspicion of having NEC over a 7-year period. A database comprised of 520 infants was utilized to develop the NEC diagnostic and prognostic models by dividing the entire dataset into training and testing cohorts of demographically matched subjects. Developed on the training cohort and validated on the blind testing cohort, our multivariate analyses led to NEC scoring metrics integrating clinical data. Machine learning using clinical and laboratory results at the time of clinical presentation led to two nec models: (1) an automated diagnostic classification scheme; (2) a dynamic prognostic method for risk-stratifying patients into low, intermediate and high NEC scores to determine the risk for disease progression. We submit that dynamic risk stratification of infants with NEC will assist clinicians in determining the need for additional diagnostic testing and guide potential therapies in a dynamic manner. http://translationalmedicine.stanford.edu/cgi-bin/NEC/index.pl and smartphone application upon request.
Background Necrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model available for NEC, the diagnosis and outcome prediction of NEC is made on clinical grounds. The objective in this study was to develop and validate new NEC scoring systems for automated staging and prognostic forecasting. Study design A six-center consortium of university based pediatric teaching hospitals prospectively collected data on infants under suspicion of having NEC over a 7-year period. A database comprised of 520 infants was utilized to develop the NEC diagnostic and prognostic models by dividing the entire dataset into training and testing cohorts of demographically matched subjects. Developed on the training cohort and validated on the blind testing cohort, our multivariate analyses led to NEC scoring metrics integrating clinical data. Results Machine learning using clinical and laboratory results at the time of clinical presentation led to two NEC models: (1) an automated diagnostic classification scheme; (2) a dynamic prognostic method for risk-stratifying patients into low, intermediate and high NEC scores to determine the risk for disease progression. We submit that dynamic risk stratification of infants with NEC will assist clinicians in determining the need for additional diagnostic testing and guide potential therapies in a dynamic manner. Algorithm availability http://translationalmedicine.stanford.edu/cgi-bin/NEC/index.pl and smartphone application upon request.
Necrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model available for NEC, the diagnosis and outcome prediction of NEC is made on clinical grounds. The objective in this study was to develop and validate new NEC scoring systems for automated staging and prognostic forecasting. A six-center consortium of university based pediatric teaching hospitals prospectively collected data on infants under suspicion of having NEC over a 7-year period. A database comprised of 520 infants was utilized to develop the NEC diagnostic and prognostic models by dividing the entire dataset into training and testing cohorts of demographically matched subjects. Developed on the training cohort and validated on the blind testing cohort, our multivariate analyses led to NEC scoring metrics integrating clinical data. Machine learning using clinical and laboratory results at the time of clinical presentation led to two NEC models: (1) an automated diagnostic classification scheme; (2) a dynamic prognostic method for risk-stratifying patients into low, intermediate and high NEC scores to determine the risk for disease progression. We submit that dynamic risk stratification of infants with NEC will assist clinicians in determining the need for additional diagnostic testing and guide potential therapies in a dynamic manner.
BackgroundNecrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model available for NEC, the diagnosis and outcome prediction of NEC is made on clinical grounds. The objective in this study was to develop and validate new NEC scoring systems for automated staging and prognostic forecasting.Study designA six-center consortium of university based pediatric teaching hospitals prospectively collected data on infants under suspicion of having NEC over a 7-year period. A database comprised of 520 infants was utilized to develop the NEC diagnostic and prognostic models by dividing the entire dataset into training and testing cohorts of demographically matched subjects. Developed on the training cohort and validated on the blind testing cohort, our multivariate analyses led to NEC scoring metrics integrating clinical data.ResultsMachine learning using clinical and laboratory results at the time of clinical presentation led to two nec models: (1) an automated diagnostic classification scheme; (2) a dynamic prognostic method for risk-stratifying patients into low, intermediate and high NEC scores to determine the risk for disease progression. We submit that dynamic risk stratification of infants with NEC will assist clinicians in determining the need for additional diagnostic testing and guide potential therapies in a dynamic manner.Algorithm availabilityhttp://translationalmedicine.stanford.edu/cgi-bin/NEC/index.pl and smartphone application upon request.
Necrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model available for NEC, the diagnosis and outcome prediction of NEC is made on clinical grounds. The objective in this study was to develop and validate new NEC scoring systems for automated staging and prognostic forecasting.BACKGROUNDNecrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model available for NEC, the diagnosis and outcome prediction of NEC is made on clinical grounds. The objective in this study was to develop and validate new NEC scoring systems for automated staging and prognostic forecasting.A six-center consortium of university based pediatric teaching hospitals prospectively collected data on infants under suspicion of having NEC over a 7-year period. A database comprised of 520 infants was utilized to develop the NEC diagnostic and prognostic models by dividing the entire dataset into training and testing cohorts of demographically matched subjects. Developed on the training cohort and validated on the blind testing cohort, our multivariate analyses led to NEC scoring metrics integrating clinical data.STUDY DESIGNA six-center consortium of university based pediatric teaching hospitals prospectively collected data on infants under suspicion of having NEC over a 7-year period. A database comprised of 520 infants was utilized to develop the NEC diagnostic and prognostic models by dividing the entire dataset into training and testing cohorts of demographically matched subjects. Developed on the training cohort and validated on the blind testing cohort, our multivariate analyses led to NEC scoring metrics integrating clinical data.Machine learning using clinical and laboratory results at the time of clinical presentation led to two nec models: (1) an automated diagnostic classification scheme; (2) a dynamic prognostic method for risk-stratifying patients into low, intermediate and high NEC scores to determine the risk for disease progression. We submit that dynamic risk stratification of infants with NEC will assist clinicians in determining the need for additional diagnostic testing and guide potential therapies in a dynamic manner.RESULTSMachine learning using clinical and laboratory results at the time of clinical presentation led to two nec models: (1) an automated diagnostic classification scheme; (2) a dynamic prognostic method for risk-stratifying patients into low, intermediate and high NEC scores to determine the risk for disease progression. We submit that dynamic risk stratification of infants with NEC will assist clinicians in determining the need for additional diagnostic testing and guide potential therapies in a dynamic manner.http://translationalmedicine.stanford.edu/cgi-bin/NEC/index.pl and smartphone application upon request.ALGORITHM AVAILABILITYhttp://translationalmedicine.stanford.edu/cgi-bin/NEC/index.pl and smartphone application upon request.
Audience Academic
Author Abdullah, Fizan
Ji, Jun
Li, Ping
Sylvester, Karl G.
Ling, Xuefeng B.
Wen, Qiaojun
Moss, R. Lawrence
Lee, Timothy C.
Kastenberg, Zachary J.
Zheng, Xiaolin
Simpson, B. Joyce
Ehrenkranz, Richard A.
Bowers, Corinna
Xu, Zhening
Hu, Zhongkai
Zhao, Yingzhen
Harris, Mary Catherine
Brandt, Mary L.
AuthorAffiliation 4 College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
3 Department of Surgery, Stanford University, Stanford, California, United States of America
5 Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
10 Department of Surgery, Ohio State College of Medicine, Columbus, Ohio, United States of America
7 Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
2 School of Health Management, Hangzhou Normal University, Hangzhou, Zhejiang, China
Emory University School of Medicine, United States of America
9 Division of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
6 Department of Surgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
8 Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
1 St
AuthorAffiliation_xml – name: 6 Department of Surgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
– name: Emory University School of Medicine, United States of America
– name: 3 Department of Surgery, Stanford University, Stanford, California, United States of America
– name: 7 Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
– name: 9 Division of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
– name: 10 Department of Surgery, Ohio State College of Medicine, Columbus, Ohio, United States of America
– name: 2 School of Health Management, Hangzhou Normal University, Hangzhou, Zhejiang, China
– name: 8 Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
– name: 5 Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
– name: 1 State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, Zhejiang University, Hangzhou, Zhejiang, China
– name: 4 College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
Author_xml – sequence: 1
  givenname: Jun
  surname: Ji
  fullname: Ji, Jun
– sequence: 2
  givenname: Xuefeng B.
  surname: Ling
  fullname: Ling, Xuefeng B.
– sequence: 3
  givenname: Yingzhen
  surname: Zhao
  fullname: Zhao, Yingzhen
– sequence: 4
  givenname: Zhongkai
  surname: Hu
  fullname: Hu, Zhongkai
– sequence: 5
  givenname: Xiaolin
  surname: Zheng
  fullname: Zheng, Xiaolin
– sequence: 6
  givenname: Zhening
  surname: Xu
  fullname: Xu, Zhening
– sequence: 7
  givenname: Qiaojun
  surname: Wen
  fullname: Wen, Qiaojun
– sequence: 8
  givenname: Zachary J.
  surname: Kastenberg
  fullname: Kastenberg, Zachary J.
– sequence: 9
  givenname: Ping
  surname: Li
  fullname: Li, Ping
– sequence: 10
  givenname: Fizan
  surname: Abdullah
  fullname: Abdullah, Fizan
– sequence: 11
  givenname: Mary L.
  surname: Brandt
  fullname: Brandt, Mary L.
– sequence: 12
  givenname: Richard A.
  surname: Ehrenkranz
  fullname: Ehrenkranz, Richard A.
– sequence: 13
  givenname: Mary Catherine
  surname: Harris
  fullname: Harris, Mary Catherine
– sequence: 14
  givenname: Timothy C.
  surname: Lee
  fullname: Lee, Timothy C.
– sequence: 15
  givenname: B. Joyce
  surname: Simpson
  fullname: Simpson, B. Joyce
– sequence: 16
  givenname: Corinna
  surname: Bowers
  fullname: Bowers, Corinna
– sequence: 17
  givenname: R. Lawrence
  surname: Moss
  fullname: Moss, R. Lawrence
– sequence: 18
  givenname: Karl G.
  surname: Sylvester
  fullname: Sylvester, Karl G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24587080$$D View this record in MEDLINE/PubMed
BookMark eNqNk02P0zAQhiO0iN0t_AMEkZAQHFrsOF_mgFS1u1CpYhFfV2viOKlXrl1sZ8Vy45_jtClqVyuEfEgyed53PKOZ8-hEGy2i6ClGE0wK_ObadFaDmmxCeIJQScscPYjOMCXJOE8QOTl4P43OnbtGKCNlnj-KTpM0KwtUorPo9zSeg4fx3MoboeOpao2VfrWOF9qL1oKXuo1nSmrJQcWg63gJlQlxY2_jSwG-s8LFjbGxX4l4LqHVxkm3JT9ZM3yZJv4ouDVe_ur9LoK3Ndwo6aV7HD1sQDnxZHiOom-XF19nH8bLq_eL2XQ55jlN_BhQXRWopkUtAEoEeUpRlfAGpw3GJSmzTBCRF4hSkYqG0AKnKG8IwQXmpKI5GUXPd74bZRwbuucYzhBJCkwTGojFjqgNXLONlWuwt8yAZNuAsS0D6yVXguVAE56TDEqK0owQyIBXuK6AZrwqQv5R9G7I1lVrUXOhvQV1ZHr8R8sVa80NIzTUgvrLvBoMrPnRCefZWjoulAItTLe9d4qzMt2iL-6g91c3UC2EAqRuTMjLe1M2TYuyPxQHanIPFU4t1pKHUWtkiB8JXh8JAuPFT99C5xxbfPn8_-zV92P25QG7EqD8yhnVeWm0OwafHXb6b4v3Mx6AtzsgDKBzVjSMSw-9TyhNKoYR6xdq3zTWLxQbFiqI0zvivf8_ZX8ABf4lgg
CitedBy_id crossref_primary_10_1038_s41390_021_01570_y
crossref_primary_10_1038_s41746_023_00941_5
crossref_primary_10_3390_children12040498
crossref_primary_10_1007_s00383_020_04819_5
crossref_primary_10_1038_s41467_020_18750_9
crossref_primary_10_1055_a_2253_8656
crossref_primary_10_1007_s00383_022_05095_1
crossref_primary_10_1038_s41372_023_01685_6
crossref_primary_10_1038_s41390_022_02181_x
crossref_primary_10_1038_s41372_022_01347_z
crossref_primary_10_1007_s00383_025_06185_6
crossref_primary_10_1186_s12859_022_04618_w
crossref_primary_10_3390_ijms24032471
crossref_primary_10_1038_s41390_024_03074_x
crossref_primary_10_1159_000458462
crossref_primary_10_1097_MIB_0000000000000184
crossref_primary_10_1038_srep13119
crossref_primary_10_3390_ijerph15112509
crossref_primary_10_1038_s41372_018_0245_1
crossref_primary_10_1038_s41390_020_1074_4
crossref_primary_10_1016_j_jpeds_2017_08_046
crossref_primary_10_1177_0973217920987662
crossref_primary_10_1038_s41390_024_03292_3
crossref_primary_10_12688_f1000research_6888_1
crossref_primary_10_1097_JPN_0000000000000082
crossref_primary_10_1038_s41372_020_0611_7
crossref_primary_10_1016_j_semperi_2022_151693
crossref_primary_10_1053_j_sempedsurg_2017_11_002
crossref_primary_10_1007_s00431_024_05505_7
crossref_primary_10_1016_j_arcmed_2022_11_002
crossref_primary_10_3389_fped_2022_1048322
crossref_primary_10_3389_fped_2023_1182597
crossref_primary_10_1007_s00383_023_05619_3
Cites_doi 10.1542/peds.2005-1273
10.1542/peds.107.1.e1
10.1038/jp.2008.119
10.1038/sj.jp.7210892
10.1016/j.jpeds.2013.10.091
10.18637/jss.v011.i10
10.1097/00000658-197801000-00001
10.1136/gutjnl-2013-305130
10.2215/CJN.00270113
10.1016/S0022-3468(87)80202-6
10.1016/S0022-3476(05)81124-2
10.1093/clinchem/39.4.561
10.1097/01.sla.0000164181.67862.7f
10.1093/bioinformatics/btp176
10.1542/peds.105.2.379
10.1542/peds.2004-0569
ContentType Journal Article
Copyright COPYRIGHT 2014 Public Library of Science
2014 Ji et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2014 Ji et al 2014 Ji et al
Copyright_xml – notice: COPYRIGHT 2014 Public Library of Science
– notice: 2014 Ji et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2014 Ji et al 2014 Ji et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0089860
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
Agricultural Science Database




MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
Computer Science
Biology
DocumentTitleAlternate Pediatric NEC Diagnosis and Prognosis
EISSN 1932-6203
ExternalDocumentID 1503271929
oai_doaj_org_article_6a92c635a8904533a5acb1dba95cb7ef
PMC3938509
3233513721
A478787891
24587080
10_1371_journal_pone_0089860
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Ohio
California
United States--US
Texas
China
GeographicLocations_xml – name: China
– name: California
– name: Texas
– name: United States--US
– name: Ohio
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR001070
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RNS
RPM
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PV9
RIG
RZL
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c692t-a0db70d97deaa80a6490b2cf14f1183855e3e67099e4ef3971406f33171c3b963
IEDL.DBID M7P
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332396200089&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Sun Aug 06 00:16:22 EDT 2023
Tue Oct 14 19:07:19 EDT 2025
Tue Nov 04 01:58:36 EST 2025
Sun Nov 09 12:33:55 EST 2025
Mon Oct 20 01:15:17 EDT 2025
Sat Nov 29 13:13:47 EST 2025
Sat Nov 29 10:13:45 EST 2025
Wed Nov 26 09:56:36 EST 2025
Wed Nov 26 09:51:11 EST 2025
Thu May 22 21:16:24 EDT 2025
Thu Apr 03 07:06:15 EDT 2025
Tue Nov 18 20:38:45 EST 2025
Sat Nov 29 04:04:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-a0db70d97deaa80a6490b2cf14f1183855e3e67099e4ef3971406f33171c3b963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: XBL KGS JJ YZ. Performed the experiments: JJ XBL YZ. Analyzed the data: JJ XBL YZ. Contributed reagents/materials/analysis tools: YZ ZH XZ ZX ZJK JJ XBL. Wrote the paper: XBL JJ KGS ZJK QW PL. Interpretation of results: FA MLB RAE MCH TCL BJS CB RLM. Involved in critical revisions: JJ XBL YZ ZH XZ ZX QW ZJK PL FA MLB RAE MCH TCL BJS CB RLM KGS.
OpenAccessLink https://www.proquest.com/docview/1503271929?pq-origsite=%requestingapplication%
PMID 24587080
PQID 1503271929
PQPubID 1436336
PageCount e89860
ParticipantIDs plos_journals_1503271929
doaj_primary_oai_doaj_org_article_6a92c635a8904533a5acb1dba95cb7ef
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3938509
proquest_miscellaneous_1504158409
proquest_journals_1503271929
gale_infotracmisc_A478787891
gale_infotracacademiconefile_A478787891
gale_incontextgauss_ISR_A478787891
gale_incontextgauss_IOV_A478787891
gale_healthsolutions_A478787891
pubmed_primary_24587080
crossref_citationtrail_10_1371_journal_pone_0089860
crossref_primary_10_1371_journal_pone_0089860
PublicationCentury 2000
PublicationDate 2014-02-28
PublicationDateYYYYMMDD 2014-02-28
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2014
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References ref13
RL Moss (ref16) 2008; 28
ref12
ref14
SO Guthrie (ref1) 2003; 23
ref20
WA Ballance (ref19) 1990; 117
ref22
(ref23); 25
ref10
ref21
ML Blakely (ref4) 2005; 241
SM Sutherland (ref24) 2013; 8
SR Hintz (ref6) 2005; 115
V Chongsuvivatwong (ref8) 2011; 2
MH Zweig (ref15) 1993; 39
MJ Bell (ref7) 1978; 187
MD Kamitsuka (ref2) 2000; 105
JA Lemons (ref3) 2001; 107
ref9
ML Blakely (ref5) 2006; 117
A Zeileis (ref11) 2002; 2
CJ McCormack (ref17) 1987; 22
MJ Bell (ref18) 1978; 187
16549503 - Pediatrics. 2006 Apr;117(4):e680-7
18784730 - J Perinatol. 2008 Oct;28(10):665-74
413500 - Ann Surg. 1978 Jan;187(1):1-7
24433829 - J Pediatr. 2014 Mar;164(3):607-12.e1-7
23833312 - Clin J Am Soc Nephrol. 2013 Oct;8(10):1661-9
24048736 - Gut. 2014 Aug;63(8):1284-92
2362230 - J Pediatr. 1990 Jul;117(1 Pt 2):S6-13
8472349 - Clin Chem. 1993 Apr;39(4):561-77
15741374 - Pediatrics. 2005 Mar;115(3):696-703
11134465 - Pediatrics. 2001 Jan;107(1):E1
19376824 - Bioinformatics. 2009 Jun 1;25(11):1461-2
12774133 - J Perinatol. 2003 Jun;23(4):278-85
10654959 - Pediatrics. 2000 Feb;105(2):379-84
3112356 - J Pediatr Surg. 1987 Jun;22(6):488-91
15912048 - Ann Surg. 2005 Jun;241(6):984-9; discussion 989-94
References_xml – ident: ref13
– volume: 117
  start-page: e680
  year: 2006
  ident: ref5
  article-title: Laparotomy versus peritoneal drainage for necrotizing enterocolitis or isolated intestinal perforation in extremely low birth weight infants: outcomes through 18 months adjusted age
  publication-title: Pediatrics
  doi: 10.1542/peds.2005-1273
– volume: 107
  start-page: e1
  year: 2001
  ident: ref3
  article-title: Very low birth weight outcomes of the National Institute of Child Health and Human Development neonatal research network, January 1995 through December 1996
  publication-title: Pediatrics
  doi: 10.1542/peds.107.1.e1
– volume: 28
  start-page: 665
  year: 2008
  ident: ref16
  article-title: Clinical parameters do not adequately predict outcome in necrotizing enterocolitis: a multi-institutional study
  publication-title: J Perinatol
  doi: 10.1038/jp.2008.119
– volume: 23
  start-page: 278
  year: 2003
  ident: ref1
  article-title: Necrotizing enterocolitis among neonates in the United States
  publication-title: Journal of perinatology
  doi: 10.1038/sj.jp.7210892
– ident: ref21
  doi: 10.1016/j.jpeds.2013.10.091
– volume: 2
  start-page: 2.2
  issue: 13
  year: 2011
  ident: ref8
  article-title: epicalc: Epidemiological calculator
  publication-title: R package version
– ident: ref12
  doi: 10.18637/jss.v011.i10
– ident: ref22
– volume: 187
  start-page: 1
  year: 1978
  ident: ref7
  article-title: Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging
  publication-title: Annals of surgery
  doi: 10.1097/00000658-197801000-00001
– volume: 187
  start-page: 1
  year: 1978
  ident: ref18
  article-title: Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging
  publication-title: Ann Surg
  doi: 10.1097/00000658-197801000-00001
– ident: ref20
  doi: 10.1136/gutjnl-2013-305130
– ident: ref9
– volume: 8
  start-page: 1661
  year: 2013
  ident: ref24
  article-title: AKI in hospitalized children: epidemiology and clinical associations in a national cohort
  publication-title: Clin J Am Soc Nephrol
  doi: 10.2215/CJN.00270113
– volume: 22
  start-page: 488
  year: 1987
  ident: ref17
  article-title: Evaluation of factors in high risk neonatal necrotizing enterocolitis
  publication-title: J Pediatr Surg
  doi: 10.1016/S0022-3468(87)80202-6
– volume: 117
  start-page: S6
  year: 1990
  ident: ref19
  article-title: Pathology of neonatal necrotizing enterocolitis: a ten-year experience
  publication-title: J Pediatr
  doi: 10.1016/S0022-3476(05)81124-2
– volume: 39
  start-page: 561
  year: 1993
  ident: ref15
  article-title: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine
  publication-title: Clinical chemistry
  doi: 10.1093/clinchem/39.4.561
– volume: 241
  start-page: 984
  year: 2005
  ident: ref4
  article-title: Postoperative outcomes of extremely low birth-weight infants with necrotizing enterocolitis or isolated intestinal perforation: a prospective cohort study by the NICHD Neonatal Research Network
  publication-title: Annals of surgery
  doi: 10.1097/01.sla.0000164181.67862.7f
– volume: 25
  start-page: 1461
  ident: ref23
  article-title: Ling XB, Cohen H, Jin J, Lau I, Schilling J (2009) FDR made easy in differential feature discovery and correlation analyses
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp176
– volume: 105
  start-page: 379
  year: 2000
  ident: ref2
  article-title: The incidence of necrotizing enterocolitis after introducing standardized feeding schedules for infants between 1250 and 2500 grams and less than 35 weeks of gestation
  publication-title: Pediatrics
  doi: 10.1542/peds.105.2.379
– volume: 115
  start-page: 696
  year: 2005
  ident: ref6
  article-title: Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis
  publication-title: Pediatrics
  doi: 10.1542/peds.2004-0569
– ident: ref10
– volume: 2
  start-page: 7
  year: 2002
  ident: ref11
  article-title: Diagnostic checking in regression relationships
  publication-title: R news
– ident: ref14
– reference: 15912048 - Ann Surg. 2005 Jun;241(6):984-9; discussion 989-94
– reference: 23833312 - Clin J Am Soc Nephrol. 2013 Oct;8(10):1661-9
– reference: 19376824 - Bioinformatics. 2009 Jun 1;25(11):1461-2
– reference: 24433829 - J Pediatr. 2014 Mar;164(3):607-12.e1-7
– reference: 24048736 - Gut. 2014 Aug;63(8):1284-92
– reference: 8472349 - Clin Chem. 1993 Apr;39(4):561-77
– reference: 11134465 - Pediatrics. 2001 Jan;107(1):E1
– reference: 3112356 - J Pediatr Surg. 1987 Jun;22(6):488-91
– reference: 16549503 - Pediatrics. 2006 Apr;117(4):e680-7
– reference: 413500 - Ann Surg. 1978 Jan;187(1):1-7
– reference: 18784730 - J Perinatol. 2008 Oct;28(10):665-74
– reference: 12774133 - J Perinatol. 2003 Jun;23(4):278-85
– reference: 10654959 - Pediatrics. 2000 Feb;105(2):379-84
– reference: 2362230 - J Pediatr. 1990 Jul;117(1 Pt 2):S6-13
– reference: 15741374 - Pediatrics. 2005 Mar;115(3):696-703
SSID ssj0053866
Score 2.3429964
Snippet Necrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model...
Background Necrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of...
BackgroundNecrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of...
Background Necrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e89860
SubjectTerms Algorithms
Biology
Birth weight
Colleges & universities
Computer science
Consortia
Data processing
Development and progression
Diagnosis
Diagnostic systems
Discriminant analysis
Disease
Enterocolitis
Enterocolitis, Necrotizing - diagnosis
Enterocolitis, Necrotizing - pathology
Epidemiology
Female
Gangrene
Gastrointestinal diseases
Health aspects
Health risks
Hospitals
Humans
Infant, Newborn
Infants
Laboratories
Learning algorithms
Machine learning
Male
Medical diagnosis
Medical prognosis
Medicine
Morbidity
Mortality
Necrosis
Necrotizing enterocolitis
Neonates
Newborn babies
Pediatrics
Process controls
Prognosis
Risk
Smartphones
Surgery
Training
Urine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQigMXRHk1UMAgJOAQmsRJHB8XRAWXgnipt8jxo11pSVbJLhLc-OfM2E5oUKVyQDltPI525_l5M_5MyFPZpKVklYlzlrEY3-zF0lZFbAHuyjwxnDeJO2yCHx9XJyfiw7mjvrAnzNMDe8UdllJkCqqirASgD8ZkIVWT6kaKQjXcWMy-gHrGxZTPwRDFZRk2yjGeHga7vNx0rUFCU1E5Sso_hcjx9U9ZebFZd8NFkPPvzslzpejoBrkeMCRd-u--R66Y9ibZC1E60OeBSvrFLfJrSbEFNNY9JjUq16ddv9qefaMjSwQULjpujqSy1TQ4Rdf_oNY40s-BAq6lgBOp9m15q8FJYmeX_9RZ2gL67Larn_g8ZPmEsuga64bb5MvRm8-v38bh0IVYlSLbxjLRDU-04NpIWSWyzEXSZMqmuYW1CKuKwjCDpG_C5MYCmoEVWmkZwJBUsQbC-Q5ZtKDmfUIbnpsiYVbDrDw1TKjUprbShSmyRKdZRNhogVoFRnI8GGNdu9dsHFYmXqE12q0OdotIPM3aeEaOS-RfoXEnWeTTdjfAy-rgZfVlXhaRR-gatd-cOmWFeoncRnCJNCJPnARyarTYtHMqd8NQv3v_9R-EPn2cCT0LQrYDdSgZNkrAb0KurpnkwUwSMoOaDe-jI49aGWoA_yzjgOkFzByd--Lhx9MwPhQb8VrT7ZwMQD78VyAid30sTJrN8gKyfwUa57Momal-PtKuzhylORPgI4m49z9sdZ9cA1Sbe96BA7LY9jvzgFxV38Hp-4cuT_wGFRVw7w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQQYgXxsrHOgYYhAQ8BJI4iePHQqmYNErFl_ZmOY69VeqSKkmR4I3_nLPjBDJtApSnxOcoPd-df1eff0boqciCRJBUeREJiWdW9jyh09jTAHdF5CtKM98eNkEXi_T4mC1_J4rnVvAJDV45nb7clIUyZKQsTSBFvxqSJDElXPPlURd5wXeTxG2Pu6znYPqxLP19LB5t1mV9EdA8Xy_5xwQ03_nfT7-FbjqoiaetbeyiK6oYo53uGAfsvHqMrr936-tjtOse1vi546N-cRv9nOKZaIQ3q0xkxNP1SVmtmtMzfOioJmD2w45fdI1FkeOj1rLK6js2EHMLKT0GcIwBbOJZW9u3qq3ksirdXanxAiBs2ax-mPfZYoVS2uq8-g76Mn_7-c07z53c4MmEhY0n_Dyjfs5oroRIfZFEzM9CqYNIQ0JD0jhWRBnmOKYipQESQZqXaAJYJpAkg5hwF40KUNoewhmNVOwTnUOvKFCEyUAHOs1jFYd-HoQTRLoB5dLRmpvTNdbcrtVRSG9adXMzCtyNwgR5fa9NS-vxF_nXxlZ6WUPKbR_AcHPn4zwRLJQA4ETKACgTImIhsyDPBItlRpWeoEfG0ni7w7UPLXxqCJLgYsEEPbEShpijMJU_J2Jb1_zww9d_EPr0cSD0zAnpEtQhhdttAb_JEH4NJA8GkhBe5KB5z_hFp5WaQwZBQgqJAYOena9c3Py4bzYvNdV8hSq3VgZwo_lrYYLuta7VazaMYphCUtA4HTjdQPXDlmJ1annRCQMb8dn-5V98H90AwBu1lAQHaNRUW_UAXZPfwJSrhzaY_ALJyHS6
  priority: 102
  providerName: Public Library of Science
Title A Data-Driven Algorithm Integrating Clinical and Laboratory Features for the Diagnosis and Prognosis of Necrotizing Enterocolitis
URI https://www.ncbi.nlm.nih.gov/pubmed/24587080
https://www.proquest.com/docview/1503271929
https://www.proquest.com/docview/1504158409
https://pubmed.ncbi.nlm.nih.gov/PMC3938509
https://doaj.org/article/6a92c635a8904533a5acb1dba95cb7ef
http://dx.doi.org/10.1371/journal.pone.0089860
Volume 9
WOSCitedRecordID wos000332396200089&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZYhxAvjJUfK4xiEBLwkC2Jkzh-Qu26imlriTqYCi-R4zhdpZKUpkWCN_5zzo7bETQBEqp0UuNz2lzO58_2-TNCL3jiBJyE0vKISyy1smfxLPStDOAu92xJaWLrwybocBiOxywyE26lSatcx0QdqNNCqDnyQwAuxKWAR9ib-RdLnRqlVlfNERpbaFuxJBCduhetIzG05SAw2-UIdQ7N2zmYF7lUtKYs1MSUV92RZu3fxObGfFaU1wHP3_Mnf-mQ-jv_-yh30R0DRXGn8p1ddEPmTbSzPuYBm1bfRLcGZv29iXbNxRK_MnzVr--hHx3c40tu9RYqcuLObAI_trz8jE8MFQX0jtjwj84wz1N8VnlesfiGFQRdwZAfA3jGAEZxr8r9m5ZaM1oU5luR4SFA3GI5_a7up5MZCqGz98r76EP_-P3RW8uc7GCJgLlLi9tpQu2U0VRyHto88JiduCJzvAwGPCT0fUmkYpZj0pMZQCYYBgYZAazjCJJAzHiAGjm8xT2EE-pJsGeWQi3PkYQJJ3OyMPWl79qp47YQWb_gWBjac3X6xizWa3kUhj-VuWPlFrFxixayNrXmFe3HX_S7ync2uoq0W18oFpPYxIA44MwVAPB4yABIE8J9LhInTTjzRUJl1kJPlefF1Q7YTeiJO4pACT7MaaHnWkMRd-QqM2jCV2UZn7y7-Ael81FN6aVRygowh-BmNwY8kyIEq2nu1zQh_Iha8Z5qJ2urlPGVd0PNtf9fX_xsU6xuqrL9clmstA7gSjX10EIPq6a2sazr-dDFhGBxWmuENdPXS_LppeZNJwx8xGaP_vy3HqPbAIq9irZgHzWWi5V8gm6Kr-DOizbaoqMLJcdUyxBkeOS00Xb3eBiN2npOB2Q_OgN52j0AObBP2zowaXkOMvI_QY3oZBB9_AnoGpLz
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLdGQcCFsfKxwmAGgYBDWBIncXxAqFCmVdvKtI1pt-A4TlepJCVpQePGP8TfyLPjZARNwGUH1FPjZyt5eZ_x8-8h9ITHTsBJKC2PuMRSO3sWT0PfSiHc5Z4tKY1t3WyCjkbh8THbW0I_6rMwqqyytonaUCe5UN_INyBwIS6FeIS9nn22VNcotbtat9CoxGJbnn6FlK18NRzA-33qupvvDt9uWaargCUC5s4tbicxtRNGE8l5aPPAY3bsitTxUgi2Sej7kkiFasakJ1Nw15CCBCkBP-sIEoO8wrqX0GWw444qIaP7R7XlB9sRBOZ4HqHOhpGGl7M8kwpGlYUaCPPM_ekuAY0v6MymeXleoPt7veYvDnBz-X9j3U10w4TauF_pxgpaklkXLddtLLCxal10ddfUF3TRirlY4ucGj_vFLfS9jwd8zq1BoTwD7k_H8HDzk094aKA2wPtjg686xTxL8E6lWXlxilWIvShgQUgOMATbeFDVNk5KTblX5OZfnuIRhPD5fPJNraeLNXKhqxPL2-jDhTDqDupkIDWrCMfUk_D-0gRmeY4kTDipk4aJL33XThy3h0gtUJEwsO6qu8g00nuVFNK7it2REsPIiGEPWc2sWQVr8hf6N0pWG1oFSq4v5MU4MjYuCjhzBQSwPGSQKBDCfS5iJ4k580VMZdpD60rSo-qEb2Nao74CiIIfc3rosaZQwCSZqnwa80VZRsP3R_9AdLDfInpmiNIc2CG4OW0Cz6QAz1qUay1KMK-iNbyq9LLmShmdaRPMrPXt_OFHzbBaVFUzZjJfaBqIm9WnlR66W6l2w1nX88GFhsBx2lL6FuvbI9nkROPCEwYyYrN7f76tdXRt63B3J9oZjrbvo-uQAHgVRMMa6syLhXyArogvINrFQ23cMPp40SbhJwIK4X8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLdGQRMXxsrHCoMZBAIOoUmcLx8QKisV1UaZGKDdguPYXaWSlKQFjRv_Fn8dz46TETQBlx1QT42freTl5_ee4-ffQ-gBS5yAkUhYHnGJpXb2LCYj35IQ7jLPFmGY2LrYRDiZREdH9GAN_ajPwqi0ytomakOd5lx9I-9D4ELcEOIR2pcmLeJgOHq--GypClJqp7Uup1FBZE-cfIXlW_lsPIR3_dB1Ry_f7b6yTIUBiwfUXVrMTpPQTmmYCsYimwUetROXS8eTEHiTyPcFEYrhjApPSHDdsBwJJAGf63CSAHZh3AvoYkgAxeqU-m6TXgJ2JAjMUT0SOn2DjKeLPBOKUpVGmhTz1BXqigGNX-gs5nl5VtD7e-7mL85wtPE_q_EqumJCcDyo5swmWhNZF23U5S2wsXZdtP7a5B100aa5WOLHhqf7yTX0fYCHbMmsYaE8Bh7Mp_Bwy-NPeGwoOCAqwIZ3dY5ZluL9asblxQlWofeqgAFh0YAhCMfDKudxVmrJgyI3_3KJJxDa58vZNzWeTuLIuc5aLK-j9-eiqBuokwGCthBOQk_Au5Qp9PIcQSh3pCOj1Be-a6eO20OkBlfMDd27qjoyj_UeZgjLvkrdsYJkbCDZQ1bTa1HRnfxF_oXCbSOryMr1hbyYxsb2xQGjLofAlkUUFhCEMJ_xxEkTRn2ehEL20I5CfVyd_G1MbjxQxFHwo04P3dcSirAkU5idslVZxuM3H_5B6PBtS-iREZI5qIMzcwoFnkkRobUkt1uSYHZ5q3lLzdFaK2V8OrOgZz33zm6-1zSrQVWWYybylZaBeFp9cumhm9U0bzTrej641gg0HrYMQEv17ZZsdqz54gkFjNj01p9vawetgyWI98eTvdvoMqwLvIq5YRt1lsVK3EGX-BdAdnFX2zmMPp63RfgJeEbp2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Data-Driven+Algorithm+Integrating+Clinical+and+Laboratory+Features+for+the+Diagnosis+and+Prognosis+of+Necrotizing+Enterocolitis&rft.jtitle=PloS+one&rft.au=Ji%2C+Jun&rft.au=Ling%2C+Xuefeng+B.&rft.au=Zhao%2C+Yingzhen&rft.au=Hu%2C+Zhongkai&rft.date=2014-02-28&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=9&rft.issue=2&rft.spage=e89860&rft_id=info:doi/10.1371%2Fjournal.pone.0089860&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0089860
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon