PSoC-Stat: A single chip open source potentiostat based on a Programmable System on a Chip

In this paper we demonstrate a potentiostat built with a single commercially available integrated circuit (IC) that does not require any external electronic components to perform electrochemical experiments. This is done using the capabilities of the Programmable System on a Chip (PSoC®) by Cypress...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 13; číslo 7; s. e0201353
Hlavní autoři: Lopin, Prattana, Lopin, Kyle V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 25.07.2018
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we demonstrate a potentiostat built with a single commercially available integrated circuit (IC) that does not require any external electronic components to perform electrochemical experiments. This is done using the capabilities of the Programmable System on a Chip (PSoC®) by Cypress Semiconductor, which integrates all of the necessary electrical components. This is in contrast to other recent papers that have developed potentiostats but require technical skills or specialized equipment to produce. This eliminates the process of having to make a printed circuit board and soldering on electronic components. To control the device, a graphical user interface (GUI) was developed in the python programming language. Python is open source, with a style that makes it easy to read and write programs, making it an ideal choice for open source projects. As the developed device is open source and based on a PSoC, modification to implement other electrochemical techniques is straightforward and only requires modest programming skills, but no expensive equipment or difficult techniques. The potentiostat developed here adds to the growing amount of open source laboratory equipment. To demonstrate the PSoC potentiostat in a wide range of applications, we performed cyclic voltammetry (to measure vitamin C concentration in orange juice), amperometry (to measure glucose with a glucose strip), and stripping voltammetry experiments (to measure lead in water). The device was able to perform all experiments and could accurately measure Vitamin C, glucose, and lead.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0201353