Rice nitrogen nutrition monitoring classification method based on the convolution neural network model: Direct detection of rice nitrogen nutritional status

The nitrogen nutrition status affects the main factors of rice yield. In traditional rice nitrogen nutrition monitoring methods, most experts enter the farmland to observe leaf color and growth and apply an appropriate amount of nitrogen fertilizer according to the results. However, this method is l...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 17; číslo 11; s. e0273360
Hlavní autoři: Zhai, Qiang, Ye, Chun, Li, Shuang, Liu, Jizhong, Guo, Zhiming, Chang, Ruzhi, Hua, Jing
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 22.11.2022
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The nitrogen nutrition status affects the main factors of rice yield. In traditional rice nitrogen nutrition monitoring methods, most experts enter the farmland to observe leaf color and growth and apply an appropriate amount of nitrogen fertilizer according to the results. However, this method is labor- and time-consuming. To realize automatic rice nitrogen nutrition monitoring, we constructed the Jiangxi rice nitrogen nutrition monitoring model based on a convolution neural network (CNN) using the same region rice canopy image in different generation periods. Our CNN model was evaluated using multiple evaluation criteria (Accuracy, Recall, Precision, and F1 score). The results show that the same CNN model could distinguish the rice nitrogen nutrition status in different periods, which can completely realize the automatic discrimination of nitrogen nutrition status so as to guide the scientific nitrogen application of rice in this area. This will greatly improve the discrimination efficiency of the nitrogen nutrition status and reduce the time and labor cost. The application of the proposed method also proved that the CNN model can be applied in the discrimination of the nitrogen nutrition status. Among CNN models, GoogleNet model proposed a CNN architecture named Inception which can improve the depth of the network and extract higher-level features without changing the amount of calculation of the model. The GoogleNet model achieved the highest accuracy, 95.7%.
AbstractList The nitrogen nutrition status affects the main factors of rice yield. In traditional rice nitrogen nutrition monitoring methods, most experts enter the farmland to observe leaf color and growth and apply an appropriate amount of nitrogen fertilizer according to the results. However, this method is labor- and time-consuming. To realize automatic rice nitrogen nutrition monitoring, we constructed the Jiangxi rice nitrogen nutrition monitoring model based on a convolution neural network (CNN) using the same region rice canopy image in different generation periods. Our CNN model was evaluated using multiple evaluation criteria (Accuracy, Recall, Precision, and F1 score). The results show that the same CNN model could distinguish the rice nitrogen nutrition status in different periods, which can completely realize the automatic discrimination of nitrogen nutrition status so as to guide the scientific nitrogen application of rice in this area. This will greatly improve the discrimination efficiency of the nitrogen nutrition status and reduce the time and labor cost. The application of the proposed method also proved that the CNN model can be applied in the discrimination of the nitrogen nutrition status. Among CNN models, GoogleNet model proposed a CNN architecture named Inception which can improve the depth of the network and extract higher-level features without changing the amount of calculation of the model. The GoogleNet model achieved the highest accuracy, 95.7%.
The nitrogen nutrition status affects the main factors of rice yield. In traditional rice nitrogen nutrition monitoring methods, most experts enter the farmland to observe leaf color and growth and apply an appropriate amount of nitrogen fertilizer according to the results. However, this method is labor- and time-consuming. To realize automatic rice nitrogen nutrition monitoring, we constructed the Jiangxi rice nitrogen nutrition monitoring model based on a convolution neural network (CNN) using the same region rice canopy image in different generation periods. Our CNN model was evaluated using multiple evaluation criteria (Accuracy, Recall, Precision, and F1 score). The results show that the same CNN model could distinguish the rice nitrogen nutrition status in different periods, which can completely realize the automatic discrimination of nitrogen nutrition status so as to guide the scientific nitrogen application of rice in this area. This will greatly improve the discrimination efficiency of the nitrogen nutrition status and reduce the time and labor cost. The application of the proposed method also proved that the CNN model can be applied in the discrimination of the nitrogen nutrition status. Among CNN models, GoogleNet model proposed a CNN architecture named Inception which can improve the depth of the network and extract higher-level features without changing the amount of calculation of the model. The GoogleNet model achieved the highest accuracy, 95.7%.The nitrogen nutrition status affects the main factors of rice yield. In traditional rice nitrogen nutrition monitoring methods, most experts enter the farmland to observe leaf color and growth and apply an appropriate amount of nitrogen fertilizer according to the results. However, this method is labor- and time-consuming. To realize automatic rice nitrogen nutrition monitoring, we constructed the Jiangxi rice nitrogen nutrition monitoring model based on a convolution neural network (CNN) using the same region rice canopy image in different generation periods. Our CNN model was evaluated using multiple evaluation criteria (Accuracy, Recall, Precision, and F1 score). The results show that the same CNN model could distinguish the rice nitrogen nutrition status in different periods, which can completely realize the automatic discrimination of nitrogen nutrition status so as to guide the scientific nitrogen application of rice in this area. This will greatly improve the discrimination efficiency of the nitrogen nutrition status and reduce the time and labor cost. The application of the proposed method also proved that the CNN model can be applied in the discrimination of the nitrogen nutrition status. Among CNN models, GoogleNet model proposed a CNN architecture named Inception which can improve the depth of the network and extract higher-level features without changing the amount of calculation of the model. The GoogleNet model achieved the highest accuracy, 95.7%.
Audience Academic
Author Hua, Jing
Zhai, Qiang
Guo, Zhiming
Li, Shuang
Ye, Chun
Liu, Jizhong
Chang, Ruzhi
AuthorAffiliation 1 School of Mechatronic Engineering, Nanchang University, Nanchang City, Jiangxi Province, China
3 Weichai Power Co., Ltd., WeiFang City, ShanDong Province, China
4 School of Software, Jiangxi Agricultural University, Nanchang City, Jiangxi Province, China
2 Institute of Agricultural Engineering/Jiangxi Province Engineering Research Center of Intelligent Agricultural Machinery Equipment/Jiangxi Province Engineering Research Center of Information Technology in Agriculture, Jiangxi Academy of Agricultural Sciences, Nanchang, China
National University of Computer and Emerging Sciences, PAKISTAN
AuthorAffiliation_xml – name: 1 School of Mechatronic Engineering, Nanchang University, Nanchang City, Jiangxi Province, China
– name: 4 School of Software, Jiangxi Agricultural University, Nanchang City, Jiangxi Province, China
– name: 2 Institute of Agricultural Engineering/Jiangxi Province Engineering Research Center of Intelligent Agricultural Machinery Equipment/Jiangxi Province Engineering Research Center of Information Technology in Agriculture, Jiangxi Academy of Agricultural Sciences, Nanchang, China
– name: National University of Computer and Emerging Sciences, PAKISTAN
– name: 3 Weichai Power Co., Ltd., WeiFang City, ShanDong Province, China
Author_xml – sequence: 1
  givenname: Qiang
  orcidid: 0000-0001-6587-6642
  surname: Zhai
  fullname: Zhai, Qiang
– sequence: 2
  givenname: Chun
  surname: Ye
  fullname: Ye, Chun
– sequence: 3
  givenname: Shuang
  surname: Li
  fullname: Li, Shuang
– sequence: 4
  givenname: Jizhong
  orcidid: 0000-0002-7658-5231
  surname: Liu
  fullname: Liu, Jizhong
– sequence: 5
  givenname: Zhiming
  surname: Guo
  fullname: Guo, Zhiming
– sequence: 6
  givenname: Ruzhi
  surname: Chang
  fullname: Chang, Ruzhi
– sequence: 7
  givenname: Jing
  surname: Hua
  fullname: Hua, Jing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36413518$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tu1DAQhiNURA_wBggiISG42MWOEzvpBVJVTitVqlQOt5bjjHddvPZiOwXehYfFu5tWm2qFUC4cz3zz2_41c5wdWGchy55iNMWE4TfXrvdWmOkqhaeoYIRQ9CA7wg0pJrRA5GDn_zA7DuEaoYrUlD7KDgktMalwfZT9udIScqujd3Owue2j11E7my9dCjqv7TyXRoSglZZim4G4cF3eigBdnvZxAbl09saZfpO30Hth0hJ_Ov89CXVgTvN32oOMeQcxLWvMqdzvPzsVhyhiHx5nD5UwAZ4M60n29cP7L-efJheXH2fnZxcTSZsiTlglKqUY6gipqkI1DBokMKJt01FJ2xYJSRWqJZU1rmQJUsmuAVRXEkij6pqcZM-3uivjAh-MDTx52qAS4aJMxGxLdE5c85XXS-F_cyc03wScn3Pho5YGOMN1ukhXyQKLsqBYFKwlRFCqFCFlKZPW2-G0vl1CJ8HG5NdIdJyxesHn7oY3tMaoLpLAq0HAux89hMiXOkgwRlhw_XBvyghjCX1xD93_uoGai_QAbZVL58q1KD9jBStpUdVVoqZ7qPR1sNSpAUDpFB8VvB4VJCbCrzgXfQh89vnq_9nLb2P25Q67AGHiIgzdF8bgs12n7yy-bf8ElFtAeheCB3WHYMTXU3ZrF19PGR-mLJWd3iuTOm6GIzmizb-L_wJSrTGL
CitedBy_id crossref_primary_10_3390_foods12061242
Cites_doi 10.1016/j.athoracsur.2004.09.040
10.1109/CVPR.2018.00474
10.1109/CVPR.2016.308
10.1109/CVPR.2018.00255
10.1016/j.knosys.2021.106923
10.1109/TIT.1967.1053964
10.1016/j.compag.2018.02.016
10.1023/A:1010933404324
10.1016/j.tplants.2015.10.015
10.1109/CVPR.2016.90
10.1080/00103629209368733
10.1016/j.ijin.2020.11.001
10.1023/A:1009715923555
10.1016/j.compag.2016.04.024
ContentType Journal Article
Copyright Copyright: © 2022 Zhai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2022 Public Library of Science
2022 Zhai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Zhai et al 2022 Zhai et al
Copyright_xml – notice: Copyright: © 2022 Zhai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 Zhai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Zhai et al 2022 Zhai et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0273360
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Proquest Health and Medical Complete
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Agricultural Science Database


CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Effectiveness of using the convolution neural network model to monitor rice nitrogen nutrition
EISSN 1932-6203
ExternalDocumentID 2739040124
oai_doaj_org_article_718d33d5c21a4261a27b33a66ff3344c
PMC9681082
A727462585
36413518
10_1371_journal_pone_0273360
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
Jiangxi China
GeographicLocations_xml – name: China
– name: Jiangxi China
GrantInformation_xml – fundername: ;
  grantid: 61863027
– fundername: ;
  grantid: 20202BBFL63046
– fundername: ;
  grantid: 20202BBE53025
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
AAPBV
ABPTK
BBAFP
N95
ID FETCH-LOGICAL-c692t-75a5ff70d33552f97e90a106b9d6c6bb0ac6f08c6c815c4ecfcd9e085ce39f883
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903522800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Mon Dec 05 23:08:10 EST 2022
Fri Oct 03 12:44:27 EDT 2025
Tue Nov 04 02:09:24 EST 2025
Thu Oct 02 10:07:33 EDT 2025
Tue Oct 07 07:54:32 EDT 2025
Sat Nov 29 13:05:58 EST 2025
Sat Nov 29 10:06:56 EST 2025
Wed Nov 26 09:38:16 EST 2025
Wed Nov 26 09:24:35 EST 2025
Thu May 22 21:22:55 EDT 2025
Wed Feb 19 02:26:27 EST 2025
Sat Nov 29 05:48:19 EST 2025
Tue Nov 18 21:17:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Copyright: © 2022 Zhai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-75a5ff70d33552f97e90a106b9d6c6bb0ac6f08c6c815c4ecfcd9e085ce39f883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-7658-5231
0000-0001-6587-6642
OpenAccessLink https://doaj.org/article/718d33d5c21a4261a27b33a66ff3344c
PMID 36413518
PQID 2739040124
PQPubID 1436336
PageCount e0273360
ParticipantIDs plos_journals_2739040124
doaj_primary_oai_doaj_org_article_718d33d5c21a4261a27b33a66ff3344c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9681082
proquest_miscellaneous_2739067377
proquest_journals_2739040124
gale_infotracmisc_A727462585
gale_infotracacademiconefile_A727462585
gale_incontextgauss_ISR_A727462585
gale_incontextgauss_IOV_A727462585
gale_healthsolutions_A727462585
pubmed_primary_36413518
crossref_primary_10_1371_journal_pone_0273360
crossref_citationtrail_10_1371_journal_pone_0273360
PublicationCentury 2000
PublicationDate 2022-11-22
PublicationDateYYYYMMDD 2022-11-22
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References S Azimi (pone.0273360.ref013) 2020; 173
Zhou Chunyan (pone.0273360.ref002) 2019
L. Breiman (pone.0273360.ref006) 2001; 45
TM Cover (pone.0273360.ref007) 2003; 13
C. Burges (pone.0273360.ref008) 1998; 2
pone.0273360.ref019
BQ Li (pone.0273360.ref016) 2021
MB Assad (pone.0273360.ref022) 2020; 1
K Simonyan (pone.0273360.ref024) 2014
Y Li (pone.0273360.ref025) 2016; 80
X Yan (pone.0273360.ref001) 2008
Andreas Kamilaris (pone.0273360.ref012) 2018; 147
A Singh (pone.0273360.ref011) 2016; 21
KM Veley (pone.0273360.ref014) 2017
pone.0273360.ref009
E Hamuda (pone.0273360.ref010) 2016; 125
pone.0273360.ref020
pone.0273360.ref021
JS Schepers (pone.0273360.ref004) 1992; 23
W Rawat (pone.0273360.ref017) 2017
pone.0273360.ref023
M Debtanu (pone.0273360.ref003) 2004
J A Hanley (pone.0273360.ref027) 1983
CM Jones (pone.0273360.ref028) 2005; 79
C Szegedy (pone.0273360.ref018) 2014
B. Liu (pone.0273360.ref026) 2021; 220
S L. Osborne (pone.0273360.ref005) 2013
J An (pone.0273360.ref015) 2019
References_xml – year: 2017
  ident: pone.0273360.ref014
  article-title: High-throughput profiling and analysis of plant responses over time to abiotic stress
  publication-title: Plant Direct
– volume: 79
  start-page: 16
  issue: 1
  year: 2005
  ident: pone.0273360.ref028
  article-title: Summary Receiver Operating Characteristic Curve Analysis Techniques in the Evaluation of Diagnostic Tests
  publication-title: Annals of Thoracic Surgery
  doi: 10.1016/j.athoracsur.2004.09.040
– ident: pone.0273360.ref021
  doi: 10.1109/CVPR.2018.00474
– ident: pone.0273360.ref023
  doi: 10.1109/CVPR.2016.308
– ident: pone.0273360.ref019
  doi: 10.1109/CVPR.2018.00255
– volume: 220
  start-page: 106923
  issue: 1
  year: 2021
  ident: pone.0273360.ref026
  article-title: Understanding the loss landscape of one-hidden-layer ReLU networks
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.106923
– year: 2019
  ident: pone.0273360.ref002
  article-title: Imaging analysis of chlorophyll fluorescence induction for monitoring plant water and nitrogen treatments
  publication-title: Measurement
– year: 2014
  ident: pone.0273360.ref024
  article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition
  publication-title: Computer Science
– volume: 13
  start-page: 21
  issue: 1
  year: 2003
  ident: pone.0273360.ref007
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 147
  start-page: 70
  year: 2018
  ident: pone.0273360.ref012
  article-title: Deep learning in agriculture: A survey
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.02.016
– volume: 45
  start-page: 5
  year: 2001
  ident: pone.0273360.ref006
  article-title: Random forest
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 21
  start-page: 110
  issue: 2
  year: 2016
  ident: pone.0273360.ref011
  article-title: Machine Learning for High-Throughput Stress Phenotyping in Plants
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2015.10.015
– year: 2017
  ident: pone.0273360.ref017
  article-title: Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review
  publication-title: Neural Computation
– start-page: 450
  issue: 02
  year: 2008
  ident: pone.0273360.ref001
  article-title: Recent Advances in Technology of Increasing Fertilizer Use Efficiency
  publication-title: Scientia Agricultura Sinica
– ident: pone.0273360.ref020
  doi: 10.1109/CVPR.2016.90
– year: 2013
  ident: pone.0273360.ref005
  article-title: Determining Nitrogen Nutrition and Yield of Canola Through Existing Remote Sensing Technology
  publication-title: Agricultural Journal
– year: 1983
  ident: pone.0273360.ref027
  article-title: A method of comparing the areas under receiver operating characteristic curves derived from the same cases
  publication-title: Radiology
– year: 2014
  ident: pone.0273360.ref018
  article-title: Going Deeper with Convolutions
  publication-title: IEEE Computer Society
– volume: 23
  start-page: 2173
  issue: 17–20
  year: 1992
  ident: pone.0273360.ref004
  article-title: Comparison of corn leaf nitrogen concentration and chlorophyll meter readings
  publication-title: Communications in Soil Science & Plant Analysis
  doi: 10.1080/00103629209368733
– volume: 1
  start-page: 148
  year: 2020
  ident: pone.0273360.ref022
  article-title: Deep Biomedical Image Classification Using Diagonal Bilinear Interpolation and residual network
  publication-title: International Journal of Intelligent Networks
  doi: 10.1016/j.ijin.2020.11.001
– volume: 80
  year: 2016
  ident: pone.0273360.ref025
  article-title: Revisiting Batch Normalization For Practical Domain Adaptation
  publication-title: Pattern Recognition
– year: 2019
  ident: pone.0273360.ref015
  article-title: Identification and Classification of Maize Drought Stress Using Deep Convolutional Neural Network
  publication-title: Symmetry
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: pone.0273360.ref008
  article-title: A Tutorial on Support Vector Machines for Pattern Recognition
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009715923555
– volume: 173
  start-page: 108650
  issue: 15
  year: 2020
  ident: pone.0273360.ref013
  article-title: A deep learning approach to measure stress level in plants due to Nitrogen deficiency
  publication-title: Measurement
– year: 2004
  ident: pone.0273360.ref003
  article-title: Management of nitrogen through the use of leaf color chart (LCC) and soil plant analysis development (SPAD) or chlorophyll meter in rice under irrigated ecosystem
  publication-title: The Scientific World Journal
– volume: 125
  start-page: 184
  year: 2016
  ident: pone.0273360.ref010
  article-title: A survey of image processing techniques for plant extraction and segmentation in the field
  publication-title: Computers & Electronics in Agriculture
  doi: 10.1016/j.compag.2016.04.024
– start-page: 8
  issue: 04
  year: 2021
  ident: pone.0273360.ref016
  article-title: Review of convolutional neural networks
  publication-title: Computer ERA
– ident: pone.0273360.ref009
SSID ssj0053866
Score 2.4343894
Snippet The nitrogen nutrition status affects the main factors of rice yield. In traditional rice nitrogen nutrition monitoring methods, most experts enter the...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0273360
SubjectTerms Accuracy
Agricultural land
Agricultural production
Algorithms
Artificial neural networks
Biology and Life Sciences
Cameras
Chlorophyll
Classification
Computer and Information Sciences
Convolution
Crop yield
Datasets
Deep learning
Evaluation
Experiments
Feature extraction
Fertilizers
Labor
Machine learning
Measurement
Medicine and Health Sciences
Methods
Modelling
Monitoring
Monitoring methods
Neural networks
Neural Networks, Computer
Nitrogen
Nitrogen in the body
Nutrition
Nutrition monitoring
Nutritional aspects
Nutritional Status
Oryza
R&D
Remote sensing
Research & development
Research and Analysis Methods
Rice
Rice yield
Varieties
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg4cAFKK-mFDAICTikTeLEsbmggqjgUqryUG-R40epVJLtZpdfw49lxnFSglaAxHHX483anvk844y_IeQpIByvndOxNS6LcyNULHWZxEKz2grBueN9sYny4EAcH8vDcODWhbTKARM9UJtW4xn5LmyzEhQOtqNX8_MYq0bh29VQQuMyuYIsCZlP3TsckBhsmfNwXY6V6W5YnZ1529gd5HFhnpjyYjvyrP0jNs_mZ223zvH8PX_ylw1p_8b_DuUmuR5cUbrX684GuWSbW2QjGHtHnwdG6he3yY8jgBMKxr9oQd9oMzD4028eEfBokGp0wzHvSPUtvjI1xU3SUPgMfibFDPeg6RR5NOHhTZ-FTn1Bnpe0B2Bq7NJniDW0dXSx_tnQGS9Drbo75PP-209v3sWhrEOsucyWcVmowrkyMQx8nczJ0spEQWRaS8M1r-tEae4SobkWaaFzq5020oJrqC2TTgh2l8waWMJNQp1VHGL7uhZFntepVtIUNjUyccZg4BoRNqxupQPnOZbeOKv8i7wSYp9-rivUiSroRETisde85_z4i_xrVJxRFhm7_Rft4qQKAFCBDwADNoXOUoVhq8rKmjEFxuAYy3MdkUeodlV__XXEnWoPHMwcglRRROSJl0DWjgbTgk7Uquuq9x--_IPQx6OJ0LMg5FqYDq3CVQwYE7KBTSS3J5KAPXrSvIlGMsxKV12oNvQclH998-OxGX8UU_0a266CDFZPKiNyr7ezcWYZz7GipIhIObHAydRPW5rTr540XSLxnsi2_vy37pNrGd5vSdM4y7bJbLlY2Qfkqv6-PO0WDz26_ATNm4o-
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI_QwQMvwPhatwEBIQEP3dqkTRPeBuIEEhrT-NDeqjQfMGm0p-sdfw1_LHabFjrdBDze2bm2ju3YV_tnQp6ChxOV9yZ21rM4s1LHyhRJLA2vnJRCeNEPmyiOjuTpqTr-nSheeIPPi_QgyHR_0dRuH9FXuIAU_SrjQuCohvnx-8Hzgu0KEdrjLls5OX46lP7RF88W5027KdC8WC_5xwE0v_m_t36L3AihJj3sdWOLXHH1bbIVjLmlzwPi9Is75OcJuAsKxr1sQJ9oPSD00--dxeNff9RgmI11RbqndJOnKR6ClsJniCMpVrAHTaaIkwkXr_sqc9oN3HlJewdLrVt1FWA1bTxdbr42LMZmp3V7l3yev_n0-m0cxjbERii2iotc594XieUQyzCvCqcSDZlnpawwoqoSbYRPpBFGprnJnPHGKgehn3FceSn5PTKrQWLbhHqnBeTuVSXzLKtSo5XNXWpV4q3FxDQifNjN0gRMcxytcV52L-oKyG16WZe4BWXYgojE46pFj-nxF_5XqCgjLyJyd1_AXpfBwEs44-GBbW5YqjEt1ayoONeg7J7zLDMReYRqVvbtraNfKQ8hgMwgCZV5RJ50HIjKUWPZz1e9btvy3Ycv_8D08WTC9Cww-QbEYXRotYBnQrSvCefehBN8i5mQt9EoBqm0JQhEgduHoBBWDoaymfx4JOOPYilf7Zp14MHpSEVE7vd2NUqWiwwnRsqIFBOLm4h-SqnPvnWg6AqB9STbufyOd8l1hr0raRoztkdmq-XaPSDXzI_VWbt82HmSXysteJU
  priority: 102
  providerName: Public Library of Science
Title Rice nitrogen nutrition monitoring classification method based on the convolution neural network model: Direct detection of rice nitrogen nutritional status
URI https://www.ncbi.nlm.nih.gov/pubmed/36413518
https://www.proquest.com/docview/2739040124
https://www.proquest.com/docview/2739067377
https://pubmed.ncbi.nlm.nih.gov/PMC9681082
https://doaj.org/article/718d33d5c21a4261a27b33a66ff3344c
http://dx.doi.org/10.1371/journal.pone.0273360
Volume 17
WOSCitedRecordID wos000903522800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5B4MAFUV4NlLAgJODg1Pba--DWVK2oSoOVQlW4WPZ6FyoVJ4oTfg0_lpn1JtQoUjlwGSnZWTuZl2eS2W8IeQURjpfW6sBUNg6SShaB0iIMpGalkZJzy9thE2I8lufnKrsy6gt7wlp44FZwuxA7K8aqVMdRgel-EYuSsQIuYhlLEo3RNxRqVUy1MRi8mHN_UI6JaNfrZTib1maICC7MQVL-eRA5vP51VO7NLqfNppTz787JK4-iw3vkrs8h6V772bfIDVPfJ1veSxv6xkNJv31Afk0gDlDw2vkUDIXWK-h9-sO5Mv6mRzXmz9gwVLQrbqQ0xadbReE1JIgUW9O9iVIEwISb1237OHWTdN7RNnLSyixca1dNp5bON98bNuMppmXzkHw-PPi0_z7w8xgCzVW8CERapNaKEPSRprFVwqiwgJKyVBXXvCzDQnMbSs21jFKdGG11pQzkdNowZaVkj0ivBg1sE2pNwaEoL0uZJkkZ6UJVqYkqFdqqwoqzT9hKObn2YOU4M-Myd__ACShaWlnnqNLcq7RPgvWuWQvWcQ3_CPW-5kWobfcGGGDuDTC_zgD75DlaTd6eW10HjHwPMsMEqkuZ9slLx4FwGzX283wrlk2TH308-wem00mH6bVnslMQhy78GQr4Tgjj1eHc6XBC0NCd5W208ZVUmhwEoiCeQ7YHO1d2v3n5xXoZL4o9erWZLj0Pjj0SffK4dZO1ZBlPcBSk7BPRcaCO6Lsr9cV3h3auEDFPxk_-h66ekjsxHl-JoiCOd0hvMV-aZ-S2_rm4aOYDclNMzpCeC0clULkfDcit0cE4mwxciAF6mH0AejwaAj0Jj5GKzNFToFn6FXZkRyfZl98UQYgj
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgAQXoLxqKHRBIODg1s_1Ggmh8qgapQ2oFNSbWe-jVCp2iBMQ_4XfwG9kxl67GEXApQeO9s7a8WTmmxl7HoTcB4RjuTHS1coEbqS4cFOZeC6XYa45Z8ywZthEMh7zg4P0zRL50dbCYFpli4k1UKtS4jvyDTCzKQgcmKNnk88uTo3Cr6vtCI1GLEb621cI2aqnw5fw_z4Igq1X-y-2XTtVwJUsDWZuEovYmMRTIZjawKSJTj0BgVGeKiZZnntCMuNxyST3YxlpaaRKNXgmUoep4TyE654hZyMIvDCFbNcbtcgP2MGYLc8LE3_DSsP6pCz0OvaNCetGmCfmr54S0NmCweS4rBY5ur_na_5iALcu_W-su0wuWlebbja6sUyWdHGFLFswq-gj23H78VXyfQ_gkgK4TUvQJ1q0Ewropxrx8NUnlRhmYF6VaFbqydsUnQBF4Rj8aIoZ_FaTKfYJhZsXTZY9rQcOPaGNgaFKz-oMuIKWhk4X3xs2Y7HXvLpG3p0Kl66TQQEis0Ko0YIlUZDnPI6i3JciVbH2VeoZpTAwd0jYSlMmbU93HC1ynNUfKhOI7RpeZyiDmZVBh7jdrknT0-Qv9M9RUDta7Ehenyinh5kFuAx8HHhgFcvAFxiWiyDJw1CAspswjCLpkDUU86wp7-1wNdsEBzqCIJzHDrlXU2BXkgLTng7FvKqy4ev3_0D0dq9H9NASmRLYIYUtNYFnwm5nPcrVHiVgq-wtr6BStlypshNVgp2tsi1evtst40UxlbHQ5dzS4HSoxCE3Gr3uOBuyCCdmcockPY3vsb6_Uhx9rJvCp9hYkAc3__yz1sj57f3dnWxnOB7dIhcCrOXxfTcIVslgNp3r2-Sc_DI7qqZ3amSj5MNp48FP9mboyg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgBAXoLwaKHRBIODgxl7b6zUSQoUSERWFqgXUm7H3USoVO8QJiP_CL-HXMbNepxhFwKUHjvbO2vFk5psZex6E3AeE44Ux0tPKMC9SIvdSmfiekGGhheDc8GbYRDIei4ODdHeF_GhrYTCtssVEC9SqkviOfABmNgWBA3M0MC4tYnd7-Gzy2cMJUviltR2n0YjIjv72FcK3-uloG_7rB4wNX7598cpzEwY8yVM285I4j41JfBWC2WUmTXTq5xAkFanikheFn0tufCG5FEEsIy2NVKkGL0XqMDVChHDdM-RsEnGf2bTB3dYKAI5w7kr1wiQYOMnYnFSl3sQeMqFtinliCu3EgIVd6E2Oq3qZ0_t77uYvxnB46X9m42Vy0bngdKvRmVWyossrZNWBXE0fuU7cj6-S73sAoxRAb1qBntGynVxAP1kkxFeiVGL4gflWebNiJ3JTdA4UhWPwrylm9jsNp9g_FG5eNtn31A4iekIbw0OVntnMuJJWhk6X3xs2YxHYvL5G3p0Kl66TXgnis0ao0TlPIlYUIo6iIpB5qmIdqNQ3SmHA3idhK1mZdL3eceTIcWY_YCYQ8zW8zlAeMyePfeItdk2aXid_oX-OQrugxU7l9kQ1Pcwc8GXg-8ADq1iyIMdwPWdJEYY5gIAJwyiSfbKBIp81Zb8LvM22wLGOIDgXcZ_csxTYraREgT3M53Wdjd68_wei_b0O0UNHZCpgh8xdCQo8E3ZB61CudygBc2VneQ0VtOVKnZ2oFexsFW_58t3FMl4UUxxLXc0dDU6NSvrkRqPjC86GPMJJmqJPko72d1jfXSmPPtpm8Sk2HBTs5p9_1gY5DzCQvR6Nd26RCwxLfILAY2yd9GbTub5Nzskvs6N6eseCHCUfThsOfgLIa_Gh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rice+nitrogen+nutrition+monitoring+classification+method+based+on+the+convolution+neural+network+model%3A+Direct+detection+of+rice+nitrogen+nutritional+status&rft.jtitle=PloS+one&rft.au=Zhai%2C+Qiang&rft.au=Ye%2C+Chun&rft.au=Li%2C+Shuang&rft.au=Liu%2C+Jizhong&rft.date=2022-11-22&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=11&rft.spage=e0273360&rft_id=info:doi/10.1371%2Fjournal.pone.0273360&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon