Estimating pulse wave velocity from the radial pressure wave using machine learning algorithms
One of the European gold standard measurement of vascular ageing, a risk factor for cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV), which requires an experienced operator to measure pulse waves at two sites. In this work, two machine learning pipelines were proposed to es...
Saved in:
| Published in: | PloS one Vol. 16; no. 6; p. e0245026 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
28.06.2021
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | One of the European gold standard measurement of vascular ageing, a risk factor for cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV), which requires an experienced operator to measure pulse waves at two sites. In this work, two machine learning pipelines were proposed to estimate cfPWV from the peripheral pulse wave measured at a single site, the radial pressure wave measured by applanation tonometry. The study populations were the Twins UK cohort containing 3,082 subjects aged from 18 to 110 years, and a database containing 4,374 virtual subjects aged from 25 to 75 years. The first pipeline uses Gaussian process regression to estimate cfPWV from features extracted from the radial pressure wave using pulse wave analysis. The mean difference and upper and lower limits of agreement (LOA) of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.2 m/s, and 3.75 m/s & -3.34 m/s, respectively. The second pipeline uses a recurrent neural network (RNN) to estimate cfPWV from the entire radial pressure wave. The mean difference and upper and lower LOA of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.05 m/s, and 3.21 m/s & -3.11m/s, respectively. The percentage error of the RNN estimates on the virtual subjects increased by less than 2% when adding 20% of random noise to the pressure waveform. These results show the possibility of assessing the vascular ageing using a single peripheral pulse wave (
e.g
. the radial pressure wave), instead of cfPWV. The proposed code for the machine learning pipelines is available from the following online depository (
https://github.com/WeiweiJin/Estimate-Cardiovascular-Risk-from-Pulse-Wave-Signal
). |
|---|---|
| AbstractList | One of the European gold standard measurement of vascular ageing, a risk factor for cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV), which requires an experienced operator to measure pulse waves at two sites. In this work, two machine learning pipelines were proposed to estimate cfPWV from the peripheral pulse wave measured at a single site, the radial pressure wave measured by applanation tonometry. The study populations were the Twins UK cohort containing 3,082 subjects aged from 18 to 110 years, and a database containing 4,374 virtual subjects aged from 25 to 75 years. The first pipeline uses Gaussian process regression to estimate cfPWV from features extracted from the radial pressure wave using pulse wave analysis. The mean difference and upper and lower limits of agreement (LOA) of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.2 m/s, and 3.75 m/s & -3.34 m/s, respectively. The second pipeline uses a recurrent neural network (RNN) to estimate cfPWV from the entire radial pressure wave. The mean difference and upper and lower LOA of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.05 m/s, and 3.21 m/s & -3.11m/s, respectively. The percentage error of the RNN estimates on the virtual subjects increased by less than 2% when adding 20% of random noise to the pressure waveform. These results show the possibility of assessing the vascular ageing using a single peripheral pulse wave (
e.g
. the radial pressure wave), instead of cfPWV. The proposed code for the machine learning pipelines is available from the following online depository (
https://github.com/WeiweiJin/Estimate-Cardiovascular-Risk-from-Pulse-Wave-Signal
). One of the European gold standard measurement of vascular ageing, a risk factor for cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV), which requires an experienced operator to measure pulse waves at two sites. In this work, two machine learning pipelines were proposed to estimate cfPWV from the peripheral pulse wave measured at a single site, the radial pressure wave measured by applanation tonometry. The study populations were the Twins UK cohort containing 3,082 subjects aged from 18 to 110 years, and a database containing 4,374 virtual subjects aged from 25 to 75 years. The first pipeline uses Gaussian process regression to estimate cfPWV from features extracted from the radial pressure wave using pulse wave analysis. The mean difference and upper and lower limits of agreement (LOA) of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.2 m/s, and 3.75 m/s & -3.34 m/s, respectively. The second pipeline uses a recurrent neural network (RNN) to estimate cfPWV from the entire radial pressure wave. The mean difference and upper and lower LOA of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.05 m/s, and 3.21 m/s & -3.11m/s, respectively. The percentage error of the RNN estimates on the virtual subjects increased by less than 2% when adding 20% of random noise to the pressure waveform. These results show the possibility of assessing the vascular ageing using a single peripheral pulse wave (e.g. the radial pressure wave), instead of cfPWV. The proposed code for the machine learning pipelines is available from the following online depository (https://github.com/WeiweiJin/Estimate-Cardiovascular-Risk-from-Pulse-Wave-Signal). One of the European gold standard measurement of vascular ageing, a risk factor for cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV), which requires an experienced operator to measure pulse waves at two sites. In this work, two machine learning pipelines were proposed to estimate cfPWV from the peripheral pulse wave measured at a single site, the radial pressure wave measured by applanation tonometry. The study populations were the Twins UK cohort containing 3,082 subjects aged from 18 to 110 years, and a database containing 4,374 virtual subjects aged from 25 to 75 years. The first pipeline uses Gaussian process regression to estimate cfPWV from features extracted from the radial pressure wave using pulse wave analysis. The mean difference and upper and lower limits of agreement (LOA) of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.2 m/s, and 3.75 m/s & -3.34 m/s, respectively. The second pipeline uses a recurrent neural network (RNN) to estimate cfPWV from the entire radial pressure wave. The mean difference and upper and lower LOA of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.05 m/s, and 3.21 m/s & -3.11m/s, respectively. The percentage error of the RNN estimates on the virtual subjects increased by less than 2% when adding 20% of random noise to the pressure waveform. These results show the possibility of assessing the vascular ageing using a single peripheral pulse wave (e.g. the radial pressure wave), instead of cfPWV. The proposed code for the machine learning pipelines is available from the following online depository ( One of the European gold standard measurement of vascular ageing, a risk factor for cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV), which requires an experienced operator to measure pulse waves at two sites. In this work, two machine learning pipelines were proposed to estimate cfPWV from the peripheral pulse wave measured at a single site, the radial pressure wave measured by applanation tonometry. The study populations were the Twins UK cohort containing 3,082 subjects aged from 18 to 110 years, and a database containing 4,374 virtual subjects aged from 25 to 75 years. The first pipeline uses Gaussian process regression to estimate cfPWV from features extracted from the radial pressure wave using pulse wave analysis. The mean difference and upper and lower limits of agreement (LOA) of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.2 m/s, and 3.75 m/s & -3.34 m/s, respectively. The second pipeline uses a recurrent neural network (RNN) to estimate cfPWV from the entire radial pressure wave. The mean difference and upper and lower LOA of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.05 m/s, and 3.21 m/s & -3.11m/s, respectively. The percentage error of the RNN estimates on the virtual subjects increased by less than 2% when adding 20% of random noise to the pressure waveform. These results show the possibility of assessing the vascular ageing using a single peripheral pulse wave (e.g. the radial pressure wave), instead of cfPWV. The proposed code for the machine learning pipelines is available from the following online depository (https://github.com/WeiweiJin/Estimate-Cardiovascular-Risk-from-Pulse-Wave-Signal).One of the European gold standard measurement of vascular ageing, a risk factor for cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV), which requires an experienced operator to measure pulse waves at two sites. In this work, two machine learning pipelines were proposed to estimate cfPWV from the peripheral pulse wave measured at a single site, the radial pressure wave measured by applanation tonometry. The study populations were the Twins UK cohort containing 3,082 subjects aged from 18 to 110 years, and a database containing 4,374 virtual subjects aged from 25 to 75 years. The first pipeline uses Gaussian process regression to estimate cfPWV from features extracted from the radial pressure wave using pulse wave analysis. The mean difference and upper and lower limits of agreement (LOA) of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.2 m/s, and 3.75 m/s & -3.34 m/s, respectively. The second pipeline uses a recurrent neural network (RNN) to estimate cfPWV from the entire radial pressure wave. The mean difference and upper and lower LOA of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.05 m/s, and 3.21 m/s & -3.11m/s, respectively. The percentage error of the RNN estimates on the virtual subjects increased by less than 2% when adding 20% of random noise to the pressure waveform. These results show the possibility of assessing the vascular ageing using a single peripheral pulse wave (e.g. the radial pressure wave), instead of cfPWV. The proposed code for the machine learning pipelines is available from the following online depository (https://github.com/WeiweiJin/Estimate-Cardiovascular-Risk-from-Pulse-Wave-Signal). |
| Audience | Academic |
| Author | Alastruey, Jordi Chowienczyk, Philip Jin, Weiwei |
| AuthorAffiliation | 2 Department of Clinical Pharmacology, St. Thomas’ Hospital, King’s College London, London, United Kingdom University of Torino, ITALY 3 World-Class Research Centre, Digital Biodesign and Personalized Healthcare, Sechenov University, Moscow, Russia 1 Department of Biomedical Engineering, King’s College London, London, United Kingdom |
| AuthorAffiliation_xml | – name: 1 Department of Biomedical Engineering, King’s College London, London, United Kingdom – name: University of Torino, ITALY – name: 2 Department of Clinical Pharmacology, St. Thomas’ Hospital, King’s College London, London, United Kingdom – name: 3 World-Class Research Centre, Digital Biodesign and Personalized Healthcare, Sechenov University, Moscow, Russia |
| Author_xml | – sequence: 1 givenname: Weiwei orcidid: 0000-0002-0919-2470 surname: Jin fullname: Jin, Weiwei – sequence: 2 givenname: Philip surname: Chowienczyk fullname: Chowienczyk, Philip – sequence: 3 givenname: Jordi orcidid: 0000-0003-3742-5259 surname: Alastruey fullname: Alastruey, Jordi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34181640$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk12L1DAUhousuB_6D0QLgujFjPlq0nohLMuqAwsLfl0a0jRtM6TNbJKO7r833enIdFnE9qLp6fO-p-dwzmly1NteJclzCJYQM_hubQfXC7PcxPASIJIBRB8lJ7DAaEERwEcH5-Pk1Ps1ABnOKX2SHGMCc0gJOEl-XvqgOxF036SbwXiV_hJblW6VsVKH27R2tktDq1InKi1MunHK-8FN2OBHXSdkq3uVGiVcPwaEaazToe380-RxLaLrs-l5lnz_ePnt4vPi6vrT6uL8aiFpgcKCwVLWoMyEICjPQVFRgnMEC1YIiggsgcB1TRnAlEpV0hyWNZYFxQWWiAkC8Fnycue7MdbzqTWeo4xkBSMMkUisdkRlxZpvXCza3XIrNL8LWNdw4YKWRvG8BBIhFdNQTKqqFiUt6pwwFt8xAzJ6fZiyDWWnKqn64ISZmc6_9Lrljd3yHOEcMhoN3kwGzt4MygfeaS-VMaJXdrj7b0oBQlkR0Vf30Ierm6hGxAJ0X9uYV46m_JzGqwAMskgtH6DiXalOyzhHtY7xmeDtTBCZoH6HRgze89XXL__PXv-Ys68P2FYJE1pvzRC07f0cfHHY6b8t3g9wBN7vAOms907VPI6tGH1iadpwCPi4Lfum8XFb-LQtUUzuiff-_5T9AY-oGCs |
| CitedBy_id | crossref_primary_10_1088_1361_6579_ad548e crossref_primary_10_1080_0886022X_2024_2313172 crossref_primary_10_1080_0886022X_2025_2506831 crossref_primary_10_3389_fendo_2024_1471548 crossref_primary_10_3390_math11061358 crossref_primary_10_1016_j_bspc_2024_106999 crossref_primary_10_1109_ACCESS_2021_3128916 crossref_primary_10_1186_s12938_025_01436_y crossref_primary_10_1016_j_artmed_2024_102918 crossref_primary_10_1080_0886022X_2025_2507162 crossref_primary_10_1016_j_cmpb_2024_108427 crossref_primary_10_3390_bioengineering9110622 crossref_primary_10_3389_fbioe_2021_737055 crossref_primary_10_3389_fphys_2023_1100570 crossref_primary_10_1002_ame2_12354 crossref_primary_10_1134_S0021894424030180 crossref_primary_10_1038_s41598_025_10492_2 crossref_primary_10_3390_molecules28124826 crossref_primary_10_1109_TBME_2023_3236918 crossref_primary_10_1146_annurev_physiol_042022_031925 crossref_primary_10_3389_fcvm_2024_1350726 crossref_primary_10_3390_computation12060110 crossref_primary_10_3390_s23031559 crossref_primary_10_1016_j_bbe_2021_11_001 crossref_primary_10_3390_app15094788 crossref_primary_10_1080_0886022X_2024_2387932 crossref_primary_10_1016_j_bspc_2025_108161 crossref_primary_10_1161_HYPERTENSIONAHA_123_21618 crossref_primary_10_1080_10255842_2025_2504160 crossref_primary_10_1007_s11906_023_01285_x |
| Cites_doi | 10.3390/math8050662 10.1097/00004872-200412000-00010 10.1038/s41591-018-0240-2 10.1161/HYPERTENSIONAHA.119.12655 10.1097/MBP.0b013e3283614168 10.1016/j.neuroimage.2018.06.001 10.1017/thg.2012.89 10.1161/HYPERTENSIONAHA.109.129114 10.1038/s41598-018-19457-0 10.1016/j.neunet.2014.09.003 10.1093/ajh/hpx140 10.1109/TBCAS.2019.2892297 10.1038/nrneph.2017.78 10.1152/ajpheart.00218.2019 10.1016/j.exger.2017.06.007 10.1093/eurheartj/ehl254 10.1002/ejhf.1333 10.1007/s10439-013-0854-y 10.1016/j.jacc.2009.10.061 10.1161/HYPERTENSIONAHA.109.139964 10.1097/HJH.0b013e3282f82c3e 10.1162/neco.1997.9.8.1735 10.1097/HJH.0000000000002373 10.1161/01.HYP.0000128420.01881.aa 10.1016/j.artres.2010.03.001 10.1007/s13246-019-00722-z 10.1161/CIRCRESAHA.111.246876 10.1155/2018/5767864 10.1093/ije/dyr207 10.1088/1361-6579/aabe6a 10.1097/HJH.0b013e32834fa8b0 10.1080/08037051.2017.1394791 10.1016/j.artres.2009.02.006 10.1002/ehf2.12419 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2021 Public Library of Science 2021 Jin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Jin et al 2021 Jin et al |
| Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Jin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Jin et al 2021 Jin et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pone.0245026 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection (ProQuest) ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Biological Science Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE Agricultural Science Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Pulse wave velocity estimation by machine learning |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2545974724 oai_doaj_org_article_8b0c22e681634ddfab69f8477163370c PMC8238176 A666690717 34181640 10_1371_journal_pone_0245026 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United Kingdom United Kingdom--UK |
| GeographicLocations_xml | – name: United Kingdom – name: United Kingdom--UK |
| GrantInformation_xml | – fundername: Wellcome Trust – fundername: British Heart Foundation grantid: PG/15/104/31913 – fundername: Wellcome Trust grantid: WT 203148/Z/16/Z – fundername: British Heart Foundation grantid: SP/12/4/29573 – fundername: ; – fundername: ; grantid: WT 203148/Z/16/Z – fundername: ; grantid: EP/K031546/1 – fundername: ; grantid: 075-15-2020-926 – fundername: ; grantid: PG/15/104/31913 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM AAPBV ABPTK N95 |
| ID | FETCH-LOGICAL-c692t-71bcf0b5aa428809d643821979a6241b0a3ff670366ceb681bf3c96393c27a403 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671695800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Sun Jul 02 11:03:59 EDT 2023 Mon Nov 10 04:23:48 EST 2025 Tue Nov 04 01:47:10 EST 2025 Mon Sep 08 04:42:13 EDT 2025 Tue Oct 07 07:47:50 EDT 2025 Sat Nov 29 12:57:36 EST 2025 Sat Nov 29 10:05:13 EST 2025 Wed Nov 26 09:51:40 EST 2025 Wed Nov 26 09:51:24 EST 2025 Thu May 22 21:26:30 EDT 2025 Mon Jul 21 06:00:24 EDT 2025 Sat Nov 29 01:57:59 EST 2025 Tue Nov 18 20:38:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-71bcf0b5aa428809d643821979a6241b0a3ff670366ceb681bf3c96393c27a403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-0919-2470 0000-0003-3742-5259 |
| OpenAccessLink | https://doaj.org/article/8b0c22e681634ddfab69f8477163370c |
| PMID | 34181640 |
| PQID | 2545974724 |
| PQPubID | 1436336 |
| PageCount | e0245026 |
| ParticipantIDs | plos_journals_2545974724 doaj_primary_oai_doaj_org_article_8b0c22e681634ddfab69f8477163370c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8238176 proquest_miscellaneous_2546602259 proquest_journals_2545974724 gale_infotracmisc_A666690717 gale_infotracacademiconefile_A666690717 gale_incontextgauss_ISR_A666690717 gale_incontextgauss_IOV_A666690717 gale_healthsolutions_A666690717 pubmed_primary_34181640 crossref_citationtrail_10_1371_journal_pone_0245026 crossref_primary_10_1371_journal_pone_0245026 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-28 |
| PublicationDateYYYYMMDD | 2021-06-28 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2021 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | J Schmidhuber (pone.0245026.ref026) 2015; 61 A Jekell (pone.0245026.ref033) 2018; 27 C Vlachopoulos (pone.0245026.ref008) 2010; 55 LM Van Bortel (pone.0245026.ref009) 2012; 30 PH Charlton (pone.0245026.ref021) 2018; 39 LdR Mikael (pone.0245026.ref028) 2017; 109 J Niebauer (pone.0245026.ref005) 2020; 19 P Salvi (pone.0245026.ref031) 2004; 22 ZI Attia (pone.0245026.ref012) 2019; 25 SP Karunathilake (pone.0245026.ref016) 2018; 2018 PM Nilsson (pone.0245026.ref006) 2008; 26 M Cikes (pone.0245026.ref015) 2019; 21 JR Weir-McCall (pone.0245026.ref036) 2017; 17 P Segers (pone.0245026.ref035) 2009; 3 B Hametner (pone.0245026.ref032) 2013; 18 PM Nilsson (pone.0245026.ref003) 2009; 54 SE Awan (pone.0245026.ref014) 2019; 6 A Grillo (pone.0245026.ref037) 2018; 31 NK Chakshu (pone.0245026.ref017) 2020 NR Gaddum (pone.0245026.ref027) 2013; 41 S Hochreiter (pone.0245026.ref024) 1997; 9 D Biswas (pone.0245026.ref013) 2019; 13 P Tavallali (pone.0245026.ref018) 2018; 8 S Laurent (pone.0245026.ref010) 2006; 27 A Moayyeri (pone.0245026.ref020) 2013; 42 PH Charlton (pone.0245026.ref022) 2019; 317 A Laina (pone.0245026.ref001) 2018; 109 BJ North (pone.0245026.ref002) 2012; 110 M Gomez-Sanchez (pone.0245026.ref004) 2020; 38 A Moayyeri (pone.0245026.ref019) 2013; 16 GF Mitchell (pone.0245026.ref029) 2004; 43 KL Wang (pone.0245026.ref030) 2010; 55 H Perez (pone.0245026.ref023) 2020; 8 Z Cui (pone.0245026.ref038) 2018; 178 PG Shiels (pone.0245026.ref040) 2017; 13 S Laurent (pone.0245026.ref007) 2019; 74 ZC Lipton (pone.0245026.ref025) 2015 IB Wilkinson (pone.0245026.ref034) 2010; 4 MM Mukaka (pone.0245026.ref039) 2012; 24 AM Alqudah (pone.0245026.ref011) 2019; 42 |
| References_xml | – volume: 8 issue: 5 year: 2020 ident: pone.0245026.ref023 article-title: Improving the accuracy of convolutional neural networks by identifying and removing outlier images in datasets using t-SNE publication-title: Mathematics doi: 10.3390/math8050662 – volume: 22 start-page: 2285 issue: 12 year: 2004 ident: pone.0245026.ref031 article-title: Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: The PulsePen device publication-title: Journal of Hypertension doi: 10.1097/00004872-200412000-00010 – volume: 25 start-page: 70 issue: 1 year: 2019 ident: pone.0245026.ref012 article-title: Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram publication-title: Nature Medicine doi: 10.1038/s41591-018-0240-2 – volume: 74 start-page: 218 issue: 2 year: 2019 ident: pone.0245026.ref007 article-title: Concept of extremes in vascular aging: From early vascular aging to supernormal vascular aging publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.119.12655 – volume: 17 start-page: 1 issue: 1 year: 2017 ident: pone.0245026.ref036 article-title: Effects of inaccuracies in arterial path length measurement on differences in MRI and tonometry measured pulse wave velocity publication-title: BMC Cardiovascular Disorders – volume: 18 start-page: 173 issue: 3 year: 2013 ident: pone.0245026.ref032 article-title: Oscillometric estimation of aortic pulse wave velocity: Comparison with intra-aortic catheter measurements publication-title: Blood Pressure Monitoring doi: 10.1097/MBP.0b013e3283614168 – volume: 178 start-page: 622 issue: May year: 2018 ident: pone.0245026.ref038 article-title: The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.06.001 – volume: 16 start-page: 144 issue: 1 year: 2013 ident: pone.0245026.ref019 article-title: The UK adult twin registry (TwinsUK resource) publication-title: Twin Research and Human Genetics doi: 10.1017/thg.2012.89 – volume: 54 start-page: 3 issue: 1 year: 2009 ident: pone.0245026.ref003 article-title: Vascular aging: A tale of EVA and ADAM in cardiovascular risk assessment and prevention publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.109.129114 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: pone.0245026.ref018 article-title: Artificial intelligence estimation of carotid-femoral pulse wave velocity using carotid waveform publication-title: Scientific Reports doi: 10.1038/s41598-018-19457-0 – volume: 61 start-page: 85 year: 2015 ident: pone.0245026.ref026 article-title: Deep learning in neural networks: An overview publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.003 – volume: 31 start-page: 80 issue: 1 year: 2018 ident: pone.0245026.ref037 article-title: Short-Term Repeatability of Noninvasive Aortic Pulse Wave Velocity Assessment: Comparison between Methods and Devices publication-title: American Journal of Hypertension doi: 10.1093/ajh/hpx140 – volume: 13 start-page: 282 issue: 2 year: 2019 ident: pone.0245026.ref013 article-title: CorNET: Deep learning framework for PPG-based heart rate estimation and biometric identification in ambulant environment publication-title: IEEE Transactions on Biomedical Circuits and Systems doi: 10.1109/TBCAS.2019.2892297 – volume: 13 start-page: 471 issue: 8 year: 2017 ident: pone.0245026.ref040 article-title: The role of epigenetics in renal ageing publication-title: Nature Reviews Nephrology doi: 10.1038/nrneph.2017.78 – volume: 317 start-page: H1062 issue: 5 year: 2019 ident: pone.0245026.ref022 article-title: Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes publication-title: American journal of physiology Heart and circulatory physiology doi: 10.1152/ajpheart.00218.2019 – volume: 109 start-page: 16 year: 2018 ident: pone.0245026.ref001 article-title: Vascular ageing: Underlying mechanisms and clinical implications publication-title: Experimental Gerontology doi: 10.1016/j.exger.2017.06.007 – volume: 27 start-page: 2588 issue: 21 year: 2006 ident: pone.0245026.ref010 article-title: Expert consensus document on arterial stiffness: Methodological issues and clinical applications publication-title: European Heart Journal doi: 10.1093/eurheartj/ehl254 – volume: 21 start-page: 74 issue: 1 year: 2019 ident: pone.0245026.ref015 article-title: Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy publication-title: European Journal of Heart Failure doi: 10.1002/ejhf.1333 – volume: 41 start-page: 2617 issue: 12 year: 2013 ident: pone.0245026.ref027 article-title: A technical assessment of pulse wave velocity algorithms applied to non-invasive arterial waveforms publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-013-0854-y – volume: 55 start-page: 1318 issue: 13 year: 2010 ident: pone.0245026.ref008 article-title: Prediction of cardiovascular events and all-cause mortality with arterial stiffness. A systematic review and meta-analysis publication-title: Journal of the American College of Cardiology doi: 10.1016/j.jacc.2009.10.061 – volume: 55 start-page: 799 issue: 3 year: 2010 ident: pone.0245026.ref030 article-title: Wave reflection and arterial stiffness in the prediction of 15-year all-cause and cardiovascular mortalities: A community-based study publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.109.139964 – volume: 26 start-page: 1049 issue: 6 year: 2008 ident: pone.0245026.ref006 article-title: The early life origins of vascular ageing and cardiovascular risk: The EVA syndrome publication-title: Journal of Hypertension doi: 10.1097/HJH.0b013e3282f82c3e – volume: 19 start-page: 460 issue: 3 year: 2020 ident: pone.0245026.ref005 article-title: Acute effects of winter sports and indoor cycling on arterial stiffness publication-title: Journal of Sports Science and Medicine – volume: 9 start-page: 1735 year: 1997 ident: pone.0245026.ref024 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 38 start-page: 1110 issue: 6 year: 2020 ident: pone.0245026.ref004 article-title: Vascular aging and its relationship with lifestyles and other risk factors in the general Spanish population: Early Vascular Ageing Study publication-title: Journal of hypertension doi: 10.1097/HJH.0000000000002373 – volume: 43 start-page: 1239 issue: 6 year: 2004 ident: pone.0245026.ref029 article-title: Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: The Framingham Heart Study publication-title: Hypertension doi: 10.1161/01.HYP.0000128420.01881.aa – year: 2020 ident: pone.0245026.ref017 article-title: Towards enabling a cardiovascular digital twin for human systemic circulation using inverse analysis publication-title: Biomechanics and Modeling in Mechanobiology – volume: 4 start-page: 34 issue: 2 year: 2010 ident: pone.0245026.ref034 article-title: ARTERY Society guidelines for validation of non-invasive haemodynamic measurement devices: Part 1, arterial pulse wave velocity publication-title: Artery Research doi: 10.1016/j.artres.2010.03.001 – volume: 42 start-page: 149 issue: 1 year: 2019 ident: pone.0245026.ref011 article-title: Developing of robust and high accurate ECG beat classification by combining Gaussian mixtures and wavelets features publication-title: Australasian Physical and Engineering Sciences in Medicine doi: 10.1007/s13246-019-00722-z – volume: 110 start-page: 1097 issue: 8 year: 2012 ident: pone.0245026.ref002 article-title: The intersection between aging and cardiovascular disease publication-title: Circulation Research doi: 10.1161/CIRCRESAHA.111.246876 – volume: 2018 year: 2018 ident: pone.0245026.ref016 article-title: Secondary prevention of cardiovascular diseases and application of technology for early diagnosis publication-title: BioMed Research International doi: 10.1155/2018/5767864 – volume: 109 start-page: 253 issue: 3 year: 2017 ident: pone.0245026.ref028 article-title: Vascular ageing and arterial stiffness publication-title: Arquivos Brasileiros de Cardiologia – start-page: 1 year: 2015 ident: pone.0245026.ref025 article-title: A critical review of recurrent neural networks for sequence learning publication-title: arXiv – volume: 42 start-page: 76 issue: 1 year: 2013 ident: pone.0245026.ref020 article-title: Cohort profile: TwinsUK and healthy ageing twin study publication-title: International Journal of Epidemiology doi: 10.1093/ije/dyr207 – volume: 39 issue: 5 year: 2018 ident: pone.0245026.ref021 article-title: Assessing mental stress from the photoplethysmogram: A numerical study publication-title: Physiological Measurement doi: 10.1088/1361-6579/aabe6a – volume: 30 start-page: 445 issue: 3 year: 2012 ident: pone.0245026.ref009 article-title: Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity publication-title: Journal of Hypertension doi: 10.1097/HJH.0b013e32834fa8b0 – volume: 27 start-page: 88 issue: 2 year: 2018 ident: pone.0245026.ref033 article-title: The usefulness of a single arm cuff oscillometric method (Arteriograph) to assess changes in central aortic blood pressure and arterial stiffness by antihypertensive treatment: results from the Doxazosin-Ramipril Study publication-title: Blood Pressure doi: 10.1080/08037051.2017.1394791 – volume: 3 start-page: 79 issue: 2 year: 2009 ident: pone.0245026.ref035 article-title: Limitations and pitfalls of non-invasive measurement of arterial pressure wave reflections and pulse wave velocity publication-title: Artery Research doi: 10.1016/j.artres.2009.02.006 – volume: 6 start-page: 428 issue: 2 year: 2019 ident: pone.0245026.ref014 article-title: Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics publication-title: ESC Heart Failure doi: 10.1002/ehf2.12419 – volume: 24 start-page: 69 issue: September year: 2012 ident: pone.0245026.ref039 article-title: Statistics Corner: A guide to appropriate use of correlation coefficient in medical resaerch publication-title: Malawi Medical Journal |
| SSID | ssj0053866 |
| Score | 2.5317566 |
| Snippet | One of the European gold standard measurement of vascular ageing, a risk factor for cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV),... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0245026 |
| SubjectTerms | Accuracy Adult Aged Aging Algorithms Analysis Biology and Life Sciences Biomedical engineering Blood Pressure Cardiovascular diseases Cardiovascular Diseases - diagnostic imaging Cardiovascular Diseases - prevention & control Carotid Arteries - diagnostic imaging Carotid Arteries - physiology Carotid-Femoral Pulse Wave Velocity - methods Computer and Information Sciences Diagnosis Disease Elastic waves Engineering and Technology Evaluation Feature extraction Female Femoral Artery - diagnostic imaging Femoral Artery - physiology Gaussian process Health risks Heart Rate Humans Learning algorithms Libraries Machine Learning Male Medical tests Medicine and Health Sciences Middle Aged Mortality Neural networks Physical Sciences Pipelines Population studies Pressure Principal components analysis Pulse Wave Analysis - methods Radial Artery - diagnostic imaging Radial Artery - physiology Random noise Recurrent neural networks Research and Analysis Methods Risk analysis Risk Factors Vascular Stiffness - physiology Velocity Wave analysis Wave velocity Waveforms |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg4cAFKK8GChiEBBzSJnFiJydUUCu4lIqXKg5EjmOnlbbJkmzK32fGcUKDKkDiup6sbI9n_I09_oaQZ2D-YaSl8ZOQFX6cGu3DPl_6iulSl1lkSldsQhwcpEdH2aE7cOtcWuXoE62jLhuFZ-Q7EMhY7BvFr1bffawahberroTGZXIFWRLQMA-Tr6MnBlvm3D2XYyLccdrZXjW13sYrR0upcG47sqz9k29erJZNdxHw_D1_8tyGtH_jf4dyk1x3UJTuDmtng1zS9S2y4Yy9oy8cI_XL2-TbHjgChLZ1RVc9bKb0hzzTFNONFKB4im9UKCBJ2iLTwZLa5Nq-dWKYWl_RU5u1qakrU1FRuaygU-vj0-4O-by_9-nNW98VZvAVz6K1L8JCmaBIpITgJQ2ykuN1YpiJTHJABEUgmTEcqb240gUHZGyYAkvPmIqEjAN2lyxqUMImoSoNwKVoDRgfAkWRSq6FShNTcJkZcDceYaN-cuVYy7F4xjK3V3ECopdhtnLUau606hF_-mo1sHb8Rf41qn6SRc5t-0PTVrkz4TwtAgVdheFwFpelkQXPDGzuEHEyJgLlkce4cPLhAevkOfJdiBDxDCIUHnlqJZB3o8bEnkr2XZe_e__lH4Q-fpgJPXdCpoHpUNI9poAxIZ_XTHJrJgneQ82aN3GZj7PS5b8WJ3w5Lt-Lm59MzfinmKxX66a3MpwDNkwyj9wbLGWaWQBNMH9x4BExs6HZ1M9b6pNjS3ueIroU_P6fu_WAXIsw7SjgfpRukcW67fVDclWdrU-69pH1Dz8BsAdwyA priority: 102 providerName: ProQuest – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZg4cCFUl4NFDAICTikJHHWjo8FdQUSKhUv9YTlOPZ2pW2ySjbt32cm8QZStQKu688re-yZ-SYejwl5CeofJ1a7cBqzPEwzZ0Pw80VomC1sIRNX-McmxOFhdnwsj34HihdO8JmI33qZ7q2q0u7hQSFEDdfJjYRxjilcs6NPG8sLusu5vx53Vc-R--mq9A-2eLJaVs1lRPNivuQfDmi29b9Dv0Nue6pJ9_u9sU2u2fIu2fbK3NDXvuL0m3vk5wEoOlLXck5XLThLeq7PLMV0IgMsneIdFApMkdZYyWBJu-TZtvYwTJ2f09MuK9NS_wzFnOrlvKoX65PT5j75Pjv49v5D6B9eCA2XyToUcW5clE-1huAki2TB8bgwlkJqDh4_jzRzjmPpLm5szoH5OmZAkyUzidBpxB6QSQlz3iHUZBGYDGuBw0MgKDLNrTDZ1OVcSwfmJCBssx7K-Krk-DjGUnVHbQKik15aCoWovBADEg69Vn1Vjr_g3-FSD1isqd39AKulvIqqLI8MDBWmw1laFE7nXDpw3hBRMiYiE5BnuFFUf0F1sAxqHyJA_MYQi4C86BBYV6PExJ25bptGffz84x9AX7-MQK88yFUgDqP9ZQmYE9brGiF3R0iwDmbUvIPbeiOVRiVAmTGGTFLoudnqlzc_H5rxTzEZr7RV22E4B-43lQF52GvGIFkgRSC_NAqIGOnMSPTjlnJx0pU1z5A9Cv7o6hE_JrcSTCmKeJhku2Syrlv7hNw0Z-tFUz_tbMEvrWhe7A priority: 102 providerName: Public Library of Science |
| Title | Estimating pulse wave velocity from the radial pressure wave using machine learning algorithms |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34181640 https://www.proquest.com/docview/2545974724 https://www.proquest.com/docview/2546602259 https://pubmed.ncbi.nlm.nih.gov/PMC8238176 https://doaj.org/article/8b0c22e681634ddfab69f8477163370c http://dx.doi.org/10.1371/journal.pone.0245026 |
| Volume | 16 |
| WOSCitedRecordID | wos000671695800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELeg8MALYnwtMIpBSMBDuny0dvK4Tq2YxkrUwVT2QOQ4dlepS6umHf8-d44bNWjSeODlHupL1d75zr-Lzz8T8gHC3w-U0G7PDzO3G2nlwjqfuzJUucrjQOf2sgk-GkWTSZzsXPWFPWEVPXBluMMo82QQKBYBcOjmuRYZizWkVMD5Ycg9idkXUM-2mKpyMEQxY_agXMj9Q-uXznJRqA5uNhoyhZ2FyPD111m5tZwvytsg59-dkztL0fAJeWwxJD2qfvseuaeKp2TPRmlJP1kq6c_PyK8BRDBi0mJKlxtYBelvcaMo9glJgN8UD5dQgIB0hRQFc2q6Yjcrq4Y98VN6bdotFbX3S0ypmE8Xq9n66rp8Tn4MB9-Pv7j2RgVXsjhYu9zPpPaynhBQdURenDPcB_RjHgsGS3nmiVBrhpxcTKoMbJ7pUEKIxqEMuOh64QvSKsCG-4TKyINcoBSAc6jweCSY4jLq6YyJWEOecEi4NW8qLd043noxT80eGoeyo7JWik5JrVMc4tZPLSu6jTv0--i5WhfJss0HMIVSO4XSu6aQQ96i39Pq5Gkd8ukRlHb48sDnDnlvNJAwo8COnKnYlGV68u3iH5TOxw2lj1ZJL8AcUthTEPCfkIiroXnQ0ISwl43hfZylW6uUKVT6pjgMuvDkdubePvyuHsYvxS67Qi02RocxAHW92CEvq4leWxbQDtiv6zmEN0KgYfrmSDG7MnzlEcJCzl79D1-9Jo8C7CrymBtEB6S1Xm3UG_JQ3qxn5apN7vPxBcoJNzICGR37bfKgPxgl47ZJEiCHyVeQp_0OyDPvFCVPjDwHmfQu4Ynk5Cz5-Qe0gG6J |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKggQXoLwaKNQgEHBIm8eunRwQKtCqq5YFQUF7IjiOnVbaJstmtxV_it_IjOOEBlXApQeu8SSKJzOfv4nHM4Q8Bvf3AyW0O_DD1O1HWrmwzmeuDFWmsjjQmW02wUejaDyO3y-RH81ZGEyrbDDRAHVWSvxHvgGBjOG-Qf_l9JuLXaNwd7VpoVGbxa76fgIhW_Vi-Aa-75Mg2N7af73j2q4CrmRxMHe5n0rtpQMhgHlHXpwx3AvzYx4LBstZ6olQa4Z1qZhUKQNap0MJZhqHMuCi74Xw3AvkIuA4xxQyPm4DPMAOxuzxvJD7G9Ya1qdlodZxi9OUcDi1_JkuAe1a0JtOyuosovt7vuapBXD72v-muuvkqqXadLP2jWWypIobZNmCWUWf2Yrbz2-SL1sAdEjdi5xOF0AW6Ik4VhTTqSREKRTP4FBgynSGlRwm1CQPL2ZWDI8O5PTIZKUqattw5FRMclDC_OCoukU-ncs8b5NeAR99hVAZeQCZSkEMA4EwjwRTXEYDnTIRa4BTh4SNPSTSVmXH5iCTxGw1cojOam0laEWJtSKHuO1d07oqyV_kX6GptbJYU9xcKGd5YiEqiVJPwqvCdFjYzzItUhZrIC8QUYch96RD1tBQk_qAbouMySZEwPiPxecOeWQksK5IgYlLuVhUVTJ89_kfhD5-6Ag9tUK6BHVIYQ-LwJywXllHcrUjCegoO8Mr6FaNVqrklzPAnY27nD38sB3Gh2IyYqHKhZFhDLjvIHbIndozW80CKQT99T2H8I7PdlTfHSkOD0xZ9wjZM2d3__xaa-Tyzv7bvWRvONq9R64EmGLlMTeIVklvPluo--SSPJ4fVrMHBpso-XreHv0TVdDLCQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgBAXoLxqKHRBIODgxo9k1z4gVGgjoqIQQUEVB8x6vetWSp0QJ634a_w6ZtZrU6MKuPTA1Tu2vON5fOOdByGPQf39QAnt9v0wdXuRVi74-cyVocpUFgc6s8Mm-GgU7e_H4xXyo66FwbTK2iYaQ51NJf4j70IgY7Bv0OtqmxYx3h68nH1zcYIUnrTW4zQqEdlV308gfCtfDLfhWz8JgsHO3us3rp0w4EoWBwuX-6nUXtoXAlB45MUZw3MxP-axYODaUk-EWjPsUcWkShlAPB1KENk4lAEXPS-E514gFznEmBj4jfufay8AdoQxW6oXcr9rJWNzNi3UJh53mnYOp1yhmRjQ-IXObDItzwK9v-dunnKGg2v_Mxuvk6sWgtOtSmdWyYoqbpBVa-RK-sx24n5-k3zZAQOIkL7I6WwJIIKeiGNFMc1KQvRCsTaHAoKmc-zwMKEmqXg5t2RYUpDTI5Otqqgdz5FTMcmBCYuDo_IW-Xgu-7xNOgUIwBqhMvLAlCoFsQ0EyDwSTHEZ9XXKRKzBzDokrGUjkbZbOw4NmSTmCJJD1FZxK0GJSqxEOcRt7ppV3Ur-Qv8Kxa6hxV7j5sJ0nifWdCVR6kl4VdgOC3tZpkXKYg2gBiLtMOSedMgGCm1SFe42FjPZgsgY_7343CGPDAX2GylQ5HKxLMtk-O7TPxB9eN8iemqJ9BTYIYUtIoE9YR-zFuV6ixKspmwtr6GK1Vwpk1-KAXfWqnP28sNmGR-KSYqFmi4NDWOAifuxQ-5UWtpwFsAi8K_nOYS39LfF-vZKcXhg2r1HiKo5u_vn19ogl0GRk7fD0e49ciXAzCuPuUG0TjqL-VLdJ5fk8eKwnD8wZoqSr-et0D8BVQzT_A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+pulse+wave+velocity+from+the+radial+pressure+wave+using+machine+learning+algorithms&rft.jtitle=PloS+one&rft.au=Jin%2C+Weiwei&rft.au=Chowienczyk%2C+Philip&rft.au=Alastruey%2C+Jordi&rft.date=2021-06-28&rft.eissn=1932-6203&rft.volume=16&rft.issue=6&rft.spage=e0245026&rft_id=info:doi/10.1371%2Fjournal.pone.0245026&rft_id=info%3Apmid%2F34181640&rft.externalDocID=34181640 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |