Estimating pulse wave velocity from the radial pressure wave using machine learning algorithms

One of the European gold standard measurement of vascular ageing, a risk factor for cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV), which requires an experienced operator to measure pulse waves at two sites. In this work, two machine learning pipelines were proposed to es...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 16; číslo 6; s. e0245026
Hlavní autoři: Jin, Weiwei, Chowienczyk, Philip, Alastruey, Jordi
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 28.06.2021
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract One of the European gold standard measurement of vascular ageing, a risk factor for cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV), which requires an experienced operator to measure pulse waves at two sites. In this work, two machine learning pipelines were proposed to estimate cfPWV from the peripheral pulse wave measured at a single site, the radial pressure wave measured by applanation tonometry. The study populations were the Twins UK cohort containing 3,082 subjects aged from 18 to 110 years, and a database containing 4,374 virtual subjects aged from 25 to 75 years. The first pipeline uses Gaussian process regression to estimate cfPWV from features extracted from the radial pressure wave using pulse wave analysis. The mean difference and upper and lower limits of agreement (LOA) of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.2 m/s, and 3.75 m/s & -3.34 m/s, respectively. The second pipeline uses a recurrent neural network (RNN) to estimate cfPWV from the entire radial pressure wave. The mean difference and upper and lower LOA of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.05 m/s, and 3.21 m/s & -3.11m/s, respectively. The percentage error of the RNN estimates on the virtual subjects increased by less than 2% when adding 20% of random noise to the pressure waveform. These results show the possibility of assessing the vascular ageing using a single peripheral pulse wave ( e.g . the radial pressure wave), instead of cfPWV. The proposed code for the machine learning pipelines is available from the following online depository ( https://github.com/WeiweiJin/Estimate-Cardiovascular-Risk-from-Pulse-Wave-Signal ).
AbstractList One of the European gold standard measurement of vascular ageing, a risk factor for cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV), which requires an experienced operator to measure pulse waves at two sites. In this work, two machine learning pipelines were proposed to estimate cfPWV from the peripheral pulse wave measured at a single site, the radial pressure wave measured by applanation tonometry. The study populations were the Twins UK cohort containing 3,082 subjects aged from 18 to 110 years, and a database containing 4,374 virtual subjects aged from 25 to 75 years. The first pipeline uses Gaussian process regression to estimate cfPWV from features extracted from the radial pressure wave using pulse wave analysis. The mean difference and upper and lower limits of agreement (LOA) of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.2 m/s, and 3.75 m/s & -3.34 m/s, respectively. The second pipeline uses a recurrent neural network (RNN) to estimate cfPWV from the entire radial pressure wave. The mean difference and upper and lower LOA of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.05 m/s, and 3.21 m/s & -3.11m/s, respectively. The percentage error of the RNN estimates on the virtual subjects increased by less than 2% when adding 20% of random noise to the pressure waveform. These results show the possibility of assessing the vascular ageing using a single peripheral pulse wave ( e.g . the radial pressure wave), instead of cfPWV. The proposed code for the machine learning pipelines is available from the following online depository ( https://github.com/WeiweiJin/Estimate-Cardiovascular-Risk-from-Pulse-Wave-Signal ).
One of the European gold standard measurement of vascular ageing, a risk factor for cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV), which requires an experienced operator to measure pulse waves at two sites. In this work, two machine learning pipelines were proposed to estimate cfPWV from the peripheral pulse wave measured at a single site, the radial pressure wave measured by applanation tonometry. The study populations were the Twins UK cohort containing 3,082 subjects aged from 18 to 110 years, and a database containing 4,374 virtual subjects aged from 25 to 75 years. The first pipeline uses Gaussian process regression to estimate cfPWV from features extracted from the radial pressure wave using pulse wave analysis. The mean difference and upper and lower limits of agreement (LOA) of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.2 m/s, and 3.75 m/s & -3.34 m/s, respectively. The second pipeline uses a recurrent neural network (RNN) to estimate cfPWV from the entire radial pressure wave. The mean difference and upper and lower LOA of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.05 m/s, and 3.21 m/s & -3.11m/s, respectively. The percentage error of the RNN estimates on the virtual subjects increased by less than 2% when adding 20% of random noise to the pressure waveform. These results show the possibility of assessing the vascular ageing using a single peripheral pulse wave (e.g. the radial pressure wave), instead of cfPWV. The proposed code for the machine learning pipelines is available from the following online depository (https://github.com/WeiweiJin/Estimate-Cardiovascular-Risk-from-Pulse-Wave-Signal).
One of the European gold standard measurement of vascular ageing, a risk factor for cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV), which requires an experienced operator to measure pulse waves at two sites. In this work, two machine learning pipelines were proposed to estimate cfPWV from the peripheral pulse wave measured at a single site, the radial pressure wave measured by applanation tonometry. The study populations were the Twins UK cohort containing 3,082 subjects aged from 18 to 110 years, and a database containing 4,374 virtual subjects aged from 25 to 75 years. The first pipeline uses Gaussian process regression to estimate cfPWV from features extracted from the radial pressure wave using pulse wave analysis. The mean difference and upper and lower limits of agreement (LOA) of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.2 m/s, and 3.75 m/s & -3.34 m/s, respectively. The second pipeline uses a recurrent neural network (RNN) to estimate cfPWV from the entire radial pressure wave. The mean difference and upper and lower LOA of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.05 m/s, and 3.21 m/s & -3.11m/s, respectively. The percentage error of the RNN estimates on the virtual subjects increased by less than 2% when adding 20% of random noise to the pressure waveform. These results show the possibility of assessing the vascular ageing using a single peripheral pulse wave (e.g. the radial pressure wave), instead of cfPWV. The proposed code for the machine learning pipelines is available from the following online depository (
One of the European gold standard measurement of vascular ageing, a risk factor for cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV), which requires an experienced operator to measure pulse waves at two sites. In this work, two machine learning pipelines were proposed to estimate cfPWV from the peripheral pulse wave measured at a single site, the radial pressure wave measured by applanation tonometry. The study populations were the Twins UK cohort containing 3,082 subjects aged from 18 to 110 years, and a database containing 4,374 virtual subjects aged from 25 to 75 years. The first pipeline uses Gaussian process regression to estimate cfPWV from features extracted from the radial pressure wave using pulse wave analysis. The mean difference and upper and lower limits of agreement (LOA) of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.2 m/s, and 3.75 m/s & -3.34 m/s, respectively. The second pipeline uses a recurrent neural network (RNN) to estimate cfPWV from the entire radial pressure wave. The mean difference and upper and lower LOA of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.05 m/s, and 3.21 m/s & -3.11m/s, respectively. The percentage error of the RNN estimates on the virtual subjects increased by less than 2% when adding 20% of random noise to the pressure waveform. These results show the possibility of assessing the vascular ageing using a single peripheral pulse wave (e.g. the radial pressure wave), instead of cfPWV. The proposed code for the machine learning pipelines is available from the following online depository (https://github.com/WeiweiJin/Estimate-Cardiovascular-Risk-from-Pulse-Wave-Signal).One of the European gold standard measurement of vascular ageing, a risk factor for cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV), which requires an experienced operator to measure pulse waves at two sites. In this work, two machine learning pipelines were proposed to estimate cfPWV from the peripheral pulse wave measured at a single site, the radial pressure wave measured by applanation tonometry. The study populations were the Twins UK cohort containing 3,082 subjects aged from 18 to 110 years, and a database containing 4,374 virtual subjects aged from 25 to 75 years. The first pipeline uses Gaussian process regression to estimate cfPWV from features extracted from the radial pressure wave using pulse wave analysis. The mean difference and upper and lower limits of agreement (LOA) of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.2 m/s, and 3.75 m/s & -3.34 m/s, respectively. The second pipeline uses a recurrent neural network (RNN) to estimate cfPWV from the entire radial pressure wave. The mean difference and upper and lower LOA of the estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.05 m/s, and 3.21 m/s & -3.11m/s, respectively. The percentage error of the RNN estimates on the virtual subjects increased by less than 2% when adding 20% of random noise to the pressure waveform. These results show the possibility of assessing the vascular ageing using a single peripheral pulse wave (e.g. the radial pressure wave), instead of cfPWV. The proposed code for the machine learning pipelines is available from the following online depository (https://github.com/WeiweiJin/Estimate-Cardiovascular-Risk-from-Pulse-Wave-Signal).
Audience Academic
Author Alastruey, Jordi
Chowienczyk, Philip
Jin, Weiwei
AuthorAffiliation 2 Department of Clinical Pharmacology, St. Thomas’ Hospital, King’s College London, London, United Kingdom
University of Torino, ITALY
3 World-Class Research Centre, Digital Biodesign and Personalized Healthcare, Sechenov University, Moscow, Russia
1 Department of Biomedical Engineering, King’s College London, London, United Kingdom
AuthorAffiliation_xml – name: 1 Department of Biomedical Engineering, King’s College London, London, United Kingdom
– name: University of Torino, ITALY
– name: 2 Department of Clinical Pharmacology, St. Thomas’ Hospital, King’s College London, London, United Kingdom
– name: 3 World-Class Research Centre, Digital Biodesign and Personalized Healthcare, Sechenov University, Moscow, Russia
Author_xml – sequence: 1
  givenname: Weiwei
  orcidid: 0000-0002-0919-2470
  surname: Jin
  fullname: Jin, Weiwei
– sequence: 2
  givenname: Philip
  surname: Chowienczyk
  fullname: Chowienczyk, Philip
– sequence: 3
  givenname: Jordi
  orcidid: 0000-0003-3742-5259
  surname: Alastruey
  fullname: Alastruey, Jordi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34181640$$D View this record in MEDLINE/PubMed
BookMark eNqNk12L1DAUhousuB_6D0QLgujFjPlq0nohLMuqAwsLfl0a0jRtM6TNbJKO7r833enIdFnE9qLp6fO-p-dwzmly1NteJclzCJYQM_hubQfXC7PcxPASIJIBRB8lJ7DAaEERwEcH5-Pk1Ps1ABnOKX2SHGMCc0gJOEl-XvqgOxF036SbwXiV_hJblW6VsVKH27R2tktDq1InKi1MunHK-8FN2OBHXSdkq3uVGiVcPwaEaazToe380-RxLaLrs-l5lnz_ePnt4vPi6vrT6uL8aiFpgcKCwVLWoMyEICjPQVFRgnMEC1YIiggsgcB1TRnAlEpV0hyWNZYFxQWWiAkC8Fnycue7MdbzqTWeo4xkBSMMkUisdkRlxZpvXCza3XIrNL8LWNdw4YKWRvG8BBIhFdNQTKqqFiUt6pwwFt8xAzJ6fZiyDWWnKqn64ISZmc6_9Lrljd3yHOEcMhoN3kwGzt4MygfeaS-VMaJXdrj7b0oBQlkR0Vf30Ierm6hGxAJ0X9uYV46m_JzGqwAMskgtH6DiXalOyzhHtY7xmeDtTBCZoH6HRgze89XXL__PXv-Ys68P2FYJE1pvzRC07f0cfHHY6b8t3g9wBN7vAOms907VPI6tGH1iadpwCPi4Lfum8XFb-LQtUUzuiff-_5T9AY-oGCs
CitedBy_id crossref_primary_10_1088_1361_6579_ad548e
crossref_primary_10_1080_0886022X_2024_2313172
crossref_primary_10_1080_0886022X_2025_2506831
crossref_primary_10_3389_fendo_2024_1471548
crossref_primary_10_3390_math11061358
crossref_primary_10_1016_j_bspc_2024_106999
crossref_primary_10_1109_ACCESS_2021_3128916
crossref_primary_10_1186_s12938_025_01436_y
crossref_primary_10_1016_j_artmed_2024_102918
crossref_primary_10_1080_0886022X_2025_2507162
crossref_primary_10_1016_j_cmpb_2024_108427
crossref_primary_10_3390_bioengineering9110622
crossref_primary_10_3389_fbioe_2021_737055
crossref_primary_10_3389_fphys_2023_1100570
crossref_primary_10_1002_ame2_12354
crossref_primary_10_1134_S0021894424030180
crossref_primary_10_1038_s41598_025_10492_2
crossref_primary_10_3390_molecules28124826
crossref_primary_10_1109_TBME_2023_3236918
crossref_primary_10_1146_annurev_physiol_042022_031925
crossref_primary_10_3389_fcvm_2024_1350726
crossref_primary_10_3390_computation12060110
crossref_primary_10_3390_s23031559
crossref_primary_10_1016_j_bbe_2021_11_001
crossref_primary_10_3390_app15094788
crossref_primary_10_1080_0886022X_2024_2387932
crossref_primary_10_1016_j_bspc_2025_108161
crossref_primary_10_1161_HYPERTENSIONAHA_123_21618
crossref_primary_10_1080_10255842_2025_2504160
crossref_primary_10_1007_s11906_023_01285_x
Cites_doi 10.3390/math8050662
10.1097/00004872-200412000-00010
10.1038/s41591-018-0240-2
10.1161/HYPERTENSIONAHA.119.12655
10.1097/MBP.0b013e3283614168
10.1016/j.neuroimage.2018.06.001
10.1017/thg.2012.89
10.1161/HYPERTENSIONAHA.109.129114
10.1038/s41598-018-19457-0
10.1016/j.neunet.2014.09.003
10.1093/ajh/hpx140
10.1109/TBCAS.2019.2892297
10.1038/nrneph.2017.78
10.1152/ajpheart.00218.2019
10.1016/j.exger.2017.06.007
10.1093/eurheartj/ehl254
10.1002/ejhf.1333
10.1007/s10439-013-0854-y
10.1016/j.jacc.2009.10.061
10.1161/HYPERTENSIONAHA.109.139964
10.1097/HJH.0b013e3282f82c3e
10.1162/neco.1997.9.8.1735
10.1097/HJH.0000000000002373
10.1161/01.HYP.0000128420.01881.aa
10.1016/j.artres.2010.03.001
10.1007/s13246-019-00722-z
10.1161/CIRCRESAHA.111.246876
10.1155/2018/5767864
10.1093/ije/dyr207
10.1088/1361-6579/aabe6a
10.1097/HJH.0b013e32834fa8b0
10.1080/08037051.2017.1394791
10.1016/j.artres.2009.02.006
10.1002/ehf2.12419
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Jin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Jin et al 2021 Jin et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Jin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Jin et al 2021 Jin et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0245026
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE



Agricultural Science Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Pulse wave velocity estimation by machine learning
EISSN 1932-6203
ExternalDocumentID 2545974724
oai_doaj_org_article_8b0c22e681634ddfab69f8477163370c
PMC8238176
A666690717
34181640
10_1371_journal_pone_0245026
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
United Kingdom--UK
GeographicLocations_xml – name: United Kingdom
– name: United Kingdom--UK
GrantInformation_xml – fundername: Wellcome Trust
– fundername: British Heart Foundation
  grantid: PG/15/104/31913
– fundername: Wellcome Trust
  grantid: WT 203148/Z/16/Z
– fundername: British Heart Foundation
  grantid: SP/12/4/29573
– fundername: ;
– fundername: ;
  grantid: WT 203148/Z/16/Z
– fundername: ;
  grantid: EP/K031546/1
– fundername: ;
  grantid: 075-15-2020-926
– fundername: ;
  grantid: PG/15/104/31913
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c692t-71bcf0b5aa428809d643821979a6241b0a3ff670366ceb681bf3c96393c27a403
IEDL.DBID FPL
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671695800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Sun Jul 02 11:03:59 EDT 2023
Mon Nov 10 04:23:48 EST 2025
Tue Nov 04 01:47:10 EST 2025
Mon Sep 08 04:42:13 EDT 2025
Tue Oct 07 07:47:50 EDT 2025
Sat Nov 29 12:57:36 EST 2025
Sat Nov 29 10:05:13 EST 2025
Wed Nov 26 09:51:40 EST 2025
Wed Nov 26 09:51:24 EST 2025
Thu May 22 21:26:30 EDT 2025
Mon Jul 21 06:00:24 EDT 2025
Sat Nov 29 01:57:59 EST 2025
Tue Nov 18 20:38:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-71bcf0b5aa428809d643821979a6241b0a3ff670366ceb681bf3c96393c27a403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-0919-2470
0000-0003-3742-5259
OpenAccessLink http://dx.doi.org/10.1371/journal.pone.0245026
PMID 34181640
PQID 2545974724
PQPubID 1436336
PageCount e0245026
ParticipantIDs plos_journals_2545974724
doaj_primary_oai_doaj_org_article_8b0c22e681634ddfab69f8477163370c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8238176
proquest_miscellaneous_2546602259
proquest_journals_2545974724
gale_infotracmisc_A666690717
gale_infotracacademiconefile_A666690717
gale_incontextgauss_ISR_A666690717
gale_incontextgauss_IOV_A666690717
gale_healthsolutions_A666690717
pubmed_primary_34181640
crossref_citationtrail_10_1371_journal_pone_0245026
crossref_primary_10_1371_journal_pone_0245026
PublicationCentury 2000
PublicationDate 2021-06-28
PublicationDateYYYYMMDD 2021-06-28
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References J Schmidhuber (pone.0245026.ref026) 2015; 61
A Jekell (pone.0245026.ref033) 2018; 27
C Vlachopoulos (pone.0245026.ref008) 2010; 55
LM Van Bortel (pone.0245026.ref009) 2012; 30
PH Charlton (pone.0245026.ref021) 2018; 39
LdR Mikael (pone.0245026.ref028) 2017; 109
J Niebauer (pone.0245026.ref005) 2020; 19
P Salvi (pone.0245026.ref031) 2004; 22
ZI Attia (pone.0245026.ref012) 2019; 25
SP Karunathilake (pone.0245026.ref016) 2018; 2018
PM Nilsson (pone.0245026.ref006) 2008; 26
M Cikes (pone.0245026.ref015) 2019; 21
JR Weir-McCall (pone.0245026.ref036) 2017; 17
P Segers (pone.0245026.ref035) 2009; 3
B Hametner (pone.0245026.ref032) 2013; 18
PM Nilsson (pone.0245026.ref003) 2009; 54
SE Awan (pone.0245026.ref014) 2019; 6
A Grillo (pone.0245026.ref037) 2018; 31
NK Chakshu (pone.0245026.ref017) 2020
NR Gaddum (pone.0245026.ref027) 2013; 41
S Hochreiter (pone.0245026.ref024) 1997; 9
D Biswas (pone.0245026.ref013) 2019; 13
P Tavallali (pone.0245026.ref018) 2018; 8
S Laurent (pone.0245026.ref010) 2006; 27
A Moayyeri (pone.0245026.ref020) 2013; 42
PH Charlton (pone.0245026.ref022) 2019; 317
A Laina (pone.0245026.ref001) 2018; 109
BJ North (pone.0245026.ref002) 2012; 110
M Gomez-Sanchez (pone.0245026.ref004) 2020; 38
A Moayyeri (pone.0245026.ref019) 2013; 16
GF Mitchell (pone.0245026.ref029) 2004; 43
KL Wang (pone.0245026.ref030) 2010; 55
H Perez (pone.0245026.ref023) 2020; 8
Z Cui (pone.0245026.ref038) 2018; 178
PG Shiels (pone.0245026.ref040) 2017; 13
S Laurent (pone.0245026.ref007) 2019; 74
ZC Lipton (pone.0245026.ref025) 2015
IB Wilkinson (pone.0245026.ref034) 2010; 4
MM Mukaka (pone.0245026.ref039) 2012; 24
AM Alqudah (pone.0245026.ref011) 2019; 42
References_xml – volume: 8
  issue: 5
  year: 2020
  ident: pone.0245026.ref023
  article-title: Improving the accuracy of convolutional neural networks by identifying and removing outlier images in datasets using t-SNE
  publication-title: Mathematics
  doi: 10.3390/math8050662
– volume: 22
  start-page: 2285
  issue: 12
  year: 2004
  ident: pone.0245026.ref031
  article-title: Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: The PulsePen device
  publication-title: Journal of Hypertension
  doi: 10.1097/00004872-200412000-00010
– volume: 25
  start-page: 70
  issue: 1
  year: 2019
  ident: pone.0245026.ref012
  article-title: Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram
  publication-title: Nature Medicine
  doi: 10.1038/s41591-018-0240-2
– volume: 74
  start-page: 218
  issue: 2
  year: 2019
  ident: pone.0245026.ref007
  article-title: Concept of extremes in vascular aging: From early vascular aging to supernormal vascular aging
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.119.12655
– volume: 17
  start-page: 1
  issue: 1
  year: 2017
  ident: pone.0245026.ref036
  article-title: Effects of inaccuracies in arterial path length measurement on differences in MRI and tonometry measured pulse wave velocity
  publication-title: BMC Cardiovascular Disorders
– volume: 18
  start-page: 173
  issue: 3
  year: 2013
  ident: pone.0245026.ref032
  article-title: Oscillometric estimation of aortic pulse wave velocity: Comparison with intra-aortic catheter measurements
  publication-title: Blood Pressure Monitoring
  doi: 10.1097/MBP.0b013e3283614168
– volume: 178
  start-page: 622
  issue: May
  year: 2018
  ident: pone.0245026.ref038
  article-title: The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.06.001
– volume: 16
  start-page: 144
  issue: 1
  year: 2013
  ident: pone.0245026.ref019
  article-title: The UK adult twin registry (TwinsUK resource)
  publication-title: Twin Research and Human Genetics
  doi: 10.1017/thg.2012.89
– volume: 54
  start-page: 3
  issue: 1
  year: 2009
  ident: pone.0245026.ref003
  article-title: Vascular aging: A tale of EVA and ADAM in cardiovascular risk assessment and prevention
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.109.129114
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: pone.0245026.ref018
  article-title: Artificial intelligence estimation of carotid-femoral pulse wave velocity using carotid waveform
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-19457-0
– volume: 61
  start-page: 85
  year: 2015
  ident: pone.0245026.ref026
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– volume: 31
  start-page: 80
  issue: 1
  year: 2018
  ident: pone.0245026.ref037
  article-title: Short-Term Repeatability of Noninvasive Aortic Pulse Wave Velocity Assessment: Comparison between Methods and Devices
  publication-title: American Journal of Hypertension
  doi: 10.1093/ajh/hpx140
– volume: 13
  start-page: 282
  issue: 2
  year: 2019
  ident: pone.0245026.ref013
  article-title: CorNET: Deep learning framework for PPG-based heart rate estimation and biometric identification in ambulant environment
  publication-title: IEEE Transactions on Biomedical Circuits and Systems
  doi: 10.1109/TBCAS.2019.2892297
– volume: 13
  start-page: 471
  issue: 8
  year: 2017
  ident: pone.0245026.ref040
  article-title: The role of epigenetics in renal ageing
  publication-title: Nature Reviews Nephrology
  doi: 10.1038/nrneph.2017.78
– volume: 317
  start-page: H1062
  issue: 5
  year: 2019
  ident: pone.0245026.ref022
  article-title: Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes
  publication-title: American journal of physiology Heart and circulatory physiology
  doi: 10.1152/ajpheart.00218.2019
– volume: 109
  start-page: 16
  year: 2018
  ident: pone.0245026.ref001
  article-title: Vascular ageing: Underlying mechanisms and clinical implications
  publication-title: Experimental Gerontology
  doi: 10.1016/j.exger.2017.06.007
– volume: 27
  start-page: 2588
  issue: 21
  year: 2006
  ident: pone.0245026.ref010
  article-title: Expert consensus document on arterial stiffness: Methodological issues and clinical applications
  publication-title: European Heart Journal
  doi: 10.1093/eurheartj/ehl254
– volume: 21
  start-page: 74
  issue: 1
  year: 2019
  ident: pone.0245026.ref015
  article-title: Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy
  publication-title: European Journal of Heart Failure
  doi: 10.1002/ejhf.1333
– volume: 41
  start-page: 2617
  issue: 12
  year: 2013
  ident: pone.0245026.ref027
  article-title: A technical assessment of pulse wave velocity algorithms applied to non-invasive arterial waveforms
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-013-0854-y
– volume: 55
  start-page: 1318
  issue: 13
  year: 2010
  ident: pone.0245026.ref008
  article-title: Prediction of cardiovascular events and all-cause mortality with arterial stiffness. A systematic review and meta-analysis
  publication-title: Journal of the American College of Cardiology
  doi: 10.1016/j.jacc.2009.10.061
– volume: 55
  start-page: 799
  issue: 3
  year: 2010
  ident: pone.0245026.ref030
  article-title: Wave reflection and arterial stiffness in the prediction of 15-year all-cause and cardiovascular mortalities: A community-based study
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.109.139964
– volume: 26
  start-page: 1049
  issue: 6
  year: 2008
  ident: pone.0245026.ref006
  article-title: The early life origins of vascular ageing and cardiovascular risk: The EVA syndrome
  publication-title: Journal of Hypertension
  doi: 10.1097/HJH.0b013e3282f82c3e
– volume: 19
  start-page: 460
  issue: 3
  year: 2020
  ident: pone.0245026.ref005
  article-title: Acute effects of winter sports and indoor cycling on arterial stiffness
  publication-title: Journal of Sports Science and Medicine
– volume: 9
  start-page: 1735
  year: 1997
  ident: pone.0245026.ref024
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 38
  start-page: 1110
  issue: 6
  year: 2020
  ident: pone.0245026.ref004
  article-title: Vascular aging and its relationship with lifestyles and other risk factors in the general Spanish population: Early Vascular Ageing Study
  publication-title: Journal of hypertension
  doi: 10.1097/HJH.0000000000002373
– volume: 43
  start-page: 1239
  issue: 6
  year: 2004
  ident: pone.0245026.ref029
  article-title: Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: The Framingham Heart Study
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000128420.01881.aa
– year: 2020
  ident: pone.0245026.ref017
  article-title: Towards enabling a cardiovascular digital twin for human systemic circulation using inverse analysis
  publication-title: Biomechanics and Modeling in Mechanobiology
– volume: 4
  start-page: 34
  issue: 2
  year: 2010
  ident: pone.0245026.ref034
  article-title: ARTERY Society guidelines for validation of non-invasive haemodynamic measurement devices: Part 1, arterial pulse wave velocity
  publication-title: Artery Research
  doi: 10.1016/j.artres.2010.03.001
– volume: 42
  start-page: 149
  issue: 1
  year: 2019
  ident: pone.0245026.ref011
  article-title: Developing of robust and high accurate ECG beat classification by combining Gaussian mixtures and wavelets features
  publication-title: Australasian Physical and Engineering Sciences in Medicine
  doi: 10.1007/s13246-019-00722-z
– volume: 110
  start-page: 1097
  issue: 8
  year: 2012
  ident: pone.0245026.ref002
  article-title: The intersection between aging and cardiovascular disease
  publication-title: Circulation Research
  doi: 10.1161/CIRCRESAHA.111.246876
– volume: 2018
  year: 2018
  ident: pone.0245026.ref016
  article-title: Secondary prevention of cardiovascular diseases and application of technology for early diagnosis
  publication-title: BioMed Research International
  doi: 10.1155/2018/5767864
– volume: 109
  start-page: 253
  issue: 3
  year: 2017
  ident: pone.0245026.ref028
  article-title: Vascular ageing and arterial stiffness
  publication-title: Arquivos Brasileiros de Cardiologia
– start-page: 1
  year: 2015
  ident: pone.0245026.ref025
  article-title: A critical review of recurrent neural networks for sequence learning
  publication-title: arXiv
– volume: 42
  start-page: 76
  issue: 1
  year: 2013
  ident: pone.0245026.ref020
  article-title: Cohort profile: TwinsUK and healthy ageing twin study
  publication-title: International Journal of Epidemiology
  doi: 10.1093/ije/dyr207
– volume: 39
  issue: 5
  year: 2018
  ident: pone.0245026.ref021
  article-title: Assessing mental stress from the photoplethysmogram: A numerical study
  publication-title: Physiological Measurement
  doi: 10.1088/1361-6579/aabe6a
– volume: 30
  start-page: 445
  issue: 3
  year: 2012
  ident: pone.0245026.ref009
  article-title: Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity
  publication-title: Journal of Hypertension
  doi: 10.1097/HJH.0b013e32834fa8b0
– volume: 27
  start-page: 88
  issue: 2
  year: 2018
  ident: pone.0245026.ref033
  article-title: The usefulness of a single arm cuff oscillometric method (Arteriograph) to assess changes in central aortic blood pressure and arterial stiffness by antihypertensive treatment: results from the Doxazosin-Ramipril Study
  publication-title: Blood Pressure
  doi: 10.1080/08037051.2017.1394791
– volume: 3
  start-page: 79
  issue: 2
  year: 2009
  ident: pone.0245026.ref035
  article-title: Limitations and pitfalls of non-invasive measurement of arterial pressure wave reflections and pulse wave velocity
  publication-title: Artery Research
  doi: 10.1016/j.artres.2009.02.006
– volume: 6
  start-page: 428
  issue: 2
  year: 2019
  ident: pone.0245026.ref014
  article-title: Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics
  publication-title: ESC Heart Failure
  doi: 10.1002/ehf2.12419
– volume: 24
  start-page: 69
  issue: September
  year: 2012
  ident: pone.0245026.ref039
  article-title: Statistics Corner: A guide to appropriate use of correlation coefficient in medical resaerch
  publication-title: Malawi Medical Journal
SSID ssj0053866
Score 2.5317566
Snippet One of the European gold standard measurement of vascular ageing, a risk factor for cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV),...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0245026
SubjectTerms Accuracy
Adult
Aged
Aging
Algorithms
Analysis
Biology and Life Sciences
Biomedical engineering
Blood Pressure
Cardiovascular diseases
Cardiovascular Diseases - diagnostic imaging
Cardiovascular Diseases - prevention & control
Carotid Arteries - diagnostic imaging
Carotid Arteries - physiology
Carotid-Femoral Pulse Wave Velocity - methods
Computer and Information Sciences
Diagnosis
Disease
Elastic waves
Engineering and Technology
Evaluation
Feature extraction
Female
Femoral Artery - diagnostic imaging
Femoral Artery - physiology
Gaussian process
Health risks
Heart Rate
Humans
Learning algorithms
Libraries
Machine Learning
Male
Medical tests
Medicine and Health Sciences
Middle Aged
Mortality
Neural networks
Physical Sciences
Pipelines
Population studies
Pressure
Principal components analysis
Pulse Wave Analysis - methods
Radial Artery - diagnostic imaging
Radial Artery - physiology
Random noise
Recurrent neural networks
Research and Analysis Methods
Risk analysis
Risk Factors
Vascular Stiffness - physiology
Velocity
Wave analysis
Wave velocity
Waveforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQigMXRHk1UMAgJOCQ1uskdnwsqBVcCuKlnrAcJ05X2mZXyab8fWYcb7RBlcqBazyJknnY38Tjbwh5XaYZ8p7ngNysilOZZ3HOCxXbylleZhIrGn2zCXl2lp-fqy87rb6wJmygBx4Ud5QXzHJeiRyAQ1qWzhRCOZhSAecniWQWZ19APdtkapiDIYqFCAflEjk_CnY5XK-a6hA3Gz2Zws5C5Pn6x1l5tl6uuusg59-VkztL0ek9cjdgSHo8vPseuVU198leiNKOvg1U0u8ekF8nEMGISZuarntYBelvc1VRrBOyAL8pHi6hAAFpixQFS-qrYvs2iGFNfE0vfbllRUN_iZqaZb1qF5uLy-4h-XF68v3Dxzh0VIitUHwTy3lhHSsyYyDryJkqBe4DzpVURsBSXjCTOCeQk0vYqgCdFy6xEKIqsVyalCWPyKwBHe4TWlpnC2WcsQweZgrFc2ZZZRJVZkkpZESSrXq1DXTj2PViqf0emoS0Y9CWRqPoYJSIxONd64Fu4wb592i5URbJsv0FcCEdXEjf5EIReYF218PJ0zHk9TGkdvjzYA4f88pLIGFGgxU5tem7Tn_6_PMfhL59nQi9CUJuBeqwJpyCgG9CIq6J5MFEEsLeTob30Uu3Wuk0ZPo-OeQp3Ln13OuHX47D-FCssmuqVe9lhABQl6mIPB4cfdQsoB3QX8oiIichMFH9dKRZXHi-8hxhoRRP_oetnpI7HKuKmIh5fkBmm7avnpHb9mqz6NrnfhL4A9B6Ybo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg4cAFKK8GChiEBBzSeuPEjk-ooFZwKRUvVRyIHOfRStskJJvy95lxnNCgCpC4xpMonvGMP9vjbwh5loUR8p7HgNyM8kMZR34cpMo3eWGCLJKY0WiLTciDg_joSB26DbfOpVWOMdEG6qw2uEe-AwsZi32D8FXz3ceqUXi66kpoXCZXkCUBHfMw-jpGYvBlIdx1OS6XO846201d5dt45GgpFc5NR5a1f4rNi2ZVdxcBz9_zJ89NSPs3_rcrN8l1B0Xp7jB2NsilvLpFNpyzd_SFY6R-eZt824NAgNC2KmnTw2RKf-iznGK6kQEUT_GOCgUkSVtkOlhRm1zbt04MU-tLemqzNnPqylSUVK9K-Kn18Wl3h3ze3_v05q3vCjP4Rqhg7ctlagqWRlrD4iVmKhN4nLhUUmkBiCBlmheFQGovYfJUADIuuAFPV9wEUoeM3yWLCoywSWhmCpMqXWjD4GM6VUHMDMs1V1nEMyE9wkf7JMaxlmPxjFVij-IkrF4GbSVo1cRZ1SP-9FYzsHb8Rf41mn6SRc5t-6Buy8S5cBKnzARBDt0RPMyyQqdCFTC5w4qTc8mMRx7jwEmGC6xT5Eh2YYWIexBL6MxTK4G8GxUm9pS677rk3fsv_yD08cNM6LkTKmpQh9HuMgX0Cfm8ZpJbM0mIHmbWvInDfNRKl_wanPDmOHwvbn4yNeNHMVmvyuveyggB2DBSHrk3eMqkWQBNoL-QeUTOfGim-nlLdXJsac9jRJdS3P_zbz0g1wJMO2LCD-Itsli3ff6QXDVn65OufWTjw09QSHCW
  priority: 102
  providerName: ProQuest
Title Estimating pulse wave velocity from the radial pressure wave using machine learning algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/34181640
https://www.proquest.com/docview/2545974724
https://www.proquest.com/docview/2546602259
https://pubmed.ncbi.nlm.nih.gov/PMC8238176
https://doaj.org/article/8b0c22e681634ddfab69f8477163370c
http://dx.doi.org/10.1371/journal.pone.0245026
Volume 16
WOSCitedRecordID wos000671695800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZYxwMvwPi1wigGIQEPKW6c2PHjOrViGitRB9PGA5HjJF2lLq2advz73LluIdMm4OUe4nMUn332d_H5MyFvsyBE3vMIkJtRXiCj0Iv8VHkmL4yfhRIzGu1lE3IwiM7OVPw7ULy2g89l56OzaXs2LfM2bhRC1LBFtn0uBKZw9ePP65kXfFcIdzzutpq15cey9G_m4sZsMq1uAprX8yX_WID6D_730x-S-w5q0v3V2Nghd_LyEdlxzlzR945x-sNj8qMHjo7QtRzR2RIWS_pTX-UU04kMoHSKZ1AoIEU6RyaDCbXJs8u5U8PU-RG9tFmZOXXXUIyonoym8_Hi4rJ6Qr71e18PPnnu4gXPCOUvPNlJTcHSUGsITiKmMoHbhR0llRaw4qdM86IQSN0lTJ4KQL4FN-DJihtf6oDxp6RRQpt3Cc1MYVKlC20YvEynyo-YYbnmKgt5JmST8HV_JMaxkuPlGJPEbrVJiE5W1krQiIkzYpN4m1qzFSvHX_S72NUbXeTUtg-gtxLnokmUMuP7OTRH8CDLCp0KVcDiDREl55KZJnmFAyVZHVDdzAzJPkSA-I-hA415YzWQV6PExJ2RXlZVcvjl9B-UToY1pXdOqZiCOYx2hyWgTcjXVdPcq2nC7GBqxbs4rNdWqRIfIDPGkH4ANddD_ebi15tifCkm45X5dGl1hADsF6omebbyjI1lARSB_QLWJLLmMzXT10vK8YWlNY8QPUrx_PYvfkHu-ZhSxITnR3uksZgv85fkrrlajKt5i2zJ4SnKM2llBDI66LTIdrc3iIct-7ulZWcMkEfdNshjdoRSxlaegIzD71AjPjyOz38BYJVrSQ
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKggQXoLy6UKhBIOCQNuskdnxAqECrrloWBAXtieA4j1baJstmtxV_it_IjOOEBlXApQeu64m1nsyMv4nH3xDyOPED5D0PAblp6fgiDJyQxdLRaaZZEgisaDTNJsRoFI7H8v0S-dHchcGyyiYmmkCdlBq_kW9AImOwL_NfTr852DUKT1ebFhq1Weym308gZateDN_A-33C2PbW_usdx3YVcDSXbO6IQawzNw6UAuQdujLheBY2kEIqDttZ7CovyzjyUnGdxhxgXeZpMFPpaSaU73ow7wVyEeK4wBIyMW4TPIgdnNvreZ4YbFhrWJ-WRbqOR5yGwuHU9me6BLR7QW86KauzgO7v9ZqnNsDta_-b6q6TqxZq083aN5bJUlrcIMs2mFX0mWXcfn6TfNmCQIfQvcjpdAFggZ6o45RiOZWGLIXiHRwKSJnOkMlhQk3x8GJmxfDqQE6PTFVqSm0bjpyqSQ5KmB8cVbfIp3NZ523SK-ClrxCa6EzHUmVKuzCZiiULXe2mypNJ4CVc9InX2EOkLSs7NgeZROaoUUB2VmsrQiuKrBX1idM-Na1ZSf4i_wpNrZVFTnHzQznLIxuiojB2NWMpLId7fpJkKuYyA_ACGbXnCVf3yRoaalRf0G0jY7QJGTB-YxnAYh4ZCeQVKbBwKVeLqoqG7z7_g9DHDx2hp1YoK0EdWtnLIrAm5CvrSK52JCE66s7wCrpVo5Uq-uUM8GTjLmcPP2yHcVIsRizScmFkOAfsG8g-uVN7ZqtZAIWgP9_tE9Hx2Y7quyPF4YGhdQ8RPQt-989_a41c3tl_uxftDUe798gVhiVWLndYuEp689kivU8u6eP5YTV7YGITJV_P26N_Aq7lytc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgBAXoLwaKHRBIODgxlnbu94DQoU2IioKERRUccCs149WSp0QJ634a_w6ZtZrU6MKuPTANTteZcfz-MY7D0IeJ36Afc9DQG5aOr4IAydksXR0mmmWBAIzGs2wCTEahfv7crxCftS1MJhWWdtEY6iTqcZv5D0IZAz2ZX4vs2kR4-3By9k3BydI4U1rPU6jEpHd9PsJhG_li-E2vOsnjA129l6_ceyEAUdzyRaO6Mc6c-NAKUDhoSsTjvdifSmk4uDaYld5WcaxRxXXacwB4mWeBpGVnmZC-a4H-14gFwXEmBj4jYPPtRcAO8K5LdXzRL9nJWNzNi3STbzuNO0cTrlCMzGg8Qud2WRangV6f8_dPOUMB9f-ZzZeJ1ctBKdblc6skpW0uEFWrZEr6TPbifv5TfJlBwwgQvoip7MlgAh6oo5TimlWGqIXirU5FBA0nWOHhwk1ScXLuSXDkoKcHpls1ZTa8Rw5VZMcmLA4OCpvkY_ncs7bpFOAAKwRmuhMx1JlSruwmYolC13tpsqTSeAlXHSJV8tGpG23dhwaMonMFaSAqK3iVoQSFVmJ6hKneWpWdSv5C_0rFLuGFnuNmx-m8zyypisKY1czlsJxuOcnSaZiLjMANRBpe55wdZdsoNBGVeFuYzGjLYiM8dtLHw7zyFBgv5ECRS5Xy7KMhu8-_QPRh_ctoqeWKJsCO7SyRSRwJuxj1qJcb1GC1dSt5TVUsZorZfRLMeDJWnXOXn7YLOOmmKRYpNOloeEcMHEgu-ROpaUNZwEsAv98t0tES39brG-vFIcHpt17iKha8Lt__lsb5DIocvR2ONq9R64wzLxyucPCddJZzJfpfXJJHy8Oy_kDY6Yo-XreCv0TjZvTyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+pulse+wave+velocity+from+the+radial+pressure+wave+using+machine+learning+algorithms&rft.jtitle=PloS+one&rft.au=Jin%2C+Weiwei&rft.au=Alastruey%2C+Jordi&rft.au=Chowienczyk%2C+Philip&rft.date=2021-06-28&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=6&rft.spage=e0245026&rft_id=info:doi/10.1371%2Fjournal.pone.0245026&rft.externalDBID=n%2Fa&rft.externalDocID=A666690717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon