Unified quantitative characterization of epithelial tissue development

Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:eLife Ročník 4
Hlavní autori: Guirao, Boris, Rigaud, Stéphane U, Bosveld, Floris, Bailles, Anaïs, López-Gay, Jesús, Ishihara, Shuji, Sugimura, Kaoru, Graner, François, Bellaïche, Yohanns
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England eLife Science Publications, Ltd 12.12.2015
eLife Sciences Publication
eLife Sciences Publications, Ltd
eLife Sciences Publications Ltd
Predmet:
ISSN:2050-084X, 2050-084X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. In animals, the final size and shape of each tissue is determined by the precise control of when, where and how much individual cells grow, divide, move and die. An important challenge in biology is to understand how the behaviors of each individual cell can act together to generate a large and reproducible change at the scale of entire tissues and organs. Here, Guirao et al. have developed a new approach to provide maps that reveal how much each cell process contributes to the development of tissues. A caterpillar becoming a butterfly is a famous example of insect ‘metamorphosis’. The fruit fly offers another example of such tissue development: within five days, a rice grain-like maggot morphs into an adult fly with long antennae, legs and wings. Guirao et al. used a microscope to observe cells over a period of several hours during the metamorphosis of the adult fruit fly wings and thorax (the region between the neck and abdomen). In both regions, Guirao et al. showed that all the cell processes participate in the formation of the adult tissue. Cell division, cell death, and changes in cell size affect the size of the tissue, while cell division, cell rearrangements, and changes in cell shape alter the shape of the tissue. The relative contributions of these cell processes varied a lot in both space and time. Further experiments then used mutant flies with defects in cell division to analyse the impact of cell division on the other cell processes and the eventual shape of the tissue. Finally, Guirao et al. showed that there are unexpected interactions between the patterns of tissue growth, cell division and the mechanical forces in the tissue. These findings provide a new approach to uncover how animals from different species can have such a variety of shapes and sizes, even though they each start life as a single cell. Ultimately, this may also aid efforts to understand how certain diseases affect the development of tissues.
AbstractList Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. DOI: http://dx.doi.org/10.7554/eLife.08519.001 In animals, the final size and shape of each tissue is determined by the precise control of when, where and how much individual cells grow, divide, move and die. An important challenge in biology is to understand how the behaviors of each individual cell can act together to generate a large and reproducible change at the scale of entire tissues and organs. Here, Guirao et al. have developed a new approach to provide maps that reveal how much each cell process contributes to the development of tissues. A caterpillar becoming a butterfly is a famous example of insect ‘metamorphosis’. The fruit fly offers another example of such tissue development: within five days, a rice grain-like maggot morphs into an adult fly with long antennae, legs and wings. Guirao et al. used a microscope to observe cells over a period of several hours during the metamorphosis of the adult fruit fly wings and thorax (the region between the neck and abdomen). In both regions, Guirao et al. showed that all the cell processes participate in the formation of the adult tissue. Cell division, cell death, and changes in cell size affect the size of the tissue, while cell division, cell rearrangements, and changes in cell shape alter the shape of the tissue. The relative contributions of these cell processes varied a lot in both space and time. Further experiments then used mutant flies with defects in cell division to analyse the impact of cell division on the other cell processes and the eventual shape of the tissue. Finally, Guirao et al. showed that there are unexpected interactions between the patterns of tissue growth, cell division and the mechanical forces in the tissue. These findings provide a new approach to uncover how animals from different species can have such a variety of shapes and sizes, even though they each start life as a single cell. Ultimately, this may also aid efforts to understand how certain diseases affect the development of tissues. DOI: http://dx.doi.org/10.7554/eLife.08519.002
Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development.
Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. In animals, the final size and shape of each tissue is determined by the precise control of when, where and how much individual cells grow, divide, move and die. An important challenge in biology is to understand how the behaviors of each individual cell can act together to generate a large and reproducible change at the scale of entire tissues and organs. Here, Guirao et al. have developed a new approach to provide maps that reveal how much each cell process contributes to the development of tissues. A caterpillar becoming a butterfly is a famous example of insect ‘metamorphosis’. The fruit fly offers another example of such tissue development: within five days, a rice grain-like maggot morphs into an adult fly with long antennae, legs and wings. Guirao et al. used a microscope to observe cells over a period of several hours during the metamorphosis of the adult fruit fly wings and thorax (the region between the neck and abdomen). In both regions, Guirao et al. showed that all the cell processes participate in the formation of the adult tissue. Cell division, cell death, and changes in cell size affect the size of the tissue, while cell division, cell rearrangements, and changes in cell shape alter the shape of the tissue. The relative contributions of these cell processes varied a lot in both space and time. Further experiments then used mutant flies with defects in cell division to analyse the impact of cell division on the other cell processes and the eventual shape of the tissue. Finally, Guirao et al. showed that there are unexpected interactions between the patterns of tissue growth, cell division and the mechanical forces in the tissue. These findings provide a new approach to uncover how animals from different species can have such a variety of shapes and sizes, even though they each start life as a single cell. Ultimately, this may also aid efforts to understand how certain diseases affect the development of tissues.
Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. DOI: eLife digest In animals, the final size and shape of each tissue is determined by the precise control of when, where and how much individual cells grow, divide, move and die. An important challenge in biology is to understand how the behaviors of each individual cell can act together to generate a large and reproducible change at the scale of entire tissues and organs. Here, Guirao et al. have developed a new approach to provide maps that reveal how much each cell process contributes to the development of tissues. A caterpillar becoming a butterfly is a famous example of insect 'metamorphosis'. The fruit fly offers another example of such tissue development: within five days, a rice grain-like maggot morphs into an adult fly with long antennae, legs and wings. Guirao et al. used a microscope to observe cells over a period of several hours during the metamorphosis of the adult fruit fly wings and thorax (the region between the neck and abdomen). In both regions, Guirao et al. showed that all the cell processes participate in the formation of the adult tissue. Cell division, cell death, and changes in cell size affect the size of the tissue, while cell division, cell rearrangements, and changes in cell shape alter the shape of the tissue. The relative contributions of these cell processes varied a lot in both space and time. Further experiments then used mutant flies with defects in cell division to analyse the impact of cell division on the other cell processes and the eventual shape of the tissue. Finally, Guirao et al. showed that there are unexpected interactions between the patterns of tissue growth, cell division and the mechanical forces in the tissue. These findings provide a new approach to uncover how animals from different species can have such a variety of shapes and sizes, even though they each start life as a single cell. Ultimately, this may also aid efforts to understand how certain diseases affect the development of tissues. DOI:
Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development.Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development.
Audience Academic
Author Sugimura, Kaoru
Bellaïche, Yohanns
Bosveld, Floris
Rigaud, Stéphane U
Graner, François
López-Gay, Jesús
Ishihara, Shuji
Guirao, Boris
Bailles, Anaïs
Author_xml – sequence: 1
  givenname: Boris
  surname: Guirao
  fullname: Guirao, Boris
  organization: Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
– sequence: 2
  givenname: Stéphane U
  surname: Rigaud
  fullname: Rigaud, Stéphane U
  organization: Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
– sequence: 3
  givenname: Floris
  surname: Bosveld
  fullname: Bosveld, Floris
  organization: Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
– sequence: 4
  givenname: Anaïs
  surname: Bailles
  fullname: Bailles, Anaïs
  organization: Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
– sequence: 5
  givenname: Jesús
  orcidid: 0000-0002-9388-4065
  surname: López-Gay
  fullname: López-Gay, Jesús
  organization: Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
– sequence: 6
  givenname: Shuji
  orcidid: 0000-0002-3302-3925
  surname: Ishihara
  fullname: Ishihara, Shuji
  organization: Department of Physics, School of Science and Technology, Meiji University, Kanagawa, Japan
– sequence: 7
  givenname: Kaoru
  surname: Sugimura
  fullname: Sugimura, Kaoru
  organization: Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan, Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Tokyo, Japan
– sequence: 8
  givenname: François
  surname: Graner
  fullname: Graner, François
  organization: Laboratoire Matière et Systèmes Complexes (CNRS UMR7057), Université Paris-Diderot, Paris, France
– sequence: 9
  givenname: Yohanns
  surname: Bellaïche
  fullname: Bellaïche, Yohanns
  organization: Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26653285$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02626582$$DView record in HAL
BookMark eNptktFr2zAQxs3oWLuuT3sfhr2sjGSSLdnSyyCUdg0EBtsKexNn6ZSoOFZqyWHrXz856UpTKj1InH73HXf63mZHne8wy95TMq05Z19w4SxOieBUvspOCsLJhAj2--jJ_Tg7C-GWpFUzIah8kx0XVcXLQvCT7Oqmc9ahye8G6KKLEN0Wc72CHnTE3t2ngO9yb3PcuLjC1kGbRxfCgLnBLbZ-s8YuvsteW2gDnj2cp9nN1eWvi-vJ4vu3-cVsMdGVLOKkkpZZoUsjK0Bu0DDeQFHqssKmAV00lEvksibMUFOLysgCwIIg2FQJh_I0m-91jYdbtendGvq_yoNTu4Dvlwr66HSLygId5SXDumQ8lQTJibGUEmnqksik9XWvtRmaNRqd2uihPRA9fOncSi39VjFBqSBlEjjfC6yepV3PFmqMkaIqKi6KLU3sp4divb8bMES1dkFj20KHfgiK1jWvyvSLI_pxjy4hteE661N1PeJqxlIvlDDOEjV9gUrb4NrpZBLrUvwg4fwgITER_8QlDCGo-c8fh-yHp6N5bO6_bxLweQ_o3ofQo31EKFGjMdXOmGpnzETTZ7TeOc2Pc3Xtizn_AGBr5Ws
CitedBy_id crossref_primary_10_1016_j_cub_2022_08_063
crossref_primary_10_1103_PhysRevX_15_021068
crossref_primary_10_3389_fphy_2020_00031
crossref_primary_10_1093_imammb_dqx008
crossref_primary_10_1242_dev_151233
crossref_primary_10_1007_s13752_024_00477_1
crossref_primary_10_1016_j_devcel_2020_07_019
crossref_primary_10_1016_j_devcel_2016_09_008
crossref_primary_10_1038_s41467_022_31266_8
crossref_primary_10_1016_j_coisb_2018_09_003
crossref_primary_10_3390_jcs7120481
crossref_primary_10_1038_s41467_023_43902_y
crossref_primary_10_1016_j_ceb_2018_05_002
crossref_primary_10_1016_j_ceb_2019_07_013
crossref_primary_10_1242_dev_161844
crossref_primary_10_1534_g3_118_200372
crossref_primary_10_1016_j_cub_2023_12_031
crossref_primary_10_7554_eLife_95521
crossref_primary_10_1371_journal_pcbi_1006029
crossref_primary_10_1016_j_semcdb_2025_103620
crossref_primary_10_1016_j_cub_2022_11_067
crossref_primary_10_1016_j_devcel_2017_09_018
crossref_primary_10_1073_pnas_2408706121
crossref_primary_10_1088_1367_2630_aa5756
crossref_primary_10_1242_dev_201955
crossref_primary_10_1186_s12915_022_01378_0
crossref_primary_10_1038_s41598_021_88667_w
crossref_primary_10_1146_annurev_cellbio_120319_030931
crossref_primary_10_1016_j_semcdb_2016_03_011
crossref_primary_10_1016_j_cub_2021_07_078
crossref_primary_10_7554_eLife_85581
crossref_primary_10_1038_ncb3472
crossref_primary_10_1073_pnas_1815342116
crossref_primary_10_1038_s41563_024_02019_3
crossref_primary_10_1073_pnas_2109168118
crossref_primary_10_1103_PhysRevResearch_6_033176
crossref_primary_10_1242_dev_204514
crossref_primary_10_1371_journal_pcbi_1005651
crossref_primary_10_1016_j_devcel_2021_11_016
crossref_primary_10_1042_BST20230225
crossref_primary_10_1242_dev_199794
crossref_primary_10_1038_s42003_021_01874_z
crossref_primary_10_1242_dev_199034
crossref_primary_10_3390_life11070691
crossref_primary_10_1016_j_semcdb_2018_06_003
crossref_primary_10_1093_jmicro_dfad059
crossref_primary_10_1016_j_tcb_2021_12_006
crossref_primary_10_1038_s41598_019_50690_3
crossref_primary_10_1016_j_physrep_2021_05_001
crossref_primary_10_1016_j_jmps_2023_105443
crossref_primary_10_1093_genetics_iyac020
crossref_primary_10_1242_dev_192773
crossref_primary_10_1016_j_mod_2016_11_004
crossref_primary_10_1016_j_devcel_2018_09_014
crossref_primary_10_1242_dev_146837
crossref_primary_10_1016_j_cdev_2021_203746
crossref_primary_10_1103_PhysRevLett_128_178001
crossref_primary_10_1126_science_aau3429
crossref_primary_10_1242_dev_176297
crossref_primary_10_1111_dgd_12747
crossref_primary_10_1007_s11012_017_0627_z
crossref_primary_10_7554_eLife_57730
crossref_primary_10_1038_s41592_023_02102_8
crossref_primary_10_1016_j_ceb_2017_06_004
crossref_primary_10_1371_journal_pbio_3003244
crossref_primary_10_1016_j_semcdb_2017_04_004
crossref_primary_10_1016_j_devcel_2017_08_001
crossref_primary_10_1016_j_gde_2017_04_005
crossref_primary_10_1242_dev_200774
crossref_primary_10_1371_journal_pcbi_1010178
crossref_primary_10_1002_wdev_333
crossref_primary_10_1242_dev_199731
crossref_primary_10_1242_dev_201747
crossref_primary_10_1016_j_cdev_2021_203720
crossref_primary_10_7554_eLife_35717
crossref_primary_10_1140_epje_s10189_022_00175_5
crossref_primary_10_1016_j_cub_2022_01_045
crossref_primary_10_1038_s41598_023_37064_6
crossref_primary_10_1016_j_procs_2019_01_188
crossref_primary_10_1038_s41586_022_04646_9
crossref_primary_10_1103_PhysRevResearch_7_013039
crossref_primary_10_1016_j_cub_2023_01_028
crossref_primary_10_1146_annurev_arplant_080720_101613
crossref_primary_10_1371_journal_pcbi_1010209
crossref_primary_10_7554_eLife_95521_3
crossref_primary_10_1038_s41467_024_46698_7
crossref_primary_10_1242_jcs_201350
crossref_primary_10_1186_s12915_021_01037_w
crossref_primary_10_1016_j_bpj_2017_04_024
crossref_primary_10_1016_j_cub_2018_11_007
crossref_primary_10_1042_BST20240469
crossref_primary_10_1016_j_cub_2023_09_049
crossref_primary_10_1126_science_abb2169
crossref_primary_10_1371_journal_pbio_3000388
crossref_primary_10_1016_j_jtbi_2024_111960
crossref_primary_10_1371_journal_pcbi_1008049
crossref_primary_10_1103_PhysRevX_10_011072
crossref_primary_10_1016_j_cub_2017_07_010
crossref_primary_10_1038_nature22041
crossref_primary_10_1073_pnas_2214205120
crossref_primary_10_15252_embj_2018100072
crossref_primary_10_1016_j_gde_2018_09_002
crossref_primary_10_1242_dev_155069
crossref_primary_10_1038_s41556_025_01632_x
crossref_primary_10_1073_pnas_2417290122
crossref_primary_10_1038_s41467_017_00023_7
crossref_primary_10_1038_s41467_019_09540_z
crossref_primary_10_1016_j_devcel_2023_07_017
crossref_primary_10_1038_s41467_019_10874_x
crossref_primary_10_1016_j_cub_2018_02_003
crossref_primary_10_1038_s41467_018_05605_7
crossref_primary_10_1016_j_jtbi_2017_05_026
crossref_primary_10_1016_j_semcdb_2021_07_001
crossref_primary_10_1242_dev_199765
crossref_primary_10_1242_dev_202943
crossref_primary_10_1016_j_cub_2023_10_022
crossref_primary_10_1159_000528501
crossref_primary_10_1038_ncb3564
crossref_primary_10_1091_mbc_E19_12_0673
crossref_primary_10_1242_dev_199760
crossref_primary_10_7554_eLife_14334
Cites_doi 10.1016/j.cub.2005.07.062
10.1016/j.jtbi.2012.08.017
10.1038/ncb1894
10.1073/pnas.0900641106
10.1038/nature14152
10.1016/j.cell.2013.05.008
10.1016/B978-0-12-385065-2.00004-9
10.1126/science.1089035
10.1038/nmeth.2062
10.1016/j.devcel.2014.02.011
10.1017/S0022112070000745
10.1126/science.1235249
10.1038/ng.179
10.1016/j.cub.2012.03.070
10.1109/TMI.2009.2033991
10.1016/j.cell.2010.12.035
10.1038/ncb1319
10.1038/ncb2869
10.1016/S0092-8674(00)80862-4
10.1126/science.1221071
10.1038/ncb3138
10.1146/annurev-cellbio-100109-104027
10.1016/j.cell.2010.07.042
10.1016/j.devcel.2013.04.020
10.1242/dev.096545
10.1083/jcb.201211039
10.1007/s10035-003-0126-x
10.1101/gad.610511
10.1007/978-1-59745-583-1_16
10.1016/j.cub.2010.10.009
10.1242/dev.094060
10.1242/jcs.114.3.493
10.1140/epje/i2013-13045-8
10.1103/PhysRevLett.69.2013
10.1103/PhysRevE.47.2128
10.1242/dev.106898
10.1038/ncb1798
10.1242/dev.107730
10.1140/epje/i2007-10298-8
10.1242/dev.090878
10.1038/ncb3156
10.1038/nmeth.2064
10.1038/nature10984
10.1073/pnas.1418732112
10.1038/nmeth.1327
10.1038/ncb2269
10.1016/S0960-9822(00)00502-9
10.1073/pnas.1006591107
10.1126/science.1234168
10.7554/eLife.07090
10.1242/dev.126.16.3573
10.1371/journal.pone.0099116
10.1007/978-3-7643-8123-3_5
10.1016/j.cub.2011.01.001
10.1038/nature07936
10.1140/epje/i2015-15033-4
10.1073/pnas.1011086107
10.1371/journal.pcbi.1002512
10.1140/epje/i2011-11001-4
10.1038/emboj.2013.197
10.1016/S0092-8674(00)80861-2
10.1073/pnas.1420585112
ContentType Journal Article
Copyright COPYRIGHT 2015 eLife Science Publications, Ltd.
licence_http://creativecommons.org/publicdomain/zero
2015, Guirao et al 2015 Guirao et al
Copyright_xml – notice: COPYRIGHT 2015 eLife Science Publications, Ltd.
– notice: licence_http://creativecommons.org/publicdomain/zero
– notice: 2015, Guirao et al 2015 Guirao et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
1XC
VOOES
5PM
DOA
DOI 10.7554/eLife.08519
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
CrossRef

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_fa1d45b94e73453d9a950df1109d7309
PMC4811803
oai:HAL:hal-02626582v1
A473410454
26653285
10_7554_eLife_08519
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: CellTiss
– fundername: ;
  grantid: Presto
– fundername: ;
  grantid: MecaBio
– fundername: ;
  grantid: Sakura
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PUEGO
1XC
VOOES
5PM
ID FETCH-LOGICAL-c692t-69f4f8c3d96ae5ded45ba23c36ebbac2b159e59704d1d786d92aafa80eb65dea3
IEDL.DBID DOA
ISICitedReferencesCount 153
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373808600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-084X
IngestDate Fri Oct 03 12:39:41 EDT 2025
Tue Nov 04 01:45:49 EST 2025
Wed Nov 26 06:48:37 EST 2025
Thu Sep 04 18:24:02 EDT 2025
Tue Nov 11 10:14:02 EST 2025
Tue Nov 04 17:56:10 EST 2025
Thu Nov 13 14:31:18 EST 2025
Thu Apr 03 07:04:03 EDT 2025
Sat Nov 29 01:58:02 EST 2025
Tue Nov 18 21:26:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords stem cells
development
cell shape changes
developmental biology
cell rearrangements
tissue mechanics
cell division
apoptosis
biomechanics
cellular material
force inference
cell processes
tissue dynamics
morphogenesis
growth
structural biology
D. melanogaster
biophysics
tissue deformation
cell dynamics
Language English
License http://creativecommons.org/licenses/by/4.0
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-69f4f8c3d96ae5ded45ba23c36ebbac2b159e59704d1d786d92aafa80eb65dea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC4811803
Institut de Biologie du Développement de Marseille, Aix Marseille Université, Marseille, France.
These authors contributed equally to this work.
These authors also contributed equally to this work.
ORCID 0000-0002-3302-3925
0000-0002-9388-4065
0000-0003-2161-0927
0000-0002-4766-3579
0000-0002-5583-0226
0000-0002-4733-9074
0000-0003-1686-2943
OpenAccessLink https://doaj.org/article/fa1d45b94e73453d9a950df1109d7309
PMID 26653285
PQID 1775635191
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_fa1d45b94e73453d9a950df1109d7309
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4811803
hal_primary_oai_HAL_hal_02626582v1
proquest_miscellaneous_1775635191
gale_infotracmisc_A473410454
gale_infotracacademiconefile_A473410454
gale_incontextgauss_ISR_A473410454
pubmed_primary_26653285
crossref_primary_10_7554_eLife_08519
crossref_citationtrail_10_7554_eLife_08519
PublicationCentury 2000
PublicationDate 2015-12-12
PublicationDateYYYYMMDD 2015-12-12
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-12
  day: 12
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2015
Publisher eLife Science Publications, Ltd
eLife Sciences Publication
eLife Sciences Publications, Ltd
eLife Sciences Publications Ltd
Publisher_xml – name: eLife Science Publications, Ltd
– name: eLife Sciences Publication
– name: eLife Sciences Publications, Ltd
– name: eLife Sciences Publications Ltd
References Lecuit (bib41) 2011; 27
McGuire (bib49) 2003; 302
Legoff (bib42) 2013; 140
Brodland (bib14) 2014; 9
Huang (bib33) 2009; 106
Rauzi (bib58) 2008; 10
Rael (bib55) 2007
Marée (bib47) 2007
Heisenberg (bib31) 2013; 153
Oda (bib52) 2001; 114
Fink (bib23) 2011; 13
Guillot (bib30) 2013; 340
Zulueta-Coarasa (bib66) 2014; 141
Graner (bib27) 2008; 25
Bardet (bib8) 2013; 25
Keller (bib37) 2013; 340
Gibson (bib25) 2011; 144
Aigouy (bib1) 2010; 142
Economou (bib21) 2013; 140
Rauzi (bib57) 2011; 95
Akaike (bib2) 1980
Ishihara (bib34) 2013; 36
Ishihara (bib35) 2012; 313
Monier (bib50) 2015; 518
Khan (bib38) 2014; 141
Heller (bib32) 2014; 28
Olguín (bib53) 2011; 21
Cheddadi (bib17) 2011; 34
Grosshans (bib29) 2000; 101
Mao (bib45) 2013; 32
Bosveld (bib11) 2012; 336
Sugimura (bib62) 2013; 140
Malvern (bib43) 1969
Mummery-Widmer (bib51) 2009; 458
Seher (bib61) 2000; 10
Boulanger (bib12) 2010; 29
Aliee (bib3) 2012; 22
Butler (bib15) 2009; 11
Tlili (bib63) 2015; 38
Marinari (bib46) 2012; 484
Classen (bib19) 2008; 420
Rozbicki (bib59) 2015; 17
Gho (bib24) 1999; 126
Tomer (bib64) 2012; 9
Etournay (bib22) 2015; 4
Saburi (bib60) 2008; 40
Ranft (bib56) 2010; 107
Mao (bib44) 2011; 25
Aubouy (bib5) 2003; 5
Antunes (bib4) 2013; 202
Kaipio (bib36) 2006;  160
Quesada-Hernández (bib54) 2010; 20
Krzic (bib39) 2012; 9
Blanchard (bib10) 2009; 6
Brodland (bib13) 2010; 107
Glazier (bib26) 1993; 47
Bambardekar (bib7) 2015; 112
Lau (bib40) 2015; 17
Wyatt (bib65) 2015; 112
Mata (bib48) 2000; 101
Baena-López (bib6) 2005; 15
Campinho (bib16) 2013; 15
Chiou (bib18) 2012; 8
Batchelor (bib9) 1970; 41
David (bib20) 2005; 7
Graner (bib28) 1992; 69
References_xml – volume: 15
  start-page: 1640
  year: 2005
  ident: bib6
  article-title: The orientation of cell divisions determines the shape of drosophila organs
  publication-title: Current Biology
  doi: 10.1016/j.cub.2005.07.062
– volume: 313
  start-page: 201
  year: 2012
  ident: bib35
  article-title: Bayesian inference of force dynamics during morphogenesis
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2012.08.017
– volume: 11
  start-page: 859
  year: 2009
  ident: bib15
  article-title: Cell shape changes indicate a role for extrinsic tensile forces in drosophila germ-band extension
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb1894
– volume: 106
  start-page: 8284
  year: 2009
  ident: bib33
  article-title: From the cover: directed, efficient, and versatile modifications of the drosophila genome by genomic engineering
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0900641106
– volume: 518
  start-page: 245
  year: 2015
  ident: bib50
  article-title: Apico-basal forces exerted by apoptotic cells drive epithelium folding
  publication-title: Nature
  doi: 10.1038/nature14152
– volume: 153
  start-page: 948
  year: 2013
  ident: bib31
  article-title: Forces in tissue morphogenesis and patterning
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.008
– volume: 95
  start-page: 93
  year: 2011
  ident: bib57
  article-title: Cortical forces in cell shape changes and tissue morphogenesis
  publication-title: Current Topics in Developmental Biology
  doi: 10.1016/B978-0-12-385065-2.00004-9
– volume: 302
  start-page: 1765
  year: 2003
  ident: bib49
  article-title: Spatiotemporal rescue of memory dysfunction in drosophila
  publication-title: Science
  doi: 10.1126/science.1089035
– volume: 9
  start-page: 755
  year: 2012
  ident: bib64
  article-title: Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy
  publication-title: Nature Methods
  doi: 10.1038/nmeth.2062
– volume: 28
  start-page: 617
  year: 2014
  ident: bib32
  article-title: Forces generated by cell intercalation tow epidermal sheets in mammalian tissue morphogenesis
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2014.02.011
– volume: 41
  start-page: 545
  year: 1970
  ident: bib9
  article-title: The stress system in a suspension of force-free particles
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112070000745
– volume: 340
  start-page: 1185
  year: 2013
  ident: bib30
  article-title: Mechanics of epithelial tissue homeostasis and morphogenesis
  publication-title: Science
  doi: 10.1126/science.1235249
– volume: 40
  start-page: 1010
  year: 2008
  ident: bib60
  article-title: Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease
  publication-title: Nature Genetics
  doi: 10.1038/ng.179
– volume: 22
  start-page: 967
  year: 2012
  ident: bib3
  article-title: Physical mechanisms shaping the drosophila dorsoventral compartment boundary
  publication-title: Current Biology
  doi: 10.1016/j.cub.2012.03.070
– volume: 29
  start-page: 442
  year: 2010
  ident: bib12
  article-title: Patch-based nonlocal functional for denoising fluorescence microscopy image sequences
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2009.2033991
– volume: 144
  start-page: 427
  year: 2011
  ident: bib25
  article-title: Control of the mitotic cleavage plane by local epithelial topology
  publication-title: Cell
  doi: 10.1016/j.cell.2010.12.035
– volume: 7
  start-page: 1083
  year: 2005
  ident: bib20
  article-title: Drosophila ric-8 regulates galphai cortical localization to promote galphai-dependent planar orientation of the mitotic spindle during asymmetric cell division
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb1319
– volume: 15
  start-page: 1405
  year: 2013
  ident: bib16
  article-title: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb2869
– volume: 101
  start-page: 523
  year: 2000
  ident: bib29
  article-title: A genetic link between morphogenesis and cell division during formation of the ventral furrow in drosophila
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80862-4
– volume: 336
  start-page: 724
  year: 2012
  ident: bib11
  article-title: Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway
  publication-title: Science
  doi: 10.1126/science.1221071
– volume-title: Introduction to the Mechanics of a Continuous Medium
  year: 1969
  ident: bib43
– volume: 17
  start-page: 397
  year: 2015
  ident: bib59
  article-title: Myosin-II-mediated cell shape changes and cell intercalation contribute to primitive streak formation
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb3138
– volume: 27
  start-page: 157
  year: 2011
  ident: bib41
  article-title: Force generation, transmission, and integration during cell and tissue morphogenesis
  publication-title: Annual Review of Cell and Developmental Biology
  doi: 10.1146/annurev-cellbio-100109-104027
– volume: 142
  start-page: 773
  year: 2010
  ident: bib1
  article-title: Cell flow reorients the axis of planar polarity in the wing epithelium of drosophila
  publication-title: Cell
  doi: 10.1016/j.cell.2010.07.042
– volume: 25
  start-page: 534
  year: 2013
  ident: bib8
  article-title: PTEN controls junction lengthening and stability during cell rearrangement in epithelial tissue
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2013.04.020
– volume: 140
  start-page: 4740
  year: 2013
  ident: bib21
  article-title: Whole population cell analysis of a landmark-rich mammalian epithelium reveals multiple elongation mechanisms
  publication-title: Development
  doi: 10.1242/dev.096545
– volume: 202
  start-page: 365
  year: 2013
  ident: bib4
  article-title: Coordinated waves of actomyosin flow and apical cell constriction immediately after wounding
  publication-title: Journal of Cell Biology
  doi: 10.1083/jcb.201211039
– volume: 5
  start-page: 67
  year: 2003
  ident: bib5
  article-title: A texture tensor to quantify deformations
  publication-title: Granular Matter
  doi: 10.1007/s10035-003-0126-x
– volume: 25
  start-page: 131
  year: 2011
  ident: bib44
  article-title: Planar polarization of the atypical myosin dachs orients cell divisions in drosophila
  publication-title: Genes & Development
  doi: 10.1101/gad.610511
– volume:  160
  year: 2006
  ident: bib36
  article-title: Statistical and computational inverse problems
  publication-title: Springer
– volume: 420
  start-page: 265
  year: 2008
  ident: bib19
  article-title: Imaging drosophila pupal wing morphogenesis
  publication-title: Methods in Molecular Biology
  doi: 10.1007/978-1-59745-583-1_16
– volume: 20
  start-page: 1966
  year: 2010
  ident: bib54
  article-title: Stereotypical cell division orientation controls neural rod midline formation in zebrafish
  publication-title: Current Biology
  doi: 10.1016/j.cub.2010.10.009
– volume: 140
  start-page: 4091
  year: 2013
  ident: bib62
  article-title: The mechanical anisotropy in a tissue promotes ordering in hexagonal cell packing
  publication-title: Development
  doi: 10.1242/dev.094060
– volume: 114
  start-page: 493
  year: 2001
  ident: bib52
  article-title: Real-time imaging of cell-cell adherens junctions reveals that drosophila mesoderm invagination begins with two phases of apical constriction of cells
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.114.3.493
– volume: 36
  start-page: 1
  year: 2013
  ident: bib34
  article-title: Comparative study of non-invasive force and stress inference methods in tissue
  publication-title: European Physical Journal E
  doi: 10.1140/epje/i2013-13045-8
– volume: 69
  start-page: 2013
  year: 1992
  ident: bib28
  article-title: Simulation of biological cell sorting using a two-dimensional extended Potts model
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.69.2013
– volume-title: Particle Image Velocimetry - a Practical Guide
  year: 2007
  ident: bib55
– volume: 47
  start-page: 2128
  year: 1993
  ident: bib26
  article-title: Simulation of the differential adhesion driven rearrangement of biological cells
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.47.2128
– volume: 141
  start-page: 2901
  year: 2014
  ident: bib66
  article-title: Automated multidimensional image analysis reveals a role for Abl in embryonic wound repair
  publication-title: Development
  doi: 10.1242/dev.106898
– start-page: 143
  volume-title: Bayesian Statistics
  year: 1980
  ident: bib2
– volume: 10
  start-page: 1401
  year: 2008
  ident: bib58
  article-title: Nature and anisotropy of cortical forces orienting drosophila tissue morphogenesis
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb1798
– volume: 141
  start-page: 2895
  year: 2014
  ident: bib38
  article-title: Quantitative 4D analyses of epithelial folding during drosophila gastrulation
  publication-title: Development
  doi: 10.1242/dev.107730
– volume: 25
  start-page: 349
  year: 2008
  ident: bib27
  article-title: Discrete rearranging disordered patterns, part I: robust statistical tools in two or three dimensions
  publication-title: European Physical Journal E
  doi: 10.1140/epje/i2007-10298-8
– volume: 140
  start-page: 4051
  year: 2013
  ident: bib42
  article-title: A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing drosophila wing disc
  publication-title: Development
  doi: 10.1242/dev.090878
– volume: 17
  start-page: 569
  year: 2015
  ident: bib40
  article-title: Anisotropic stress orients remodelling of mammalian limb bud ectoderm
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb3156
– volume: 9
  start-page: 730
  year: 2012
  ident: bib39
  article-title: Multiview light-sheet microscope for rapid in toto imaging
  publication-title: Nature Methods
  doi: 10.1038/nmeth.2064
– volume: 484
  start-page: 542
  year: 2012
  ident: bib46
  article-title: Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding
  publication-title: Nature
  doi: 10.1038/nature10984
– volume: 112
  start-page: 1416
  year: 2015
  ident: bib7
  article-title: Direct laser manipulation reveals the mechanics of cell contacts in vivo
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1418732112
– volume: 6
  start-page: 458
  year: 2009
  ident: bib10
  article-title: Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1327
– volume: 13
  start-page: 771
  year: 2011
  ident: bib23
  article-title: External forces control mitotic spindle positioning
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb2269
– volume: 10
  start-page: 623
  year: 2000
  ident: bib61
  article-title: Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis during drosophila gastrulation
  publication-title: Current Biology
  doi: 10.1016/S0960-9822(00)00502-9
– volume: 107
  start-page: 22111
  year: 2010
  ident: bib13
  article-title: Video force microscopy reveals the mechanics of ventral furrow invagination in drosophila
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1006591107
– volume: 340
  start-page: 1234168
  year: 2013
  ident: bib37
  article-title: Imaging morphogenesis: technological advances and biological insights
  publication-title: Science
  doi: 10.1126/science.1234168
– volume: 4
  year: 2015
  ident: bib22
  article-title: Interplay of cell dynamics and epithelial tension during morphogenesis of the drosophila pupal wing
  publication-title: eLife
  doi: 10.7554/eLife.07090
– volume: 126
  start-page: 3573
  year: 1999
  ident: bib24
  article-title: Revisiting the drosophila microchaete lineage: a novel intrinsically asymmetric cell division generates a glial cell
  publication-title: Development
  doi: 10.1242/dev.126.16.3573
– volume: 9
  start-page: e99116
  year: 2014
  ident: bib14
  article-title: CellFIT: a cellular force-inference toolkit using curvilinear cell boundaries
  publication-title: PloS One
  doi: 10.1371/journal.pone.0099116
– start-page: 107
  volume-title: Single Cell-Based Models in Biology and Medicine
  year: 2007
  ident: bib47
  doi: 10.1007/978-3-7643-8123-3_5
– volume: 21
  start-page: 236
  year: 2011
  ident: bib53
  article-title: Intertissue mechanical stress affects frizzled-mediated planar cell polarity in the drosophila notum epidermis
  publication-title: Current Biology
  doi: 10.1016/j.cub.2011.01.001
– volume: 458
  start-page: 987
  year: 2009
  ident: bib51
  article-title: Genome-wide analysis of notch signalling in drosophila by transgenic RNAi
  publication-title: Nature
  doi: 10.1038/nature07936
– volume: 38
  start-page: 33
  year: 2015
  ident: bib63
  article-title: Colloquium: mechanical formalisms for tissue dynamics
  publication-title: European Physical Journal E
  doi: 10.1140/epje/i2015-15033-4
– volume: 107
  start-page: 20863
  year: 2010
  ident: bib56
  article-title: Fluidization of tissues by cell division and apoptosis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1011086107
– volume: 8
  start-page: e1002512
  year: 2012
  ident: bib18
  article-title: Mechanical stress inference for two dimensional cell arrays
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1002512
– volume: 34
  start-page: 1
  year: 2011
  ident: bib17
  article-title: Understanding and predicting viscous, elastic, plastic flows
  publication-title: European Physical Journal E
  doi: 10.1140/epje/i2011-11001-4
– volume: 32
  start-page: 2790
  year: 2013
  ident: bib45
  article-title: Differential proliferation rates generate patterns of mechanical tension that orient tissue growth
  publication-title: EMBO Journal
  doi: 10.1038/emboj.2013.197
– volume: 101
  start-page: 511
  year: 2000
  ident: bib48
  article-title: Tribbles coordinates mitosis and morphogenesis in drosophila by regulating string/CDC25 proteolysis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80861-2
– volume: 112
  start-page: 5726
  year: 2015
  ident: bib65
  article-title: Emergence of homeostatic epithelial packing and stress dissipation through divisions oriented along the long cell axis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1420585112
SSID ssj0000748819
Score 2.5076272
Snippet Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes,...
SourceID doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Analysis
Animals
Biological Physics
Biophysics and Structural Biology
Cell death
cell division
cell rearrangements
cell shape changes
Computer Simulation
development
Development Biology
Developmental Biology and Stem Cells
Drosophila
Drosophila - embryology
Drosophila - growth & development
Epithelium
Epithelium - embryology
Epithelium - growth & development
Fruit-flies
growth
Life Sciences
Models, Biological
Morphogenesis
Physics
Tools and Resources
Title Unified quantitative characterization of epithelial tissue development
URI https://www.ncbi.nlm.nih.gov/pubmed/26653285
https://www.proquest.com/docview/1775635191
https://hal.science/hal-02626582
https://pubmed.ncbi.nlm.nih.gov/PMC4811803
https://doaj.org/article/fa1d45b94e73453d9a950df1109d7309
Volume 4
WOSCitedRecordID wos000373808600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M7P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Science Database (NC LIVE)
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M2P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBZru8Fexu5z1wWvDAYDr7Zs3R7T0dBCG0K3QfYkZF3WQnHaJins3-8c2cnibbCXvQhiH8XK8SfpUzjnO4S8s7zglgmfOeZFhopUmZJGZIJzA8uhxz-xYrEJMR7L6VRNNkp9YUxYKw_cOu4gmMJVrFaVF2XFSqeMYrkLKJTpAJ0xdQ9Yz8ZhKq7BAoBZqDYhT8CWeeBPL4P_iARD9bagqNS_Xo-3LjAc8k-u-XvI5MYeNHpMHnXkMR22g35C7vnmKXnQlpP88YyMgEAGoJTpzdI0MXkMlrLUriWZ24zLdBZSf42pGFeAvXQRPZ-6X8FDz8nX0dGXT8dZVychs1zRRcZVqIK04BtuPHMe_WVoaUvu69pYWgNl8XBwyCtXOCG5U9SYYGTuaw7mpnxBtptZ41-RVIrSBuErAd2qPDipqKe5VzDVXQ2fE_Jh5TptOxFxrGVxpeEwgX7W0c86-jkBKKyMr1vtjL-bHeI7WJug4HW8ADDQHQz0v2CQkH18gxolLRqMmflulvO5Pvl8rocVdClQajAh7zujMINRW9OlIMBvRxWsnuVezxLmnO3d3geg9EZ8PDzVeA3OtBRYHb0rEvJ2hSON_TGarfGz5VwXQjCOlRHB5mWLq_V3AWFiJZUsIaKHuN7D-neay4uoC15J1PMrd_-HP1-Th0ANGQbuFHSPbC9ul_4NuW_vAJW3A7IlpiK2ckB2Do_Gk_NBnIDQntEJtgLancnJ2eTbT-nJNiM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unified+quantitative+characterization+of+epithelial+tissue+development&rft.jtitle=eLife&rft.au=Guirao%2C+Boris&rft.au=Rigaud%2C+Stephane+U&rft.au=Bosveld%2C+Floris&rft.au=Bailles%2C+Anais&rft.date=2015-12-12&rft.pub=eLife+Science+Publications%2C+Ltd&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=4&rft_id=info:doi/10.7554%2FeLife.08519&rft.externalDocID=A473410454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon