Unified quantitative characterization of epithelial tissue development
Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis....
Uložené v:
| Vydané v: | eLife Ročník 4 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
eLife Science Publications, Ltd
12.12.2015
eLife Sciences Publication eLife Sciences Publications, Ltd eLife Sciences Publications Ltd |
| Predmet: | |
| ISSN: | 2050-084X, 2050-084X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development.
In animals, the final size and shape of each tissue is determined by the precise control of when, where and how much individual cells grow, divide, move and die. An important challenge in biology is to understand how the behaviors of each individual cell can act together to generate a large and reproducible change at the scale of entire tissues and organs. Here, Guirao et al. have developed a new approach to provide maps that reveal how much each cell process contributes to the development of tissues.
A caterpillar becoming a butterfly is a famous example of insect ‘metamorphosis’. The fruit fly offers another example of such tissue development: within five days, a rice grain-like maggot morphs into an adult fly with long antennae, legs and wings. Guirao et al. used a microscope to observe cells over a period of several hours during the metamorphosis of the adult fruit fly wings and thorax (the region between the neck and abdomen).
In both regions, Guirao et al. showed that all the cell processes participate in the formation of the adult tissue. Cell division, cell death, and changes in cell size affect the size of the tissue, while cell division, cell rearrangements, and changes in cell shape alter the shape of the tissue. The relative contributions of these cell processes varied a lot in both space and time. Further experiments then used mutant flies with defects in cell division to analyse the impact of cell division on the other cell processes and the eventual shape of the tissue. Finally, Guirao et al. showed that there are unexpected interactions between the patterns of tissue growth, cell division and the mechanical forces in the tissue.
These findings provide a new approach to uncover how animals from different species can have such a variety of shapes and sizes, even though they each start life as a single cell. Ultimately, this may also aid efforts to understand how certain diseases affect the development of tissues. |
|---|---|
| AbstractList | Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. DOI:
http://dx.doi.org/10.7554/eLife.08519.001 In animals, the final size and shape of each tissue is determined by the precise control of when, where and how much individual cells grow, divide, move and die. An important challenge in biology is to understand how the behaviors of each individual cell can act together to generate a large and reproducible change at the scale of entire tissues and organs. Here, Guirao et al. have developed a new approach to provide maps that reveal how much each cell process contributes to the development of tissues. A caterpillar becoming a butterfly is a famous example of insect ‘metamorphosis’. The fruit fly offers another example of such tissue development: within five days, a rice grain-like maggot morphs into an adult fly with long antennae, legs and wings. Guirao et al. used a microscope to observe cells over a period of several hours during the metamorphosis of the adult fruit fly wings and thorax (the region between the neck and abdomen). In both regions, Guirao et al. showed that all the cell processes participate in the formation of the adult tissue. Cell division, cell death, and changes in cell size affect the size of the tissue, while cell division, cell rearrangements, and changes in cell shape alter the shape of the tissue. The relative contributions of these cell processes varied a lot in both space and time. Further experiments then used mutant flies with defects in cell division to analyse the impact of cell division on the other cell processes and the eventual shape of the tissue. Finally, Guirao et al. showed that there are unexpected interactions between the patterns of tissue growth, cell division and the mechanical forces in the tissue. These findings provide a new approach to uncover how animals from different species can have such a variety of shapes and sizes, even though they each start life as a single cell. Ultimately, this may also aid efforts to understand how certain diseases affect the development of tissues. DOI:
http://dx.doi.org/10.7554/eLife.08519.002 Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. In animals, the final size and shape of each tissue is determined by the precise control of when, where and how much individual cells grow, divide, move and die. An important challenge in biology is to understand how the behaviors of each individual cell can act together to generate a large and reproducible change at the scale of entire tissues and organs. Here, Guirao et al. have developed a new approach to provide maps that reveal how much each cell process contributes to the development of tissues. A caterpillar becoming a butterfly is a famous example of insect ‘metamorphosis’. The fruit fly offers another example of such tissue development: within five days, a rice grain-like maggot morphs into an adult fly with long antennae, legs and wings. Guirao et al. used a microscope to observe cells over a period of several hours during the metamorphosis of the adult fruit fly wings and thorax (the region between the neck and abdomen). In both regions, Guirao et al. showed that all the cell processes participate in the formation of the adult tissue. Cell division, cell death, and changes in cell size affect the size of the tissue, while cell division, cell rearrangements, and changes in cell shape alter the shape of the tissue. The relative contributions of these cell processes varied a lot in both space and time. Further experiments then used mutant flies with defects in cell division to analyse the impact of cell division on the other cell processes and the eventual shape of the tissue. Finally, Guirao et al. showed that there are unexpected interactions between the patterns of tissue growth, cell division and the mechanical forces in the tissue. These findings provide a new approach to uncover how animals from different species can have such a variety of shapes and sizes, even though they each start life as a single cell. Ultimately, this may also aid efforts to understand how certain diseases affect the development of tissues. Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. DOI: eLife digest In animals, the final size and shape of each tissue is determined by the precise control of when, where and how much individual cells grow, divide, move and die. An important challenge in biology is to understand how the behaviors of each individual cell can act together to generate a large and reproducible change at the scale of entire tissues and organs. Here, Guirao et al. have developed a new approach to provide maps that reveal how much each cell process contributes to the development of tissues. A caterpillar becoming a butterfly is a famous example of insect 'metamorphosis'. The fruit fly offers another example of such tissue development: within five days, a rice grain-like maggot morphs into an adult fly with long antennae, legs and wings. Guirao et al. used a microscope to observe cells over a period of several hours during the metamorphosis of the adult fruit fly wings and thorax (the region between the neck and abdomen). In both regions, Guirao et al. showed that all the cell processes participate in the formation of the adult tissue. Cell division, cell death, and changes in cell size affect the size of the tissue, while cell division, cell rearrangements, and changes in cell shape alter the shape of the tissue. The relative contributions of these cell processes varied a lot in both space and time. Further experiments then used mutant flies with defects in cell division to analyse the impact of cell division on the other cell processes and the eventual shape of the tissue. Finally, Guirao et al. showed that there are unexpected interactions between the patterns of tissue growth, cell division and the mechanical forces in the tissue. These findings provide a new approach to uncover how animals from different species can have such a variety of shapes and sizes, even though they each start life as a single cell. Ultimately, this may also aid efforts to understand how certain diseases affect the development of tissues. DOI: Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development.Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. |
| Audience | Academic |
| Author | Sugimura, Kaoru Bellaïche, Yohanns Bosveld, Floris Rigaud, Stéphane U Graner, François López-Gay, Jesús Ishihara, Shuji Guirao, Boris Bailles, Anaïs |
| Author_xml | – sequence: 1 givenname: Boris surname: Guirao fullname: Guirao, Boris organization: Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France – sequence: 2 givenname: Stéphane U surname: Rigaud fullname: Rigaud, Stéphane U organization: Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France – sequence: 3 givenname: Floris surname: Bosveld fullname: Bosveld, Floris organization: Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France – sequence: 4 givenname: Anaïs surname: Bailles fullname: Bailles, Anaïs organization: Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France – sequence: 5 givenname: Jesús orcidid: 0000-0002-9388-4065 surname: López-Gay fullname: López-Gay, Jesús organization: Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France – sequence: 6 givenname: Shuji orcidid: 0000-0002-3302-3925 surname: Ishihara fullname: Ishihara, Shuji organization: Department of Physics, School of Science and Technology, Meiji University, Kanagawa, Japan – sequence: 7 givenname: Kaoru surname: Sugimura fullname: Sugimura, Kaoru organization: Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan, Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Tokyo, Japan – sequence: 8 givenname: François surname: Graner fullname: Graner, François organization: Laboratoire Matière et Systèmes Complexes (CNRS UMR7057), Université Paris-Diderot, Paris, France – sequence: 9 givenname: Yohanns surname: Bellaïche fullname: Bellaïche, Yohanns organization: Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26653285$$D View this record in MEDLINE/PubMed https://hal.science/hal-02626582$$DView record in HAL |
| BookMark | eNptktFr2zAQxs3oWLuuT3sfhr2sjGSSLdnSyyCUdg0EBtsKexNn6ZSoOFZqyWHrXz856UpTKj1InH73HXf63mZHne8wy95TMq05Z19w4SxOieBUvspOCsLJhAj2--jJ_Tg7C-GWpFUzIah8kx0XVcXLQvCT7Oqmc9ahye8G6KKLEN0Wc72CHnTE3t2ngO9yb3PcuLjC1kGbRxfCgLnBLbZ-s8YuvsteW2gDnj2cp9nN1eWvi-vJ4vu3-cVsMdGVLOKkkpZZoUsjK0Bu0DDeQFHqssKmAV00lEvksibMUFOLysgCwIIg2FQJh_I0m-91jYdbtendGvq_yoNTu4Dvlwr66HSLygId5SXDumQ8lQTJibGUEmnqksik9XWvtRmaNRqd2uihPRA9fOncSi39VjFBqSBlEjjfC6yepV3PFmqMkaIqKi6KLU3sp4divb8bMES1dkFj20KHfgiK1jWvyvSLI_pxjy4hteE661N1PeJqxlIvlDDOEjV9gUrb4NrpZBLrUvwg4fwgITER_8QlDCGo-c8fh-yHp6N5bO6_bxLweQ_o3ofQo31EKFGjMdXOmGpnzETTZ7TeOc2Pc3Xtizn_AGBr5Ws |
| CitedBy_id | crossref_primary_10_1016_j_cub_2022_08_063 crossref_primary_10_1103_PhysRevX_15_021068 crossref_primary_10_3389_fphy_2020_00031 crossref_primary_10_1093_imammb_dqx008 crossref_primary_10_1242_dev_151233 crossref_primary_10_1007_s13752_024_00477_1 crossref_primary_10_1016_j_devcel_2020_07_019 crossref_primary_10_1016_j_devcel_2016_09_008 crossref_primary_10_1038_s41467_022_31266_8 crossref_primary_10_1016_j_coisb_2018_09_003 crossref_primary_10_3390_jcs7120481 crossref_primary_10_1038_s41467_023_43902_y crossref_primary_10_1016_j_ceb_2018_05_002 crossref_primary_10_1016_j_ceb_2019_07_013 crossref_primary_10_1242_dev_161844 crossref_primary_10_1534_g3_118_200372 crossref_primary_10_1016_j_cub_2023_12_031 crossref_primary_10_7554_eLife_95521 crossref_primary_10_1371_journal_pcbi_1006029 crossref_primary_10_1016_j_semcdb_2025_103620 crossref_primary_10_1016_j_cub_2022_11_067 crossref_primary_10_1016_j_devcel_2017_09_018 crossref_primary_10_1073_pnas_2408706121 crossref_primary_10_1088_1367_2630_aa5756 crossref_primary_10_1242_dev_201955 crossref_primary_10_1186_s12915_022_01378_0 crossref_primary_10_1038_s41598_021_88667_w crossref_primary_10_1146_annurev_cellbio_120319_030931 crossref_primary_10_1016_j_semcdb_2016_03_011 crossref_primary_10_1016_j_cub_2021_07_078 crossref_primary_10_7554_eLife_85581 crossref_primary_10_1038_ncb3472 crossref_primary_10_1073_pnas_1815342116 crossref_primary_10_1038_s41563_024_02019_3 crossref_primary_10_1073_pnas_2109168118 crossref_primary_10_1103_PhysRevResearch_6_033176 crossref_primary_10_1242_dev_204514 crossref_primary_10_1371_journal_pcbi_1005651 crossref_primary_10_1016_j_devcel_2021_11_016 crossref_primary_10_1042_BST20230225 crossref_primary_10_1242_dev_199794 crossref_primary_10_1038_s42003_021_01874_z crossref_primary_10_1242_dev_199034 crossref_primary_10_3390_life11070691 crossref_primary_10_1016_j_semcdb_2018_06_003 crossref_primary_10_1093_jmicro_dfad059 crossref_primary_10_1016_j_tcb_2021_12_006 crossref_primary_10_1038_s41598_019_50690_3 crossref_primary_10_1016_j_physrep_2021_05_001 crossref_primary_10_1016_j_jmps_2023_105443 crossref_primary_10_1093_genetics_iyac020 crossref_primary_10_1242_dev_192773 crossref_primary_10_1016_j_mod_2016_11_004 crossref_primary_10_1016_j_devcel_2018_09_014 crossref_primary_10_1242_dev_146837 crossref_primary_10_1016_j_cdev_2021_203746 crossref_primary_10_1103_PhysRevLett_128_178001 crossref_primary_10_1126_science_aau3429 crossref_primary_10_1242_dev_176297 crossref_primary_10_1111_dgd_12747 crossref_primary_10_1007_s11012_017_0627_z crossref_primary_10_7554_eLife_57730 crossref_primary_10_1038_s41592_023_02102_8 crossref_primary_10_1016_j_ceb_2017_06_004 crossref_primary_10_1371_journal_pbio_3003244 crossref_primary_10_1016_j_semcdb_2017_04_004 crossref_primary_10_1016_j_devcel_2017_08_001 crossref_primary_10_1016_j_gde_2017_04_005 crossref_primary_10_1242_dev_200774 crossref_primary_10_1371_journal_pcbi_1010178 crossref_primary_10_1002_wdev_333 crossref_primary_10_1242_dev_199731 crossref_primary_10_1242_dev_201747 crossref_primary_10_1016_j_cdev_2021_203720 crossref_primary_10_7554_eLife_35717 crossref_primary_10_1140_epje_s10189_022_00175_5 crossref_primary_10_1016_j_cub_2022_01_045 crossref_primary_10_1038_s41598_023_37064_6 crossref_primary_10_1016_j_procs_2019_01_188 crossref_primary_10_1038_s41586_022_04646_9 crossref_primary_10_1103_PhysRevResearch_7_013039 crossref_primary_10_1016_j_cub_2023_01_028 crossref_primary_10_1146_annurev_arplant_080720_101613 crossref_primary_10_1371_journal_pcbi_1010209 crossref_primary_10_7554_eLife_95521_3 crossref_primary_10_1038_s41467_024_46698_7 crossref_primary_10_1242_jcs_201350 crossref_primary_10_1186_s12915_021_01037_w crossref_primary_10_1016_j_bpj_2017_04_024 crossref_primary_10_1016_j_cub_2018_11_007 crossref_primary_10_1042_BST20240469 crossref_primary_10_1016_j_cub_2023_09_049 crossref_primary_10_1126_science_abb2169 crossref_primary_10_1371_journal_pbio_3000388 crossref_primary_10_1016_j_jtbi_2024_111960 crossref_primary_10_1371_journal_pcbi_1008049 crossref_primary_10_1103_PhysRevX_10_011072 crossref_primary_10_1016_j_cub_2017_07_010 crossref_primary_10_1038_nature22041 crossref_primary_10_1073_pnas_2214205120 crossref_primary_10_15252_embj_2018100072 crossref_primary_10_1016_j_gde_2018_09_002 crossref_primary_10_1242_dev_155069 crossref_primary_10_1038_s41556_025_01632_x crossref_primary_10_1073_pnas_2417290122 crossref_primary_10_1038_s41467_017_00023_7 crossref_primary_10_1038_s41467_019_09540_z crossref_primary_10_1016_j_devcel_2023_07_017 crossref_primary_10_1038_s41467_019_10874_x crossref_primary_10_1016_j_cub_2018_02_003 crossref_primary_10_1038_s41467_018_05605_7 crossref_primary_10_1016_j_jtbi_2017_05_026 crossref_primary_10_1016_j_semcdb_2021_07_001 crossref_primary_10_1242_dev_199765 crossref_primary_10_1242_dev_202943 crossref_primary_10_1016_j_cub_2023_10_022 crossref_primary_10_1159_000528501 crossref_primary_10_1038_ncb3564 crossref_primary_10_1091_mbc_E19_12_0673 crossref_primary_10_1242_dev_199760 crossref_primary_10_7554_eLife_14334 |
| Cites_doi | 10.1016/j.cub.2005.07.062 10.1016/j.jtbi.2012.08.017 10.1038/ncb1894 10.1073/pnas.0900641106 10.1038/nature14152 10.1016/j.cell.2013.05.008 10.1016/B978-0-12-385065-2.00004-9 10.1126/science.1089035 10.1038/nmeth.2062 10.1016/j.devcel.2014.02.011 10.1017/S0022112070000745 10.1126/science.1235249 10.1038/ng.179 10.1016/j.cub.2012.03.070 10.1109/TMI.2009.2033991 10.1016/j.cell.2010.12.035 10.1038/ncb1319 10.1038/ncb2869 10.1016/S0092-8674(00)80862-4 10.1126/science.1221071 10.1038/ncb3138 10.1146/annurev-cellbio-100109-104027 10.1016/j.cell.2010.07.042 10.1016/j.devcel.2013.04.020 10.1242/dev.096545 10.1083/jcb.201211039 10.1007/s10035-003-0126-x 10.1101/gad.610511 10.1007/978-1-59745-583-1_16 10.1016/j.cub.2010.10.009 10.1242/dev.094060 10.1242/jcs.114.3.493 10.1140/epje/i2013-13045-8 10.1103/PhysRevLett.69.2013 10.1103/PhysRevE.47.2128 10.1242/dev.106898 10.1038/ncb1798 10.1242/dev.107730 10.1140/epje/i2007-10298-8 10.1242/dev.090878 10.1038/ncb3156 10.1038/nmeth.2064 10.1038/nature10984 10.1073/pnas.1418732112 10.1038/nmeth.1327 10.1038/ncb2269 10.1016/S0960-9822(00)00502-9 10.1073/pnas.1006591107 10.1126/science.1234168 10.7554/eLife.07090 10.1242/dev.126.16.3573 10.1371/journal.pone.0099116 10.1007/978-3-7643-8123-3_5 10.1016/j.cub.2011.01.001 10.1038/nature07936 10.1140/epje/i2015-15033-4 10.1073/pnas.1011086107 10.1371/journal.pcbi.1002512 10.1140/epje/i2011-11001-4 10.1038/emboj.2013.197 10.1016/S0092-8674(00)80861-2 10.1073/pnas.1420585112 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2015 eLife Science Publications, Ltd. licence_http://creativecommons.org/publicdomain/zero 2015, Guirao et al 2015 Guirao et al |
| Copyright_xml | – notice: COPYRIGHT 2015 eLife Science Publications, Ltd. – notice: licence_http://creativecommons.org/publicdomain/zero – notice: 2015, Guirao et al 2015 Guirao et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 1XC VOOES 5PM DOA |
| DOI | 10.7554/eLife.08519 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Physics |
| EISSN | 2050-084X |
| ExternalDocumentID | oai_doaj_org_article_fa1d45b94e73453d9a950df1109d7309 PMC4811803 oai:HAL:hal-02626582v1 A473410454 26653285 10_7554_eLife_08519 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: ; – fundername: ; grantid: CellTiss – fundername: ; grantid: Presto – fundername: ; grantid: MecaBio – fundername: ; grantid: Sakura |
| GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RHI RNS RPM UKHRP ALIPV CGR CUY CVF ECM EIF NPM 7X8 PUEGO 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c692t-69f4f8c3d96ae5ded45ba23c36ebbac2b159e59704d1d786d92aafa80eb65dea3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 153 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373808600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-084X |
| IngestDate | Fri Oct 03 12:39:41 EDT 2025 Tue Nov 04 01:45:49 EST 2025 Wed Nov 26 06:48:37 EST 2025 Thu Sep 04 18:24:02 EDT 2025 Tue Nov 11 10:14:02 EST 2025 Tue Nov 04 17:56:10 EST 2025 Thu Nov 13 14:31:18 EST 2025 Thu Apr 03 07:04:03 EDT 2025 Sat Nov 29 01:58:02 EST 2025 Tue Nov 18 21:26:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | stem cells development cell shape changes developmental biology cell rearrangements tissue mechanics cell division apoptosis biomechanics cellular material force inference cell processes tissue dynamics morphogenesis growth structural biology D. melanogaster biophysics tissue deformation cell dynamics |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-69f4f8c3d96ae5ded45ba23c36ebbac2b159e59704d1d786d92aafa80eb65dea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC4811803 Institut de Biologie du Développement de Marseille, Aix Marseille Université, Marseille, France. These authors contributed equally to this work. These authors also contributed equally to this work. |
| ORCID | 0000-0002-3302-3925 0000-0002-9388-4065 0000-0003-2161-0927 0000-0002-4766-3579 0000-0002-5583-0226 0000-0002-4733-9074 0000-0003-1686-2943 |
| OpenAccessLink | https://doaj.org/article/fa1d45b94e73453d9a950df1109d7309 |
| PMID | 26653285 |
| PQID | 1775635191 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fa1d45b94e73453d9a950df1109d7309 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4811803 hal_primary_oai_HAL_hal_02626582v1 proquest_miscellaneous_1775635191 gale_infotracmisc_A473410454 gale_infotracacademiconefile_A473410454 gale_incontextgauss_ISR_A473410454 pubmed_primary_26653285 crossref_primary_10_7554_eLife_08519 crossref_citationtrail_10_7554_eLife_08519 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-12-12 |
| PublicationDateYYYYMMDD | 2015-12-12 |
| PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-12 day: 12 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | eLife |
| PublicationTitleAlternate | Elife |
| PublicationYear | 2015 |
| Publisher | eLife Science Publications, Ltd eLife Sciences Publication eLife Sciences Publications, Ltd eLife Sciences Publications Ltd |
| Publisher_xml | – name: eLife Science Publications, Ltd – name: eLife Sciences Publication – name: eLife Sciences Publications, Ltd – name: eLife Sciences Publications Ltd |
| References | Lecuit (bib41) 2011; 27 McGuire (bib49) 2003; 302 Legoff (bib42) 2013; 140 Brodland (bib14) 2014; 9 Huang (bib33) 2009; 106 Rauzi (bib58) 2008; 10 Rael (bib55) 2007 Marée (bib47) 2007 Heisenberg (bib31) 2013; 153 Oda (bib52) 2001; 114 Fink (bib23) 2011; 13 Guillot (bib30) 2013; 340 Zulueta-Coarasa (bib66) 2014; 141 Graner (bib27) 2008; 25 Bardet (bib8) 2013; 25 Keller (bib37) 2013; 340 Gibson (bib25) 2011; 144 Aigouy (bib1) 2010; 142 Economou (bib21) 2013; 140 Rauzi (bib57) 2011; 95 Akaike (bib2) 1980 Ishihara (bib34) 2013; 36 Ishihara (bib35) 2012; 313 Monier (bib50) 2015; 518 Khan (bib38) 2014; 141 Heller (bib32) 2014; 28 Olguín (bib53) 2011; 21 Cheddadi (bib17) 2011; 34 Grosshans (bib29) 2000; 101 Mao (bib45) 2013; 32 Bosveld (bib11) 2012; 336 Sugimura (bib62) 2013; 140 Malvern (bib43) 1969 Mummery-Widmer (bib51) 2009; 458 Seher (bib61) 2000; 10 Boulanger (bib12) 2010; 29 Aliee (bib3) 2012; 22 Butler (bib15) 2009; 11 Tlili (bib63) 2015; 38 Marinari (bib46) 2012; 484 Classen (bib19) 2008; 420 Rozbicki (bib59) 2015; 17 Gho (bib24) 1999; 126 Tomer (bib64) 2012; 9 Etournay (bib22) 2015; 4 Saburi (bib60) 2008; 40 Ranft (bib56) 2010; 107 Mao (bib44) 2011; 25 Aubouy (bib5) 2003; 5 Antunes (bib4) 2013; 202 Kaipio (bib36) 2006; 160 Quesada-Hernández (bib54) 2010; 20 Krzic (bib39) 2012; 9 Blanchard (bib10) 2009; 6 Brodland (bib13) 2010; 107 Glazier (bib26) 1993; 47 Bambardekar (bib7) 2015; 112 Lau (bib40) 2015; 17 Wyatt (bib65) 2015; 112 Mata (bib48) 2000; 101 Baena-López (bib6) 2005; 15 Campinho (bib16) 2013; 15 Chiou (bib18) 2012; 8 Batchelor (bib9) 1970; 41 David (bib20) 2005; 7 Graner (bib28) 1992; 69 |
| References_xml | – volume: 15 start-page: 1640 year: 2005 ident: bib6 article-title: The orientation of cell divisions determines the shape of drosophila organs publication-title: Current Biology doi: 10.1016/j.cub.2005.07.062 – volume: 313 start-page: 201 year: 2012 ident: bib35 article-title: Bayesian inference of force dynamics during morphogenesis publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2012.08.017 – volume: 11 start-page: 859 year: 2009 ident: bib15 article-title: Cell shape changes indicate a role for extrinsic tensile forces in drosophila germ-band extension publication-title: Nature Cell Biology doi: 10.1038/ncb1894 – volume: 106 start-page: 8284 year: 2009 ident: bib33 article-title: From the cover: directed, efficient, and versatile modifications of the drosophila genome by genomic engineering publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0900641106 – volume: 518 start-page: 245 year: 2015 ident: bib50 article-title: Apico-basal forces exerted by apoptotic cells drive epithelium folding publication-title: Nature doi: 10.1038/nature14152 – volume: 153 start-page: 948 year: 2013 ident: bib31 article-title: Forces in tissue morphogenesis and patterning publication-title: Cell doi: 10.1016/j.cell.2013.05.008 – volume: 95 start-page: 93 year: 2011 ident: bib57 article-title: Cortical forces in cell shape changes and tissue morphogenesis publication-title: Current Topics in Developmental Biology doi: 10.1016/B978-0-12-385065-2.00004-9 – volume: 302 start-page: 1765 year: 2003 ident: bib49 article-title: Spatiotemporal rescue of memory dysfunction in drosophila publication-title: Science doi: 10.1126/science.1089035 – volume: 9 start-page: 755 year: 2012 ident: bib64 article-title: Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy publication-title: Nature Methods doi: 10.1038/nmeth.2062 – volume: 28 start-page: 617 year: 2014 ident: bib32 article-title: Forces generated by cell intercalation tow epidermal sheets in mammalian tissue morphogenesis publication-title: Developmental Cell doi: 10.1016/j.devcel.2014.02.011 – volume: 41 start-page: 545 year: 1970 ident: bib9 article-title: The stress system in a suspension of force-free particles publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112070000745 – volume: 340 start-page: 1185 year: 2013 ident: bib30 article-title: Mechanics of epithelial tissue homeostasis and morphogenesis publication-title: Science doi: 10.1126/science.1235249 – volume: 40 start-page: 1010 year: 2008 ident: bib60 article-title: Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease publication-title: Nature Genetics doi: 10.1038/ng.179 – volume: 22 start-page: 967 year: 2012 ident: bib3 article-title: Physical mechanisms shaping the drosophila dorsoventral compartment boundary publication-title: Current Biology doi: 10.1016/j.cub.2012.03.070 – volume: 29 start-page: 442 year: 2010 ident: bib12 article-title: Patch-based nonlocal functional for denoising fluorescence microscopy image sequences publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2009.2033991 – volume: 144 start-page: 427 year: 2011 ident: bib25 article-title: Control of the mitotic cleavage plane by local epithelial topology publication-title: Cell doi: 10.1016/j.cell.2010.12.035 – volume: 7 start-page: 1083 year: 2005 ident: bib20 article-title: Drosophila ric-8 regulates galphai cortical localization to promote galphai-dependent planar orientation of the mitotic spindle during asymmetric cell division publication-title: Nature Cell Biology doi: 10.1038/ncb1319 – volume: 15 start-page: 1405 year: 2013 ident: bib16 article-title: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly publication-title: Nature Cell Biology doi: 10.1038/ncb2869 – volume: 101 start-page: 523 year: 2000 ident: bib29 article-title: A genetic link between morphogenesis and cell division during formation of the ventral furrow in drosophila publication-title: Cell doi: 10.1016/S0092-8674(00)80862-4 – volume: 336 start-page: 724 year: 2012 ident: bib11 article-title: Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway publication-title: Science doi: 10.1126/science.1221071 – volume-title: Introduction to the Mechanics of a Continuous Medium year: 1969 ident: bib43 – volume: 17 start-page: 397 year: 2015 ident: bib59 article-title: Myosin-II-mediated cell shape changes and cell intercalation contribute to primitive streak formation publication-title: Nature Cell Biology doi: 10.1038/ncb3138 – volume: 27 start-page: 157 year: 2011 ident: bib41 article-title: Force generation, transmission, and integration during cell and tissue morphogenesis publication-title: Annual Review of Cell and Developmental Biology doi: 10.1146/annurev-cellbio-100109-104027 – volume: 142 start-page: 773 year: 2010 ident: bib1 article-title: Cell flow reorients the axis of planar polarity in the wing epithelium of drosophila publication-title: Cell doi: 10.1016/j.cell.2010.07.042 – volume: 25 start-page: 534 year: 2013 ident: bib8 article-title: PTEN controls junction lengthening and stability during cell rearrangement in epithelial tissue publication-title: Developmental Cell doi: 10.1016/j.devcel.2013.04.020 – volume: 140 start-page: 4740 year: 2013 ident: bib21 article-title: Whole population cell analysis of a landmark-rich mammalian epithelium reveals multiple elongation mechanisms publication-title: Development doi: 10.1242/dev.096545 – volume: 202 start-page: 365 year: 2013 ident: bib4 article-title: Coordinated waves of actomyosin flow and apical cell constriction immediately after wounding publication-title: Journal of Cell Biology doi: 10.1083/jcb.201211039 – volume: 5 start-page: 67 year: 2003 ident: bib5 article-title: A texture tensor to quantify deformations publication-title: Granular Matter doi: 10.1007/s10035-003-0126-x – volume: 25 start-page: 131 year: 2011 ident: bib44 article-title: Planar polarization of the atypical myosin dachs orients cell divisions in drosophila publication-title: Genes & Development doi: 10.1101/gad.610511 – volume: 160 year: 2006 ident: bib36 article-title: Statistical and computational inverse problems publication-title: Springer – volume: 420 start-page: 265 year: 2008 ident: bib19 article-title: Imaging drosophila pupal wing morphogenesis publication-title: Methods in Molecular Biology doi: 10.1007/978-1-59745-583-1_16 – volume: 20 start-page: 1966 year: 2010 ident: bib54 article-title: Stereotypical cell division orientation controls neural rod midline formation in zebrafish publication-title: Current Biology doi: 10.1016/j.cub.2010.10.009 – volume: 140 start-page: 4091 year: 2013 ident: bib62 article-title: The mechanical anisotropy in a tissue promotes ordering in hexagonal cell packing publication-title: Development doi: 10.1242/dev.094060 – volume: 114 start-page: 493 year: 2001 ident: bib52 article-title: Real-time imaging of cell-cell adherens junctions reveals that drosophila mesoderm invagination begins with two phases of apical constriction of cells publication-title: Journal of Cell Science doi: 10.1242/jcs.114.3.493 – volume: 36 start-page: 1 year: 2013 ident: bib34 article-title: Comparative study of non-invasive force and stress inference methods in tissue publication-title: European Physical Journal E doi: 10.1140/epje/i2013-13045-8 – volume: 69 start-page: 2013 year: 1992 ident: bib28 article-title: Simulation of biological cell sorting using a two-dimensional extended Potts model publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.69.2013 – volume-title: Particle Image Velocimetry - a Practical Guide year: 2007 ident: bib55 – volume: 47 start-page: 2128 year: 1993 ident: bib26 article-title: Simulation of the differential adhesion driven rearrangement of biological cells publication-title: Physical Review E doi: 10.1103/PhysRevE.47.2128 – volume: 141 start-page: 2901 year: 2014 ident: bib66 article-title: Automated multidimensional image analysis reveals a role for Abl in embryonic wound repair publication-title: Development doi: 10.1242/dev.106898 – start-page: 143 volume-title: Bayesian Statistics year: 1980 ident: bib2 – volume: 10 start-page: 1401 year: 2008 ident: bib58 article-title: Nature and anisotropy of cortical forces orienting drosophila tissue morphogenesis publication-title: Nature Cell Biology doi: 10.1038/ncb1798 – volume: 141 start-page: 2895 year: 2014 ident: bib38 article-title: Quantitative 4D analyses of epithelial folding during drosophila gastrulation publication-title: Development doi: 10.1242/dev.107730 – volume: 25 start-page: 349 year: 2008 ident: bib27 article-title: Discrete rearranging disordered patterns, part I: robust statistical tools in two or three dimensions publication-title: European Physical Journal E doi: 10.1140/epje/i2007-10298-8 – volume: 140 start-page: 4051 year: 2013 ident: bib42 article-title: A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing drosophila wing disc publication-title: Development doi: 10.1242/dev.090878 – volume: 17 start-page: 569 year: 2015 ident: bib40 article-title: Anisotropic stress orients remodelling of mammalian limb bud ectoderm publication-title: Nature Cell Biology doi: 10.1038/ncb3156 – volume: 9 start-page: 730 year: 2012 ident: bib39 article-title: Multiview light-sheet microscope for rapid in toto imaging publication-title: Nature Methods doi: 10.1038/nmeth.2064 – volume: 484 start-page: 542 year: 2012 ident: bib46 article-title: Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding publication-title: Nature doi: 10.1038/nature10984 – volume: 112 start-page: 1416 year: 2015 ident: bib7 article-title: Direct laser manipulation reveals the mechanics of cell contacts in vivo publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1418732112 – volume: 6 start-page: 458 year: 2009 ident: bib10 article-title: Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation publication-title: Nature Methods doi: 10.1038/nmeth.1327 – volume: 13 start-page: 771 year: 2011 ident: bib23 article-title: External forces control mitotic spindle positioning publication-title: Nature Cell Biology doi: 10.1038/ncb2269 – volume: 10 start-page: 623 year: 2000 ident: bib61 article-title: Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis during drosophila gastrulation publication-title: Current Biology doi: 10.1016/S0960-9822(00)00502-9 – volume: 107 start-page: 22111 year: 2010 ident: bib13 article-title: Video force microscopy reveals the mechanics of ventral furrow invagination in drosophila publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1006591107 – volume: 340 start-page: 1234168 year: 2013 ident: bib37 article-title: Imaging morphogenesis: technological advances and biological insights publication-title: Science doi: 10.1126/science.1234168 – volume: 4 year: 2015 ident: bib22 article-title: Interplay of cell dynamics and epithelial tension during morphogenesis of the drosophila pupal wing publication-title: eLife doi: 10.7554/eLife.07090 – volume: 126 start-page: 3573 year: 1999 ident: bib24 article-title: Revisiting the drosophila microchaete lineage: a novel intrinsically asymmetric cell division generates a glial cell publication-title: Development doi: 10.1242/dev.126.16.3573 – volume: 9 start-page: e99116 year: 2014 ident: bib14 article-title: CellFIT: a cellular force-inference toolkit using curvilinear cell boundaries publication-title: PloS One doi: 10.1371/journal.pone.0099116 – start-page: 107 volume-title: Single Cell-Based Models in Biology and Medicine year: 2007 ident: bib47 doi: 10.1007/978-3-7643-8123-3_5 – volume: 21 start-page: 236 year: 2011 ident: bib53 article-title: Intertissue mechanical stress affects frizzled-mediated planar cell polarity in the drosophila notum epidermis publication-title: Current Biology doi: 10.1016/j.cub.2011.01.001 – volume: 458 start-page: 987 year: 2009 ident: bib51 article-title: Genome-wide analysis of notch signalling in drosophila by transgenic RNAi publication-title: Nature doi: 10.1038/nature07936 – volume: 38 start-page: 33 year: 2015 ident: bib63 article-title: Colloquium: mechanical formalisms for tissue dynamics publication-title: European Physical Journal E doi: 10.1140/epje/i2015-15033-4 – volume: 107 start-page: 20863 year: 2010 ident: bib56 article-title: Fluidization of tissues by cell division and apoptosis publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1011086107 – volume: 8 start-page: e1002512 year: 2012 ident: bib18 article-title: Mechanical stress inference for two dimensional cell arrays publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1002512 – volume: 34 start-page: 1 year: 2011 ident: bib17 article-title: Understanding and predicting viscous, elastic, plastic flows publication-title: European Physical Journal E doi: 10.1140/epje/i2011-11001-4 – volume: 32 start-page: 2790 year: 2013 ident: bib45 article-title: Differential proliferation rates generate patterns of mechanical tension that orient tissue growth publication-title: EMBO Journal doi: 10.1038/emboj.2013.197 – volume: 101 start-page: 511 year: 2000 ident: bib48 article-title: Tribbles coordinates mitosis and morphogenesis in drosophila by regulating string/CDC25 proteolysis publication-title: Cell doi: 10.1016/S0092-8674(00)80861-2 – volume: 112 start-page: 5726 year: 2015 ident: bib65 article-title: Emergence of homeostatic epithelial packing and stress dissipation through divisions oriented along the long cell axis publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1420585112 |
| SSID | ssj0000748819 |
| Score | 2.5076272 |
| Snippet | Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes,... |
| SourceID | doaj pubmedcentral hal proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| SubjectTerms | Analysis Animals Biological Physics Biophysics and Structural Biology Cell death cell division cell rearrangements cell shape changes Computer Simulation development Development Biology Developmental Biology and Stem Cells Drosophila Drosophila - embryology Drosophila - growth & development Epithelium Epithelium - embryology Epithelium - growth & development Fruit-flies growth Life Sciences Models, Biological Morphogenesis Physics Tools and Resources |
| Title | Unified quantitative characterization of epithelial tissue development |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26653285 https://www.proquest.com/docview/1775635191 https://hal.science/hal-02626582 https://pubmed.ncbi.nlm.nih.gov/PMC4811803 https://doaj.org/article/fa1d45b94e73453d9a950df1109d7309 |
| Volume | 4 |
| WOSCitedRecordID | wos000373808600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M7P dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Science Database (NC LIVE) customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M2P dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBZru8Fexu5z1wWvDAYDr7Zs3R7T0dBCG0K3QfYkZF3WQnHaJins3-8c2cnibbCXvQhiH8XK8SfpUzjnO4S8s7zglgmfOeZFhopUmZJGZIJzA8uhxz-xYrEJMR7L6VRNNkp9YUxYKw_cOu4gmMJVrFaVF2XFSqeMYrkLKJTpAJ0xdQ9Yz8ZhKq7BAoBZqDYhT8CWeeBPL4P_iARD9bagqNS_Xo-3LjAc8k-u-XvI5MYeNHpMHnXkMR22g35C7vnmKXnQlpP88YyMgEAGoJTpzdI0MXkMlrLUriWZ24zLdBZSf42pGFeAvXQRPZ-6X8FDz8nX0dGXT8dZVychs1zRRcZVqIK04BtuPHMe_WVoaUvu69pYWgNl8XBwyCtXOCG5U9SYYGTuaw7mpnxBtptZ41-RVIrSBuErAd2qPDipqKe5VzDVXQ2fE_Jh5TptOxFxrGVxpeEwgX7W0c86-jkBKKyMr1vtjL-bHeI7WJug4HW8ADDQHQz0v2CQkH18gxolLRqMmflulvO5Pvl8rocVdClQajAh7zujMINRW9OlIMBvRxWsnuVezxLmnO3d3geg9EZ8PDzVeA3OtBRYHb0rEvJ2hSON_TGarfGz5VwXQjCOlRHB5mWLq_V3AWFiJZUsIaKHuN7D-neay4uoC15J1PMrd_-HP1-Th0ANGQbuFHSPbC9ul_4NuW_vAJW3A7IlpiK2ckB2Do_Gk_NBnIDQntEJtgLancnJ2eTbT-nJNiM |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unified+quantitative+characterization+of+epithelial+tissue+development&rft.jtitle=eLife&rft.au=Guirao%2C+Boris&rft.au=Rigaud%2C+Stephane+U&rft.au=Bosveld%2C+Floris&rft.au=Bailles%2C+Anais&rft.date=2015-12-12&rft.pub=eLife+Science+Publications%2C+Ltd&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=4&rft_id=info:doi/10.7554%2FeLife.08519&rft.externalDocID=A473410454 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |