Clustering algorithms: A comparative approach

Many real-world systems can be studied in terms of pattern recognition tasks, so that proper use (and understanding) of machine learning methods in practical applications becomes essential. While many classification methods have been proposed, there is no consensus on which methods are more suitable...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 14; číslo 1; s. e0210236
Hlavní autoři: Rodriguez, Mayra Z., Comin, Cesar H., Casanova, Dalcimar, Bruno, Odemir M., Amancio, Diego R., Costa, Luciano da F., Rodrigues, Francisco A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 15.01.2019
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Many real-world systems can be studied in terms of pattern recognition tasks, so that proper use (and understanding) of machine learning methods in practical applications becomes essential. While many classification methods have been proposed, there is no consensus on which methods are more suitable for a given dataset. As a consequence, it is important to comprehensively compare methods in many possible scenarios. In this context, we performed a systematic comparison of 9 well-known clustering methods available in the R language assuming normally distributed data. In order to account for the many possible variations of data, we considered artificial datasets with several tunable properties (number of classes, separation between classes, etc). In addition, we also evaluated the sensitivity of the clustering methods with regard to their parameters configuration. The results revealed that, when considering the default configurations of the adopted methods, the spectral approach tended to present particularly good performance. We also found that the default configuration of the adopted implementations was not always accurate. In these cases, a simple approach based on random selection of parameters values proved to be a good alternative to improve the performance. All in all, the reported approach provides subsidies guiding the choice of clustering algorithms.
AbstractList Many real-world systems can be studied in terms of pattern recognition tasks, so that proper use (and understanding) of machine learning methods in practical applications becomes essential. While many classification methods have been proposed, there is no consensus on which methods are more suitable for a given dataset. As a consequence, it is important to comprehensively compare methods in many possible scenarios. In this context, we performed a systematic comparison of 9 well-known clustering methods available in the R language assuming normally distributed data. In order to account for the many possible variations of data, we considered artificial datasets with several tunable properties (number of classes, separation between classes, etc). In addition, we also evaluated the sensitivity of the clustering methods with regard to their parameters configuration. The results revealed that, when considering the default configurations of the adopted methods, the spectral approach tended to present particularly good performance. We also found that the default configuration of the adopted implementations was not always accurate. In these cases, a simple approach based on random selection of parameters values proved to be a good alternative to improve the performance. All in all, the reported approach provides subsidies guiding the choice of clustering algorithms.
Many real-world systems can be studied in terms of pattern recognition tasks, so that proper use (and understanding) of machine learning methods in practical applications becomes essential. While many classification methods have been proposed, there is no consensus on which methods are more suitable for a given dataset. As a consequence, it is important to comprehensively compare methods in many possible scenarios. In this context, we performed a systematic comparison of 9 well-known clustering methods available in the R language assuming normally distributed data. In order to account for the many possible variations of data, we considered artificial datasets with several tunable properties (number of classes, separation between classes, etc). In addition, we also evaluated the sensitivity of the clustering methods with regard to their parameters configuration. The results revealed that, when considering the default configurations of the adopted methods, the spectral approach tended to present particularly good performance. We also found that the default configuration of the adopted implementations was not always accurate. In these cases, a simple approach based on random selection of parameters values proved to be a good alternative to improve the performance. All in all, the reported approach provides subsidies guiding the choice of clustering algorithms.Many real-world systems can be studied in terms of pattern recognition tasks, so that proper use (and understanding) of machine learning methods in practical applications becomes essential. While many classification methods have been proposed, there is no consensus on which methods are more suitable for a given dataset. As a consequence, it is important to comprehensively compare methods in many possible scenarios. In this context, we performed a systematic comparison of 9 well-known clustering methods available in the R language assuming normally distributed data. In order to account for the many possible variations of data, we considered artificial datasets with several tunable properties (number of classes, separation between classes, etc). In addition, we also evaluated the sensitivity of the clustering methods with regard to their parameters configuration. The results revealed that, when considering the default configurations of the adopted methods, the spectral approach tended to present particularly good performance. We also found that the default configuration of the adopted implementations was not always accurate. In these cases, a simple approach based on random selection of parameters values proved to be a good alternative to improve the performance. All in all, the reported approach provides subsidies guiding the choice of clustering algorithms.
Audience Academic
Author Rodriguez, Mayra Z.
Casanova, Dalcimar
Comin, Cesar H.
Bruno, Odemir M.
Costa, Luciano da F.
Amancio, Diego R.
Rodrigues, Francisco A.
AuthorAffiliation 2 Department of Computer Science, Federal University of São Carlos, São Carlos, São Paulo, Brazil
4 São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
3 Federal University of Technology, Paraná, Paraná, Brazil
1 Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, São Paulo, Brazil
University of Ulm, GERMANY
AuthorAffiliation_xml – name: 3 Federal University of Technology, Paraná, Paraná, Brazil
– name: 2 Department of Computer Science, Federal University of São Carlos, São Carlos, São Paulo, Brazil
– name: 4 São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
– name: University of Ulm, GERMANY
– name: 1 Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, São Paulo, Brazil
Author_xml – sequence: 1
  givenname: Mayra Z.
  surname: Rodriguez
  fullname: Rodriguez, Mayra Z.
– sequence: 2
  givenname: Cesar H.
  orcidid: 0000-0003-1207-4982
  surname: Comin
  fullname: Comin, Cesar H.
– sequence: 3
  givenname: Dalcimar
  surname: Casanova
  fullname: Casanova, Dalcimar
– sequence: 4
  givenname: Odemir M.
  surname: Bruno
  fullname: Bruno, Odemir M.
– sequence: 5
  givenname: Diego R.
  surname: Amancio
  fullname: Amancio, Diego R.
– sequence: 6
  givenname: Luciano da F.
  surname: Costa
  fullname: Costa, Luciano da F.
– sequence: 7
  givenname: Francisco A.
  surname: Rodrigues
  fullname: Rodrigues, Francisco A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30645617$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2L1DAUhousuB_6D0QHBNGLjkkzTdO9EIbBj4GFBb9uw2madDKkTU3SRf-9qdNdpssiNhcNp8_7np7De56cdLaTSfIcoyUmBX63t4PrwCz7WF6iDKOM0EfJGS5JltIMkZOj-2ly7v0eoZwwSp8kpwTRVU5xcZakGzP4IJ3umgWYxjoddq2_XKwXwrY9OAj6Ri6g750FsXuaPFZgvHw2vS-S7x8_fNt8Tq-uP20366tU0DILaTRnSElRyLJkQJnIiQRUFbWigFipJEF5jqtVhYjCWKG6ZArKDAQrSkpqQi6Slwff3ljPp0k9zzAtCMJZziKxPRC1hT3vnW7B_eYWNP9bsK7h4IIWRvJcFZhVqq4xrlc1lRWluMxqwDIvGKtE9Ho_dRuqVtZCdsGBmZnOv3R6xxt7wymJD6XR4M1k4OzPQfrAW-2FNAY6aYfxv4uSMIzpONmre-jD001UA3EA3Skb-4rRlK9zWsaTFzhSyweoeGrZahFjoXSszwRvZ4LIBPkrNDB4z7dfv_w_e_1jzr4-YncSTNh5a4agbefn4IvjTd-t-DaPEVgdAOGs906qOwQjPsb-dl18jD2fYh9ll_dkQgcY28eNaPNv8R_cEgbX
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_170597
crossref_primary_10_11648_j_ijdsa_20251103_11
crossref_primary_10_1109_ACCESS_2021_3134488
crossref_primary_10_1186_s12859_022_05093_z
crossref_primary_10_1016_j_infsof_2023_107391
crossref_primary_10_1109_ACCESS_2024_3365424
crossref_primary_10_1017_S1748499523000283
crossref_primary_10_1016_j_apenergy_2025_125811
crossref_primary_10_3390_mti6040028
crossref_primary_10_1016_j_cie_2023_109693
crossref_primary_10_1177_08901171251348111
crossref_primary_10_1186_s13040_022_00303_z
crossref_primary_10_1016_j_tbs_2020_02_004
crossref_primary_10_1155_2024_7086878
crossref_primary_10_1177_0271678X221083387
crossref_primary_10_3390_math9172156
crossref_primary_10_1007_s40520_023_02552_2
crossref_primary_10_1093_bib_bbae512
crossref_primary_10_1109_ACCESS_2020_3003046
crossref_primary_10_1111_jvs_13042
crossref_primary_10_1093_llc_fqac054
crossref_primary_10_3390_e21101013
crossref_primary_10_1007_s42452_021_04598_1
crossref_primary_10_1109_JIOT_2024_3422394
crossref_primary_10_3390_math13101623
crossref_primary_10_3390_sym15101875
crossref_primary_10_1007_s10462_022_10325_y
crossref_primary_10_1016_j_enpol_2024_114338
crossref_primary_10_1109_TSM_2025_3579031
crossref_primary_10_1016_j_atmosres_2024_107254
crossref_primary_10_1111_coin_12558
crossref_primary_10_1371_journal_pone_0272413
crossref_primary_10_1177_03611981211010795
crossref_primary_10_3390_math12020221
crossref_primary_10_1007_s11042_024_20218_7
crossref_primary_10_3390_s20216335
crossref_primary_10_1108_BIJ_03_2020_0114
crossref_primary_10_1109_ACCESS_2021_3068306
crossref_primary_10_1109_TCSII_2020_3032660
crossref_primary_10_1186_s13059_024_03386_5
crossref_primary_10_1016_j_compbiomed_2021_104557
crossref_primary_10_1016_j_procs_2023_03_025
crossref_primary_10_1016_j_psychres_2023_115265
crossref_primary_10_1007_s11063_022_10763_3
crossref_primary_10_1093_bioinformatics_btaf303
crossref_primary_10_1109_ACCESS_2022_3219457
crossref_primary_10_2166_wcc_2022_186
crossref_primary_10_3390_ijerph192113855
crossref_primary_10_1371_journal_pone_0216906
crossref_primary_10_1002_anie_202303755
crossref_primary_10_1016_j_ins_2020_12_020
crossref_primary_10_1108_JAMR_06_2020_0098
crossref_primary_10_3389_fsufs_2024_1392746
crossref_primary_10_1016_j_ajo_2022_06_001
crossref_primary_10_1016_j_bpj_2022_09_012
crossref_primary_10_3390_sym13101764
crossref_primary_10_1111_coin_12546
crossref_primary_10_1016_j_apenergy_2020_115399
crossref_primary_10_1002_wmh3_70030
crossref_primary_10_1109_TII_2021_3079521
crossref_primary_10_3168_jds_2024_25163
crossref_primary_10_1016_j_dajour_2021_100013
crossref_primary_10_1016_j_engappai_2024_109249
crossref_primary_10_1016_j_pnpbp_2025_111452
crossref_primary_10_3390_buildings14082384
crossref_primary_10_1111_jen_12698
crossref_primary_10_3389_fpsyt_2024_1337740
crossref_primary_10_1002_ange_202303755
crossref_primary_10_1186_s12885_024_13411_2
crossref_primary_10_1186_s40537_020_00325_6
crossref_primary_10_3390_en15031239
crossref_primary_10_1007_s11676_025_01867_2
crossref_primary_10_1080_01621459_2025_2506196
crossref_primary_10_3390_hydrology10100196
crossref_primary_10_1109_JSEN_2022_3222873
crossref_primary_10_1111_jch_13984
crossref_primary_10_1007_s13580_025_00749_0
crossref_primary_10_1016_j_paerosci_2022_100849
crossref_primary_10_1016_j_ijdrr_2024_104653
crossref_primary_10_1038_s41598_025_99246_8
crossref_primary_10_1371_journal_pone_0229928
crossref_primary_10_1371_journal_pone_0294500
crossref_primary_10_1109_ACCESS_2025_3596435
crossref_primary_10_1109_TC_2022_3215898
crossref_primary_10_1051_0004_6361_202243060
crossref_primary_10_1002_sim_9620
crossref_primary_10_1109_ACCESS_2023_3286936
crossref_primary_10_1080_24725579_2020_1864522
crossref_primary_10_7717_peerj_cs_2723
crossref_primary_10_1007_s42979_021_00707_4
crossref_primary_10_1002_csc2_20598
crossref_primary_10_1016_j_tws_2025_113453
crossref_primary_10_1016_j_irbm_2023_100780
crossref_primary_10_5194_hess_26_429_2022
crossref_primary_10_1017_gov_2020_37
crossref_primary_10_3390_cancers14194759
crossref_primary_10_1186_s12909_023_04172_w
crossref_primary_10_1007_s11517_021_02403_0
crossref_primary_10_1590_0034_7167_2024_0091
crossref_primary_10_1093_epirev_mxab002
crossref_primary_10_36306_konjes_1081213
crossref_primary_10_1007_s41109_022_00468_w
crossref_primary_10_1155_2022_8260283
crossref_primary_10_1088_1748_9326_ac2ce9
crossref_primary_10_1016_j_physa_2020_124895
crossref_primary_10_1016_j_neucom_2024_128198
crossref_primary_10_3758_s13428_024_02503_3
crossref_primary_10_1186_s12859_023_05567_8
crossref_primary_10_3390_e21111125
crossref_primary_10_1111_cea_70063
crossref_primary_10_1016_j_is_2020_101662
crossref_primary_10_1080_03610918_2024_2434144
crossref_primary_10_1080_09537325_2025_2464042
crossref_primary_10_1136_bmjopen_2021_049249
crossref_primary_10_1016_j_newast_2022_101973
crossref_primary_10_3390_s21030797
crossref_primary_10_1016_j_aap_2020_105932
crossref_primary_10_3390_math12172790
crossref_primary_10_3390_stats7040065
crossref_primary_10_1088_1402_4896_ad935b
crossref_primary_10_1155_2023_7493623
crossref_primary_10_3390_plants10071460
crossref_primary_10_1007_s13253_024_00622_0
crossref_primary_10_1007_s10586_024_04981_8
crossref_primary_10_1007_s10639_024_12480_x
crossref_primary_10_1061_JMENEA_MEENG_6708
crossref_primary_10_1109_ACCESS_2020_3014948
crossref_primary_10_3389_fenvs_2023_1197888
crossref_primary_10_1038_s42003_022_04109_x
crossref_primary_10_1007_s10479_025_06684_8
crossref_primary_10_1016_j_jenvman_2025_125163
crossref_primary_10_1016_j_apgeog_2024_103478
crossref_primary_10_1016_j_procs_2022_08_055
crossref_primary_10_1371_journal_pone_0302425
crossref_primary_10_1016_j_biosystems_2022_104749
crossref_primary_10_1145_3748726
crossref_primary_10_1016_j_mtla_2022_101314
crossref_primary_10_71185_jbis_2025_276931
crossref_primary_10_3390_s20071887
crossref_primary_10_1016_j_jclinane_2025_112006
crossref_primary_10_1016_j_ces_2025_121429
crossref_primary_10_3390_brainsci14030296
crossref_primary_10_1093_nar_gkab1132
crossref_primary_10_1007_s41060_021_00303_y
crossref_primary_10_1111_exsy_13082
crossref_primary_10_1186_s13638_021_01910_w
crossref_primary_10_1371_journal_pone_0304716
crossref_primary_10_1007_s11036_020_01696_z
crossref_primary_10_1371_journal_pone_0255174
crossref_primary_10_1002_ett_4325
crossref_primary_10_1088_1757_899X_807_1_012017
crossref_primary_10_1186_s12859_020_03774_1
crossref_primary_10_1007_s10586_024_05029_7
crossref_primary_10_1016_j_future_2023_07_027
crossref_primary_10_1016_j_advmem_2023_100072
crossref_primary_10_1186_s12931_024_02664_x
crossref_primary_10_1016_j_epsr_2021_107391
crossref_primary_10_1371_journal_pone_0300358
crossref_primary_10_1080_15623599_2022_2112898
crossref_primary_10_1016_j_istruc_2025_108598
crossref_primary_10_1016_j_csbj_2022_03_036
crossref_primary_10_3390_su17104373
crossref_primary_10_1186_s12870_021_03200_5
crossref_primary_10_1093_jnen_nlac085
crossref_primary_10_1016_j_trc_2021_103370
crossref_primary_10_1073_pnas_1906766116
crossref_primary_10_1016_j_tifs_2024_104574
crossref_primary_10_1097_HMR_0000000000000428
crossref_primary_10_3390_metabo10050178
crossref_primary_10_1093_ehjdh_ztaf032
crossref_primary_10_1186_s12936_023_04535_0
crossref_primary_10_1093_gigascience_giae039
crossref_primary_10_1371_journal_pone_0267558
crossref_primary_10_1016_j_envdev_2023_100881
crossref_primary_10_2174_0109298673319827240812052102
crossref_primary_10_1371_journal_pone_0266369
crossref_primary_10_1016_j_ins_2020_06_069
crossref_primary_10_2174_2772574X14666230126095121
crossref_primary_10_1177_20592043231216257
crossref_primary_10_1016_j_cmpb_2021_106346
crossref_primary_10_23887_jstundiksha_v13i2_84743
crossref_primary_10_1080_02664763_2021_2001443
crossref_primary_10_1016_j_physa_2019_02_032
crossref_primary_10_3390_min10121139
crossref_primary_10_7717_peerj_cs_1545
crossref_primary_10_1002_eng2_12411
crossref_primary_10_1016_j_jmbbm_2022_105467
crossref_primary_10_1016_j_tourman_2020_104132
crossref_primary_10_1055_a_2669_7933
crossref_primary_10_1371_journal_pone_0233660
crossref_primary_10_1007_s11042_020_09765_x
crossref_primary_10_1371_journal_pone_0279780
crossref_primary_10_1016_j_cjcpc_2025_05_005
crossref_primary_10_3390_ijerph20146390
crossref_primary_10_17556_erziefd_1641065
crossref_primary_10_1098_rsos_241692
crossref_primary_10_1038_s41598_025_07475_8
crossref_primary_10_1016_j_cageo_2025_105999
crossref_primary_10_1155_2022_4414784
crossref_primary_10_1016_j_jad_2019_11_071
crossref_primary_10_1016_j_ebiom_2024_105280
crossref_primary_10_1080_09537287_2024_2320789
crossref_primary_10_1016_j_enbuild_2024_115232
crossref_primary_10_3390_informatics12030081
crossref_primary_10_1371_journal_pone_0302070
crossref_primary_10_1016_j_tplants_2019_10_008
crossref_primary_10_1016_j_ajog_2025_02_035
crossref_primary_10_1371_journal_pone_0228504
crossref_primary_10_3389_fpsyg_2022_860766
crossref_primary_10_1007_s00779_019_01257_6
crossref_primary_10_1007_s00125_024_06248_8
crossref_primary_10_1093_bib_bbac191
crossref_primary_10_3390_horticulturae9101094
crossref_primary_10_3389_fpsyg_2022_903227
crossref_primary_10_1080_02331888_2025_2531133
crossref_primary_10_1145_3746065
crossref_primary_10_1371_journal_pcbi_1008625
crossref_primary_10_1186_s13075_023_03139_y
crossref_primary_10_1590_0034_7167_2024_0091pt
crossref_primary_10_1016_j_jhydrol_2025_133323
crossref_primary_10_1007_s12351_024_00872_3
crossref_primary_10_3390_s23187925
crossref_primary_10_1109_TEVC_2021_3137369
crossref_primary_10_3390_electronics13245035
crossref_primary_10_3390_ijms23052900
crossref_primary_10_1016_j_echo_2021_05_011
crossref_primary_10_1016_j_compag_2024_109305
crossref_primary_10_1007_s10766_025_00783_6
crossref_primary_10_1007_s11277_021_08535_8
crossref_primary_10_1016_j_apgeog_2024_103300
crossref_primary_10_1016_j_compenvurbsys_2025_102289
crossref_primary_10_1007_s11069_021_05120_x
crossref_primary_10_3390_jcm13154577
crossref_primary_10_1371_journal_pone_0232816
crossref_primary_10_1016_j_eswa_2020_114138
crossref_primary_10_3390_en14248397
crossref_primary_10_1371_journal_pone_0309920
crossref_primary_10_1080_15732479_2024_2366958
crossref_primary_10_3390_a13120309
crossref_primary_10_1007_s11192_022_04397_4
crossref_primary_10_1016_j_solener_2025_113684
crossref_primary_10_5194_gc_8_191_2025
crossref_primary_10_3390_jcs8100416
crossref_primary_10_3847_1538_4357_adc1c2
crossref_primary_10_1177_01655515231196391
crossref_primary_10_1098_rsos_211189
crossref_primary_10_1007_s00521_023_08665_z
crossref_primary_10_1145_3610583
crossref_primary_10_1186_s40561_024_00360_3
crossref_primary_10_1016_j_knosys_2024_111834
crossref_primary_10_3390_en15207644
crossref_primary_10_1186_s40537_023_00829_x
crossref_primary_10_3390_s25165184
crossref_primary_10_1371_journal_pone_0326315
crossref_primary_10_1016_j_commatsci_2022_111805
crossref_primary_10_1109_ACCESS_2021_3106873
crossref_primary_10_1515_geo_2020_0295
crossref_primary_10_1007_s11634_021_00478_z
crossref_primary_10_1016_j_ins_2021_04_099
crossref_primary_10_1016_j_physa_2020_125344
crossref_primary_10_3390_w16152081
crossref_primary_10_1371_journal_pone_0246529
crossref_primary_10_1016_j_procs_2020_06_032
crossref_primary_10_1523_ENEURO_0438_24_2025
crossref_primary_10_3389_fimmu_2020_609624
crossref_primary_10_1016_j_eswa_2022_119099
crossref_primary_10_1016_j_patter_2025_101236
crossref_primary_10_1002_cpe_7160
crossref_primary_10_1088_1742_6596_1950_1_012054
crossref_primary_10_1109_ACCESS_2024_3467149
crossref_primary_10_1007_s10479_025_06544_5
crossref_primary_10_3390_fi13090228
crossref_primary_10_1155_2023_1868826
crossref_primary_10_3390_computation9100106
crossref_primary_10_3390_molecules28104028
crossref_primary_10_1155_2022_3109609
crossref_primary_10_1016_j_compbiomed_2021_104753
crossref_primary_10_1016_j_ins_2020_12_060
crossref_primary_10_1016_j_soildyn_2025_109740
crossref_primary_10_1002_mma_7748
crossref_primary_10_1016_j_isprsjprs_2025_04_007
crossref_primary_10_1007_s12652_020_02041_8
crossref_primary_10_3390_ijerph182111476
crossref_primary_10_1016_j_knosys_2021_107599
crossref_primary_10_1049_iet_sen_2019_0138
crossref_primary_10_1007_s42461_024_01024_z
crossref_primary_10_1002_cae_22556
crossref_primary_10_1016_j_foreco_2025_122705
crossref_primary_10_1109_TSG_2021_3063088
crossref_primary_10_1007_s12065_022_00734_x
crossref_primary_10_1007_s10207_025_01092_2
crossref_primary_10_1007_s10489_022_03887_5
crossref_primary_10_1016_j_aanat_2025_152403
crossref_primary_10_1016_j_joi_2020_101107
crossref_primary_10_1016_j_jbusres_2023_114410
crossref_primary_10_1021_acs_jctc_4c01750
crossref_primary_10_1080_01621459_2024_2340792
crossref_primary_10_3390_bios10120193
crossref_primary_10_1007_s12039_024_02263_9
crossref_primary_10_1016_j_tifs_2024_104564
crossref_primary_10_1002_ldr_3741
crossref_primary_10_3390_ijerph17165976
crossref_primary_10_1063_5_0281416
crossref_primary_10_1016_j_joi_2022_101260
crossref_primary_10_3390_plants10030437
crossref_primary_10_1016_j_asoc_2020_106990
crossref_primary_10_5687_iscie_38_63
Cites_doi 10.1109/TKDE.2007.1048
10.1007/s00357-003-0015-3
10.1002/9780470479216.corpsy0491
10.1109/TPAMI.2005.88
10.1016/j.patrec.2011.06.023
10.1590/S1415-47572004000400025
10.1023/A:1009769707641
10.1371/journal.pone.0006022
10.1145/1162678.1162679
10.3233/JIFS-171393
10.1186/1471-2105-7-488
10.1016/j.ejor.2005.03.039
10.1017/CBO9781139020411
10.1371/journal.pone.0157988
10.1016/j.patcog.2007.05.018
10.1145/331499.331504
10.1007/BF01908075
10.1080/01969727308546046
10.1016/j.eswa.2009.05.044
10.1016/j.ins.2014.02.137
10.1016/j.knosys.2012.11.015
10.1007/s003579900058
10.1214/aos/1176344136
10.1016/j.ejor.2005.10.014
10.1371/journal.pone.0162259
10.1126/science.1199644
10.1002/9780470316801
10.1007/BFb0026683
10.1007/s10115-007-0114-2
10.1109/TKDE.2003.1198387
10.1016/j.physa.2012.07.007
10.1109/TPAMI.2002.1114856
10.1109/ICDE.2001.914857
10.1109/2.781637
10.1145/1327452.1327492
10.1016/S0004-3702(97)00063-5
10.1089/10665270252833217
10.1007/s10618-012-0258-x
10.1016/j.patcog.2012.07.021
10.1198/016214502760047131
10.1080/13102818.2014.949045
10.1088/1742-5468/2015/03/P03005
10.1371/journal.pone.0156576
10.1021/ci0342472
10.1016/j.joi.2012.12.005
10.1109/ICPR.2004.1334073
10.1209/0295-5075/19/3/015
10.1016/j.patcog.2016.12.003
10.1080/01621459.1983.10478008
10.1016/j.cor.2012.03.008
10.1145/775047.775103
10.1016/j.ejor.2010.08.012
10.1016/S0306-4379(01)00008-4
10.1016/j.patcog.2006.06.026
10.1093/bioinformatics/btl117
10.1016/j.patrec.2009.09.011
10.1145/2522968.2522981
10.1016/j.ijmedinf.2006.11.006
10.1109/ICDM.2010.35
10.1023/A:1012801612483
10.18637/jss.v046.i06
10.1016/j.neuroimage.2009.12.092
10.1016/0377-2217(96)00038-0
10.1371/journal.pone.0094137
10.1023/A:1022602019183
10.1007/s11222-007-9033-z
10.1093/comjnl/10.3.271
10.1348/000711005X48266
10.1016/j.joi.2016.07.009
10.1093/comjnl/41.8.578
10.1137/S1064827596311451
10.1016/j.joi.2012.02.005
10.1023/A:1024084221803
10.1016/j.csda.2007.02.009
10.1145/1007730.1007731
10.1186/1471-2105-9-497
10.1007/BF00047572
10.1016/j.sbspro.2011.11.022
10.1007/3-540-63797-4_87
10.1126/science.1202775
10.1145/304181.304187
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Rodriguez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Rodriguez et al 2019 Rodriguez et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Rodriguez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Rodriguez et al 2019 Rodriguez et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0210236
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Agricultural Science Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
Computer Science
DocumentTitleAlternate Clustering algorithms: A comparative approach
EISSN 1932-6203
ExternalDocumentID 2167301258
oai_doaj_org_article_5f718bfdd11d4d6eb66192da1e5788bc
PMC6333366
A569696571
30645617
10_1371_journal_pone_0210236
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GrantInformation_xml – fundername: ;
  grantid: 11/50761-2
– fundername: ;
– fundername: ;
  grantid: 001
– fundername: ;
  grantid: 307333/2013-2
– fundername: ;
  grantid: 18/09125-4
– fundername: ;
  grantid: 14/08026-1
– fundername: ;
  grantid: 16/19069-9
– fundername: ;
  grantid: 15/18942-8
– fundername: ;
  grantid: 15/22308-2
– fundername: ;
  grantid: 307797/2014-7
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c692t-64580fec7e998a68c53ea0b7df6a089fe30551b4b03f11f0d98fa92ac87963d33
IEDL.DBID 7RV
ISICitedReferencesCount 366
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455810200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Fri Nov 26 17:12:22 EST 2021
Fri Oct 03 12:44:55 EDT 2025
Tue Nov 04 02:00:40 EST 2025
Mon Sep 08 11:32:09 EDT 2025
Tue Oct 07 07:37:34 EDT 2025
Sat Nov 29 13:31:22 EST 2025
Sat Nov 29 10:26:26 EST 2025
Wed Nov 26 10:35:33 EST 2025
Wed Nov 26 09:59:31 EST 2025
Thu May 22 21:19:59 EDT 2025
Wed Feb 19 02:30:41 EST 2025
Sat Nov 29 02:56:43 EST 2025
Tue Nov 18 22:27:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-64580fec7e998a68c53ea0b7df6a089fe30551b4b03f11f0d98fa92ac87963d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-1207-4982
OpenAccessLink https://www.proquest.com/docview/2167301258?pq-origsite=%requestingapplication%
PMID 30645617
PQID 2167301258
PQPubID 1436336
PageCount e0210236
ParticipantIDs plos_journals_2167301258
doaj_primary_oai_doaj_org_article_5f718bfdd11d4d6eb66192da1e5788bc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6333366
proquest_miscellaneous_2179381163
proquest_journals_2167301258
gale_infotracmisc_A569696571
gale_infotracacademiconefile_A569696571
gale_incontextgauss_ISR_A569696571
gale_incontextgauss_IOV_A569696571
gale_healthsolutions_A569696571
pubmed_primary_30645617
crossref_primary_10_1371_journal_pone_0210236
crossref_citationtrail_10_1371_journal_pone_0210236
PublicationCentury 2000
PublicationDate 2019-01-15
PublicationDateYYYYMMDD 2019-01-15
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References JA Silva (ref94) 2013; 46
ref58
G Ridgeway (ref8) 2003; 7
ref52
L Jing (ref17) 2007; 19
A Strehl (ref34) 2002; 3
K Sim (ref89) 2013; 26
D Verma (ref50) 2003; 1
ref51
M Halkidi (ref30) 2001; 17
ref48
ref47
ref44
C Fraley (ref78) 2002; 97
HP Kriegel (ref88) 2012; 2
G Colavizza (ref107) 2016; 10
JB Michel (ref2) 2011; 331
P Mangiameli (ref46) 1996; 93
T Kinnunen (ref21) 2011; 32
OA Abbas (ref22) 2008; 5
Y Wang (ref15) 2010; 50
Z Huang (ref62) 1998; 2
S Brohée (ref27) 2006; 7
E B Fowlkes (ref33) 1983; 78
MC Nascimento (ref83) 2011; 211
P Berkhin (ref37) 2006
C Bouveyron (ref91) 2007; 52
IS Dhillon (ref87) 2004
YG Jung (ref20) 2014; 28
L Parsons (ref49) 2004; 6
M Brun (ref100) 2007; 40
R Redner (ref76) 1984; 26
H Lawrence (ref32) 1985; 2
J Dean (ref5) 2008; 51
IG Costa (ref24) 2004; 27
DE Goldberg (ref39) 1988; 3
J Huang (ref56) 2013; 40
U Maulik (ref28) 2002; 24
O Arbelaitz (ref101) 2013; 46
TM Cover (ref98) 2012; vol. 2
DR Amancio (ref4) 2012; 6
X Wu (ref57) 2008; 14
AK Jain (ref59) 2010; 31
AK Jain (ref41) 1999; 31
GF Arruda (ref103) 2012; 391
L Bergé (ref90) 2012; 46
AP Dempster (ref77) 1977; 39
AY Ng (ref86) 2001
R Suzuki (ref18) 2006; 22
C Fraley (ref79) 1999; 16
L Kaufman (ref70) 1990
ref13
LM Naeni (ref104) 2016; 11
ref96
GN Lance (ref75) 1967; 10
D Steinley (ref60) 2006; 59
JA Hartigan (ref69) 1979; 28
G Schwarz (ref82) 1978; 6
F Camastra (ref19) 2005; 27
C Garcia (ref106) 2016; 11
MC de Souto (ref25) 2008; 9
M Łuczak (ref92) 2018; 34
(ref42) 2006
RA Horn (ref95) 2012
M Benaim (ref108) 1992; 19
JC Dunn (ref61) 1973; 3
SA Golder (ref1) 2011; 333
CC Aggarwal (ref7) 2012
MP Viana (ref6) 2013; 7
P Jaccard (ref31) 1908; 44
ER Dougherty (ref26) 2002; 9
DR Amancio (ref36) 2014; 9
M Ankerst (ref72) 1999; 28
AL Blum (ref16) 1997; 97
Z Abdullah (ref11) 2011; 28
S Guha (ref53) 2001; 26
DM Hawkins (ref40) 2004; 44
A Strehl (ref99) 2002; 3
DR Amancio (ref105) 2015; 2015
M Khashei (ref12) 2010; 37
G Kou (ref43) 2014; 275
YP Raykov (ref63) 2016; 11
M Ankerst (ref73) 1999
C Fraley (ref80) 2003; 20
U Von Luxburg (ref85) 2007; 17
ref74
ref102
U Fayyad (ref9) 1996; 17
C Fraley (ref81) 1998; 20
Y Lei (ref97) 2017; 65
CC Aggarwal (ref54) 2013; vol. 2
H Pirim (ref23) 2012; 39
ref68
ref67
ref64
C Fraley (ref29) 1998; 41
ref66
ref65
G Karypis (ref55) 1999; 32
CR Hwang (ref38) 1988; 12
SA Mingoti (ref45) 2006; 174
S Guha (ref93) 2003; 15
IH Witten (ref14) 2005
R Bellazzi (ref10) 2008; 77
J Bollen (ref3) 2009; 4
M Hirschberger (ref35) 2007; 177
J Han (ref71) 2006; vol. 2
M Filippone (ref84) 2008; 41
References_xml – volume: 19
  start-page: 1026
  issue: 8
  year: 2007
  ident: ref17
  article-title: An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
  publication-title: IEEE Transactions on knowledge and data engineering
  doi: 10.1109/TKDE.2007.1048
– start-page: 77
  year: 2012
  ident: ref7
  article-title: A Survey of Text Clustering Algorithms
– volume: 20
  start-page: 263
  issue: 2
  year: 2003
  ident: ref80
  article-title: Enhanced Model-Based Clustering, Density Estimation, and Discriminant Analysis Software: MCLUST”
  publication-title: Journal of Classification
  doi: 10.1007/s00357-003-0015-3
– ident: ref102
  doi: 10.1002/9780470479216.corpsy0491
– volume: 27
  start-page: 801
  issue: 5
  year: 2005
  ident: ref19
  article-title: A novel kernel method for clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2005.88
– volume: 32
  start-page: 1604
  issue: 13
  year: 2011
  ident: ref21
  article-title: Comparison of clustering methods: A case study of text-independent speaker modeling
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2011.06.023
– volume: 27
  start-page: 623
  year: 2004
  ident: ref24
  article-title: Comparative analysis of clustering methods for gene expression time course data
  publication-title: Genetics and Molecular Biology
  doi: 10.1590/S1415-47572004000400025
– volume: vol. 2
  year: 2013
  ident: ref54
  article-title: Data Clustering: Algorithms and Applications
– volume: 2
  start-page: 283
  issue: 3
  year: 1998
  ident: ref62
  article-title: Extensions to the k-means algorithm for clustering large data sets with categorical values
  publication-title: Data mining and knowledge discovery
  doi: 10.1023/A:1009769707641
– volume: 4
  start-page: 1
  issue: 6
  year: 2009
  ident: ref3
  article-title: A Principal Component Analysis of 39 Scientific Impact Measures
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0006022
– ident: ref44
  doi: 10.1145/1162678.1162679
– volume: 34
  start-page: 373
  issue: 1
  year: 2018
  ident: ref92
  article-title: Combining raw and normalized data in multivariate time series classification with dynamic time warping
  publication-title: Journal of Intelligent & Fuzzy Systems
  doi: 10.3233/JIFS-171393
– volume: 7
  start-page: 1
  issue: 1
  year: 2006
  ident: ref27
  article-title: Evaluation of clustering algorithms for protein-protein interaction networks
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-488
– volume: 174
  start-page: 1742
  issue: 3
  year: 2006
  ident: ref45
  article-title: Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.03.039
– year: 2012
  ident: ref95
  article-title: Matrix Analysis
  doi: 10.1017/CBO9781139020411
– ident: ref65
– volume: 26
  issue: 6
  year: 1984
  ident: ref76
  article-title: Mixture densities, maximum likelihood and the em algorithm
  publication-title: SIAM Review
– volume: 11
  start-page: 1
  issue: 8
  year: 2016
  ident: ref104
  article-title: A Novel Clustering Methodology Based on Modularity Optimisation for Detecting Authorship Affinities in Shakespearean Era Plays
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0157988
– volume: 41
  start-page: 176
  issue: 1
  year: 2008
  ident: ref84
  article-title: A survey of kernel and spectral methods for clustering
  publication-title: Pattern recognition
  doi: 10.1016/j.patcog.2007.05.018
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: ref41
  article-title: Data clustering: a review
  publication-title: ACM computing surveys
  doi: 10.1145/331499.331504
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  ident: ref32
  article-title: Comparing partitions
  publication-title: Journal of Classification
  doi: 10.1007/BF01908075
– ident: ref47
– volume: 3
  start-page: 583
  year: 2002
  ident: ref34
  article-title: Cluster Ensembles—A Knowledge Reuse Framework for Combining Multiple Partitions
  publication-title: Journal of Machine Learning Research
– volume: 3
  start-page: 32
  year: 1973
  ident: ref61
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters
  publication-title: Cybernetics
  doi: 10.1080/01969727308546046
– volume: 37
  start-page: 479
  issue: 1
  year: 2010
  ident: ref12
  article-title: An artificial neural network (p, d, q) model for timeseries forecasting
  publication-title: Expert Systems with applications
  doi: 10.1016/j.eswa.2009.05.044
– volume: 275
  start-page: 1
  year: 2014
  ident: ref43
  article-title: Evaluation of clustering algorithms for financial risk analysis using MCDM methods
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.02.137
– volume: 40
  start-page: 111
  year: 2013
  ident: ref56
  article-title: ESC: An efficient synchronization-based clustering algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2012.11.015
– volume: 16
  start-page: 297
  issue: 2
  year: 1999
  ident: ref79
  article-title: MCLUST: Software for model-based cluster analysis
  publication-title: Journal of Classification
  doi: 10.1007/s003579900058
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: ref82
  article-title: Estimating the dimension of a model
  publication-title: The annals of statistics
  doi: 10.1214/aos/1176344136
– volume: 177
  start-page: 1610
  issue: 3
  year: 2007
  ident: ref35
  article-title: Randomly generating portfolio-selection covariance matrices with specified distributional characteristics
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.10.014
– volume: 11
  start-page: 1
  issue: 9
  year: 2016
  ident: ref63
  article-title: What to Do When K-Means Clustering Fails: A Simple yet Principled Alternative Algorithm
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0162259
– ident: ref68
– volume: 331
  start-page: 176
  issue: 6014
  year: 2011
  ident: ref2
  article-title: Quantitative Analysis of Culture Using Millions of Digitized Books
  publication-title: Science
  doi: 10.1126/science.1199644
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: ref69
  article-title: Algorithm AS 136: A k-means clustering algorithm
  publication-title: Journal of the Royal Statistical Society Series C
– year: 1990
  ident: ref70
  article-title: Finding Groups in Data: an introduction to cluster analysis
  doi: 10.1002/9780470316801
– ident: ref13
  doi: 10.1007/BFb0026683
– ident: ref74
– volume: 14
  start-page: 1
  issue: 1
  year: 2008
  ident: ref57
  article-title: Top 10 algorithms in data mining
  publication-title: Knowledge and information systems
  doi: 10.1007/s10115-007-0114-2
– volume: 15
  start-page: 515
  issue: 3
  year: 2003
  ident: ref93
  article-title: Clustering data streams: Theory and practice
  publication-title: IEEE transactions on knowledge and data engineering
  doi: 10.1109/TKDE.2003.1198387
– volume: 391
  start-page: 6174
  issue: 23
  year: 2012
  ident: ref103
  article-title: A complex networks approach for data clustering
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2012.07.007
– volume: 24
  start-page: 1650
  issue: 12
  year: 2002
  ident: ref28
  article-title: Performance evaluation of some clustering algorithms and validity indices
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2002.1114856
– ident: ref48
  doi: 10.1109/ICDE.2001.914857
– volume: 32
  start-page: 68
  issue: 8
  year: 1999
  ident: ref55
  article-title: Chameleon: Hierarchical clustering using dynamic modeling
  publication-title: Computer
  doi: 10.1109/2.781637
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  ident: ref5
  article-title: MapReduce: Simplified Data Processing on Large Clusters
  publication-title: Commun ACM
  doi: 10.1145/1327452.1327492
– volume: 97
  start-page: 245
  issue: 1
  year: 1997
  ident: ref16
  article-title: Selection of relevant features and examples in machine learning
  publication-title: Artificial intelligence
  doi: 10.1016/S0004-3702(97)00063-5
– volume: 17
  start-page: 37
  issue: 3
  year: 1996
  ident: ref9
  article-title: From data mining to knowledge discovery in databases
  publication-title: AI magazine
– volume: 44
  start-page: 223
  year: 1908
  ident: ref31
  article-title: Nouvelles recherches sur la distribution florale
  publication-title: Bulletin de la Sociète Vaudense des Sciences Naturelles
– volume: 9
  start-page: 105
  issue: 1
  year: 2002
  ident: ref26
  article-title: Inference from clustering with application to gene-expression microarrays
  publication-title: Journal of Computational Biology
  doi: 10.1089/10665270252833217
– volume: 26
  start-page: 332
  issue: 2
  year: 2013
  ident: ref89
  article-title: A survey on enhanced subspace clustering
  publication-title: Data mining and knowledge discovery
  doi: 10.1007/s10618-012-0258-x
– year: 2005
  ident: ref14
  article-title: Data Mining: Practical Machine Learning Tools and Techniques
– volume: 39
  issue: 6
  year: 1977
  ident: ref77
  article-title: Maximum Likelihood from Incomplete Data via the EM Algorithm
  publication-title: Journal of the Royal Statistical Society Series B
– ident: ref52
– volume: 46
  start-page: 243
  issue: 1
  year: 2013
  ident: ref101
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2012.07.021
– volume: vol. 2
  year: 2006
  ident: ref71
  article-title: Concepts and Techniques
– volume: 97
  start-page: 611
  issue: 458
  year: 2002
  ident: ref78
  article-title: Model-based clustering, discriminant analysis, and density estimation
  publication-title: Journal of the American statistical Association
  doi: 10.1198/016214502760047131
– volume: 28
  start-page: S44
  issue: sup1
  year: 2014
  ident: ref20
  article-title: Clustering performance comparison using K-means and expectation maximization algorithms
  publication-title: Biotechnology & Biotechnological Equipment
  doi: 10.1080/13102818.2014.949045
– volume: 2015
  start-page: P03005
  issue: 3
  year: 2015
  ident: ref105
  article-title: Authorship recognition via fluctuation analysis of network topology and word intermittency
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
  doi: 10.1088/1742-5468/2015/03/P03005
– volume: 11
  start-page: 1
  issue: 6
  year: 2016
  ident: ref106
  article-title: BoCluSt: Bootstrap Clustering Stability Algorithm for Community Detection
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0156576
– volume: 5
  start-page: 320
  issue: 3
  year: 2008
  ident: ref22
  article-title: Comparisons Between Data Clustering Algorithms
  publication-title: Int Arab J Inf Technol
– volume: 44
  start-page: 1
  issue: 1
  year: 2004
  ident: ref40
  article-title: The problem of overfitting
  publication-title: Journal of chemical information and computer sciences
  doi: 10.1021/ci0342472
– start-page: 25
  year: 2006
  ident: ref37
  article-title: A Survey of Clustering Data Mining Techniques
– volume: 7
  start-page: 371
  issue: 2
  year: 2013
  ident: ref6
  article-title: On time-varying collaboration networks
  publication-title: Journal of Informetrics
  doi: 10.1016/j.joi.2012.12.005
– ident: ref58
  doi: 10.1109/ICPR.2004.1334073
– volume: 19
  start-page: 241
  issue: 3
  year: 1992
  ident: ref108
  article-title: A Stochastic Model of Neural Network for Unsupervised Learning
  publication-title: Europhysics Letters
  doi: 10.1209/0295-5075/19/3/015
– volume: 65
  start-page: 58
  year: 2017
  ident: ref97
  article-title: Ground truth bias in external cluster validity indices
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2016.12.003
– volume: 78
  start-page: 553
  issue: 383
  year: 1983
  ident: ref33
  article-title: A Method for Comparing Two Hierarchical Clusterings
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1983.10478008
– volume: 39
  start-page: 3046
  issue: 12
  year: 2012
  ident: ref23
  article-title: Clustering of high throughput gene expression data
  publication-title: Computers & operations research
  doi: 10.1016/j.cor.2012.03.008
– volume: 1
  start-page: 1
  year: 2003
  ident: ref50
  article-title: A comparison of spectral clustering algorithms
  publication-title: University of Washington Tech Rep UWCSE030501
– ident: ref66
  doi: 10.1145/775047.775103
– volume: 211
  start-page: 221
  issue: 2
  year: 2011
  ident: ref83
  article-title: Spectral methods for graph clustering–a survey
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2010.08.012
– volume: 26
  start-page: 35
  issue: 1
  year: 2001
  ident: ref53
  article-title: Cure: an efficient clustering algorithm for large databases
  publication-title: Information Systems
  doi: 10.1016/S0306-4379(01)00008-4
– year: 2004
  ident: ref87
  article-title: A unified view of kernel k-means, spectral clustering and graph cuts
  publication-title: Citeseer
– year: 2006
  ident: ref42
  article-title: R: A Language and Environment for Statistical Computing
– volume: 40
  start-page: 807
  issue: 3
  year: 2007
  ident: ref100
  article-title: Model-based evaluation of clustering validation measures
  publication-title: Pattern recognition
  doi: 10.1016/j.patcog.2006.06.026
– volume: 22
  start-page: 1540
  issue: 12
  year: 2006
  ident: ref18
  article-title: Pvclust: an R package for assessing the uncertainty in hierarchical clustering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl117
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  ident: ref59
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2009.09.011
– volume: 46
  start-page: 13
  issue: 1
  year: 2013
  ident: ref94
  article-title: Data stream clustering: A survey
  publication-title: ACM Computing Surveys
  doi: 10.1145/2522968.2522981
– volume: 77
  start-page: 81
  issue: 2
  year: 2008
  ident: ref10
  article-title: Predictive data mining in clinical medicine: current issues and guidelines
  publication-title: International journal of medical informatics
  doi: 10.1016/j.ijmedinf.2006.11.006
– ident: ref96
  doi: 10.1109/ICDM.2010.35
– volume: 17
  start-page: 107
  issue: 2-3
  year: 2001
  ident: ref30
  article-title: On clustering validation techniques
  publication-title: Journal of intelligent information systems
  doi: 10.1023/A:1012801612483
– volume: 46
  start-page: 1
  issue: 6
  year: 2012
  ident: ref90
  article-title: HDclassif: an R Package for Model-Based Clustering and Discriminant Analysis of High-Dimensional Data
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v046.i06
– volume: 3
  start-page: 583
  year: 2002
  ident: ref99
  article-title: Cluster ensembles—a knowledge reuse framework for combining multiple partitions
  publication-title: Journal of machine learning research
– volume: 50
  start-page: 1519
  issue: 4
  year: 2010
  ident: ref15
  article-title: High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.092
– volume: 93
  start-page: 402
  issue: 2
  year: 1996
  ident: ref46
  article-title: A comparison of SOM neural network and hierarchical clustering methods
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(96)00038-0
– ident: ref64
– volume: 9
  start-page: e94137
  issue: 4
  year: 2014
  ident: ref36
  article-title: A systematic comparison of supervised classifiers
  publication-title: PloS one
  doi: 10.1371/journal.pone.0094137
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  ident: ref39
  article-title: Genetic algorithms and machine learning
  publication-title: Machine learning
  doi: 10.1023/A:1022602019183
– start-page: 49
  year: 1999
  ident: ref73
  article-title: OPTICS: Ordering Points To Identify the Clustering Structure
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  ident: ref85
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and computing
  doi: 10.1007/s11222-007-9033-z
– volume: 10
  start-page: 271
  issue: 3
  year: 1967
  ident: ref75
  article-title: A general theory of classificatory sorting strategies II. Clustering systems
  publication-title: The computer journal
  doi: 10.1093/comjnl/10.3.271
– volume: 59
  start-page: 1
  issue: 1
  year: 2006
  ident: ref60
  article-title: K-means clustering: a half-century synthesis
  publication-title: British Journal of Mathematical and Statistical Psychology
  doi: 10.1348/000711005X48266
– volume: 10
  start-page: 1037
  issue: 4
  year: 2016
  ident: ref107
  article-title: Clustering citation histories in the Physical Review
  publication-title: Journal of Informetrics
  doi: 10.1016/j.joi.2016.07.009
– ident: ref51
– volume: vol. 2
  year: 2012
  ident: ref98
  article-title: Elements of Information Theory
– volume: 41
  start-page: 578
  issue: 8
  year: 1998
  ident: ref29
  article-title: How many clusters? Which clustering method? Answers via model-based cluster analysis
  publication-title: The computer journal
  doi: 10.1093/comjnl/41.8.578
– volume: 20
  start-page: 270
  issue: 1
  year: 1998
  ident: ref81
  article-title: Algorithms for model-based Gaussian hierarchical clustering
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/S1064827596311451
– volume: 6
  start-page: 427
  issue: 3
  year: 2012
  ident: ref4
  article-title: Three-feature model to reproduce the topology of citation networks and the effects from authors’ visibility on their h-index
  publication-title: Journal of Informetrics
  doi: 10.1016/j.joi.2012.02.005
– volume: 7
  start-page: 301
  issue: 3
  year: 2003
  ident: ref8
  article-title: A Sequential Monte Carlo Method for Bayesian Analysis of Massive Datasets
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1024084221803
– volume: 2
  start-page: 351
  issue: 4
  year: 2012
  ident: ref88
  article-title: Subspace clustering
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 52
  start-page: 502
  issue: 1
  year: 2007
  ident: ref91
  article-title: High-dimensional data clustering
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2007.02.009
– volume: 6
  start-page: 90
  issue: 1
  year: 2004
  ident: ref49
  article-title: Subspace clustering for high dimensional data: a review
  publication-title: ACM SIGKDD Explorations Newsletter
  doi: 10.1145/1007730.1007731
– volume: 9
  start-page: 497
  issue: 1
  year: 2008
  ident: ref25
  article-title: Clustering cancer gene expression data: a comparative study
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-9-497
– volume: 12
  start-page: 108
  issue: 1
  year: 1988
  ident: ref38
  article-title: Simulated annealing: theory and applications
  publication-title: Acta Applicandae Mathematicae
  doi: 10.1007/BF00047572
– start-page: 849
  year: 2001
  ident: ref86
  article-title: Advances in Neural Information Processing Systems 14
– volume: 28
  start-page: 107
  year: 2011
  ident: ref11
  article-title: Extracting highly positive association rules from students’ enrollment data
  publication-title: Procedia-Social and Behavioral Sciences
  doi: 10.1016/j.sbspro.2011.11.022
– ident: ref67
  doi: 10.1007/3-540-63797-4_87
– volume: 333
  start-page: 1878
  issue: 6051
  year: 2011
  ident: ref1
  article-title: Diurnal and Seasonal Mood Vary with Work, Sleep, and Daylength Across Diverse Cultures
  publication-title: Science
  doi: 10.1126/science.1202775
– volume: 28
  start-page: 49
  issue: 2
  year: 1999
  ident: ref72
  article-title: OPTICS: Ordering Points to Identify the Clustering Structure
  publication-title: SIGMOD
  doi: 10.1145/304181.304187
SSID ssj0053866
Score 2.6958697
Snippet Many real-world systems can be studied in terms of pattern recognition tasks, so that proper use (and understanding) of machine learning methods in practical...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0210236
SubjectTerms Algorithms
Artificial intelligence
Authorship
Biology and Life Sciences
Classification
Cluster Analysis
Clustering
Clustering (Computers)
Comparative analysis
Computer and Information Sciences
Computer science
Configurations
Data analysis
Data mining
Datasets
Discriminant analysis
Humans
Knowledge discovery
Language
Learning algorithms
Machine learning
Machine Learning - trends
Mathematics
Methods
Normal Distribution
Parameter sensitivity
Pattern recognition
Performance enhancement
Physical Sciences
Research and Analysis Methods
Sensitivity analysis
Social Sciences
Statistical mechanics
Subsidies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQxQMviPFrgQIBIQEP2WI7thPeysQEEhqIX9pbZDv2VqkkVdPy93OXONmCJo0H-hh_TZvPd-e79vyZkJcszaqcmywR0rAkc5wnkCXgD_CwOjLpRSG7jcKf1MlJfnpafLl01Bf2hPXywD1xh8JD9DS-qiitsko6IzHlrzR1YGu5sRh9U1UMxVQfg8GLpQwb5biih2FeDtZN7Q66KqeTZL5YiDq9_jEqz9arpr0q5fy7c_LSUnR8h9wOOWS86L_7Hrnh6rtkL3hpG78OUtJv7pHkaLVDJQRYn2K9Oms2y-35r_ZtvIjthep3POiK3yc_jt9_P_qQhAMSEisLtk1kJvLUO6scFE1a5lZwp1OjKi91mhfeoZwXNZlJuafUp1WRe10wbXMFfldx_oDMaqBkn8RZprmwjHlDi4zqwvBMFJXmzMEnGZZHhA9slTaoh-MhFquy-0tMQRXRP3yJHJeB44gk47vWvXrGNfh3OBEjFrWvuwtgEWWwiPI6i4jIM5zGst9IOnpwuRASpYCEohF50SFQ_6LGBpszvWvb8uPnn_8A-vZ1AnoVQL4BOqwOmxrgmVBXa4KcT5DgxXYyvI9GN7DSloxKDL5MAPXzwRCvHn4-DuNNsWmuds0OMRB8cwoZd0Qe9nY7MouFJ6TOKiJqYtET6qcj9fK8kx-XHF5SPvofc_WY3IIMFDv2EirmZLbd7NwTctP-3i7bzdPOp_8AKLBQKg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwGP0EhQd42Fi5LFAgICTYQ0Zsx07CW5moQBpj4qa9RbZjb5W6tGpafj-fUycj0yYgD32IT24n_m6NfQzwisZJmTGVRFwoGiWGsQizBPcHPEZHKizPRTNR-DA9OspOTvLji0Lx0hd8lpK3ntP9xbwy-02FwsRNuIW_whVbk-PD1vOi7Qrhp8ddd2Qv_DQq_Z0vHixm8_qqRPPyeMk_AtBk-39v_R5s-VQzHG_6xg7cMNUQtttlHEJv1UO4-7mTbq2HsOP31-EbL0m9dx-ig9naKSpgnAvl7HS-nK7Ozut34TjUF-rhYatP_gB-TD58P_gY-YUWIi1yuopEwrPYGp0aLL6kyDRnRsYqLa2QcZZb42TBiEpUzCwhNi7zzMqcSp2laL8lYw9hUOEz7kKYJJJxTalVJE-IzBVLeF5KRg1eSdEsANbyX2ivQu4Ww5gVzae1FKuRDTuFI63wpAUQdUctNiocf8G_d6-2wzoN7WYHvp3Cm2TBLcZlZcuSkDIphVHCFZOlJAa9WKZ0AM9dxyg2E1I7T1CMuXCSQjwlAbxsEE5Ho3IDdU7luq6LT19-_gPo29ce6LUH2TnSoaWfHIHP5PS5eshRD4neQPead103blmpC0qEc-KUI_Wjtmtf3fyia3YndYPvKjNfOww68Yxg5h7Ao40ldMy6AhZT8DSAtGcjPer7LdX0rJExFww3IR5ff8dP4A7mp248X0T4CAar5do8hdv612paL581tv8b83dWYQ
  priority: 102
  providerName: Public Library of Science
Title Clustering algorithms: A comparative approach
URI https://www.ncbi.nlm.nih.gov/pubmed/30645617
https://www.proquest.com/docview/2167301258
https://www.proquest.com/docview/2179381163
https://pubmed.ncbi.nlm.nih.gov/PMC6333366
https://doaj.org/article/5f718bfdd11d4d6eb66192da1e5788bc
http://dx.doi.org/10.1371/journal.pone.0210236
Volume 14
WOSCitedRecordID wos000455810200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLeg4wAHxsrHCqMEhAQc0sVx4jhcUFttYtpaoo5NhUuUD6ebVJLStPz9vOc6KUETINHDO8TPTfK-_Ow8_0zIa9tyUsFix3R5bJuOZMyELAEX4GF0tHnm-lxtFD7zxmMxnfqBXnArdVllFRNVoE6LBNfID23K0RhtV3xYfDfx1Cj8uqqP0LhNdijmxmDP3uSyisTgy5zr7XLMo4daO71FkcuemusoYObtcKRQ--vY3FrMi_KmxPP3-slfBqTj3f99lQfkvk5Fjf7GdvbILZm3yW51zIOhvb5N7o1qaNeyTfb09dJ4qyGr3z0k5nC-RsQFGAeNaD6Dm62uvpXvjb6RbNHFjQq__BG5OD76PPxo6oMYzIT79srkjiusTCaehMlZxEXiMhlZsZdmPLKEn0mEDaOxE1ssozSzUl9kkW9HifDAv1PGHpNWDkLfJ4bjRMxNbDuLqe_QyI-Z4_ppxGwJd4pt0SGs0keYaJRyPCxjHqpPbx7MVjbSCVGLodZih5h1r8UGpeMv_ANUdc2LGNvqQrGchdplQzeDcTvO0pTS1Em5jDlONtOISohyIk465AUaSrjZsFpHirDvcoQccj3aIa8UB-Js5FjIM4vWZRmefLr8B6bzSYPpjWbKChBHEunNE_BOiN_V4DxocEK0SBrN-2jWlVTKcGuM0LMy15ubX9bN-KdYnJfLYo08EOQFhcy-Q55sPKOWLE5wIUX3OsRr-ExD9M2W_PpKwZxzBj_On_75sZ6Ru5DDYs2fSd0D0lot1_I5uZP8WF2Xy66KB0innqICqBjSLtkZHI2DSVctwQA9Ds6Ang56QEfWKVIvUPQcaOB-hR7BySj48hNAPXTK
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELamggQ8MFZ-LDBYQCDgIVvsOE6ChFAZTKvWlQkGmngJjuN0k0pamhbEP8XfyF3ipARNwMse6GN8SePz3Xc-x_6OkIfM5WnoJdzxRcIcrj3PgVkCLsBDdGQi8yNRHhQeBMNheHwcHa6QH_VZGNxWWWNiCdTpROEa-TajAo2R-eGL6RcHq0bh19W6hEZlFvv6-zdI2Yrn_Vcwvo8Y2319tLPnmKoCjhIRmzuC-6GbaRVoyDSkCJXvaekmQZoJ6YZRppEDiyY8cb2M0sxNozCTEZMqDMBYU1wABci_wDlz0YsO_Y818gN2CGGO53kB3TbWsDWd5HqrzK1KIuhl-CurBDSxoDMdT4qzJrq_79f8JQDurv5vqrtGrpqptt2rfGONrOi8S1brMha2QbUuuXLQUNcWXbJmrhf2E0PJ_fQ6cXbGC2SUgDhvy_EIOjc_-Vw8s3u2WrKn2zU_-w3y_lz6dZN0chjkdWJzLj1fMZYlNOJURonH_SiVHtPwTwkLLeLV4x8rw8KOxUDGcflpMYBsrNJOjFYTG6uxiNPcNa1YSP4i_xJNq5FFDvHywmQ2ig0kxX4G85IkS1NKU54KnQhMplNJNaB4mCiLbKJhxtWB3AYJ454vkFLJD6hFHpQSyCOS40alkVwURdx_8-EfhN69bQk9NkLZBNShpDkcAn1CfrKW5EZLEtBQtZrX0Y1qrRTx0vjhzto9zm6-3zTjQ3HzYa4nC5SBIBZSyFwscqvyxEazmMBDChJYJGj5aEv17Zb89KSkcRce_IS4_efX2iSX9o4OBvGgP9y_Qy7DfB33NzrU3yCd-Wyh75KL6uv8tJjdK7HIJp_O24N_AsGvxR8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VASE4UBoeNRRqEAg4uPGuvWsbCaHQEhG1hIqXKi5mbe-mlYId4gTEX-PXMeOsHYwq4NIDOXrHSXY8z_XMN4TcZ66fhV7iO1wkzPGV5zkQJeABPHhHJjSPRNUofBCMRuHRUXS4Rn7UvTBYVlnbxMpQZ0WKZ-Q9RgUKI-NhT5uyiMO9wbPpFwcnSOGb1nqcxlJE9tX3b5C-lU-He_CsHzA2ePFu96VjJgw4qYjY3BE-D12t0kBB1iFFmHJPSTcJMi2kG0ZaIR4WTfzE9TSl2s2iUMuIyTQMQHAzPAwF838ugBwTywkP-cfaC4AdEcK06nkB7RnJ2JkWudqp8qwKFHrlCquJAY1f6EwnRXla0Pt77eYvznCw_j-z8Qq5bEJwu7_UmQ2ypvIuWa_HW9jG2nXJpVcNpG3ZJRvmemk_MlDdj68SZ3eyQKQJ8P-2nIxhc_Pjz-UTu2-nK1R1u8Ztv0ben8m-rpNODg98k9i-Lz2eMqYTGvlURonn8yiTHlPwSwkLLeLVshCnBp0dh4RM4uqVYwBZ2pI7MUpQbCTIIk5z13SJTvIX-ucoZg0tYotXF4rZODamKuYa4pVEZxmlmZ8JlQhMsjNJFVj3MEktso1CGi8bdRsLGfe5QKglHlCL3KsoEF8kRxEby0VZxsPXH_6B6O2bFtFDQ6QLYEcqTdMI7Alxy1qUWy1KsJJpa3kTVarmShmvFAHurFXl9OW7zTJ-KRYl5qpYIA04t5BCRmORG0utbDiLiT2kJoFFgpa-tljfXslPjit4d-HBR4ibf_5b2-QCKG58MBzt3yIXIYzHskeH8i3Smc8W6jY5n36dn5SzO5VZssmns1bgn7fhzek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+algorithms%3A+A+comparative+approach&rft.jtitle=PloS+one&rft.au=Rodriguez%2C+Mayra+Z&rft.au=Comin%2C+Cesar+H&rft.au=Casanova%2C+Dalcimar&rft.au=Bruno%2C+Odemir+M&rft.date=2019-01-15&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=1&rft.spage=e0210236&rft_id=info:doi/10.1371%2Fjournal.pone.0210236&rft.externalDocID=A569696571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon