Repair Pathway Choices and Consequences at the Double-Strand Break

DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic instability and cell death. Indeed, misrepair of DSBs can lead to inappropriate end-joining events, which commonly underlie oncogenic transfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in cell biology Jg. 26; H. 1; S. 52 - 64
Hauptverfasser: Ceccaldi, Raphael, Rondinelli, Beatrice, D’Andrea, Alan D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Elsevier Ltd 01.01.2016
Schlagworte:
ISSN:0962-8924, 1879-3088
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic instability and cell death. Indeed, misrepair of DSBs can lead to inappropriate end-joining events, which commonly underlie oncogenic transformation due to chromosomal translocations. Typically, cells employ two main mechanisms to repair DSBs: homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). In addition, alternative error-prone DSB repair pathways, namely alternative end joining (alt-EJ) and single-strand annealing (SSA), have been recently shown to operate in many different conditions and to contribute to genome rearrangements and oncogenic transformation. Here, we review the mechanisms regulating DSB repair pathway choice, together with the potential interconnections between HR and the annealing-dependent error-prone DSB repair pathways. Of the four known pathways for repairing DNA DSBs, some evolved towards high-fidelity processes (HR and C-NHEJ), while others are intrinsically mutagenic (alt-EJ and SSA). Some repair pathways are end resection-independent (C-NHEJ), while others are end resection-dependent (HR, alt-EJ, and SSA). End resection likely plays a key role in dictating DNA repair pathway choice. Homology-based repair pathways (HR, alt-EJ, and SSA) are competitive and mutually regulated around the RAD51 presynaptic and postsynaptic steps of HR. Error-prone repair pathways can compensate for the loss of HR. Polθ (an alt-EJ polymerase) is upregulated in HR-deficient cancers: loss of the HR and Polθ-mediated alt-EJ pathways is synthetic lethal.
AbstractList DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic instability and cell death. Indeed, misrepair of DSBs can lead to inappropriate end-joining events, which commonly underlie oncogenic transformation due to chromosomal translocations. Typically, cells employ two main mechanisms to repair DSBs: homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). In addition, alternative error-prone DSB repair pathways, namely alternative end joining (alt-EJ) and single-strand annealing (SSA), have been recently shown to operate in many different conditions and to contribute to genome rearrangements and oncogenic transformation. Here, we review the mechanisms regulating DSB repair pathway choice, together with the potential interconnections between HR and the annealing-dependent error-prone DSB repair pathways.
DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic instability and cell death. Indeed, misrepair of DSBs can lead to inappropriate end-joining events, which commonly underlie oncogenic transformation due to chromosomal translocations. Typically, cells employ two main mechanisms to repair DSBs: homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). In addition, alternative error-prone DSB repair pathways, namely alternative end joining (alt-EJ) and single-strand annealing (SSA), have been recently shown to operate in many different conditions and to contribute to genome rearrangements and oncogenic transformation. Here, we review the mechanisms regulating DSB repair pathway choice, together with the potential interconnections between HR and the annealing-dependent error-prone DSB repair pathways. Of the four known pathways for repairing DNA DSBs, some evolved towards high-fidelity processes (HR and C-NHEJ), while others are intrinsically mutagenic (alt-EJ and SSA). Some repair pathways are end resection-independent (C-NHEJ), while others are end resection-dependent (HR, alt-EJ, and SSA). End resection likely plays a key role in dictating DNA repair pathway choice. Homology-based repair pathways (HR, alt-EJ, and SSA) are competitive and mutually regulated around the RAD51 presynaptic and postsynaptic steps of HR. Error-prone repair pathways can compensate for the loss of HR. Polθ (an alt-EJ polymerase) is upregulated in HR-deficient cancers: loss of the HR and Polθ-mediated alt-EJ pathways is synthetic lethal.
Author D’Andrea, Alan D.
Ceccaldi, Raphael
Rondinelli, Beatrice
AuthorAffiliation 1 Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
AuthorAffiliation_xml – name: 1 Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
Author_xml – sequence: 1
  givenname: Raphael
  surname: Ceccaldi
  fullname: Ceccaldi, Raphael
  organization: Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 2
  givenname: Beatrice
  surname: Rondinelli
  fullname: Rondinelli, Beatrice
  organization: Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 3
  givenname: Alan D.
  surname: D’Andrea
  fullname: D’Andrea, Alan D.
  email: alan_dandrea@dfci.harvard.edu
  organization: Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26437586$$D View this record in MEDLINE/PubMed
BookMark eNqFUktv1DAQtlAR3RZ-ABeUI5cE23nYFlIlujylSiAK55FjT1hvs_Fie4v23-OwLYJKlNNInu8xnm9OyNHkJyTkKaMVo6x7sa6S6StOWVtRUVGqHpAFk0KVNZXyiCyo6ngpFW-OyUmMa0qp4Kx-RI5519Sild2CnH_GrXah-KTT6ofeF8uVdwZjoSdbLP0U8fsOp18PqUgrLF77XT9ieZnCjDgPqK8ek4eDHiM-uamn5OvbN1-W78uLj-8-LF9dlKZTPJUdt1pzbeoBBUqlaqaE1aKtla3tMLBG9YPUSihk2lg1WKNpY4QU2DeqM6w-JWcH3e2u36A1OOUhRtgGt9FhD147-LszuRV889fQyI53tMkCz28Egs_figk2LhocRz2h30VgeRhe07aVGfrsT6_fJreLywBxAJjgYww4gHFJJ-dnazcCozBHBGvIEcEcEVABOaLMZHeYt-L3cV4eOJj3e-0wQDRuzsW6gCaB9e5e9tkdthnd5Iwer3CPce13YcrBAYPIgcLlfDbz1bCWUtZwkQXUvwX-Y_4TBoXR6w
CitedBy_id crossref_primary_10_1073_pnas_1806513115
crossref_primary_10_1371_journal_pone_0269342
crossref_primary_10_1186_s12915_024_01918_w
crossref_primary_10_1016_j_jmb_2017_05_012
crossref_primary_10_1016_j_omtn_2023_04_012
crossref_primary_10_3390_ijms25147982
crossref_primary_10_1038_s41416_023_02476_8
crossref_primary_10_1038_ncb3450
crossref_primary_10_1038_s41419_022_04989_1
crossref_primary_10_3389_fmolb_2021_664872
crossref_primary_10_3390_ijms26188936
crossref_primary_10_1111_1759_7714_14865
crossref_primary_10_1158_1078_0432_CCR_21_3750
crossref_primary_10_1038_s41598_017_01185_6
crossref_primary_10_1016_j_tibs_2020_06_003
crossref_primary_10_1016_j_dnarep_2019_03_007
crossref_primary_10_1016_j_ijbiomac_2025_146386
crossref_primary_10_1016_j_gde_2021_01_002
crossref_primary_10_1186_s12929_022_00870_7
crossref_primary_10_1111_nph_18787
crossref_primary_10_1016_j_semcdb_2019_05_013
crossref_primary_10_1007_s40778_016_0043_7
crossref_primary_10_3390_ijms241914956
crossref_primary_10_1038_s41598_019_38526_6
crossref_primary_10_1128_mSphere_00408_19
crossref_primary_10_1259_bjr_20200087
crossref_primary_10_3390_cells11101651
crossref_primary_10_1038_ng_3934
crossref_primary_10_3389_fpls_2020_01126
crossref_primary_10_1038_s41598_019_51471_8
crossref_primary_10_1186_s12896_020_00665_4
crossref_primary_10_1073_pnas_2214935119
crossref_primary_10_1111_nph_16595
crossref_primary_10_1016_j_jtbi_2023_111608
crossref_primary_10_1080_15376516_2018_1461289
crossref_primary_10_3390_cells9071665
crossref_primary_10_1038_s41416_025_03128_9
crossref_primary_10_1111_tpj_16863
crossref_primary_10_1089_crispr_2024_0028
crossref_primary_10_3390_v9090261
crossref_primary_10_1038_s12276_024_01383_z
crossref_primary_10_1101_gad_277665_116
crossref_primary_10_1146_annurev_biochem_080320_110356
crossref_primary_10_1158_1078_0432_CCR_22_3335
crossref_primary_10_1016_j_canlet_2022_215851
crossref_primary_10_1016_j_dnarep_2023_103547
crossref_primary_10_1158_2159_8290_CD_17_0226
crossref_primary_10_15252_embj_201796948
crossref_primary_10_3390_cancers13133211
crossref_primary_10_15252_embj_2018100158
crossref_primary_10_1242_dev_201367
crossref_primary_10_3389_fgene_2021_780293
crossref_primary_10_1016_j_gene_2021_145647
crossref_primary_10_1007_s00425_022_03894_3
crossref_primary_10_1073_pnas_2008721117
crossref_primary_10_1186_s12864_018_4727_5
crossref_primary_10_1038_s12276_023_01057_2
crossref_primary_10_1073_pnas_2024512118
crossref_primary_10_3389_fphar_2024_1483160
crossref_primary_10_1016_j_ijbiomac_2024_131802
crossref_primary_10_3390_pathogens9060483
crossref_primary_10_2147_OTT_S499226
crossref_primary_10_1016_j_molcel_2022_12_031
crossref_primary_10_1007_s13402_020_00578_6
crossref_primary_10_1186_s12967_021_03099_4
crossref_primary_10_1186_s13046_023_02687_0
crossref_primary_10_1016_j_semradonc_2016_06_003
crossref_primary_10_1016_j_jhazmat_2023_131540
crossref_primary_10_3389_fpls_2023_1159615
crossref_primary_10_3390_genes11010099
crossref_primary_10_3390_cancers13133202
crossref_primary_10_1177_0022034516677529
crossref_primary_10_1038_s41598_017_01766_5
crossref_primary_10_1073_pnas_1804823115
crossref_primary_10_3389_fimmu_2024_1339977
crossref_primary_10_1016_j_dnarep_2020_102872
crossref_primary_10_1016_j_ecoenv_2023_115503
crossref_primary_10_1016_j_semcdb_2020_10_003
crossref_primary_10_1007_s12268_018_0984_8
crossref_primary_10_1016_j_dnarep_2019_02_010
crossref_primary_10_3390_ijms21239321
crossref_primary_10_1007_s00412_018_0677_6
crossref_primary_10_1093_nar_gky162
crossref_primary_10_1038_s41467_023_37499_5
crossref_primary_10_1016_j_dnarep_2018_09_002
crossref_primary_10_3390_ijms24043916
crossref_primary_10_3390_ijms20143390
crossref_primary_10_1038_nature25473
crossref_primary_10_1016_j_engmic_2023_100120
crossref_primary_10_1093_nar_gkad609
crossref_primary_10_1038_s44318_024_00153_x
crossref_primary_10_1016_j_dnarep_2019_02_006
crossref_primary_10_1002_adhm_202404795
crossref_primary_10_1038_s41388_022_02580_8
crossref_primary_10_1084_jem_20201791
crossref_primary_10_1111_acel_13484
crossref_primary_10_1038_s41698_022_00339_8
crossref_primary_10_1089_ars_2017_7351
crossref_primary_10_1038_s41388_022_02299_6
crossref_primary_10_1158_0008_5472_CAN_20_1672
crossref_primary_10_3390_molecules25214920
crossref_primary_10_1111_are_15398
crossref_primary_10_1158_0008_5472_CAN_24_0293
crossref_primary_10_1038_s41467_023_40843_4
crossref_primary_10_1177_1534735417712008
crossref_primary_10_1016_j_biomaterials_2023_122035
crossref_primary_10_1016_j_canlet_2025_217874
crossref_primary_10_3389_fgeed_2024_1415244
crossref_primary_10_1016_j_ygyno_2020_08_035
crossref_primary_10_1002_2211_5463_13743
crossref_primary_10_1242_dev_201323
crossref_primary_10_1038_s41388_025_03409_w
crossref_primary_10_1158_2159_8290_CD_16_0860
crossref_primary_10_1038_s41598_017_09306_x
crossref_primary_10_1016_j_dnarep_2016_05_002
crossref_primary_10_1083_jcb_201812142
crossref_primary_10_3389_fgene_2021_785947
crossref_primary_10_1038_s41388_024_03232_9
crossref_primary_10_1038_s41467_020_19202_0
crossref_primary_10_3389_fonc_2022_826778
crossref_primary_10_1126_scitranslmed_abc4465
crossref_primary_10_1016_j_tibs_2020_05_003
crossref_primary_10_1038_s41598_024_68926_2
crossref_primary_10_1016_j_neo_2024_101012
crossref_primary_10_1093_femsre_fuac035
crossref_primary_10_3390_cancers13122997
crossref_primary_10_1016_j_jbiotec_2020_09_013
crossref_primary_10_1186_s10020_021_00316_0
crossref_primary_10_1016_j_bpj_2019_10_042
crossref_primary_10_1016_j_sjbs_2022_01_002
crossref_primary_10_1016_j_survophthal_2025_04_005
crossref_primary_10_1371_journal_pone_0237759
crossref_primary_10_1016_j_jmb_2020_11_014
crossref_primary_10_1371_journal_pgen_1006632
crossref_primary_10_1093_ecco_jcc_jjae134
crossref_primary_10_3390_ijms231912053
crossref_primary_10_1007_s11427_020_1819_8
crossref_primary_10_3390_life14080922
crossref_primary_10_1016_j_dnarep_2021_103140
crossref_primary_10_1146_annurev_biochem_011520_104722
crossref_primary_10_3390_cancers12092356
crossref_primary_10_1016_j_dnarep_2021_103127
crossref_primary_10_1038_srep31567
crossref_primary_10_3389_fmolb_2019_00051
crossref_primary_10_1016_j_gpb_2016_05_001
crossref_primary_10_1038_s41420_024_01878_8
crossref_primary_10_1093_jb_mvad019
crossref_primary_10_3390_ijms23094653
crossref_primary_10_1016_j_molcel_2016_04_006
crossref_primary_10_1080_17460794_2025_2465178
crossref_primary_10_1038_ncomms14244
crossref_primary_10_3390_ijms21113762
crossref_primary_10_1007_s13167_020_00210_5
crossref_primary_10_1007_s12272_018_1037_z
crossref_primary_10_1038_s41598_024_68295_w
crossref_primary_10_1016_j_tibtech_2020_10_012
crossref_primary_10_1016_j_ymthe_2021_03_018
crossref_primary_10_1002_gcc_22993
crossref_primary_10_1038_s41467_020_19502_5
crossref_primary_10_3724_abbs_2025057
crossref_primary_10_1038_s41416_021_01609_1
crossref_primary_10_1038_s41467_021_22927_1
crossref_primary_10_1038_s41467_022_31944_7
crossref_primary_10_1007_s11033_019_05150_6
crossref_primary_10_1093_nar_gkae501
crossref_primary_10_1007_s40995_021_01232_y
crossref_primary_10_1038_s41598_017_14922_8
crossref_primary_10_3390_biology10040253
crossref_primary_10_1016_j_exger_2022_111706
crossref_primary_10_1038_s41576_019_0139_x
crossref_primary_10_3390_genes12040552
crossref_primary_10_1016_j_dnarep_2021_103104
crossref_primary_10_3390_cancers14112804
crossref_primary_10_1007_s12032_022_01840_7
crossref_primary_10_3390_biom15081061
crossref_primary_10_1038_s41392_021_00510_w
crossref_primary_10_1016_j_fct_2022_113556
crossref_primary_10_3892_mmr_2017_7835
crossref_primary_10_3390_biom10111529
crossref_primary_10_1002_biot_202100413
crossref_primary_10_1038_s41416_022_01955_8
crossref_primary_10_3389_fgene_2019_00411
crossref_primary_10_5713_ab_21_0117
crossref_primary_10_1074_jbc_REV119_011353
crossref_primary_10_1038_s41467_021_26240_9
crossref_primary_10_3390_ijms232315182
crossref_primary_10_1002_bies_202300051
crossref_primary_10_1534_genetics_119_302247
crossref_primary_10_1038_s42003_020_01119_5
crossref_primary_10_1042_BST20180418
crossref_primary_10_1186_s13578_017_0137_7
crossref_primary_10_3390_pharmaceutics14061252
crossref_primary_10_1093_nar_gkx1240
crossref_primary_10_1007_s00018_018_2811_2
crossref_primary_10_1016_j_cbi_2024_110938
crossref_primary_10_3390_genes16091044
crossref_primary_10_1038_s41583_024_00829_7
crossref_primary_10_1093_nar_gkx1243
crossref_primary_10_3389_fmolb_2019_00079
crossref_primary_10_1038_srep44662
crossref_primary_10_1093_nar_gkad631
crossref_primary_10_1371_journal_pgen_1011341
crossref_primary_10_1136_jitc_2024_010528
crossref_primary_10_1128_jvi_02211_24
crossref_primary_10_1002_ijc_32558
crossref_primary_10_1038_s41467_023_40901_x
crossref_primary_10_12688_f1000research_12110_1
crossref_primary_10_3390_ijms25105067
crossref_primary_10_1016_j_ctro_2019_08_003
crossref_primary_10_3390_ijms21051666
crossref_primary_10_3389_fgene_2016_00122
crossref_primary_10_3390_ijms25137064
crossref_primary_10_1155_2020_5367102
crossref_primary_10_3390_horticulturae10090965
crossref_primary_10_1080_14656566_2020_1724957
crossref_primary_10_1101_gad_311084_117
crossref_primary_10_1371_journal_pone_0208395
crossref_primary_10_1038_s41586_018_0686_x
crossref_primary_10_1093_nar_gkaa175
crossref_primary_10_1038_s41467_017_00866_0
crossref_primary_10_1016_j_ymthe_2019_01_014
crossref_primary_10_1038_s41419_020_02755_9
crossref_primary_10_1093_nar_gkab027
crossref_primary_10_1093_genetics_iyab199
crossref_primary_10_1242_dmm_049874
crossref_primary_10_1016_j_semcancer_2016_03_003
crossref_primary_10_7554_eLife_75050
crossref_primary_10_1186_s12711_025_00961_7
crossref_primary_10_3390_cells9081870
crossref_primary_10_3892_or_2022_8390
crossref_primary_10_1093_jrr_rry096
crossref_primary_10_3390_biology13070484
crossref_primary_10_1038_srep43598
crossref_primary_10_1186_s12934_019_1194_x
crossref_primary_10_1242_jcs_244442
crossref_primary_10_1186_s10020_025_01066_z
crossref_primary_10_1200_JCO_19_00347
crossref_primary_10_3389_fgene_2016_00152
crossref_primary_10_1016_j_tig_2018_05_003
crossref_primary_10_1016_j_cell_2019_11_030
crossref_primary_10_1016_j_biotechadv_2021_107737
crossref_primary_10_1371_journal_pone_0235998
crossref_primary_10_1016_j_pharmthera_2016_01_014
crossref_primary_10_1016_j_biotechadv_2020_107533
crossref_primary_10_1093_nar_gkx1056
crossref_primary_10_3390_ijms21197020
crossref_primary_10_1080_09553002_2019_1649502
crossref_primary_10_1038_nrm_2016_48
crossref_primary_10_1172_JCI190264
crossref_primary_10_1017_erm_2020_3
crossref_primary_10_3390_ijms232112937
crossref_primary_10_1016_j_molcel_2018_09_014
crossref_primary_10_1093_jrr_rraa095
crossref_primary_10_1016_j_semcdb_2018_07_002
crossref_primary_10_1038_s41467_019_09756_z
crossref_primary_10_1007_s12275_024_00152_x
crossref_primary_10_3390_cancers15061817
crossref_primary_10_3390_ijms22073636
crossref_primary_10_7717_peerj_17261
crossref_primary_10_1002_pmic_202200064
crossref_primary_10_1038_onc_2016_405
crossref_primary_10_1093_oncolo_oyae163
crossref_primary_10_1007_s10565_018_9429_x
crossref_primary_10_1186_s12711_020_00554_6
crossref_primary_10_3390_cancers12102764
crossref_primary_10_1080_15384101_2024_2309015
crossref_primary_10_1093_nar_gkz1167
crossref_primary_10_3390_ijms20010031
crossref_primary_10_1038_s41598_024_83435_y
crossref_primary_10_1667_RADE_24_00094_1
crossref_primary_10_1016_j_ymthe_2022_11_014
crossref_primary_10_1038_s41556_024_01557_x
crossref_primary_10_1093_nar_gkae574
crossref_primary_10_1016_j_ijrobp_2019_05_025
crossref_primary_10_1016_j_freeradbiomed_2022_10_317
crossref_primary_10_1667_RR14748_1
crossref_primary_10_1016_j_critrevonc_2024_104603
crossref_primary_10_1038_s41467_023_41790_w
crossref_primary_10_1016_j_pbiomolbio_2019_11_007
crossref_primary_10_1139_bcb_2019_0115
crossref_primary_10_3390_cancers15113005
crossref_primary_10_3390_ijms21113903
crossref_primary_10_1002_jcb_29325
crossref_primary_10_1038_s41467_022_34736_1
crossref_primary_10_1038_nrm_2017_48
crossref_primary_10_1128_JVI_01084_17
crossref_primary_10_1111_tpj_17180
crossref_primary_10_1002_mco2_210
crossref_primary_10_1038_onc_2016_389
crossref_primary_10_3390_v13081662
crossref_primary_10_1158_0008_5472_CAN_23_4007
crossref_primary_10_3390_ijms18122655
crossref_primary_10_1016_j_dnarep_2020_103025
crossref_primary_10_1016_j_csbj_2020_08_031
crossref_primary_10_3390_ijms22115614
crossref_primary_10_3390_genes11070752
crossref_primary_10_1016_j_tig_2019_07_001
crossref_primary_10_1093_jnci_djx059
crossref_primary_10_1073_pnas_2008073117
crossref_primary_10_15252_embj_201593540
crossref_primary_10_2217_fon_2020_0334
crossref_primary_10_1016_j_jmb_2016_06_004
crossref_primary_10_1093_biolre_ioac054
crossref_primary_10_1073_pnas_1816539115
crossref_primary_10_3390_cancers13040830
crossref_primary_10_1016_j_bios_2025_117406
crossref_primary_10_1016_j_dnarep_2020_103035
crossref_primary_10_1016_j_jgg_2017_04_009
crossref_primary_10_1016_j_aquaculture_2022_738391
crossref_primary_10_1016_j_fgb_2019_04_016
crossref_primary_10_1016_j_it_2018_06_001
crossref_primary_10_1016_j_canlet_2023_216440
crossref_primary_10_1007_s42764_023_00100_w
crossref_primary_10_1101_gad_319723_118
crossref_primary_10_3390_ijms18081715
crossref_primary_10_1038_s41419_019_1546_9
crossref_primary_10_1007_s10577_019_09617_x
crossref_primary_10_1002_em_22593
crossref_primary_10_1093_nar_gkac143
crossref_primary_10_3389_fpls_2023_1231678
crossref_primary_10_1038_s41598_019_51071_6
crossref_primary_10_1002_em_22594
crossref_primary_10_1080_15384101_2018_1442625
crossref_primary_10_1172_JCI188120
crossref_primary_10_1016_j_scitotenv_2021_151078
crossref_primary_10_3390_ijms25169054
crossref_primary_10_1016_j_exphem_2020_08_009
crossref_primary_10_1007_s00335_021_09918_9
crossref_primary_10_1038_s41598_018_24440_w
crossref_primary_10_1186_s12983_025_00566_2
crossref_primary_10_3390_cancers14235792
crossref_primary_10_1016_j_neo_2023_100881
crossref_primary_10_1186_s12958_024_01284_w
crossref_primary_10_7554_eLife_33761
crossref_primary_10_1002_em_22364
crossref_primary_10_3390_cancers14071807
crossref_primary_10_1038_s41418_019_0424_4
crossref_primary_10_1016_j_dnarep_2024_103699
crossref_primary_10_1093_nar_gkw557
crossref_primary_10_1111_febs_14663
crossref_primary_10_1016_j_tig_2021_03_001
crossref_primary_10_1371_journal_pone_0231323
crossref_primary_10_1093_nar_gkx881
crossref_primary_10_1016_j_tibs_2017_12_004
crossref_primary_10_1002_bies_201900177
crossref_primary_10_3390_cancers10010025
crossref_primary_10_1016_j_biochi_2017_09_001
crossref_primary_10_1186_s12934_022_01908_z
crossref_primary_10_1016_j_str_2021_05_006
crossref_primary_10_1177_09636897221108705
crossref_primary_10_1002_advs_202405955
crossref_primary_10_1126_sciadv_adu7606
crossref_primary_10_1016_j_lfs_2021_120242
crossref_primary_10_1083_jcb_201604112
crossref_primary_10_1139_bcb_2016_0001
crossref_primary_10_1111_ijlh_13874
crossref_primary_10_1002_pbc_31030
crossref_primary_10_3390_ijms24032498
crossref_primary_10_3390_life11060560
crossref_primary_10_1093_nar_gkaf200
crossref_primary_10_1073_pnas_2008830117
crossref_primary_10_1007_s10637_018_0616_7
crossref_primary_10_1080_10409238_2022_2027336
crossref_primary_10_1002_ijc_33038
crossref_primary_10_1038_s41467_019_11795_5
crossref_primary_10_3389_fgene_2020_607428
crossref_primary_10_1038_s41419_022_05092_1
crossref_primary_10_1248_bpb_b25_00072
crossref_primary_10_1016_j_ecoenv_2020_111846
crossref_primary_10_1016_j_ijbiomac_2024_130351
crossref_primary_10_1093_abbs_gmw045
crossref_primary_10_1016_j_semcancer_2022_02_001
crossref_primary_10_1073_pnas_1816606115
crossref_primary_10_1016_j_mrrev_2016_07_004
crossref_primary_10_1002_aac2_12047
crossref_primary_10_1016_j_clon_2018_07_001
crossref_primary_10_1016_j_mrgentox_2021_503438
crossref_primary_10_1111_nph_15680
crossref_primary_10_1007_s42764_021_00056_9
crossref_primary_10_1007_s11033_020_05285_x
crossref_primary_10_1016_j_semcancer_2021_05_004
crossref_primary_10_1038_s41417_021_00355_z
crossref_primary_10_1016_j_molcel_2024_06_031
crossref_primary_10_3390_ijms25115629
crossref_primary_10_1007_s00299_021_02678_5
crossref_primary_10_1002_advs_202206931
crossref_primary_10_1093_nar_gky764
crossref_primary_10_1038_s41598_022_14374_9
crossref_primary_10_1016_j_dnarep_2019_102662
crossref_primary_10_1093_hr_uhac154
crossref_primary_10_1080_10985549_2023_2187105
crossref_primary_10_1038_s41467_020_16643_5
crossref_primary_10_3390_biology10060530
crossref_primary_10_1002_cnr2_1341
crossref_primary_10_3390_cancers11111671
crossref_primary_10_3390_biom13101480
crossref_primary_10_1007_s42764_022_00073_2
crossref_primary_10_1073_pnas_1521597113
crossref_primary_10_1186_s13048_023_01221_2
crossref_primary_10_1002_mco2_613
crossref_primary_10_1038_s41392_020_00358_6
crossref_primary_10_1016_j_dnarep_2018_11_005
crossref_primary_10_1016_j_dnarep_2019_102650
crossref_primary_10_3390_dna5010003
crossref_primary_10_3389_fmolb_2023_1116660
crossref_primary_10_3892_ijmm_2022_5145
crossref_primary_10_3390_ijms23052484
crossref_primary_10_1093_nar_gkz1101
crossref_primary_10_3390_dna5020017
crossref_primary_10_1038_s41580_021_00394_2
crossref_primary_10_1186_s13578_020_00401_7
crossref_primary_10_1038_s41433_024_03441_2
crossref_primary_10_1016_j_dnarep_2019_102686
crossref_primary_10_15252_embj_2019102718
crossref_primary_10_1042_EBC20190092
crossref_primary_10_3389_fonc_2018_00245
crossref_primary_10_1016_j_molcel_2022_03_031
crossref_primary_10_3389_fonc_2021_675972
crossref_primary_10_3389_fphy_2020_578662
crossref_primary_10_1038_s43018_021_00203_x
crossref_primary_10_1080_17460751_2025_2526253
crossref_primary_10_1016_j_ceb_2020_02_014
crossref_primary_10_1038_s41420_021_00633_7
crossref_primary_10_1093_nar_gkae156
crossref_primary_10_1371_journal_ppat_1010275
crossref_primary_10_1016_j_biopha_2019_109661
crossref_primary_10_1073_pnas_1611673113
crossref_primary_10_1111_nyas_13125
crossref_primary_10_3389_fcell_2021_745195
crossref_primary_10_1534_genetics_118_300686
crossref_primary_10_1002_bies_202100279
crossref_primary_10_1093_nar_gkad073
crossref_primary_10_3390_ijms21218039
crossref_primary_10_3390_ijms21020446
crossref_primary_10_1080_15384101_2018_1520567
crossref_primary_10_5713_ab_24_0206
crossref_primary_10_1016_j_dnarep_2016_10_008
crossref_primary_10_3390_genes8030105
crossref_primary_10_1038_s41467_019_10153_9
crossref_primary_10_3390_genes13020215
crossref_primary_10_1007_s00439_021_02399_5
crossref_primary_10_34172_bi_2022_23871
crossref_primary_10_1007_s00018_022_04550_5
crossref_primary_10_1093_nar_gkz897
crossref_primary_10_1007_s42764_019_00002_w
crossref_primary_10_1016_j_molcel_2022_01_001
crossref_primary_10_1101_gr_276617_122
crossref_primary_10_3389_fphar_2025_1557925
crossref_primary_10_1134_S000629792312009X
crossref_primary_10_1002_1878_0261_13448
crossref_primary_10_1002_tpg2_20220
crossref_primary_10_1128_spectrum_02326_21
crossref_primary_10_1101_gad_350740_123
crossref_primary_10_1016_j_bcp_2018_12_002
crossref_primary_10_1523_JNEUROSCI_1806_20_2021
crossref_primary_10_1038_srep27797
crossref_primary_10_1111_tpj_15363
crossref_primary_10_1038_s41467_024_51242_8
crossref_primary_10_1089_crispr_2023_0029
crossref_primary_10_1186_s13020_025_01089_y
crossref_primary_10_3390_ijms21239176
crossref_primary_10_3390_ijms25010658
crossref_primary_10_1093_nar_gkw153
crossref_primary_10_1038_onc_2017_60
crossref_primary_10_3389_fgene_2021_747734
crossref_primary_10_1016_j_jbc_2021_100401
crossref_primary_10_3390_cancers12020402
crossref_primary_10_3390_ijms232113356
crossref_primary_10_3390_life13010006
crossref_primary_10_1136_ijgc_2023_004483
crossref_primary_10_1038_s41419_024_07116_4
crossref_primary_10_1038_s41556_019_0442_y
crossref_primary_10_1038_s41467_021_27408_z
crossref_primary_10_1146_annurev_cancerbio_030617_050422
crossref_primary_10_1016_j_tranon_2022_101517
crossref_primary_10_1105_tpc_17_00659
crossref_primary_10_1002_path_5025
crossref_primary_10_1111_febs_15588
crossref_primary_10_1007_s00262_024_03681_x
crossref_primary_10_3389_fonc_2019_01388
crossref_primary_10_1016_j_tibtech_2023_03_004
crossref_primary_10_1158_1078_0432_CCR_16_0247
crossref_primary_10_1038_s41467_022_32920_x
crossref_primary_10_1038_s41467_023_37096_6
crossref_primary_10_1007_s12033_024_01209_3
crossref_primary_10_1038_s41467_021_22484_7
crossref_primary_10_1002_mgg3_1165
crossref_primary_10_1016_j_molcel_2022_02_021
crossref_primary_10_1016_j_pmpp_2025_102640
crossref_primary_10_1016_j_tcb_2021_09_003
crossref_primary_10_3389_fcell_2022_820781
crossref_primary_10_1016_j_dnarep_2020_102828
crossref_primary_10_1007_s00109_020_01935_6
crossref_primary_10_1016_j_tice_2025_102811
crossref_primary_10_1007_s00277_023_05359_3
crossref_primary_10_1186_s12867_016_0073_9
crossref_primary_10_1371_journal_pgen_1006479
crossref_primary_10_1007_s00535_019_01620_7
crossref_primary_10_1053_j_seminoncol_2023_09_003
crossref_primary_10_3389_fphar_2019_01311
crossref_primary_10_1186_s12934_019_1112_2
crossref_primary_10_1016_j_repbio_2022_100709
crossref_primary_10_1016_j_jmb_2016_11_002
crossref_primary_10_3390_biom10060839
crossref_primary_10_1080_0284186X_2017_1398837
crossref_primary_10_1016_j_critrevonc_2022_103621
crossref_primary_10_1016_j_molcel_2017_08_021
crossref_primary_10_1177_17588359231220511
crossref_primary_10_1007_s12192_017_0843_4
crossref_primary_10_1016_j_bioorg_2020_104210
crossref_primary_10_1093_nsr_nwae404
crossref_primary_10_1016_j_bioorg_2024_107608
crossref_primary_10_1016_j_dnarep_2022_103371
crossref_primary_10_1002_tox_24020
crossref_primary_10_1007_s00203_021_02723_7
crossref_primary_10_1007_s11103_022_01321_5
crossref_primary_10_1016_j_copbio_2018_03_007
crossref_primary_10_1093_nar_gkaa897
crossref_primary_10_1093_plcell_koac184
crossref_primary_10_1200_JCO_19_00693
crossref_primary_10_1101_gr_246082_118
crossref_primary_10_1186_s13046_021_02005_6
crossref_primary_10_1038_s41467_019_12829_8
crossref_primary_10_1111_gtc_13156
crossref_primary_10_1007_s00294_018_0875_z
crossref_primary_10_1186_s12885_020_07524_7
crossref_primary_10_7554_eLife_53968
crossref_primary_10_1371_journal_pone_0294683
crossref_primary_10_1134_S002689332102014X
crossref_primary_10_1089_crispr_2019_0001
crossref_primary_10_1002_mlf2_70007
crossref_primary_10_1038_s41467_024_54978_5
crossref_primary_10_3390_ijms242115975
crossref_primary_10_1016_j_dnarep_2017_06_007
crossref_primary_10_1016_j_pharmthera_2019_07_002
crossref_primary_10_1111_pbi_12596
crossref_primary_10_3390_ijms19123713
crossref_primary_10_1016_j_ijbiomac_2023_124926
crossref_primary_10_1016_j_dnarep_2017_06_001
crossref_primary_10_3390_cancers13215561
crossref_primary_10_3390_cells9010112
crossref_primary_10_1073_pnas_2322972121
crossref_primary_10_1093_jrr_rrx074
crossref_primary_10_3390_genes12060920
crossref_primary_10_3389_fgene_2019_00393
crossref_primary_10_1002_ps_8003
crossref_primary_10_1093_nar_gkaa631
crossref_primary_10_3390_pharmaceutics14050894
crossref_primary_10_1093_genetics_iyab054
crossref_primary_10_1016_j_semcdb_2020_09_003
crossref_primary_10_3390_ijms241411836
crossref_primary_10_1038_s42003_021_01998_2
crossref_primary_10_1007_s00018_024_05154_x
crossref_primary_10_1155_2017_3574840
crossref_primary_10_1177_1535370219862282
crossref_primary_10_1038_s41388_020_1343_z
crossref_primary_10_1038_s41580_025_00841_4
crossref_primary_10_3390_cells11203311
crossref_primary_10_1016_j_semcdb_2018_04_013
crossref_primary_10_1002_1878_0261_12665
crossref_primary_10_1016_j_gde_2016_05_013
crossref_primary_10_1038_s41598_024_55088_4
crossref_primary_10_1186_s12934_023_02104_3
crossref_primary_10_3390_ijms21249488
crossref_primary_10_1016_j_dnarep_2021_103047
crossref_primary_10_3390_biomedicines13071727
crossref_primary_10_1093_nar_gkae807
crossref_primary_10_1016_j_ymthe_2020_10_006
crossref_primary_10_1038_s41419_020_03013_8
crossref_primary_10_1088_2050_6120_abf239
crossref_primary_10_71150_jm_2504012
crossref_primary_10_1016_j_jgg_2019_03_002
crossref_primary_10_1093_nar_gkab540
crossref_primary_10_1371_journal_pgen_1009816
crossref_primary_10_1093_nar_gkad727
crossref_primary_10_1186_s13578_020_00412_4
crossref_primary_10_1093_nar_gkad723
crossref_primary_10_1111_febs_15082
crossref_primary_10_1093_nar_gkaa215
crossref_primary_10_3390_ijms23147506
crossref_primary_10_1186_s13046_024_03049_0
crossref_primary_10_1038_s41467_020_19961_w
crossref_primary_10_3390_ijms20246316
crossref_primary_10_1038_s41467_020_17551_4
crossref_primary_10_3389_fgeed_2025_1565387
crossref_primary_10_1007_s12094_019_02165_0
crossref_primary_10_3390_genes13010007
crossref_primary_10_3390_genes11080912
crossref_primary_10_1016_j_dnarep_2019_102691
crossref_primary_10_1016_j_molcel_2018_02_016
crossref_primary_10_1128_msphere_00156_22
crossref_primary_10_1186_s13059_018_1401_9
crossref_primary_10_1016_j_mrrev_2018_06_001
crossref_primary_10_1371_journal_ppat_1008201
crossref_primary_10_1016_j_tig_2021_02_008
crossref_primary_10_1038_s42003_025_08187_5
crossref_primary_10_1038_s41388_022_02176_2
crossref_primary_10_1093_plcell_koac191
crossref_primary_10_1073_pnas_1903150116
crossref_primary_10_1038_s41388_021_01788_4
crossref_primary_10_2903_j_efsa_2021_6611
crossref_primary_10_3389_fmicb_2016_00627
crossref_primary_10_1038_s41391_019_0153_2
crossref_primary_10_1038_s41392_021_00648_7
crossref_primary_10_1016_j_semcancer_2020_10_016
crossref_primary_10_1186_s13073_025_01488_8
crossref_primary_10_3390_genes11040466
crossref_primary_10_1177_11782234221080553
crossref_primary_10_3389_fcell_2022_910440
crossref_primary_10_1016_j_dnarep_2022_103315
crossref_primary_10_1186_s12864_019_6436_0
crossref_primary_10_3390_cancers16112129
crossref_primary_10_3390_ijms25053049
crossref_primary_10_3390_ijms23169180
crossref_primary_10_1093_nsr_nwz005
crossref_primary_10_1093_nar_gkae1207
crossref_primary_10_1038_s41401_021_00839_6
crossref_primary_10_1016_j_jgeb_2024_100435
crossref_primary_10_3390_cancers11010119
crossref_primary_10_1038_s41419_020_02812_3
crossref_primary_10_1038_s41467_020_19060_w
crossref_primary_10_1016_j_devcel_2024_06_004
crossref_primary_10_1038_s41392_025_02250_7
crossref_primary_10_3389_fnins_2020_00838
crossref_primary_10_1016_j_isci_2023_106276
crossref_primary_10_1089_ars_2017_7423
crossref_primary_10_15252_embr_201846166
crossref_primary_10_3390_ijms19082263
crossref_primary_10_1016_S0021_9258_17_49903_0
crossref_primary_10_1007_s11684_023_1013_y
crossref_primary_10_1016_j_isci_2021_103676
crossref_primary_10_32604_biocell_2022_021107
crossref_primary_10_1038_s41598_022_05172_4
crossref_primary_10_1242_jcs_258500
crossref_primary_10_1038_s41416_024_02935_w
crossref_primary_10_1667_RR003CC_1
crossref_primary_10_1371_journal_pgen_1011250
crossref_primary_10_3390_nu16234202
crossref_primary_10_1002_1873_3468_12724
crossref_primary_10_1073_pnas_1617110113
crossref_primary_10_1038_s41568_023_00586_2
crossref_primary_10_1093_nar_gkac676
crossref_primary_10_1016_j_tcb_2021_05_009
crossref_primary_10_1534_genetics_120_303328
crossref_primary_10_3892_or_2024_8749
crossref_primary_10_1093_jxb_eraf272
crossref_primary_10_1007_s00018_016_2436_2
crossref_primary_10_1093_genetics_iyad052
crossref_primary_10_1080_14728222_2021_1954162
crossref_primary_10_1016_j_fbr_2024_100366
crossref_primary_10_1038_s41551_023_01157_4
crossref_primary_10_3390_ijms26062405
crossref_primary_10_1016_j_ceb_2018_03_006
crossref_primary_10_1093_nar_gkab110
crossref_primary_10_1093_nar_gkad533
crossref_primary_10_1158_0008_5472_CAN_20_2626
crossref_primary_10_3390_curroncol32070367
crossref_primary_10_1016_j_wneu_2022_12_119
crossref_primary_10_1016_j_gde_2021_06_011
crossref_primary_10_1089_crispr_2020_0034
crossref_primary_10_1038_s41417_024_00815_2
crossref_primary_10_3389_fbioe_2020_00711
crossref_primary_10_3892_ol_2025_14944
crossref_primary_10_1080_14737159_2016_1212662
crossref_primary_10_1089_dna_2019_4842
crossref_primary_10_1128_mSphere_00446_17
crossref_primary_10_3390_cancers14225619
crossref_primary_10_1007_s00204_020_02692_8
crossref_primary_10_1186_s13059_017_1220_4
crossref_primary_10_3390_v17060821
crossref_primary_10_1038_s41586_023_06506_6
crossref_primary_10_1101_gad_280545_116
crossref_primary_10_3390_genes12081229
crossref_primary_10_1073_pnas_1900308116
crossref_primary_10_1089_hum_2024_260
crossref_primary_10_3390_cells12101375
crossref_primary_10_3389_fcell_2021_699639
crossref_primary_10_1016_j_jbc_2024_107554
crossref_primary_10_1042_BST20190563
crossref_primary_10_71150_jm_2409006
crossref_primary_10_3390_genes10100791
crossref_primary_10_1038_s41388_020_1372_7
crossref_primary_10_3389_fcell_2021_640755
crossref_primary_10_1016_j_tibtech_2019_09_005
crossref_primary_10_1111_acel_13307
crossref_primary_10_1093_nar_gkaa483
crossref_primary_10_1038_s41467_018_07799_2
crossref_primary_10_1126_scitranslmed_aaf9246
crossref_primary_10_1038_s41598_020_58893_9
crossref_primary_10_1016_j_celrep_2025_116236
crossref_primary_10_1016_j_dnarep_2021_103206
crossref_primary_10_1038_s41551_017_0145_2
crossref_primary_10_1038_s41467_022_31415_z
crossref_primary_10_1016_j_cej_2023_147802
crossref_primary_10_1002_1873_3468_14938
crossref_primary_10_1146_annurev_cancerbio_042324_103725
crossref_primary_10_1093_nar_gkac469
crossref_primary_10_3390_cancers17121936
crossref_primary_10_1093_biomethods_bpaf018
crossref_primary_10_3390_ijms222413674
crossref_primary_10_1172_JCI122085
crossref_primary_10_1016_j_cell_2018_03_050
crossref_primary_10_1038_s41388_023_02812_5
crossref_primary_10_1002_2211_5463_12954
crossref_primary_10_1038_s42003_023_05540_4
crossref_primary_10_1111_cas_15896
crossref_primary_10_1186_s12920_019_0545_0
crossref_primary_10_1016_j_jgr_2024_04_001
crossref_primary_10_1007_s42764_024_00131_x
crossref_primary_10_1002_ijc_32670
crossref_primary_10_3390_ph18060895
crossref_primary_10_1080_03602532_2021_1955916
crossref_primary_10_1038_s41419_022_04644_9
crossref_primary_10_1007_s00439_018_1953_5
crossref_primary_10_1038_s41551_024_01252_0
crossref_primary_10_1016_j_molcel_2021_05_010
crossref_primary_10_1016_j_biochi_2022_07_013
crossref_primary_10_1111_bju_14576
crossref_primary_10_1016_j_canlet_2021_05_029
crossref_primary_10_1089_crispr_2022_0011
crossref_primary_10_1016_j_tcb_2017_08_005
crossref_primary_10_1038_s41392_022_01176_8
crossref_primary_10_1038_s41421_019_0109_7
crossref_primary_10_1016_j_tem_2016_02_004
crossref_primary_10_1073_pnas_2215958120
crossref_primary_10_1038_ncomms16112
crossref_primary_10_1093_nar_gkab151
crossref_primary_10_3390_cells11132099
crossref_primary_10_1016_j_canlet_2021_10_001
crossref_primary_10_2147_CMAR_S346052
crossref_primary_10_1093_nar_gkad776
crossref_primary_10_1111_febs_14816
crossref_primary_10_1038_s41467_021_26811_w
crossref_primary_10_1016_j_tranon_2020_100986
crossref_primary_10_3390_cancers13225714
crossref_primary_10_3390_cancers12071991
crossref_primary_10_1007_s11864_017_0480_2
crossref_primary_10_3390_cancers12071769
crossref_primary_10_3390_cancers12092684
crossref_primary_10_1038_s41418_020_0521_4
crossref_primary_10_1016_j_jid_2019_03_1146
crossref_primary_10_1158_0008_5472_CAN_18_0273
crossref_primary_10_1080_09553002_2019_1524940
crossref_primary_10_3389_fcell_2021_642737
crossref_primary_10_1139_bcb_2017_0063
crossref_primary_10_26508_lsa_202402845
crossref_primary_10_1093_carcin_bgaa135
crossref_primary_10_1016_j_dnarep_2018_02_003
crossref_primary_10_1016_j_fertnstert_2018_11_035
crossref_primary_10_1080_07388551_2022_2042481
crossref_primary_10_1038_s41418_020_0493_4
crossref_primary_10_1534_genetics_117_203414
crossref_primary_10_1080_13543784_2022_2067527
crossref_primary_10_1038_s41556_023_01165_1
crossref_primary_10_2174_0929867327666200224102309
crossref_primary_10_1016_j_jsbmb_2021_105853
crossref_primary_10_1016_j_molcel_2019_08_023
crossref_primary_10_1038_s41588_019_0421_z
crossref_primary_10_1111_his_13069
crossref_primary_10_1038_s41467_018_07729_2
crossref_primary_10_1111_febs_16933
crossref_primary_10_3389_fpls_2021_773052
crossref_primary_10_1007_s13577_021_00630_z
crossref_primary_10_3390_cancers11071038
crossref_primary_10_1007_s11010_024_05131_9
crossref_primary_10_1016_j_clon_2020_12_006
crossref_primary_10_1101_gad_344044_120
crossref_primary_10_1016_j_preteyeres_2016_09_001
crossref_primary_10_1038_s41598_024_51509_6
crossref_primary_10_1371_journal_pcbi_1007480
crossref_primary_10_1172_JCI189511
crossref_primary_10_3390_cancers15010116
crossref_primary_10_1074_jbc_M116_745646
crossref_primary_10_1016_j_ccell_2019_12_015
crossref_primary_10_1093_nar_gkac1264
crossref_primary_10_1016_j_mrgentox_2021_503372
crossref_primary_10_1186_s12935_021_01953_5
crossref_primary_10_1016_j_lfs_2022_120409
crossref_primary_10_1016_j_dnarep_2025_103873
crossref_primary_10_1016_j_cpet_2023_02_006
crossref_primary_10_1158_1078_0432_CCR_18_1346
crossref_primary_10_1038_s41568_025_00819_6
crossref_primary_10_1007_s13402_023_00834_5
crossref_primary_10_3389_fphys_2019_01144
crossref_primary_10_1007_s11427_021_2057_0
crossref_primary_10_1073_pnas_2021963118
crossref_primary_10_1146_annurev_biochem_062917_012405
crossref_primary_10_1038_s44321_023_00008_8
crossref_primary_10_1042_BSR20180457
crossref_primary_10_1038_s41467_024_50788_x
crossref_primary_10_1016_j_radonc_2024_110475
crossref_primary_10_3390_ijms22042167
crossref_primary_10_1007_s13238_020_00765_z
crossref_primary_10_1016_j_omtn_2025_102482
crossref_primary_10_1016_j_bbagrm_2016_12_008
crossref_primary_10_1093_nar_gkab178
crossref_primary_10_1016_j_biocel_2020_105827
crossref_primary_10_1080_10428194_2019_1571197
crossref_primary_10_1093_plphys_kiab572
crossref_primary_10_1038_s41580_019_0169_4
crossref_primary_10_1002_ajmg_a_61890
crossref_primary_10_1158_1541_7786_MCR_21_0301
crossref_primary_10_3390_ijms21218182
crossref_primary_10_1371_journal_pgen_1009256
crossref_primary_10_1038_s41556_025_01760_4
crossref_primary_10_1093_nar_gkad160
crossref_primary_10_1186_s12943_019_1100_5
crossref_primary_10_1139_bcb_2016_0137
crossref_primary_10_3389_freae_2024_1445765
crossref_primary_10_1093_nar_gkae1099
crossref_primary_10_1002_mco2_388
crossref_primary_10_1134_S0026893316040038
crossref_primary_10_1016_j_jgg_2016_03_006
crossref_primary_10_1038_s41467_017_02146_3
crossref_primary_10_1016_j_redox_2022_102443
crossref_primary_10_2147_CMAR_S254412
crossref_primary_10_1080_21655979_2025_2458376
crossref_primary_10_3390_cancers12020399
crossref_primary_10_1007_s13238_021_00838_7
crossref_primary_10_1158_1078_0432_CCR_18_2207
crossref_primary_10_1186_s43556_021_00057_w
crossref_primary_10_1093_toxsci_kfab005
crossref_primary_10_1136_gutjnl_2024_332782
crossref_primary_10_3389_fpls_2021_626528
crossref_primary_10_1016_j_tcb_2019_08_004
crossref_primary_10_1080_1744666X_2017_1392856
crossref_primary_10_1038_s41598_025_17538_5
crossref_primary_10_1186_s13148_022_01251_5
crossref_primary_10_1038_s41594_025_01514_8
crossref_primary_10_3390_v9050125
crossref_primary_10_1038_s42003_021_02597_x
crossref_primary_10_1039_C9NR03696B
crossref_primary_10_1016_j_neulet_2022_136740
crossref_primary_10_1016_j_molcel_2016_08_004
crossref_primary_10_1038_s41598_017_13695_4
crossref_primary_10_1371_journal_ppat_1005613
crossref_primary_10_1667_RADE_20_00195_1
crossref_primary_10_1038_s41467_024_49066_7
crossref_primary_10_2174_0929867325666180201114306
crossref_primary_10_1038_cdd_2016_88
crossref_primary_10_1016_j_semcancer_2019_02_005
crossref_primary_10_1080_15592294_2017_1395121
crossref_primary_10_1038_s41594_023_01107_3
crossref_primary_10_3390_cells12111530
crossref_primary_10_1111_febs_15852
crossref_primary_10_1002_2211_5463_13198
crossref_primary_10_1038_s41389_021_00365_4
crossref_primary_10_1186_s41021_025_00329_9
crossref_primary_10_1007_s12079_019_00538_2
crossref_primary_10_1016_j_dnarep_2019_01_007
crossref_primary_10_1093_nar_gkz977
crossref_primary_10_3390_ijms22020786
crossref_primary_10_1080_15384101_2017_1403681
crossref_primary_10_1016_j_biocel_2018_04_011
crossref_primary_10_1186_s12864_020_06865_8
crossref_primary_10_1038_ncomms12628
crossref_primary_10_1177_17588359221075458
crossref_primary_10_1371_journal_pgen_1006107
crossref_primary_10_1371_journal_pgen_1007439
crossref_primary_10_3390_genes10110901
crossref_primary_10_3390_ijms24054741
crossref_primary_10_1155_2020_4834965
crossref_primary_10_3390_ijms242115907
crossref_primary_10_1111_febs_16771
crossref_primary_10_1016_j_preteyeres_2021_101029
crossref_primary_10_3390_ijms22168458
crossref_primary_10_1016_j_prp_2024_155405
crossref_primary_10_1134_S0026893319030026
crossref_primary_10_1186_s12934_025_02654_8
crossref_primary_10_1038_s41419_018_0362_y
crossref_primary_10_1002_jcp_31503
crossref_primary_10_1016_j_dnarep_2024_103781
crossref_primary_10_1080_09553002_2018_1564083
crossref_primary_10_1002_mco2_736
crossref_primary_10_1002_dvdy_357
crossref_primary_10_1038_s41598_019_44771_6
crossref_primary_10_1038_ng_3771
crossref_primary_10_1016_j_drup_2021_100744
crossref_primary_10_1038_s41588_020_00739_1
crossref_primary_10_3389_fonc_2022_949435
crossref_primary_10_1016_j_dnarep_2024_103787
crossref_primary_10_1038_s41467_019_08676_2
crossref_primary_10_1083_jcb_202106116
crossref_primary_10_1158_1078_0432_CCR_21_2846
crossref_primary_10_1007_s00203_019_01658_4
crossref_primary_10_1016_j_bbrc_2021_12_099
crossref_primary_10_1038_s41586_020_1943_3
crossref_primary_10_3390_cells9112342
crossref_primary_10_3389_fcell_2021_708763
crossref_primary_10_1016_j_omtn_2022_12_020
crossref_primary_10_3389_fnagi_2022_1018180
crossref_primary_10_1016_j_bulcan_2017_09_005
crossref_primary_10_1186_s13578_025_01367_0
crossref_primary_10_1002_hon_3225
crossref_primary_10_1038_s41388_021_02052_5
crossref_primary_10_1089_hum_2016_037
crossref_primary_10_1007_s11248_021_00287_2
crossref_primary_10_3390_ijms23063231
crossref_primary_10_1097_CAD_0000000000001682
crossref_primary_10_1002_glia_70028
crossref_primary_10_1128_msphere_00427_23
crossref_primary_10_1016_j_clinthera_2016_06_006
crossref_primary_10_1038_s12276_023_01139_1
crossref_primary_10_1371_journal_pgen_1010889
crossref_primary_10_1016_j_synbio_2023_08_007
crossref_primary_10_1016_j_dnarep_2025_103847
crossref_primary_10_1016_j_virusres_2016_11_006
crossref_primary_10_1016_j_envint_2021_106704
crossref_primary_10_3390_cells11010063
crossref_primary_10_3390_cancers14174077
crossref_primary_10_1631_jzus_B2000309
crossref_primary_10_1002_mco2_788
crossref_primary_10_1016_j_dnarep_2025_103850
crossref_primary_10_1093_nar_gkw261
crossref_primary_10_3389_fonc_2022_1061988
crossref_primary_10_1002_em_22087
crossref_primary_10_1093_nar_gkaa733
crossref_primary_10_1093_nar_gkaa975
crossref_primary_10_3390_ijms19113442
crossref_primary_10_1080_14796694_2024_2421160
crossref_primary_10_1016_j_semcdb_2019_04_010
crossref_primary_10_1016_j_mrrev_2021_108388
crossref_primary_10_1021_acs_biochem_5c00333
crossref_primary_10_1038_s41420_017_0008_3
crossref_primary_10_1134_S0026893323020139
crossref_primary_10_1186_s13227_022_00207_3
crossref_primary_10_1038_s43018_021_00200_0
crossref_primary_10_1089_crispr_2021_0039
crossref_primary_10_1016_j_dnarep_2024_103736
crossref_primary_10_1038_nsmb_3274
crossref_primary_10_3390_genes10020118
crossref_primary_10_1093_nar_gkw274
crossref_primary_10_1099_jgv_0_001034
crossref_primary_10_1158_0008_5472_CAN_22_1124
crossref_primary_10_1080_09553002_2021_1956001
crossref_primary_10_1128_JVI_01380_17
crossref_primary_10_7554_eLife_15129
crossref_primary_10_1155_2017_8193892
crossref_primary_10_1038_s41597_023_02331_8
crossref_primary_10_1371_journal_pone_0216674
crossref_primary_10_1038_s41556_021_00731_9
crossref_primary_10_1038_s41467_017_02653_3
crossref_primary_10_1099_jgv_0_001478
crossref_primary_10_1016_j_neo_2025_101164
crossref_primary_10_7554_eLife_42733
crossref_primary_10_1007_s00018_019_03140_2
crossref_primary_10_1038_s41467_024_49985_5
crossref_primary_10_1111_febs_15465
crossref_primary_10_1016_j_arr_2021_101264
crossref_primary_10_1186_s40694_019_0066_9
crossref_primary_10_3390_cancers13133130
crossref_primary_10_1016_j_ebiom_2018_11_025
crossref_primary_10_1371_journal_pgen_1006368
crossref_primary_10_1007_s42764_022_00063_4
crossref_primary_10_1016_j_omtm_2019_12_004
crossref_primary_10_3390_cancers11101593
crossref_primary_10_1016_j_ijbiomac_2020_07_039
crossref_primary_10_1038_s41388_020_01445_2
crossref_primary_10_3389_fcell_2022_1016951
crossref_primary_10_1007_s42764_021_00042_1
crossref_primary_10_1038_s41467_020_15845_1
crossref_primary_10_1038_nsmb_3251
crossref_primary_10_1038_s41467_017_02688_6
crossref_primary_10_1038_s41421_021_00283_0
crossref_primary_10_1093_nar_gkx586
crossref_primary_10_1089_crispr_2018_0054
crossref_primary_10_1097_MD_0000000000038036
crossref_primary_10_3390_genes11101159
crossref_primary_10_3389_fphar_2022_1015926
crossref_primary_10_1002_ijc_35170
crossref_primary_10_1038_s41420_024_02267_x
Cites_doi 10.1146/annurev-genet-051710-150955
10.1084/jem.20131939
10.1038/nature03443
10.1074/jbc.M112.375014
10.1093/genetics/142.3.693
10.1016/j.cell.2013.05.023
10.1158/0008-5472.CAN-04-3055
10.1016/j.celrep.2014.04.005
10.1093/nar/gkv336
10.1126/science.1140321
10.1016/j.febslet.2010.05.023
10.1371/journal.pgen.1001005
10.1038/nrc2644
10.1128/MCB.25.13.5738-5751.2005
10.1038/sj.onc.1207604
10.1534/genetics.114.162297
10.1038/nature14216
10.1083/jcb.201401146
10.1038/nature14328
10.1093/nar/gkh842
10.1093/emboj/cdg206
10.1093/nar/gku174
10.1038/nsmb.1773
10.1038/nsmb.2961
10.1146/annurev-genet-110711-155540
10.1074/jbc.M809019200
10.1038/nsmb.2786
10.1016/j.cell.2010.03.012
10.1158/0008-5472.CAN-12-3313
10.1016/j.molcel.2012.05.052
10.1016/j.bbrc.2007.11.132
10.1016/j.molcel.2013.01.001
10.1038/nsmb.2105
10.1128/MCB.02043-06
10.1016/j.cell.2008.08.016
10.1016/j.molcel.2007.11.032
10.1101/cshperspect.a012757
10.15252/embj.201570610
10.1074/jbc.M801097200
10.1074/jbc.M110.110478
10.1073/pnas.1213431110
10.1038/nsmb1245
10.1146/annurev-med-050913-022545
10.1016/j.molcel.2013.04.032
10.1038/nsmb.2993
10.1093/nar/gkq379
10.1016/j.dnarep.2012.10.004
10.1016/j.celrep.2014.03.069
10.1016/j.molcel.2011.11.028
10.1158/2159-8290.CD-14-1092
10.1101/gad.503108
10.1111/j.1365-2958.2008.06116.x
10.1158/0008-5472.CAN-12-1470
10.1038/ncomms4561
10.1093/nar/gkl840
10.1038/nature01577
10.1074/jbc.M808906200
10.1038/nature14184
10.1038/nrg3729
10.1158/2159-8290.CD-13-0891
10.1093/nar/gkv160
10.1038/nature09803
10.1371/journal.pgen.1000110
10.1101/gad.252478.114
10.1038/35018134
10.1038/onc.2012.391
10.1128/MCB.24.23.10381-10389.2004
10.1038/nature12477
10.1038/nature14157
10.1016/j.tig.2008.08.007
10.1146/annurev-genet-110410-132435
10.1002/bies.201000087
10.1016/j.molcel.2013.01.002
10.1093/nar/gku1334
10.1016/j.cell.2012.04.023
10.1200/JCO.2005.05.4171
10.1093/nar/gku1384
10.1371/journal.pgen.1004943
10.1371/journal.pgen.1004899
10.1016/j.molcel.2011.03.019
10.1074/jbc.M114.578823
10.1016/j.molcel.2011.11.010
10.1038/nrc3537
10.1016/j.dnarep.2007.12.008
10.1016/j.molcel.2009.12.026
10.1016/j.celrep.2013.08.034
10.1371/journal.pgen.1003277
10.1074/jbc.M113.484493
10.1016/j.celrep.2015.02.053
10.1371/journal.pbio.0020021
10.1038/nsmb.1940
10.1016/j.cub.2009.05.057
10.1016/j.dnarep.2014.03.014
10.1093/nar/gkt1263
10.1074/jbc.272.45.28194
10.1016/j.molcel.2012.11.020
10.1038/35006670
10.1038/nature01585
10.1016/j.molcel.2008.02.028
10.1534/genetics.107.076539
10.1128/MCB.01124-09
10.1038/nature03445
10.1038/nature07955
10.1073/pnas.1106971108
10.1038/nature06168
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.tcb.2015.07.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-3088
EndPage 64
ExternalDocumentID PMC4862604
26437586
10_1016_j_tcb_2015_07_009
S0962892415001427
1_s2_0_S0962892415001427
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P50 CA168504
– fundername: NCI NIH HHS
  grantid: P50CA168504
– fundername: NHLBI NIH HHS
  grantid: R01HL52725
– fundername: NHLBI NIH HHS
  grantid: R01 HL052725
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
186
1B1
1P~
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D0L
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IH2
IHE
J1W
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XPP
Y6R
YNT
Z5R
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RCE
RIG
VQA
AAIAV
ABYKQ
AJBFU
DOVZS
ZA5
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c692t-62daa2ac3fe7e8993197da7539d3dff149bf8a979e1acd9fdca04c787eb496c13
ISICitedReferencesCount 1136
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000368206000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0962-8924
IngestDate Tue Sep 30 16:48:47 EDT 2025
Sun Sep 28 07:02:33 EDT 2025
Wed Feb 19 02:41:49 EST 2025
Tue Nov 18 21:56:45 EST 2025
Sat Nov 29 03:09:39 EST 2025
Fri Feb 23 02:20:26 EST 2024
Sun Feb 23 10:19:08 EST 2025
Tue Oct 14 19:30:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords homologous recombination
DNA repair
Polθ
alternative end joining
synthetic lethality
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c692t-62daa2ac3fe7e8993197da7539d3dff149bf8a979e1acd9fdca04c787eb496c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-2
OpenAccessLink http://doi.org/10.1016/j.tcb.2015.07.009
PMID 26437586
PQID 1753230558
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4862604
proquest_miscellaneous_1753230558
pubmed_primary_26437586
crossref_citationtrail_10_1016_j_tcb_2015_07_009
crossref_primary_10_1016_j_tcb_2015_07_009
elsevier_sciencedirect_doi_10_1016_j_tcb_2015_07_009
elsevier_clinicalkeyesjournals_1_s2_0_S0962892415001427
elsevier_clinicalkey_doi_10_1016_j_tcb_2015_07_009
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in cell biology
PublicationTitleAlternate Trends Cell Biol
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Simandlova (bib0830) 2013; 288
Sung (bib0965) 1997; 272
Nik-Zainal (bib1010) 2012; 149
Bunting (bib0660) 2010; 141
Symington, Gautier (bib0585) 2011; 45
Heyer (bib0550) 2010; 44
Zahn (bib0945) 2015; 22
Wang, Haber (bib0725) 2004; 2
Ivanov (bib0980) 1996; 142
Lok (bib0990) 2013; 32
Moldovan (bib0870) 2010; 30
Chen (bib0605) 2011; 18
Callen (bib0675) 2013; 153
Sommers (bib0815) 2009; 284
Grabarz (bib0825) 2013; 5
Andersen, Sekelsky (bib0840) 2010; 32
Wang (bib0680) 2014; 28
Klein (bib0935) 2008; 7
Wang (bib0575) 2006; 34
Kent (bib0940) 2015; 22
Huertas, Jackson (bib0595) 2009; 284
Jimeno (bib0645) 2015; 43
Ceccaldi (bib0770) 2015; 518
Difilippantonio (bib0545) 2000; 404
Simsek, Jasin (bib0560) 2010; 17
Kohzaki (bib0835) 2007; 27
Shima (bib1000) 2004; 24
Veaute (bib0910) 2003; 423
Menissier de Murcia (bib0930) 2003; 22
Gari (bib0850) 2008; 29
Sarangi (bib0640) 2015; 11
Matsuoka (bib0705) 2007; 316
Barton (bib1050) 2014; 206
Truong (bib0590) 2013; 110
Lee, Lee (bib0775) 2007; 176
Deng (bib0735) 2014; 21
O’Connor (bib0790) 2013; 73
Carreira, Kowalczykowski (bib0740) 2011; 108
Peterson (bib0720) 2013; 49
Islam (bib0800) 2012; 287
Bryant (bib0920) 2005; 434
Kojic (bib0975) 2008; 67
Schwendener (bib0795) 2010; 285
Bennardo (bib0610) 2008; 4
Badie (bib0650) 2015; 34
Corneo (bib0570) 2007; 449
Robert (bib0630) 2011; 471
Barber (bib0845) 2008; 135
Wang (bib0580) 2005; 65
Chen (bib0730) 2013; 50
Krejci (bib0755) 2003; 423
Esashi (bib0745) 2007; 14
Chiruvella (bib0535) 2013; 5
Chan (bib0900) 2010; 6
Gravel (bib0820) 2008; 22
Li (bib0780) 2008; 30
Adelman, Boulton (bib0860) 2010; 584
Xu (bib0695) 2015; 521
Escribano-Diaz (bib0665) 2013; 49
Kim (bib0810) 2015; 43
Wang (bib0715) 2013; 9
Boersma (bib0700) 2015; 521
Popova (bib1005) 2012; 72
Chiolo (bib0760) 2005; 25
Lord (bib1045) 2015; 66
Alexandrov (bib1015) 2013; 500
Ayoub (bib0750) 2009; 19
Liang (bib0970) 2015; 10
Tomimatsu (bib0625) 2014; 5
Bunting, Nussenzweig (bib0885) 2013; 13
Yousefzadeh, Wood (bib1030) 2013; 12
Murina (bib0960) 2014; 7
Paliwal (bib0805) 2014; 42
Treuner (bib0995) 2004; 23
Kennedy, D’Andrea (bib1035) 2006; 24
McVey, Lee (bib0905) 2008; 24
Ward (bib0875) 2010; 37
Bentley (bib0880) 2004; 32
Chapman (bib0670) 2013; 49
Mateos-Gomez (bib0890) 2015; 518
Wu (bib0985) 2008; 283
Moldovan (bib0765) 2012; 45
Yu, McVey (bib0785) 2010; 38
Hu (bib0655) 2014; 4
Zhang, Jasin (bib0565) 2011; 18
Cremona (bib0635) 2012; 45
Sturzenegger (bib0600) 2014; 289
Zong (bib0685) 2015; 43
Bast (bib1040) 2009; 9
Watkins (bib1020) 2015; 5
Stafa (bib0855) 2014; 196
Li (bib0710) 2000; 406
Helleday (bib1025) 2014; 15
Aparicio (bib0530) 2014; 19
Bakr (bib0865) 2015; 43
Bothmer (bib0690) 2011; 42
Farmer (bib0915) 2005; 434
Karanam (bib0540) 2012; 47
Beck (bib0925) 2014; 42
Deriano, Roth (bib0555) 2013; 47
Polato (bib0620) 2014; 211
Audebert (bib0895) 2008; 369
Yun, Hiom (bib0615) 2009; 459
Unno (bib0955) 2014; 7
Howard (bib0950) 2015; 11
Beck (10.1016/j.tcb.2015.07.009_bib0925) 2014; 42
Kohzaki (10.1016/j.tcb.2015.07.009_bib0835) 2007; 27
Barber (10.1016/j.tcb.2015.07.009_bib0845) 2008; 135
Wang (10.1016/j.tcb.2015.07.009_bib0680) 2014; 28
Klein (10.1016/j.tcb.2015.07.009_bib0935) 2008; 7
Lord (10.1016/j.tcb.2015.07.009_bib1045) 2015; 66
Sturzenegger (10.1016/j.tcb.2015.07.009_bib0600) 2014; 289
Wang (10.1016/j.tcb.2015.07.009_bib0580) 2005; 65
Gravel (10.1016/j.tcb.2015.07.009_bib0820) 2008; 22
Islam (10.1016/j.tcb.2015.07.009_bib0800) 2012; 287
Treuner (10.1016/j.tcb.2015.07.009_bib0995) 2004; 23
Lee (10.1016/j.tcb.2015.07.009_bib0775) 2007; 176
Esashi (10.1016/j.tcb.2015.07.009_bib0745) 2007; 14
Yu (10.1016/j.tcb.2015.07.009_bib0785) 2010; 38
Barton (10.1016/j.tcb.2015.07.009_bib1050) 2014; 206
Menissier de Murcia (10.1016/j.tcb.2015.07.009_bib0930) 2003; 22
Bennardo (10.1016/j.tcb.2015.07.009_bib0610) 2008; 4
Popova (10.1016/j.tcb.2015.07.009_bib1005) 2012; 72
Difilippantonio (10.1016/j.tcb.2015.07.009_bib0545) 2000; 404
Mateos-Gomez (10.1016/j.tcb.2015.07.009_bib0890) 2015; 518
Paliwal (10.1016/j.tcb.2015.07.009_bib0805) 2014; 42
Huertas (10.1016/j.tcb.2015.07.009_bib0595) 2009; 284
Ceccaldi (10.1016/j.tcb.2015.07.009_bib0770) 2015; 518
Krejci (10.1016/j.tcb.2015.07.009_bib0755) 2003; 423
Jimeno (10.1016/j.tcb.2015.07.009_bib0645) 2015; 43
Kojic (10.1016/j.tcb.2015.07.009_bib0975) 2008; 67
Wang (10.1016/j.tcb.2015.07.009_bib0725) 2004; 2
Wu (10.1016/j.tcb.2015.07.009_bib0985) 2008; 283
Escribano-Diaz (10.1016/j.tcb.2015.07.009_bib0665) 2013; 49
Karanam (10.1016/j.tcb.2015.07.009_bib0540) 2012; 47
Murina (10.1016/j.tcb.2015.07.009_bib0960) 2014; 7
Bothmer (10.1016/j.tcb.2015.07.009_bib0690) 2011; 42
Zahn (10.1016/j.tcb.2015.07.009_bib0945) 2015; 22
Peterson (10.1016/j.tcb.2015.07.009_bib0720) 2013; 49
Gari (10.1016/j.tcb.2015.07.009_bib0850) 2008; 29
Nik-Zainal (10.1016/j.tcb.2015.07.009_bib1010) 2012; 149
Bentley (10.1016/j.tcb.2015.07.009_bib0880) 2004; 32
Watkins (10.1016/j.tcb.2015.07.009_bib1020) 2015; 5
Tomimatsu (10.1016/j.tcb.2015.07.009_bib0625) 2014; 5
Unno (10.1016/j.tcb.2015.07.009_bib0955) 2014; 7
Stafa (10.1016/j.tcb.2015.07.009_bib0855) 2014; 196
Helleday (10.1016/j.tcb.2015.07.009_bib1025) 2014; 15
Deng (10.1016/j.tcb.2015.07.009_bib0735) 2014; 21
Chen (10.1016/j.tcb.2015.07.009_bib0730) 2013; 50
Cremona (10.1016/j.tcb.2015.07.009_bib0635) 2012; 45
Bakr (10.1016/j.tcb.2015.07.009_bib0865) 2015; 43
Deriano (10.1016/j.tcb.2015.07.009_bib0555) 2013; 47
Moldovan (10.1016/j.tcb.2015.07.009_bib0765) 2012; 45
McVey (10.1016/j.tcb.2015.07.009_bib0905) 2008; 24
Li (10.1016/j.tcb.2015.07.009_bib0710) 2000; 406
Bryant (10.1016/j.tcb.2015.07.009_bib0920) 2005; 434
Truong (10.1016/j.tcb.2015.07.009_bib0590) 2013; 110
Badie (10.1016/j.tcb.2015.07.009_bib0650) 2015; 34
Ward (10.1016/j.tcb.2015.07.009_bib0875) 2010; 37
Li (10.1016/j.tcb.2015.07.009_bib0780) 2008; 30
Grabarz (10.1016/j.tcb.2015.07.009_bib0825) 2013; 5
Moldovan (10.1016/j.tcb.2015.07.009_bib0870) 2010; 30
Corneo (10.1016/j.tcb.2015.07.009_bib0570) 2007; 449
Lok (10.1016/j.tcb.2015.07.009_bib0990) 2013; 32
O’Connor (10.1016/j.tcb.2015.07.009_bib0790) 2013; 73
Bunting (10.1016/j.tcb.2015.07.009_bib0885) 2013; 13
Zong (10.1016/j.tcb.2015.07.009_bib0685) 2015; 43
Bast (10.1016/j.tcb.2015.07.009_bib1040) 2009; 9
Veaute (10.1016/j.tcb.2015.07.009_bib0910) 2003; 423
Farmer (10.1016/j.tcb.2015.07.009_bib0915) 2005; 434
Simsek (10.1016/j.tcb.2015.07.009_bib0560) 2010; 17
Symington (10.1016/j.tcb.2015.07.009_bib0585) 2011; 45
Sarangi (10.1016/j.tcb.2015.07.009_bib0640) 2015; 11
Andersen (10.1016/j.tcb.2015.07.009_bib0840) 2010; 32
Chan (10.1016/j.tcb.2015.07.009_bib0900) 2010; 6
Matsuoka (10.1016/j.tcb.2015.07.009_bib0705) 2007; 316
Ayoub (10.1016/j.tcb.2015.07.009_bib0750) 2009; 19
Boersma (10.1016/j.tcb.2015.07.009_bib0700) 2015; 521
Yun (10.1016/j.tcb.2015.07.009_bib0615) 2009; 459
Kent (10.1016/j.tcb.2015.07.009_bib0940) 2015; 22
Schwendener (10.1016/j.tcb.2015.07.009_bib0795) 2010; 285
Heyer (10.1016/j.tcb.2015.07.009_bib0550) 2010; 44
Zhang (10.1016/j.tcb.2015.07.009_bib0565) 2011; 18
Wang (10.1016/j.tcb.2015.07.009_bib0715) 2013; 9
Wang (10.1016/j.tcb.2015.07.009_bib0575) 2006; 34
Kim (10.1016/j.tcb.2015.07.009_bib0810) 2015; 43
Xu (10.1016/j.tcb.2015.07.009_bib0695) 2015; 521
Audebert (10.1016/j.tcb.2015.07.009_bib0895) 2008; 369
Adelman (10.1016/j.tcb.2015.07.009_bib0860) 2010; 584
Polato (10.1016/j.tcb.2015.07.009_bib0620) 2014; 211
Chapman (10.1016/j.tcb.2015.07.009_bib0670) 2013; 49
Chen (10.1016/j.tcb.2015.07.009_bib0605) 2011; 18
Hu (10.1016/j.tcb.2015.07.009_bib0655) 2014; 4
Alexandrov (10.1016/j.tcb.2015.07.009_bib1015) 2013; 500
Yousefzadeh (10.1016/j.tcb.2015.07.009_bib1030) 2013; 12
Kennedy (10.1016/j.tcb.2015.07.009_bib1035) 2006; 24
Bunting (10.1016/j.tcb.2015.07.009_bib0660) 2010; 141
Chiruvella (10.1016/j.tcb.2015.07.009_bib0535) 2013; 5
Liang (10.1016/j.tcb.2015.07.009_bib0970) 2015; 10
Ivanov (10.1016/j.tcb.2015.07.009_bib0980) 1996; 142
Howard (10.1016/j.tcb.2015.07.009_bib0950) 2015; 11
Robert (10.1016/j.tcb.2015.07.009_bib0630) 2011; 471
Sung (10.1016/j.tcb.2015.07.009_bib0965) 1997; 272
Callen (10.1016/j.tcb.2015.07.009_bib0675) 2013; 153
Simandlova (10.1016/j.tcb.2015.07.009_bib0830) 2013; 288
Sommers (10.1016/j.tcb.2015.07.009_bib0815) 2009; 284
Carreira (10.1016/j.tcb.2015.07.009_bib0740) 2011; 108
Aparicio (10.1016/j.tcb.2015.07.009_bib0530) 2014; 19
Shima (10.1016/j.tcb.2015.07.009_bib1000) 2004; 24
Chiolo (10.1016/j.tcb.2015.07.009_bib0760) 2005; 25
23945592 - Nature. 2013 Aug 22;500(7463):415-21
24842372 - J Exp Med. 2014 Jun 2;211(6):1027-36
20617203 - PLoS Genet. 2010 Jul;6(7):e1001005
25122754 - J Biol Chem. 2014 Sep 26;289(39):27314-26
24608368 - Nat Struct Mol Biol. 2014 Apr;21(4):405-12
20348101 - J Biol Chem. 2010 May 21;285(21):15739-45
22933060 - Cancer Res. 2012 Nov 1;72(21):5454-62
23436799 - Cancer Res. 2013 Apr 15;73(8):2529-39
17565964 - Genetics. 2007 Aug;176(4):2003-14
24496010 - Genetics. 2014 Apr;196(4):1017-28
24108124 - J Biol Chem. 2013 Nov 22;288(47):34168-80
14737196 - PLoS Biol. 2004 Jan;2(1):E21
25520194 - Nucleic Acids Res. 2015 Jan;43(2):893-903
18337252 - J Biol Chem. 2008 May 23;283(21):14883-92
20690856 - Annu Rev Genet. 2010;44:113-39
8849880 - Genetics. 1996 Mar;142(3):693-704
24319145 - Nucleic Acids Res. 2014 Feb;42(4):2380-90
15964827 - Mol Cell Biol. 2005 Jul;25(13):5738-51
15829967 - Nature. 2005 Apr 14;434(7035):917-21
22645136 - J Biol Chem. 2012 Jul 6;287(28):23808-18
23333306 - Mol Cell. 2013 Mar 7;49(5):872-83
18243065 - DNA Repair (Amst). 2008 May 3;7(5):686-93
17283053 - Mol Cell Biol. 2007 Apr;27(8):2812-20
12748644 - Nature. 2003 May 15;423(6937):305-9
25267294 - J Cell Biol. 2014 Sep 29;206(7):877-94
25766694 - EMBO J. 2015 Mar 12;34(6):828
23706822 - Mol Cell. 2013 May 23;50(4):589-600
18206976 - Mol Cell. 2008 Jan 18;29(1):141-8
12748645 - Nature. 2003 May 15;423(6937):309-12
24981601 - Nat Rev Genet. 2014 Sep;15(9):585-98
23468639 - PLoS Genet. 2013;9(2):e1003277
25801034 - Cell Rep. 2015 Mar 31;10(12):1947-56
25753674 - Nucleic Acids Res. 2015 Mar 31;43(6):3154-66
20460465 - Nucleic Acids Res. 2010 Sep;38(17):5706-17
19202191 - J Biol Chem. 2009 Apr 3;284(14):9558-65
25569253 - PLoS Genet. 2015 Jan;11(1):e1004899
15829966 - Nature. 2005 Apr 14;434(7035):913-7
18054777 - Biochem Biophys Res Commun. 2008 May 9;369(3):982-8
21549309 - Mol Cell. 2011 May 6;42(3):319-29
23219161 - DNA Repair (Amst). 2013 Jan 1;12(1):1-9
18957201 - Cell. 2008 Oct 17;135(2):261-71
22841003 - Mol Cell. 2012 Jul 27;47(2):320-9
24598253 - Nucleic Acids Res. 2014 May;42(9):5616-32
20362325 - Cell. 2010 Apr 16;141(2):243-54
25916843 - Nucleic Acids Res. 2015 May 26;43(10):4950-61
25252691 - Cancer Discov. 2014 Dec;4(12):1430-47
19150983 - J Biol Chem. 2009 Mar 20;284(12):7505-17
12727891 - EMBO J. 2003 May 1;22(9):2255-63
15466592 - Nucleic Acids Res. 2004;32(17):5249-59
25512557 - Genes Dev. 2014 Dec 15;28(24):2693-8
22964643 - Oncogene. 2013 Jul 25;32(30):3552-8
19357644 - Nature. 2009 May 21;459(7245):460-3
9353267 - J Biol Chem. 1997 Nov 7;272(45):28194-7
19461667 - Nat Rev Cancer. 2009 Jun;9(6):415-28
10761921 - Nature. 2000 Mar 30;404(6777):510-4
23727112 - Cell. 2013 Jun 6;153(6):1266-80
25643323 - Nat Struct Mol Biol. 2015 Mar;22(3):230-7
18208529 - Mol Microbiol. 2008 Mar;67(5):1156-68
25770156 - Cancer Discov. 2015 May;5(5):488-505
25642963 - Nature. 2015 Feb 12;518(7538):258-62
18923075 - Genes Dev. 2008 Oct 15;22(20):2767-72
25775267 - Nat Struct Mol Biol. 2015 Apr;22(4):304-11
16896009 - J Clin Oncol. 2006 Aug 10;24(23):3799-808
23273981 - Mol Cell. 2013 Feb 21;49(4):657-67
25799990 - Nature. 2015 May 28;521(7553):537-40
17515904 - Nat Struct Mol Biol. 2007 Jun;14(6):468-74
21131978 - Nat Struct Mol Biol. 2011 Jan;18(1):80-4
21670257 - Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10448-53
20122407 - Mol Cell. 2010 Jan 29;37(2):259-72
24705021 - Nat Commun. 2014;5:3561
24794430 - Cell Rep. 2014 May 22;7(4):1039-47
15122331 - Oncogene. 2004 Jun 10;23(27):4655-61
15899791 - Cancer Res. 2005 May 15;65(10):4020-30
25629353 - PLoS Genet. 2015 Jan;11(1):e1004943
24050180 - Annu Rev Genet. 2013;47:433-55
25341009 - Annu Rev Med. 2015;66:455-70
20493853 - FEBS Lett. 2010 Sep 10;584(17):3709-16
21841787 - Nat Struct Mol Biol. 2011 Sep;18(9):1015-9
17525332 - Science. 2007 May 25;316(5828):1160-6
21368826 - Nature. 2011 Mar 3;471(7336):74-9
23760025 - Nat Rev Cancer. 2013 Jul;13(7):443-54
24794434 - Cell Rep. 2014 May 22;7(4):1030-8
23610439 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7720-5
20208544 - Nat Struct Mol Biol. 2010 Apr;17(4):410-6
19995904 - Mol Cell Biol. 2010 Feb;30(4):1088-96
17088286 - Nucleic Acids Res. 2006;34(21):6170-82
15542845 - Mol Cell Biol. 2004 Dec;24(23):10381-9
24095737 - Cell Rep. 2013 Oct 17;5(1):21-8
18584027 - PLoS Genet. 2008 Jun;4(6):e1000110
22285753 - Mol Cell. 2012 Feb 10;45(3):422-32
24746645 - DNA Repair (Amst). 2014 Jul;19:169-75
25567988 - Nucleic Acids Res. 2015 Jan;43(2):987-99
10910365 - Nature. 2000 Jul 13;406(6792):210-5
19540122 - Curr Biol. 2009 Jul 14;19(13):1075-85
18471978 - Mol Cell. 2008 May 9;30(3):325-35
18809224 - Trends Genet. 2008 Nov;24(11):529-38
22153967 - Mol Cell. 2012 Jan 13;45(1):75-86
22608083 - Cell. 2012 May 25;149(5):994-1007
17898768 - Nature. 2007 Sep 27;449(7161):483-6
23637284 - Cold Spring Harb Perspect Biol. 2013 May;5(5):a012757
21910633 - Annu Rev Genet. 2011;45:247-71
23333305 - Mol Cell. 2013 Mar 7;49(5):858-71
25799992 - Nature. 2015 May 28;521(7553):541-4
20967781 - Bioessays. 2010 Dec;32(12):1058-66
25642960 - Nature. 2015 Feb 12;518(7538):254-7
References_xml – volume: 14
  start-page: 468
  year: 2007
  end-page: 474
  ident: bib0745
  article-title: Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2
  publication-title: Nat. Struct. Mol. Biol.
– volume: 44
  start-page: 113
  year: 2010
  end-page: 139
  ident: bib0550
  article-title: Regulation of homologous recombination in eukaryotes
  publication-title: Annu. Rev. Genet.
– volume: 284
  start-page: 7505
  year: 2009
  end-page: 7517
  ident: bib0815
  article-title: FANCJ uses its motor ATPase to destabilize protein–DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange
  publication-title: J. Biol. Chem.
– volume: 404
  start-page: 510
  year: 2000
  end-page: 514
  ident: bib0545
  article-title: DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation
  publication-title: Nature
– volume: 34
  start-page: 6170
  year: 2006
  end-page: 6182
  ident: bib0575
  article-title: PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways
  publication-title: Nucleic Acids Res.
– volume: 471
  start-page: 74
  year: 2011
  end-page: 79
  ident: bib0630
  article-title: HDACs link the DNA damage response, processing of double-strand breaks and autophagy
  publication-title: Nature
– volume: 584
  start-page: 3709
  year: 2010
  end-page: 3716
  ident: bib0860
  article-title: Metabolism of postsynaptic recombination intermediates
  publication-title: FEBS Lett.
– volume: 67
  start-page: 1156
  year: 2008
  end-page: 1168
  ident: bib0975
  article-title: Compensatory role for Rad52 during recombinational repair in
  publication-title: Mol. Microbiol.
– volume: 4
  start-page: e1000110
  year: 2008
  ident: bib0610
  article-title: Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair
  publication-title: PLoS Genet.
– volume: 37
  start-page: 259
  year: 2010
  end-page: 272
  ident: bib0875
  article-title: Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair
  publication-title: Mol. Cell
– volume: 28
  start-page: 2693
  year: 2014
  end-page: 2698
  ident: bib0680
  article-title: PTIP associates with Artemis to dictate DNA repair pathway choice
  publication-title: Genes Dev.
– volume: 43
  start-page: 987
  year: 2015
  end-page: 999
  ident: bib0645
  article-title: Neddylation inhibits CtIP-mediated resection and regulates DNA double strand break repair pathway choice
  publication-title: Nucleic Acids Res.
– volume: 141
  start-page: 243
  year: 2010
  end-page: 254
  ident: bib0660
  article-title: 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks
  publication-title: Cell
– volume: 521
  start-page: 541
  year: 2015
  end-page: 544
  ident: bib0695
  article-title: REV7 counteracts DNA double-strand break resection and affects PARP inhibition
  publication-title: Nature
– volume: 500
  start-page: 415
  year: 2013
  end-page: 421
  ident: bib1015
  article-title: Signatures of mutational processes in human cancer
  publication-title: Nature
– volume: 153
  start-page: 1266
  year: 2013
  end-page: 1280
  ident: bib0675
  article-title: 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions
  publication-title: Cell
– volume: 49
  start-page: 858
  year: 2013
  end-page: 871
  ident: bib0670
  article-title: RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection
  publication-title: Mol. Cell
– volume: 284
  start-page: 9558
  year: 2009
  end-page: 9565
  ident: bib0595
  article-title: Human CtIP mediates cell cycle control of DNA end resection and double strand break repair
  publication-title: J. Biol. Chem.
– volume: 434
  start-page: 917
  year: 2005
  end-page: 921
  ident: bib0915
  article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy
  publication-title: Nature
– volume: 459
  start-page: 460
  year: 2009
  end-page: 463
  ident: bib0615
  article-title: CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle
  publication-title: Nature
– volume: 7
  start-page: 1030
  year: 2014
  end-page: 1038
  ident: bib0960
  article-title: FANCD2 and CtIP cooperate to repair DNA interstrand crosslinks
  publication-title: Cell Rep.
– volume: 518
  start-page: 254
  year: 2015
  end-page: 257
  ident: bib0890
  article-title: Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination
  publication-title: Nature
– volume: 9
  start-page: 415
  year: 2009
  end-page: 428
  ident: bib1040
  article-title: The biology of ovarian cancer: new opportunities for translation
  publication-title: Nat. Rev. Cancer
– volume: 38
  start-page: 5706
  year: 2010
  end-page: 5717
  ident: bib0785
  article-title: Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions
  publication-title: Nucleic Acids Res.
– volume: 5
  start-page: 3561
  year: 2014
  ident: bib0625
  article-title: Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice
  publication-title: Nat. Commun.
– volume: 34
  start-page: 828
  year: 2015
  ident: bib0650
  article-title: BRCA1 and CtIP promote alternative non-homologous end-joining at uncapped telomeres
  publication-title: EMBO J.
– volume: 24
  start-page: 10381
  year: 2004
  end-page: 10389
  ident: bib1000
  article-title: The mouse genomic instability mutation chaos1 is an allele of Polq that exhibits genetic interaction with Atm
  publication-title: Mol. Cell. Biol.
– volume: 19
  start-page: 169
  year: 2014
  end-page: 175
  ident: bib0530
  article-title: DNA double-strand break repair pathway choice and cancer
  publication-title: DNA Repair
– volume: 65
  start-page: 4020
  year: 2005
  end-page: 4030
  ident: bib0580
  article-title: DNA ligase III as a candidate component of backup pathways of nonhomologous end joining
  publication-title: Cancer Res.
– volume: 5
  start-page: 488
  year: 2015
  end-page: 505
  ident: bib1020
  article-title: Genomic complexity profiling reveals that HORMAD1 overexpression contributes to homologous recombination deficiency in triple-negative breast cancers
  publication-title: Cancer Discov.
– volume: 5
  start-page: 21
  year: 2013
  end-page: 28
  ident: bib0825
  article-title: A role for BLM in double-strand break repair pathway choice: prevention of CtIP/Mre11-mediated alternative nonhomologous end-joining
  publication-title: Cell Rep.
– volume: 142
  start-page: 693
  year: 1996
  end-page: 704
  ident: bib0980
  article-title: Genetic requirements for the single-strand annealing pathway of double-strand break repair in
  publication-title: Genetics
– volume: 72
  start-page: 5454
  year: 2012
  end-page: 5462
  ident: bib1005
  article-title: Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation
  publication-title: Cancer Res.
– volume: 19
  start-page: 1075
  year: 2009
  end-page: 1085
  ident: bib0750
  article-title: The carboxyl terminus of Brca2 links the disassembly of Rad51 complexes to mitotic entry
  publication-title: Curr. Biol.
– volume: 287
  start-page: 23808
  year: 2012
  end-page: 23818
  ident: bib0800
  article-title: A variant of the breast cancer type 2 susceptibility protein (BRC) repeat is essential for the RECQL5 helicase to interact with RAD51 recombinase for genome stabilization
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 2767
  year: 2008
  end-page: 2772
  ident: bib0820
  article-title: DNA helicases Sgs1 and BLM promote DNA double-strand break resection
  publication-title: Genes Dev.
– volume: 406
  start-page: 210
  year: 2000
  end-page: 215
  ident: bib0710
  article-title: Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response
  publication-title: Nature
– volume: 272
  start-page: 28194
  year: 1997
  end-page: 28197
  ident: bib0965
  article-title: Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase
  publication-title: J. Biol. Chem.
– volume: 30
  start-page: 325
  year: 2008
  end-page: 335
  ident: bib0780
  article-title: Microarray-based genetic screen defines SAW1, a gene required for Rad1/Rad10-dependent processing of recombination intermediates
  publication-title: Mol. Cell
– volume: 423
  start-page: 309
  year: 2003
  end-page: 312
  ident: bib0910
  article-title: The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments
  publication-title: Nature
– volume: 32
  start-page: 3552
  year: 2013
  end-page: 3558
  ident: bib0990
  article-title: RAD52 inactivation is synthetically lethal with deficiencies in BRCA1 and PALB2 in addition to BRCA2 through RAD51-mediated homologous recombination
  publication-title: Oncogene
– volume: 47
  start-page: 433
  year: 2013
  end-page: 455
  ident: bib0555
  article-title: Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage
  publication-title: Annu. Rev. Genet.
– volume: 176
  start-page: 2003
  year: 2007
  end-page: 2014
  ident: bib0775
  article-title: Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining
  publication-title: Genetics
– volume: 45
  start-page: 75
  year: 2012
  end-page: 86
  ident: bib0765
  article-title: Inhibition of homologous recombination by the PCNA-interacting protein PARI
  publication-title: Mol. Cell
– volume: 283
  start-page: 14883
  year: 2008
  end-page: 14892
  ident: bib0985
  article-title: Rad51 protein controls Rad52-mediated DNA annealing
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 2255
  year: 2003
  end-page: 2263
  ident: bib0930
  article-title: Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse
  publication-title: EMBO J.
– volume: 149
  start-page: 994
  year: 2012
  end-page: 1007
  ident: bib1010
  article-title: The life history of 21 breast cancers
  publication-title: Cell
– volume: 66
  start-page: 455
  year: 2015
  end-page: 470
  ident: bib1045
  article-title: Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors
  publication-title: Annu. Rev. Med.
– volume: 24
  start-page: 529
  year: 2008
  end-page: 538
  ident: bib0905
  article-title: MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings
  publication-title: Trends Genet.
– volume: 6
  start-page: e1001005
  year: 2010
  ident: bib0900
  article-title: Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in
  publication-title: PLoS Genet.
– volume: 45
  start-page: 422
  year: 2012
  end-page: 432
  ident: bib0635
  article-title: Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint
  publication-title: Mol. Cell
– volume: 7
  start-page: 686
  year: 2008
  end-page: 693
  ident: bib0935
  article-title: The consequences of Rad51 overexpression for normal and tumor cells
  publication-title: DNA Repair
– volume: 423
  start-page: 305
  year: 2003
  end-page: 309
  ident: bib0755
  article-title: DNA helicase Srs2 disrupts the Rad51 presynaptic filament
  publication-title: Nature
– volume: 11
  start-page: e1004899
  year: 2015
  ident: bib0640
  article-title: Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein
  publication-title: PLoS Genet.
– volume: 211
  start-page: 1027
  year: 2014
  end-page: 1036
  ident: bib0620
  article-title: CtIP-mediated resection is essential for viability and can operate independently of BRCA1
  publication-title: J. Exp. Med.
– volume: 7
  start-page: 1039
  year: 2014
  end-page: 1047
  ident: bib0955
  article-title: FANCD2 binds CtIP and regulates DNA-end resection during DNA interstrand crosslink repair
  publication-title: Cell Rep.
– volume: 110
  start-page: 7720
  year: 2013
  end-page: 7725
  ident: bib0590
  article-title: Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 23
  start-page: 4655
  year: 2004
  end-page: 4661
  ident: bib0995
  article-title: Loss of Rad52 partially rescues tumorigenesis and T-cell maturation in Atm-deficient mice
  publication-title: Oncogene
– volume: 50
  start-page: 589
  year: 2013
  end-page: 600
  ident: bib0730
  article-title: RPA coordinates DNA end resection and prevents formation of DNA hairpins
  publication-title: Mol. Cell
– volume: 27
  start-page: 2812
  year: 2007
  end-page: 2820
  ident: bib0835
  article-title: Cooperative roles of vertebrate Fbh1 and Blm DNA helicases in avoidance of crossovers during recombination initiated by replication fork collapse
  publication-title: Mol. Cell. Biol.
– volume: 43
  start-page: 3154
  year: 2015
  end-page: 3166
  ident: bib0865
  article-title: Involvement of ATM in homologous recombination after end resection and RAD51 nucleofilament formation
  publication-title: Nucleic Acids Res.
– volume: 22
  start-page: 304
  year: 2015
  end-page: 311
  ident: bib0945
  article-title: Human DNA polymerase theta grasps the primer terminus to mediate DNA repair
  publication-title: Nat. Struct. Mol. Biol.
– volume: 288
  start-page: 34168
  year: 2013
  end-page: 34180
  ident: bib0830
  article-title: FBH1 helicase disrupts RAD51 filaments in vitro and modulates homologous recombination in mammalian cells
  publication-title: J. Biol. Chem.
– volume: 316
  start-page: 1160
  year: 2007
  end-page: 1166
  ident: bib0705
  article-title: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage
  publication-title: Science
– volume: 18
  start-page: 80
  year: 2011
  end-page: 84
  ident: bib0565
  article-title: An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway
  publication-title: Nat. Struct. Mol. Biol.
– volume: 21
  start-page: 405
  year: 2014
  end-page: 412
  ident: bib0735
  article-title: RPA antagonizes microhomology-mediated repair of DNA double-strand breaks
  publication-title: Nat. Struct. Mol. Biol.
– volume: 9
  start-page: e1003277
  year: 2013
  ident: bib0715
  article-title: The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair
  publication-title: PLoS Genet.
– volume: 108
  start-page: 10448
  year: 2011
  end-page: 10453
  ident: bib0740
  article-title: Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 135
  start-page: 261
  year: 2008
  end-page: 271
  ident: bib0845
  article-title: RTEL1 maintains genomic stability by suppressing homologous recombination
  publication-title: Cell
– volume: 4
  start-page: 1430
  year: 2014
  end-page: 1447
  ident: bib0655
  article-title: PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination mediated DNA repair
  publication-title: Cancer Discov.
– volume: 15
  start-page: 585
  year: 2014
  end-page: 598
  ident: bib1025
  article-title: Mechanisms underlying mutational signatures in human cancers
  publication-title: Nat. Rev. Genet.
– volume: 43
  start-page: 893
  year: 2015
  end-page: 903
  ident: bib0810
  article-title: RECQL5 and BLM exhibit divergent functions in cells defective for the Fanconi anemia pathway
  publication-title: Nucleic Acids Res.
– volume: 12
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib1030
  article-title: DNA polymerase POLQ and cellular defense against DNA damage
  publication-title: DNA Repair
– volume: 42
  start-page: 5616
  year: 2014
  end-page: 5632
  ident: bib0925
  article-title: PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways
  publication-title: Nucleic Acids Res.
– volume: 42
  start-page: 319
  year: 2011
  end-page: 329
  ident: bib0690
  article-title: Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1
  publication-title: Mol. Cell
– volume: 22
  start-page: 230
  year: 2015
  end-page: 237
  ident: bib0940
  article-title: Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase theta
  publication-title: Nat. Struct. Mol. Biol.
– volume: 73
  start-page: 2529
  year: 2013
  end-page: 2539
  ident: bib0790
  article-title: PARI overexpression promotes genomic instability and pancreatic tumorigenesis
  publication-title: Cancer Res.
– volume: 29
  start-page: 141
  year: 2008
  end-page: 148
  ident: bib0850
  article-title: The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks
  publication-title: Mol. Cell
– volume: 13
  start-page: 443
  year: 2013
  end-page: 454
  ident: bib0885
  article-title: End-joining, translocations and cancer
  publication-title: Nat. Rev. Cancer
– volume: 17
  start-page: 410
  year: 2010
  end-page: 416
  ident: bib0560
  article-title: Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation
  publication-title: Nat. Struct. Mol. Biol.
– volume: 285
  start-page: 15739
  year: 2010
  end-page: 15745
  ident: bib0795
  article-title: Physical interaction of RECQ5 helicase with RAD51 facilitates its anti-recombinase activity
  publication-title: J. Biol. Chem.
– volume: 449
  start-page: 483
  year: 2007
  end-page: 486
  ident: bib0570
  article-title: Rag mutations reveal robust alternative end joining
  publication-title: Nature
– volume: 2
  start-page: E21
  year: 2004
  ident: bib0725
  article-title: Role of
  publication-title: PLoS Biol.
– volume: 369
  start-page: 982
  year: 2008
  end-page: 988
  ident: bib0895
  article-title: Effect of double-strand break DNA sequence on the PARP-1 NHEJ pathway
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 45
  start-page: 247
  year: 2011
  end-page: 271
  ident: bib0585
  article-title: Double-strand break end resection and repair pathway choice
  publication-title: Annu. Rev. Genet.
– volume: 49
  start-page: 872
  year: 2013
  end-page: 883
  ident: bib0665
  article-title: A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice
  publication-title: Mol. Cell
– volume: 42
  start-page: 2380
  year: 2014
  end-page: 2390
  ident: bib0805
  article-title: Human RECQ5 helicase promotes repair of DNA double-strand breaks by synthesis-dependent strand annealing
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: e1004943
  year: 2015
  ident: bib0950
  article-title: DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining
  publication-title: PLoS Genet.
– volume: 18
  start-page: 1015
  year: 2011
  end-page: 1019
  ident: bib0605
  article-title: Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation
  publication-title: Nat. Struct. Mol. Biol.
– volume: 30
  start-page: 1088
  year: 2010
  end-page: 1096
  ident: bib0870
  article-title: DNA polymerase POLN participates in cross-link repair and homologous recombination
  publication-title: Mol. Cell. Biol.
– volume: 5
  start-page: a012757
  year: 2013
  ident: bib0535
  article-title: Repair of double-strand breaks by end joining
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 196
  start-page: 1017
  year: 2014
  end-page: 1028
  ident: bib0855
  article-title: Template switching during break-induced replication is promoted by the Mph1 helicase in
  publication-title: Genetics
– volume: 206
  start-page: 877
  year: 2014
  end-page: 894
  ident: bib1050
  article-title: Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1
  publication-title: J. Cell Biol.
– volume: 521
  start-page: 537
  year: 2015
  end-page: 540
  ident: bib0700
  article-title: MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection
  publication-title: Nature
– volume: 32
  start-page: 5249
  year: 2004
  end-page: 5259
  ident: bib0880
  article-title: DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining
  publication-title: Nucleic Acids Res.
– volume: 32
  start-page: 1058
  year: 2010
  end-page: 1066
  ident: bib0840
  article-title: Meiotic versus mitotic recombination: two different routes for double-strand break repair: the different functions of meiotic versus mitotic DSB repair are reflected in different pathway usage and different outcomes
  publication-title: BioEssays
– volume: 25
  start-page: 5738
  year: 2005
  end-page: 5751
  ident: bib0760
  article-title: Srs2 and Sgs1 DNA helicases associate with Mre11 in different subcomplexes following checkpoint activation and CDK1-mediated Srs2 phosphorylation
  publication-title: Mol. Cell. Biol.
– volume: 24
  start-page: 3799
  year: 2006
  end-page: 3808
  ident: bib1035
  article-title: DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes
  publication-title: J. Clin. Oncol.
– volume: 289
  start-page: 27314
  year: 2014
  end-page: 27326
  ident: bib0600
  article-title: DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells
  publication-title: J. Biol. Chem.
– volume: 49
  start-page: 657
  year: 2013
  end-page: 667
  ident: bib0720
  article-title: Activation of DSB processing requires phosphorylation of CtIP by ATR
  publication-title: Mol. Cell
– volume: 47
  start-page: 320
  year: 2012
  end-page: 329
  ident: bib0540
  article-title: Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase
  publication-title: Mol. Cell
– volume: 434
  start-page: 913
  year: 2005
  end-page: 917
  ident: bib0920
  article-title: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase
  publication-title: Nature
– volume: 43
  start-page: 4950
  year: 2015
  end-page: 4961
  ident: bib0685
  article-title: Ectopic expression of RNF168 and 53BP1 increases mutagenic but not physiological non-homologous end joining
  publication-title: Nucleic Acids Res.
– volume: 518
  start-page: 258
  year: 2015
  end-page: 262
  ident: bib0770
  article-title: Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair
  publication-title: Nature
– volume: 10
  start-page: 1947
  year: 2015
  end-page: 1956
  ident: bib0970
  article-title: UHRF1 is a sensor for DNA interstrand crosslinks and recruits FANCD2 to initiate the Fanconi anemia pathway
  publication-title: Cell Rep.
– volume: 44
  start-page: 113
  year: 2010
  ident: 10.1016/j.tcb.2015.07.009_bib0550
  article-title: Regulation of homologous recombination in eukaryotes
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-051710-150955
– volume: 211
  start-page: 1027
  year: 2014
  ident: 10.1016/j.tcb.2015.07.009_bib0620
  article-title: CtIP-mediated resection is essential for viability and can operate independently of BRCA1
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20131939
– volume: 434
  start-page: 913
  year: 2005
  ident: 10.1016/j.tcb.2015.07.009_bib0920
  article-title: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase
  publication-title: Nature
  doi: 10.1038/nature03443
– volume: 287
  start-page: 23808
  year: 2012
  ident: 10.1016/j.tcb.2015.07.009_bib0800
  article-title: A variant of the breast cancer type 2 susceptibility protein (BRC) repeat is essential for the RECQL5 helicase to interact with RAD51 recombinase for genome stabilization
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.375014
– volume: 142
  start-page: 693
  year: 1996
  ident: 10.1016/j.tcb.2015.07.009_bib0980
  article-title: Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/142.3.693
– volume: 153
  start-page: 1266
  year: 2013
  ident: 10.1016/j.tcb.2015.07.009_bib0675
  article-title: 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.023
– volume: 65
  start-page: 4020
  year: 2005
  ident: 10.1016/j.tcb.2015.07.009_bib0580
  article-title: DNA ligase III as a candidate component of backup pathways of nonhomologous end joining
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-3055
– volume: 7
  start-page: 1039
  year: 2014
  ident: 10.1016/j.tcb.2015.07.009_bib0955
  article-title: FANCD2 binds CtIP and regulates DNA-end resection during DNA interstrand crosslink repair
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.04.005
– volume: 43
  start-page: 4950
  year: 2015
  ident: 10.1016/j.tcb.2015.07.009_bib0685
  article-title: Ectopic expression of RNF168 and 53BP1 increases mutagenic but not physiological non-homologous end joining
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv336
– volume: 316
  start-page: 1160
  year: 2007
  ident: 10.1016/j.tcb.2015.07.009_bib0705
  article-title: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage
  publication-title: Science
  doi: 10.1126/science.1140321
– volume: 584
  start-page: 3709
  year: 2010
  ident: 10.1016/j.tcb.2015.07.009_bib0860
  article-title: Metabolism of postsynaptic recombination intermediates
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.05.023
– volume: 6
  start-page: e1001005
  year: 2010
  ident: 10.1016/j.tcb.2015.07.009_bib0900
  article-title: Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001005
– volume: 9
  start-page: 415
  year: 2009
  ident: 10.1016/j.tcb.2015.07.009_bib1040
  article-title: The biology of ovarian cancer: new opportunities for translation
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2644
– volume: 25
  start-page: 5738
  year: 2005
  ident: 10.1016/j.tcb.2015.07.009_bib0760
  article-title: Srs2 and Sgs1 DNA helicases associate with Mre11 in different subcomplexes following checkpoint activation and CDK1-mediated Srs2 phosphorylation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.13.5738-5751.2005
– volume: 23
  start-page: 4655
  year: 2004
  ident: 10.1016/j.tcb.2015.07.009_bib0995
  article-title: Loss of Rad52 partially rescues tumorigenesis and T-cell maturation in Atm-deficient mice
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207604
– volume: 196
  start-page: 1017
  year: 2014
  ident: 10.1016/j.tcb.2015.07.009_bib0855
  article-title: Template switching during break-induced replication is promoted by the Mph1 helicase in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1534/genetics.114.162297
– volume: 521
  start-page: 537
  year: 2015
  ident: 10.1016/j.tcb.2015.07.009_bib0700
  article-title: MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection
  publication-title: Nature
  doi: 10.1038/nature14216
– volume: 206
  start-page: 877
  year: 2014
  ident: 10.1016/j.tcb.2015.07.009_bib1050
  article-title: Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201401146
– volume: 521
  start-page: 541
  year: 2015
  ident: 10.1016/j.tcb.2015.07.009_bib0695
  article-title: REV7 counteracts DNA double-strand break resection and affects PARP inhibition
  publication-title: Nature
  doi: 10.1038/nature14328
– volume: 32
  start-page: 5249
  year: 2004
  ident: 10.1016/j.tcb.2015.07.009_bib0880
  article-title: DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh842
– volume: 22
  start-page: 2255
  year: 2003
  ident: 10.1016/j.tcb.2015.07.009_bib0930
  article-title: Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg206
– volume: 42
  start-page: 5616
  year: 2014
  ident: 10.1016/j.tcb.2015.07.009_bib0925
  article-title: PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku174
– volume: 17
  start-page: 410
  year: 2010
  ident: 10.1016/j.tcb.2015.07.009_bib0560
  article-title: Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1773
– volume: 22
  start-page: 230
  year: 2015
  ident: 10.1016/j.tcb.2015.07.009_bib0940
  article-title: Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase theta
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2961
– volume: 47
  start-page: 433
  year: 2013
  ident: 10.1016/j.tcb.2015.07.009_bib0555
  article-title: Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-110711-155540
– volume: 284
  start-page: 7505
  year: 2009
  ident: 10.1016/j.tcb.2015.07.009_bib0815
  article-title: FANCJ uses its motor ATPase to destabilize protein–DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M809019200
– volume: 21
  start-page: 405
  year: 2014
  ident: 10.1016/j.tcb.2015.07.009_bib0735
  article-title: RPA antagonizes microhomology-mediated repair of DNA double-strand breaks
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2786
– volume: 141
  start-page: 243
  year: 2010
  ident: 10.1016/j.tcb.2015.07.009_bib0660
  article-title: 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.012
– volume: 73
  start-page: 2529
  year: 2013
  ident: 10.1016/j.tcb.2015.07.009_bib0790
  article-title: PARI overexpression promotes genomic instability and pancreatic tumorigenesis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3313
– volume: 47
  start-page: 320
  year: 2012
  ident: 10.1016/j.tcb.2015.07.009_bib0540
  article-title: Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.05.052
– volume: 369
  start-page: 982
  year: 2008
  ident: 10.1016/j.tcb.2015.07.009_bib0895
  article-title: Effect of double-strand break DNA sequence on the PARP-1 NHEJ pathway
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.11.132
– volume: 49
  start-page: 872
  year: 2013
  ident: 10.1016/j.tcb.2015.07.009_bib0665
  article-title: A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.01.001
– volume: 18
  start-page: 1015
  year: 2011
  ident: 10.1016/j.tcb.2015.07.009_bib0605
  article-title: Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2105
– volume: 27
  start-page: 2812
  year: 2007
  ident: 10.1016/j.tcb.2015.07.009_bib0835
  article-title: Cooperative roles of vertebrate Fbh1 and Blm DNA helicases in avoidance of crossovers during recombination initiated by replication fork collapse
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.02043-06
– volume: 135
  start-page: 261
  year: 2008
  ident: 10.1016/j.tcb.2015.07.009_bib0845
  article-title: RTEL1 maintains genomic stability by suppressing homologous recombination
  publication-title: Cell
  doi: 10.1016/j.cell.2008.08.016
– volume: 29
  start-page: 141
  year: 2008
  ident: 10.1016/j.tcb.2015.07.009_bib0850
  article-title: The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.11.032
– volume: 5
  start-page: a012757
  year: 2013
  ident: 10.1016/j.tcb.2015.07.009_bib0535
  article-title: Repair of double-strand breaks by end joining
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a012757
– volume: 34
  start-page: 828
  year: 2015
  ident: 10.1016/j.tcb.2015.07.009_bib0650
  article-title: BRCA1 and CtIP promote alternative non-homologous end-joining at uncapped telomeres
  publication-title: EMBO J.
  doi: 10.15252/embj.201570610
– volume: 283
  start-page: 14883
  year: 2008
  ident: 10.1016/j.tcb.2015.07.009_bib0985
  article-title: Rad51 protein controls Rad52-mediated DNA annealing
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M801097200
– volume: 285
  start-page: 15739
  year: 2010
  ident: 10.1016/j.tcb.2015.07.009_bib0795
  article-title: Physical interaction of RECQ5 helicase with RAD51 facilitates its anti-recombinase activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.110478
– volume: 110
  start-page: 7720
  year: 2013
  ident: 10.1016/j.tcb.2015.07.009_bib0590
  article-title: Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1213431110
– volume: 14
  start-page: 468
  year: 2007
  ident: 10.1016/j.tcb.2015.07.009_bib0745
  article-title: Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1245
– volume: 66
  start-page: 455
  year: 2015
  ident: 10.1016/j.tcb.2015.07.009_bib1045
  article-title: Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors
  publication-title: Annu. Rev. Med.
  doi: 10.1146/annurev-med-050913-022545
– volume: 50
  start-page: 589
  year: 2013
  ident: 10.1016/j.tcb.2015.07.009_bib0730
  article-title: RPA coordinates DNA end resection and prevents formation of DNA hairpins
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.04.032
– volume: 22
  start-page: 304
  year: 2015
  ident: 10.1016/j.tcb.2015.07.009_bib0945
  article-title: Human DNA polymerase theta grasps the primer terminus to mediate DNA repair
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2993
– volume: 38
  start-page: 5706
  year: 2010
  ident: 10.1016/j.tcb.2015.07.009_bib0785
  article-title: Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq379
– volume: 12
  start-page: 1
  year: 2013
  ident: 10.1016/j.tcb.2015.07.009_bib1030
  article-title: DNA polymerase POLQ and cellular defense against DNA damage
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2012.10.004
– volume: 7
  start-page: 1030
  year: 2014
  ident: 10.1016/j.tcb.2015.07.009_bib0960
  article-title: FANCD2 and CtIP cooperate to repair DNA interstrand crosslinks
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.03.069
– volume: 45
  start-page: 422
  year: 2012
  ident: 10.1016/j.tcb.2015.07.009_bib0635
  article-title: Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.11.028
– volume: 5
  start-page: 488
  year: 2015
  ident: 10.1016/j.tcb.2015.07.009_bib1020
  article-title: Genomic complexity profiling reveals that HORMAD1 overexpression contributes to homologous recombination deficiency in triple-negative breast cancers
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-14-1092
– volume: 22
  start-page: 2767
  year: 2008
  ident: 10.1016/j.tcb.2015.07.009_bib0820
  article-title: DNA helicases Sgs1 and BLM promote DNA double-strand break resection
  publication-title: Genes Dev.
  doi: 10.1101/gad.503108
– volume: 67
  start-page: 1156
  year: 2008
  ident: 10.1016/j.tcb.2015.07.009_bib0975
  article-title: Compensatory role for Rad52 during recombinational repair in Ustilago maydis
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2008.06116.x
– volume: 72
  start-page: 5454
  year: 2012
  ident: 10.1016/j.tcb.2015.07.009_bib1005
  article-title: Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-1470
– volume: 5
  start-page: 3561
  year: 2014
  ident: 10.1016/j.tcb.2015.07.009_bib0625
  article-title: Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4561
– volume: 34
  start-page: 6170
  year: 2006
  ident: 10.1016/j.tcb.2015.07.009_bib0575
  article-title: PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl840
– volume: 423
  start-page: 305
  year: 2003
  ident: 10.1016/j.tcb.2015.07.009_bib0755
  article-title: DNA helicase Srs2 disrupts the Rad51 presynaptic filament
  publication-title: Nature
  doi: 10.1038/nature01577
– volume: 284
  start-page: 9558
  year: 2009
  ident: 10.1016/j.tcb.2015.07.009_bib0595
  article-title: Human CtIP mediates cell cycle control of DNA end resection and double strand break repair
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M808906200
– volume: 518
  start-page: 258
  year: 2015
  ident: 10.1016/j.tcb.2015.07.009_bib0770
  article-title: Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair
  publication-title: Nature
  doi: 10.1038/nature14184
– volume: 15
  start-page: 585
  year: 2014
  ident: 10.1016/j.tcb.2015.07.009_bib1025
  article-title: Mechanisms underlying mutational signatures in human cancers
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3729
– volume: 4
  start-page: 1430
  year: 2014
  ident: 10.1016/j.tcb.2015.07.009_bib0655
  article-title: PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination mediated DNA repair
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-13-0891
– volume: 43
  start-page: 3154
  year: 2015
  ident: 10.1016/j.tcb.2015.07.009_bib0865
  article-title: Involvement of ATM in homologous recombination after end resection and RAD51 nucleofilament formation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv160
– volume: 471
  start-page: 74
  year: 2011
  ident: 10.1016/j.tcb.2015.07.009_bib0630
  article-title: HDACs link the DNA damage response, processing of double-strand breaks and autophagy
  publication-title: Nature
  doi: 10.1038/nature09803
– volume: 4
  start-page: e1000110
  year: 2008
  ident: 10.1016/j.tcb.2015.07.009_bib0610
  article-title: Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000110
– volume: 28
  start-page: 2693
  year: 2014
  ident: 10.1016/j.tcb.2015.07.009_bib0680
  article-title: PTIP associates with Artemis to dictate DNA repair pathway choice
  publication-title: Genes Dev.
  doi: 10.1101/gad.252478.114
– volume: 406
  start-page: 210
  year: 2000
  ident: 10.1016/j.tcb.2015.07.009_bib0710
  article-title: Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response
  publication-title: Nature
  doi: 10.1038/35018134
– volume: 32
  start-page: 3552
  year: 2013
  ident: 10.1016/j.tcb.2015.07.009_bib0990
  article-title: RAD52 inactivation is synthetically lethal with deficiencies in BRCA1 and PALB2 in addition to BRCA2 through RAD51-mediated homologous recombination
  publication-title: Oncogene
  doi: 10.1038/onc.2012.391
– volume: 24
  start-page: 10381
  year: 2004
  ident: 10.1016/j.tcb.2015.07.009_bib1000
  article-title: The mouse genomic instability mutation chaos1 is an allele of Polq that exhibits genetic interaction with Atm
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.23.10381-10389.2004
– volume: 500
  start-page: 415
  year: 2013
  ident: 10.1016/j.tcb.2015.07.009_bib1015
  article-title: Signatures of mutational processes in human cancer
  publication-title: Nature
  doi: 10.1038/nature12477
– volume: 518
  start-page: 254
  year: 2015
  ident: 10.1016/j.tcb.2015.07.009_bib0890
  article-title: Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination
  publication-title: Nature
  doi: 10.1038/nature14157
– volume: 24
  start-page: 529
  year: 2008
  ident: 10.1016/j.tcb.2015.07.009_bib0905
  article-title: MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2008.08.007
– volume: 45
  start-page: 247
  year: 2011
  ident: 10.1016/j.tcb.2015.07.009_bib0585
  article-title: Double-strand break end resection and repair pathway choice
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-110410-132435
– volume: 32
  start-page: 1058
  year: 2010
  ident: 10.1016/j.tcb.2015.07.009_bib0840
  article-title: Meiotic versus mitotic recombination: two different routes for double-strand break repair: the different functions of meiotic versus mitotic DSB repair are reflected in different pathway usage and different outcomes
  publication-title: BioEssays
  doi: 10.1002/bies.201000087
– volume: 49
  start-page: 858
  year: 2013
  ident: 10.1016/j.tcb.2015.07.009_bib0670
  article-title: RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.01.002
– volume: 43
  start-page: 893
  year: 2015
  ident: 10.1016/j.tcb.2015.07.009_bib0810
  article-title: RECQL5 and BLM exhibit divergent functions in cells defective for the Fanconi anemia pathway
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1334
– volume: 149
  start-page: 994
  year: 2012
  ident: 10.1016/j.tcb.2015.07.009_bib1010
  article-title: The life history of 21 breast cancers
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.023
– volume: 24
  start-page: 3799
  year: 2006
  ident: 10.1016/j.tcb.2015.07.009_bib1035
  article-title: DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2005.05.4171
– volume: 43
  start-page: 987
  year: 2015
  ident: 10.1016/j.tcb.2015.07.009_bib0645
  article-title: Neddylation inhibits CtIP-mediated resection and regulates DNA double strand break repair pathway choice
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1384
– volume: 11
  start-page: e1004943
  year: 2015
  ident: 10.1016/j.tcb.2015.07.009_bib0950
  article-title: DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004943
– volume: 11
  start-page: e1004899
  year: 2015
  ident: 10.1016/j.tcb.2015.07.009_bib0640
  article-title: Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004899
– volume: 42
  start-page: 319
  year: 2011
  ident: 10.1016/j.tcb.2015.07.009_bib0690
  article-title: Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.03.019
– volume: 289
  start-page: 27314
  year: 2014
  ident: 10.1016/j.tcb.2015.07.009_bib0600
  article-title: DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.578823
– volume: 45
  start-page: 75
  year: 2012
  ident: 10.1016/j.tcb.2015.07.009_bib0765
  article-title: Inhibition of homologous recombination by the PCNA-interacting protein PARI
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.11.010
– volume: 13
  start-page: 443
  year: 2013
  ident: 10.1016/j.tcb.2015.07.009_bib0885
  article-title: End-joining, translocations and cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3537
– volume: 7
  start-page: 686
  year: 2008
  ident: 10.1016/j.tcb.2015.07.009_bib0935
  article-title: The consequences of Rad51 overexpression for normal and tumor cells
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2007.12.008
– volume: 37
  start-page: 259
  year: 2010
  ident: 10.1016/j.tcb.2015.07.009_bib0875
  article-title: Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.12.026
– volume: 5
  start-page: 21
  year: 2013
  ident: 10.1016/j.tcb.2015.07.009_bib0825
  article-title: A role for BLM in double-strand break repair pathway choice: prevention of CtIP/Mre11-mediated alternative nonhomologous end-joining
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.08.034
– volume: 9
  start-page: e1003277
  year: 2013
  ident: 10.1016/j.tcb.2015.07.009_bib0715
  article-title: The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003277
– volume: 288
  start-page: 34168
  year: 2013
  ident: 10.1016/j.tcb.2015.07.009_bib0830
  article-title: FBH1 helicase disrupts RAD51 filaments in vitro and modulates homologous recombination in mammalian cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.484493
– volume: 10
  start-page: 1947
  year: 2015
  ident: 10.1016/j.tcb.2015.07.009_bib0970
  article-title: UHRF1 is a sensor for DNA interstrand crosslinks and recruits FANCD2 to initiate the Fanconi anemia pathway
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.02.053
– volume: 2
  start-page: E21
  year: 2004
  ident: 10.1016/j.tcb.2015.07.009_bib0725
  article-title: Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0020021
– volume: 18
  start-page: 80
  year: 2011
  ident: 10.1016/j.tcb.2015.07.009_bib0565
  article-title: An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1940
– volume: 19
  start-page: 1075
  year: 2009
  ident: 10.1016/j.tcb.2015.07.009_bib0750
  article-title: The carboxyl terminus of Brca2 links the disassembly of Rad51 complexes to mitotic entry
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2009.05.057
– volume: 19
  start-page: 169
  year: 2014
  ident: 10.1016/j.tcb.2015.07.009_bib0530
  article-title: DNA double-strand break repair pathway choice and cancer
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2014.03.014
– volume: 42
  start-page: 2380
  year: 2014
  ident: 10.1016/j.tcb.2015.07.009_bib0805
  article-title: Human RECQ5 helicase promotes repair of DNA double-strand breaks by synthesis-dependent strand annealing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1263
– volume: 272
  start-page: 28194
  year: 1997
  ident: 10.1016/j.tcb.2015.07.009_bib0965
  article-title: Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.45.28194
– volume: 49
  start-page: 657
  year: 2013
  ident: 10.1016/j.tcb.2015.07.009_bib0720
  article-title: Activation of DSB processing requires phosphorylation of CtIP by ATR
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.11.020
– volume: 404
  start-page: 510
  year: 2000
  ident: 10.1016/j.tcb.2015.07.009_bib0545
  article-title: DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation
  publication-title: Nature
  doi: 10.1038/35006670
– volume: 423
  start-page: 309
  year: 2003
  ident: 10.1016/j.tcb.2015.07.009_bib0910
  article-title: The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments
  publication-title: Nature
  doi: 10.1038/nature01585
– volume: 30
  start-page: 325
  year: 2008
  ident: 10.1016/j.tcb.2015.07.009_bib0780
  article-title: Microarray-based genetic screen defines SAW1, a gene required for Rad1/Rad10-dependent processing of recombination intermediates
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.02.028
– volume: 176
  start-page: 2003
  year: 2007
  ident: 10.1016/j.tcb.2015.07.009_bib0775
  article-title: Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining
  publication-title: Genetics
  doi: 10.1534/genetics.107.076539
– volume: 30
  start-page: 1088
  year: 2010
  ident: 10.1016/j.tcb.2015.07.009_bib0870
  article-title: DNA polymerase POLN participates in cross-link repair and homologous recombination
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01124-09
– volume: 434
  start-page: 917
  year: 2005
  ident: 10.1016/j.tcb.2015.07.009_bib0915
  article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy
  publication-title: Nature
  doi: 10.1038/nature03445
– volume: 459
  start-page: 460
  year: 2009
  ident: 10.1016/j.tcb.2015.07.009_bib0615
  article-title: CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle
  publication-title: Nature
  doi: 10.1038/nature07955
– volume: 108
  start-page: 10448
  year: 2011
  ident: 10.1016/j.tcb.2015.07.009_bib0740
  article-title: Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1106971108
– volume: 449
  start-page: 483
  year: 2007
  ident: 10.1016/j.tcb.2015.07.009_bib0570
  article-title: Rag mutations reveal robust alternative end joining
  publication-title: Nature
  doi: 10.1038/nature06168
– reference: 23219161 - DNA Repair (Amst). 2013 Jan 1;12(1):1-9
– reference: 24598253 - Nucleic Acids Res. 2014 May;42(9):5616-32
– reference: 18957201 - Cell. 2008 Oct 17;135(2):261-71
– reference: 14737196 - PLoS Biol. 2004 Jan;2(1):E21
– reference: 23760025 - Nat Rev Cancer. 2013 Jul;13(7):443-54
– reference: 17565964 - Genetics. 2007 Aug;176(4):2003-14
– reference: 19357644 - Nature. 2009 May 21;459(7245):460-3
– reference: 25341009 - Annu Rev Med. 2015;66:455-70
– reference: 18471978 - Mol Cell. 2008 May 9;30(3):325-35
– reference: 8849880 - Genetics. 1996 Mar;142(3):693-704
– reference: 21549309 - Mol Cell. 2011 May 6;42(3):319-29
– reference: 23333305 - Mol Cell. 2013 Mar 7;49(5):858-71
– reference: 25520194 - Nucleic Acids Res. 2015 Jan;43(2):893-903
– reference: 20493853 - FEBS Lett. 2010 Sep 10;584(17):3709-16
– reference: 17088286 - Nucleic Acids Res. 2006;34(21):6170-82
– reference: 15899791 - Cancer Res. 2005 May 15;65(10):4020-30
– reference: 25799990 - Nature. 2015 May 28;521(7553):537-40
– reference: 10761921 - Nature. 2000 Mar 30;404(6777):510-4
– reference: 23945592 - Nature. 2013 Aug 22;500(7463):415-21
– reference: 24095737 - Cell Rep. 2013 Oct 17;5(1):21-8
– reference: 19540122 - Curr Biol. 2009 Jul 14;19(13):1075-85
– reference: 17898768 - Nature. 2007 Sep 27;449(7161):483-6
– reference: 25766694 - EMBO J. 2015 Mar 12;34(6):828
– reference: 15466592 - Nucleic Acids Res. 2004;32(17):5249-59
– reference: 25916843 - Nucleic Acids Res. 2015 May 26;43(10):4950-61
– reference: 23706822 - Mol Cell. 2013 May 23;50(4):589-600
– reference: 23637284 - Cold Spring Harb Perspect Biol. 2013 May;5(5):a012757
– reference: 25512557 - Genes Dev. 2014 Dec 15;28(24):2693-8
– reference: 12727891 - EMBO J. 2003 May 1;22(9):2255-63
– reference: 23273981 - Mol Cell. 2013 Feb 21;49(4):657-67
– reference: 24842372 - J Exp Med. 2014 Jun 2;211(6):1027-36
– reference: 23468639 - PLoS Genet. 2013;9(2):e1003277
– reference: 15829966 - Nature. 2005 Apr 14;434(7035):913-7
– reference: 25252691 - Cancer Discov. 2014 Dec;4(12):1430-47
– reference: 25122754 - J Biol Chem. 2014 Sep 26;289(39):27314-26
– reference: 17525332 - Science. 2007 May 25;316(5828):1160-6
– reference: 18584027 - PLoS Genet. 2008 Jun;4(6):e1000110
– reference: 25629353 - PLoS Genet. 2015 Jan;11(1):e1004943
– reference: 18243065 - DNA Repair (Amst). 2008 May 3;7(5):686-93
– reference: 18923075 - Genes Dev. 2008 Oct 15;22(20):2767-72
– reference: 15542845 - Mol Cell Biol. 2004 Dec;24(23):10381-9
– reference: 24794434 - Cell Rep. 2014 May 22;7(4):1030-8
– reference: 22608083 - Cell. 2012 May 25;149(5):994-1007
– reference: 19202191 - J Biol Chem. 2009 Apr 3;284(14):9558-65
– reference: 20362325 - Cell. 2010 Apr 16;141(2):243-54
– reference: 20967781 - Bioessays. 2010 Dec;32(12):1058-66
– reference: 12748644 - Nature. 2003 May 15;423(6937):305-9
– reference: 23727112 - Cell. 2013 Jun 6;153(6):1266-80
– reference: 12748645 - Nature. 2003 May 15;423(6937):309-12
– reference: 15829967 - Nature. 2005 Apr 14;434(7035):917-21
– reference: 20690856 - Annu Rev Genet. 2010;44:113-39
– reference: 20348101 - J Biol Chem. 2010 May 21;285(21):15739-45
– reference: 25801034 - Cell Rep. 2015 Mar 31;10(12):1947-56
– reference: 18208529 - Mol Microbiol. 2008 Mar;67(5):1156-68
– reference: 15122331 - Oncogene. 2004 Jun 10;23(27):4655-61
– reference: 19995904 - Mol Cell Biol. 2010 Feb;30(4):1088-96
– reference: 24794430 - Cell Rep. 2014 May 22;7(4):1039-47
– reference: 24108124 - J Biol Chem. 2013 Nov 22;288(47):34168-80
– reference: 22285753 - Mol Cell. 2012 Feb 10;45(3):422-32
– reference: 18054777 - Biochem Biophys Res Commun. 2008 May 9;369(3):982-8
– reference: 22841003 - Mol Cell. 2012 Jul 27;47(2):320-9
– reference: 17515904 - Nat Struct Mol Biol. 2007 Jun;14(6):468-74
– reference: 23333306 - Mol Cell. 2013 Mar 7;49(5):872-83
– reference: 23436799 - Cancer Res. 2013 Apr 15;73(8):2529-39
– reference: 21368826 - Nature. 2011 Mar 3;471(7336):74-9
– reference: 19150983 - J Biol Chem. 2009 Mar 20;284(12):7505-17
– reference: 20208544 - Nat Struct Mol Biol. 2010 Apr;17(4):410-6
– reference: 25770156 - Cancer Discov. 2015 May;5(5):488-505
– reference: 24319145 - Nucleic Acids Res. 2014 Feb;42(4):2380-90
– reference: 24496010 - Genetics. 2014 Apr;196(4):1017-28
– reference: 22153967 - Mol Cell. 2012 Jan 13;45(1):75-86
– reference: 24608368 - Nat Struct Mol Biol. 2014 Apr;21(4):405-12
– reference: 9353267 - J Biol Chem. 1997 Nov 7;272(45):28194-7
– reference: 23610439 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7720-5
– reference: 25642963 - Nature. 2015 Feb 12;518(7538):258-62
– reference: 25753674 - Nucleic Acids Res. 2015 Mar 31;43(6):3154-66
– reference: 21131978 - Nat Struct Mol Biol. 2011 Jan;18(1):80-4
– reference: 25775267 - Nat Struct Mol Biol. 2015 Apr;22(4):304-11
– reference: 22964643 - Oncogene. 2013 Jul 25;32(30):3552-8
– reference: 20460465 - Nucleic Acids Res. 2010 Sep;38(17):5706-17
– reference: 24705021 - Nat Commun. 2014;5:3561
– reference: 21841787 - Nat Struct Mol Biol. 2011 Sep;18(9):1015-9
– reference: 21670257 - Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10448-53
– reference: 18337252 - J Biol Chem. 2008 May 23;283(21):14883-92
– reference: 22645136 - J Biol Chem. 2012 Jul 6;287(28):23808-18
– reference: 16896009 - J Clin Oncol. 2006 Aug 10;24(23):3799-808
– reference: 24746645 - DNA Repair (Amst). 2014 Jul;19:169-75
– reference: 20617203 - PLoS Genet. 2010 Jul;6(7):e1001005
– reference: 18206976 - Mol Cell. 2008 Jan 18;29(1):141-8
– reference: 24981601 - Nat Rev Genet. 2014 Sep;15(9):585-98
– reference: 18809224 - Trends Genet. 2008 Nov;24(11):529-38
– reference: 17283053 - Mol Cell Biol. 2007 Apr;27(8):2812-20
– reference: 25799992 - Nature. 2015 May 28;521(7553):541-4
– reference: 25567988 - Nucleic Acids Res. 2015 Jan;43(2):987-99
– reference: 25569253 - PLoS Genet. 2015 Jan;11(1):e1004899
– reference: 10910365 - Nature. 2000 Jul 13;406(6792):210-5
– reference: 19461667 - Nat Rev Cancer. 2009 Jun;9(6):415-28
– reference: 25267294 - J Cell Biol. 2014 Sep 29;206(7):877-94
– reference: 21910633 - Annu Rev Genet. 2011;45:247-71
– reference: 15964827 - Mol Cell Biol. 2005 Jul;25(13):5738-51
– reference: 25643323 - Nat Struct Mol Biol. 2015 Mar;22(3):230-7
– reference: 25642960 - Nature. 2015 Feb 12;518(7538):254-7
– reference: 22933060 - Cancer Res. 2012 Nov 1;72(21):5454-62
– reference: 20122407 - Mol Cell. 2010 Jan 29;37(2):259-72
– reference: 24050180 - Annu Rev Genet. 2013;47:433-55
SSID ssj0007213
Score 2.6736042
SecondaryResourceType review_article
Snippet DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 52
SubjectTerms alternative end joining
Animals
Cell Survival
DNA Breaks, Double-Stranded
DNA Repair
Genomic Instability
homologous recombination
Humans
Mutation
Pathology
Polθ
synthetic lethality
Title Repair Pathway Choices and Consequences at the Double-Strand Break
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0962892415001427
https://www.clinicalkey.es/playcontent/1-s2.0-S0962892415001427
https://dx.doi.org/10.1016/j.tcb.2015.07.009
https://www.ncbi.nlm.nih.gov/pubmed/26437586
https://www.proquest.com/docview/1753230558
https://pubmed.ncbi.nlm.nih.gov/PMC4862604
Volume 26
WOSCitedRecordID wos000368206000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3088
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007213
  issn: 0962-8924
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYBhIviG86YAoSvICCEjuN48d9IUBoQjBQ3yzHdrSOLq3aDMZ_z53tZGnHBjzwElVJbKe-n8935_PPhDzXw4QZ3H5mTKriTKQsLmxm48wURjClc-4W2r9-4AcHxWgkPgZChYU7ToDXdXF2Jmb_VdRwD4SNW2f_QdxdpXADfoPQ4Qpih-tfCR5MajWeI_f-0Q-F3MVT1AVukWC3lzoddjGiBV1ObIwstfDGDtiQ3_oG63nOLIb4XwXOpm7lAkUzMS4j4JOadQn4bgUH98sg3aeDkHVHAXQo2ntBucul9GHdCWiZvX4AIu0HIKxXmgXH_Al_PF-rVf0--CX0eBXpCWsvaG4fRDh-3egSE-6GjlLVMSc0PaHNTpzUKC43Dlc5tN2s3D5aIxuUDwXo6o3td_uj9930DC4va5e3XaLfSotIDx3quMxWueiLrKbU9myUw9vkVnAuom0Pijvkmq3vkhv-uNGf98iOh0YUoBEFaEQg-KgPjUg1EUAjWoJG5KBxn3x5s3-4-zYOZ2jEOhe0iXNqlKJKs8pyC741aFxuFPiowjBTVeAfl1WhBBc2VdqIymiVZBq0uC0zkeuUPSDr9bS2j0iUprm1FStoxVjGKlVSLqBuplJlGC_1gCRtb0kdCObxnJOJbDMJjyX0tcS-lgmmPYgBedkVmXl2latepq0IZLttGCY6CQi6qhD_XSG7CCN2IVO5oDKRn8GXp4VAgxbDBpQPSNaVDNaotzL_1OCzFh0SNDWOTVXb6Sk0BL1OkWCvGJCHHi3dn24RB5-7hKPuBWSBX35Sj48cG3zmYhLZ5qV1PiY3z4ftE7LezE_tU3Jdf2_Gi_kWWeOjYisMkl9M6cwb
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repair+Pathway+Choices+and+Consequences+at+the+Double-Strand+Break&rft.jtitle=Trends+in+cell+biology&rft.au=Ceccaldi%2C+Raphael&rft.au=Rondinelli%2C+Beatrice&rft.au=D%27Andrea%2C+Alan+D&rft.date=2016-01-01&rft.eissn=1879-3088&rft.volume=26&rft.issue=1&rft.spage=52&rft_id=info:doi/10.1016%2Fj.tcb.2015.07.009&rft_id=info%3Apmid%2F26437586&rft.externalDocID=26437586
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09628924%2FS0962892415X0002X%2Fcov150h.gif