Repair Pathway Choices and Consequences at the Double-Strand Break
DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic instability and cell death. Indeed, misrepair of DSBs can lead to inappropriate end-joining events, which commonly underlie oncogenic transfo...
Gespeichert in:
| Veröffentlicht in: | Trends in cell biology Jg. 26; H. 1; S. 52 - 64 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Elsevier Ltd
01.01.2016
|
| Schlagworte: | |
| ISSN: | 0962-8924, 1879-3088 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic instability and cell death. Indeed, misrepair of DSBs can lead to inappropriate end-joining events, which commonly underlie oncogenic transformation due to chromosomal translocations. Typically, cells employ two main mechanisms to repair DSBs: homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). In addition, alternative error-prone DSB repair pathways, namely alternative end joining (alt-EJ) and single-strand annealing (SSA), have been recently shown to operate in many different conditions and to contribute to genome rearrangements and oncogenic transformation. Here, we review the mechanisms regulating DSB repair pathway choice, together with the potential interconnections between HR and the annealing-dependent error-prone DSB repair pathways.
Of the four known pathways for repairing DNA DSBs, some evolved towards high-fidelity processes (HR and C-NHEJ), while others are intrinsically mutagenic (alt-EJ and SSA).
Some repair pathways are end resection-independent (C-NHEJ), while others are end resection-dependent (HR, alt-EJ, and SSA). End resection likely plays a key role in dictating DNA repair pathway choice.
Homology-based repair pathways (HR, alt-EJ, and SSA) are competitive and mutually regulated around the RAD51 presynaptic and postsynaptic steps of HR.
Error-prone repair pathways can compensate for the loss of HR. Polθ (an alt-EJ polymerase) is upregulated in HR-deficient cancers: loss of the HR and Polθ-mediated alt-EJ pathways is synthetic lethal. |
|---|---|
| AbstractList | DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic instability and cell death. Indeed, misrepair of DSBs can lead to inappropriate end-joining events, which commonly underlie oncogenic transformation due to chromosomal translocations. Typically, cells employ two main mechanisms to repair DSBs: homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). In addition, alternative error-prone DSB repair pathways, namely alternative end joining (alt-EJ) and single-strand annealing (SSA), have been recently shown to operate in many different conditions and to contribute to genome rearrangements and oncogenic transformation. Here, we review the mechanisms regulating DSB repair pathway choice, together with the potential interconnections between HR and the annealing-dependent error-prone DSB repair pathways. DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic instability and cell death. Indeed, misrepair of DSBs can lead to inappropriate end-joining events, which commonly underlie oncogenic transformation due to chromosomal translocations. Typically, cells employ two main mechanisms to repair DSBs: homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). In addition, alternative error-prone DSB repair pathways, namely alternative end joining (alt-EJ) and single-strand annealing (SSA), have been recently shown to operate in many different conditions and to contribute to genome rearrangements and oncogenic transformation. Here, we review the mechanisms regulating DSB repair pathway choice, together with the potential interconnections between HR and the annealing-dependent error-prone DSB repair pathways. Of the four known pathways for repairing DNA DSBs, some evolved towards high-fidelity processes (HR and C-NHEJ), while others are intrinsically mutagenic (alt-EJ and SSA). Some repair pathways are end resection-independent (C-NHEJ), while others are end resection-dependent (HR, alt-EJ, and SSA). End resection likely plays a key role in dictating DNA repair pathway choice. Homology-based repair pathways (HR, alt-EJ, and SSA) are competitive and mutually regulated around the RAD51 presynaptic and postsynaptic steps of HR. Error-prone repair pathways can compensate for the loss of HR. Polθ (an alt-EJ polymerase) is upregulated in HR-deficient cancers: loss of the HR and Polθ-mediated alt-EJ pathways is synthetic lethal. |
| Author | D’Andrea, Alan D. Ceccaldi, Raphael Rondinelli, Beatrice |
| AuthorAffiliation | 1 Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA |
| AuthorAffiliation_xml | – name: 1 Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA |
| Author_xml | – sequence: 1 givenname: Raphael surname: Ceccaldi fullname: Ceccaldi, Raphael organization: Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 2 givenname: Beatrice surname: Rondinelli fullname: Rondinelli, Beatrice organization: Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 3 givenname: Alan D. surname: D’Andrea fullname: D’Andrea, Alan D. email: alan_dandrea@dfci.harvard.edu organization: Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26437586$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUktv1DAQtlAR3RZ-ABeUI5cE23nYFlIlujylSiAK55FjT1hvs_Fie4v23-OwLYJKlNNInu8xnm9OyNHkJyTkKaMVo6x7sa6S6StOWVtRUVGqHpAFk0KVNZXyiCyo6ngpFW-OyUmMa0qp4Kx-RI5519Sild2CnH_GrXah-KTT6ofeF8uVdwZjoSdbLP0U8fsOp18PqUgrLF77XT9ieZnCjDgPqK8ek4eDHiM-uamn5OvbN1-W78uLj-8-LF9dlKZTPJUdt1pzbeoBBUqlaqaE1aKtla3tMLBG9YPUSihk2lg1WKNpY4QU2DeqM6w-JWcH3e2u36A1OOUhRtgGt9FhD147-LszuRV889fQyI53tMkCz28Egs_figk2LhocRz2h30VgeRhe07aVGfrsT6_fJreLywBxAJjgYww4gHFJJ-dnazcCozBHBGvIEcEcEVABOaLMZHeYt-L3cV4eOJj3e-0wQDRuzsW6gCaB9e5e9tkdthnd5Iwer3CPce13YcrBAYPIgcLlfDbz1bCWUtZwkQXUvwX-Y_4TBoXR6w |
| CitedBy_id | crossref_primary_10_1073_pnas_1806513115 crossref_primary_10_1371_journal_pone_0269342 crossref_primary_10_1186_s12915_024_01918_w crossref_primary_10_1016_j_jmb_2017_05_012 crossref_primary_10_1016_j_omtn_2023_04_012 crossref_primary_10_3390_ijms25147982 crossref_primary_10_1038_s41416_023_02476_8 crossref_primary_10_1038_ncb3450 crossref_primary_10_1038_s41419_022_04989_1 crossref_primary_10_3389_fmolb_2021_664872 crossref_primary_10_3390_ijms26188936 crossref_primary_10_1111_1759_7714_14865 crossref_primary_10_1158_1078_0432_CCR_21_3750 crossref_primary_10_1038_s41598_017_01185_6 crossref_primary_10_1016_j_tibs_2020_06_003 crossref_primary_10_1016_j_dnarep_2019_03_007 crossref_primary_10_1016_j_ijbiomac_2025_146386 crossref_primary_10_1016_j_gde_2021_01_002 crossref_primary_10_1186_s12929_022_00870_7 crossref_primary_10_1111_nph_18787 crossref_primary_10_1016_j_semcdb_2019_05_013 crossref_primary_10_1007_s40778_016_0043_7 crossref_primary_10_3390_ijms241914956 crossref_primary_10_1038_s41598_019_38526_6 crossref_primary_10_1128_mSphere_00408_19 crossref_primary_10_1259_bjr_20200087 crossref_primary_10_3390_cells11101651 crossref_primary_10_1038_ng_3934 crossref_primary_10_3389_fpls_2020_01126 crossref_primary_10_1038_s41598_019_51471_8 crossref_primary_10_1186_s12896_020_00665_4 crossref_primary_10_1073_pnas_2214935119 crossref_primary_10_1111_nph_16595 crossref_primary_10_1016_j_jtbi_2023_111608 crossref_primary_10_1080_15376516_2018_1461289 crossref_primary_10_3390_cells9071665 crossref_primary_10_1038_s41416_025_03128_9 crossref_primary_10_1111_tpj_16863 crossref_primary_10_1089_crispr_2024_0028 crossref_primary_10_3390_v9090261 crossref_primary_10_1038_s12276_024_01383_z crossref_primary_10_1101_gad_277665_116 crossref_primary_10_1146_annurev_biochem_080320_110356 crossref_primary_10_1158_1078_0432_CCR_22_3335 crossref_primary_10_1016_j_canlet_2022_215851 crossref_primary_10_1016_j_dnarep_2023_103547 crossref_primary_10_1158_2159_8290_CD_17_0226 crossref_primary_10_15252_embj_201796948 crossref_primary_10_3390_cancers13133211 crossref_primary_10_15252_embj_2018100158 crossref_primary_10_1242_dev_201367 crossref_primary_10_3389_fgene_2021_780293 crossref_primary_10_1016_j_gene_2021_145647 crossref_primary_10_1007_s00425_022_03894_3 crossref_primary_10_1073_pnas_2008721117 crossref_primary_10_1186_s12864_018_4727_5 crossref_primary_10_1038_s12276_023_01057_2 crossref_primary_10_1073_pnas_2024512118 crossref_primary_10_3389_fphar_2024_1483160 crossref_primary_10_1016_j_ijbiomac_2024_131802 crossref_primary_10_3390_pathogens9060483 crossref_primary_10_2147_OTT_S499226 crossref_primary_10_1016_j_molcel_2022_12_031 crossref_primary_10_1007_s13402_020_00578_6 crossref_primary_10_1186_s12967_021_03099_4 crossref_primary_10_1186_s13046_023_02687_0 crossref_primary_10_1016_j_semradonc_2016_06_003 crossref_primary_10_1016_j_jhazmat_2023_131540 crossref_primary_10_3389_fpls_2023_1159615 crossref_primary_10_3390_genes11010099 crossref_primary_10_3390_cancers13133202 crossref_primary_10_1177_0022034516677529 crossref_primary_10_1038_s41598_017_01766_5 crossref_primary_10_1073_pnas_1804823115 crossref_primary_10_3389_fimmu_2024_1339977 crossref_primary_10_1016_j_dnarep_2020_102872 crossref_primary_10_1016_j_ecoenv_2023_115503 crossref_primary_10_1016_j_semcdb_2020_10_003 crossref_primary_10_1007_s12268_018_0984_8 crossref_primary_10_1016_j_dnarep_2019_02_010 crossref_primary_10_3390_ijms21239321 crossref_primary_10_1007_s00412_018_0677_6 crossref_primary_10_1093_nar_gky162 crossref_primary_10_1038_s41467_023_37499_5 crossref_primary_10_1016_j_dnarep_2018_09_002 crossref_primary_10_3390_ijms24043916 crossref_primary_10_3390_ijms20143390 crossref_primary_10_1038_nature25473 crossref_primary_10_1016_j_engmic_2023_100120 crossref_primary_10_1093_nar_gkad609 crossref_primary_10_1038_s44318_024_00153_x crossref_primary_10_1016_j_dnarep_2019_02_006 crossref_primary_10_1002_adhm_202404795 crossref_primary_10_1038_s41388_022_02580_8 crossref_primary_10_1084_jem_20201791 crossref_primary_10_1111_acel_13484 crossref_primary_10_1038_s41698_022_00339_8 crossref_primary_10_1089_ars_2017_7351 crossref_primary_10_1038_s41388_022_02299_6 crossref_primary_10_1158_0008_5472_CAN_20_1672 crossref_primary_10_3390_molecules25214920 crossref_primary_10_1111_are_15398 crossref_primary_10_1158_0008_5472_CAN_24_0293 crossref_primary_10_1038_s41467_023_40843_4 crossref_primary_10_1177_1534735417712008 crossref_primary_10_1016_j_biomaterials_2023_122035 crossref_primary_10_1016_j_canlet_2025_217874 crossref_primary_10_3389_fgeed_2024_1415244 crossref_primary_10_1016_j_ygyno_2020_08_035 crossref_primary_10_1002_2211_5463_13743 crossref_primary_10_1242_dev_201323 crossref_primary_10_1038_s41388_025_03409_w crossref_primary_10_1158_2159_8290_CD_16_0860 crossref_primary_10_1038_s41598_017_09306_x crossref_primary_10_1016_j_dnarep_2016_05_002 crossref_primary_10_1083_jcb_201812142 crossref_primary_10_3389_fgene_2021_785947 crossref_primary_10_1038_s41388_024_03232_9 crossref_primary_10_1038_s41467_020_19202_0 crossref_primary_10_3389_fonc_2022_826778 crossref_primary_10_1126_scitranslmed_abc4465 crossref_primary_10_1016_j_tibs_2020_05_003 crossref_primary_10_1038_s41598_024_68926_2 crossref_primary_10_1016_j_neo_2024_101012 crossref_primary_10_1093_femsre_fuac035 crossref_primary_10_3390_cancers13122997 crossref_primary_10_1016_j_jbiotec_2020_09_013 crossref_primary_10_1186_s10020_021_00316_0 crossref_primary_10_1016_j_bpj_2019_10_042 crossref_primary_10_1016_j_sjbs_2022_01_002 crossref_primary_10_1016_j_survophthal_2025_04_005 crossref_primary_10_1371_journal_pone_0237759 crossref_primary_10_1016_j_jmb_2020_11_014 crossref_primary_10_1371_journal_pgen_1006632 crossref_primary_10_1093_ecco_jcc_jjae134 crossref_primary_10_3390_ijms231912053 crossref_primary_10_1007_s11427_020_1819_8 crossref_primary_10_3390_life14080922 crossref_primary_10_1016_j_dnarep_2021_103140 crossref_primary_10_1146_annurev_biochem_011520_104722 crossref_primary_10_3390_cancers12092356 crossref_primary_10_1016_j_dnarep_2021_103127 crossref_primary_10_1038_srep31567 crossref_primary_10_3389_fmolb_2019_00051 crossref_primary_10_1016_j_gpb_2016_05_001 crossref_primary_10_1038_s41420_024_01878_8 crossref_primary_10_1093_jb_mvad019 crossref_primary_10_3390_ijms23094653 crossref_primary_10_1016_j_molcel_2016_04_006 crossref_primary_10_1080_17460794_2025_2465178 crossref_primary_10_1038_ncomms14244 crossref_primary_10_3390_ijms21113762 crossref_primary_10_1007_s13167_020_00210_5 crossref_primary_10_1007_s12272_018_1037_z crossref_primary_10_1038_s41598_024_68295_w crossref_primary_10_1016_j_tibtech_2020_10_012 crossref_primary_10_1016_j_ymthe_2021_03_018 crossref_primary_10_1002_gcc_22993 crossref_primary_10_1038_s41467_020_19502_5 crossref_primary_10_3724_abbs_2025057 crossref_primary_10_1038_s41416_021_01609_1 crossref_primary_10_1038_s41467_021_22927_1 crossref_primary_10_1038_s41467_022_31944_7 crossref_primary_10_1007_s11033_019_05150_6 crossref_primary_10_1093_nar_gkae501 crossref_primary_10_1007_s40995_021_01232_y crossref_primary_10_1038_s41598_017_14922_8 crossref_primary_10_3390_biology10040253 crossref_primary_10_1016_j_exger_2022_111706 crossref_primary_10_1038_s41576_019_0139_x crossref_primary_10_3390_genes12040552 crossref_primary_10_1016_j_dnarep_2021_103104 crossref_primary_10_3390_cancers14112804 crossref_primary_10_1007_s12032_022_01840_7 crossref_primary_10_3390_biom15081061 crossref_primary_10_1038_s41392_021_00510_w crossref_primary_10_1016_j_fct_2022_113556 crossref_primary_10_3892_mmr_2017_7835 crossref_primary_10_3390_biom10111529 crossref_primary_10_1002_biot_202100413 crossref_primary_10_1038_s41416_022_01955_8 crossref_primary_10_3389_fgene_2019_00411 crossref_primary_10_5713_ab_21_0117 crossref_primary_10_1074_jbc_REV119_011353 crossref_primary_10_1038_s41467_021_26240_9 crossref_primary_10_3390_ijms232315182 crossref_primary_10_1002_bies_202300051 crossref_primary_10_1534_genetics_119_302247 crossref_primary_10_1038_s42003_020_01119_5 crossref_primary_10_1042_BST20180418 crossref_primary_10_1186_s13578_017_0137_7 crossref_primary_10_3390_pharmaceutics14061252 crossref_primary_10_1093_nar_gkx1240 crossref_primary_10_1007_s00018_018_2811_2 crossref_primary_10_1016_j_cbi_2024_110938 crossref_primary_10_3390_genes16091044 crossref_primary_10_1038_s41583_024_00829_7 crossref_primary_10_1093_nar_gkx1243 crossref_primary_10_3389_fmolb_2019_00079 crossref_primary_10_1038_srep44662 crossref_primary_10_1093_nar_gkad631 crossref_primary_10_1371_journal_pgen_1011341 crossref_primary_10_1136_jitc_2024_010528 crossref_primary_10_1128_jvi_02211_24 crossref_primary_10_1002_ijc_32558 crossref_primary_10_1038_s41467_023_40901_x crossref_primary_10_12688_f1000research_12110_1 crossref_primary_10_3390_ijms25105067 crossref_primary_10_1016_j_ctro_2019_08_003 crossref_primary_10_3390_ijms21051666 crossref_primary_10_3389_fgene_2016_00122 crossref_primary_10_3390_ijms25137064 crossref_primary_10_1155_2020_5367102 crossref_primary_10_3390_horticulturae10090965 crossref_primary_10_1080_14656566_2020_1724957 crossref_primary_10_1101_gad_311084_117 crossref_primary_10_1371_journal_pone_0208395 crossref_primary_10_1038_s41586_018_0686_x crossref_primary_10_1093_nar_gkaa175 crossref_primary_10_1038_s41467_017_00866_0 crossref_primary_10_1016_j_ymthe_2019_01_014 crossref_primary_10_1038_s41419_020_02755_9 crossref_primary_10_1093_nar_gkab027 crossref_primary_10_1093_genetics_iyab199 crossref_primary_10_1242_dmm_049874 crossref_primary_10_1016_j_semcancer_2016_03_003 crossref_primary_10_7554_eLife_75050 crossref_primary_10_1186_s12711_025_00961_7 crossref_primary_10_3390_cells9081870 crossref_primary_10_3892_or_2022_8390 crossref_primary_10_1093_jrr_rry096 crossref_primary_10_3390_biology13070484 crossref_primary_10_1038_srep43598 crossref_primary_10_1186_s12934_019_1194_x crossref_primary_10_1242_jcs_244442 crossref_primary_10_1186_s10020_025_01066_z crossref_primary_10_1200_JCO_19_00347 crossref_primary_10_3389_fgene_2016_00152 crossref_primary_10_1016_j_tig_2018_05_003 crossref_primary_10_1016_j_cell_2019_11_030 crossref_primary_10_1016_j_biotechadv_2021_107737 crossref_primary_10_1371_journal_pone_0235998 crossref_primary_10_1016_j_pharmthera_2016_01_014 crossref_primary_10_1016_j_biotechadv_2020_107533 crossref_primary_10_1093_nar_gkx1056 crossref_primary_10_3390_ijms21197020 crossref_primary_10_1080_09553002_2019_1649502 crossref_primary_10_1038_nrm_2016_48 crossref_primary_10_1172_JCI190264 crossref_primary_10_1017_erm_2020_3 crossref_primary_10_3390_ijms232112937 crossref_primary_10_1016_j_molcel_2018_09_014 crossref_primary_10_1093_jrr_rraa095 crossref_primary_10_1016_j_semcdb_2018_07_002 crossref_primary_10_1038_s41467_019_09756_z crossref_primary_10_1007_s12275_024_00152_x crossref_primary_10_3390_cancers15061817 crossref_primary_10_3390_ijms22073636 crossref_primary_10_7717_peerj_17261 crossref_primary_10_1002_pmic_202200064 crossref_primary_10_1038_onc_2016_405 crossref_primary_10_1093_oncolo_oyae163 crossref_primary_10_1007_s10565_018_9429_x crossref_primary_10_1186_s12711_020_00554_6 crossref_primary_10_3390_cancers12102764 crossref_primary_10_1080_15384101_2024_2309015 crossref_primary_10_1093_nar_gkz1167 crossref_primary_10_3390_ijms20010031 crossref_primary_10_1038_s41598_024_83435_y crossref_primary_10_1667_RADE_24_00094_1 crossref_primary_10_1016_j_ymthe_2022_11_014 crossref_primary_10_1038_s41556_024_01557_x crossref_primary_10_1093_nar_gkae574 crossref_primary_10_1016_j_ijrobp_2019_05_025 crossref_primary_10_1016_j_freeradbiomed_2022_10_317 crossref_primary_10_1667_RR14748_1 crossref_primary_10_1016_j_critrevonc_2024_104603 crossref_primary_10_1038_s41467_023_41790_w crossref_primary_10_1016_j_pbiomolbio_2019_11_007 crossref_primary_10_1139_bcb_2019_0115 crossref_primary_10_3390_cancers15113005 crossref_primary_10_3390_ijms21113903 crossref_primary_10_1002_jcb_29325 crossref_primary_10_1038_s41467_022_34736_1 crossref_primary_10_1038_nrm_2017_48 crossref_primary_10_1128_JVI_01084_17 crossref_primary_10_1111_tpj_17180 crossref_primary_10_1002_mco2_210 crossref_primary_10_1038_onc_2016_389 crossref_primary_10_3390_v13081662 crossref_primary_10_1158_0008_5472_CAN_23_4007 crossref_primary_10_3390_ijms18122655 crossref_primary_10_1016_j_dnarep_2020_103025 crossref_primary_10_1016_j_csbj_2020_08_031 crossref_primary_10_3390_ijms22115614 crossref_primary_10_3390_genes11070752 crossref_primary_10_1016_j_tig_2019_07_001 crossref_primary_10_1093_jnci_djx059 crossref_primary_10_1073_pnas_2008073117 crossref_primary_10_15252_embj_201593540 crossref_primary_10_2217_fon_2020_0334 crossref_primary_10_1016_j_jmb_2016_06_004 crossref_primary_10_1093_biolre_ioac054 crossref_primary_10_1073_pnas_1816539115 crossref_primary_10_3390_cancers13040830 crossref_primary_10_1016_j_bios_2025_117406 crossref_primary_10_1016_j_dnarep_2020_103035 crossref_primary_10_1016_j_jgg_2017_04_009 crossref_primary_10_1016_j_aquaculture_2022_738391 crossref_primary_10_1016_j_fgb_2019_04_016 crossref_primary_10_1016_j_it_2018_06_001 crossref_primary_10_1016_j_canlet_2023_216440 crossref_primary_10_1007_s42764_023_00100_w crossref_primary_10_1101_gad_319723_118 crossref_primary_10_3390_ijms18081715 crossref_primary_10_1038_s41419_019_1546_9 crossref_primary_10_1007_s10577_019_09617_x crossref_primary_10_1002_em_22593 crossref_primary_10_1093_nar_gkac143 crossref_primary_10_3389_fpls_2023_1231678 crossref_primary_10_1038_s41598_019_51071_6 crossref_primary_10_1002_em_22594 crossref_primary_10_1080_15384101_2018_1442625 crossref_primary_10_1172_JCI188120 crossref_primary_10_1016_j_scitotenv_2021_151078 crossref_primary_10_3390_ijms25169054 crossref_primary_10_1016_j_exphem_2020_08_009 crossref_primary_10_1007_s00335_021_09918_9 crossref_primary_10_1038_s41598_018_24440_w crossref_primary_10_1186_s12983_025_00566_2 crossref_primary_10_3390_cancers14235792 crossref_primary_10_1016_j_neo_2023_100881 crossref_primary_10_1186_s12958_024_01284_w crossref_primary_10_7554_eLife_33761 crossref_primary_10_1002_em_22364 crossref_primary_10_3390_cancers14071807 crossref_primary_10_1038_s41418_019_0424_4 crossref_primary_10_1016_j_dnarep_2024_103699 crossref_primary_10_1093_nar_gkw557 crossref_primary_10_1111_febs_14663 crossref_primary_10_1016_j_tig_2021_03_001 crossref_primary_10_1371_journal_pone_0231323 crossref_primary_10_1093_nar_gkx881 crossref_primary_10_1016_j_tibs_2017_12_004 crossref_primary_10_1002_bies_201900177 crossref_primary_10_3390_cancers10010025 crossref_primary_10_1016_j_biochi_2017_09_001 crossref_primary_10_1186_s12934_022_01908_z crossref_primary_10_1016_j_str_2021_05_006 crossref_primary_10_1177_09636897221108705 crossref_primary_10_1002_advs_202405955 crossref_primary_10_1126_sciadv_adu7606 crossref_primary_10_1016_j_lfs_2021_120242 crossref_primary_10_1083_jcb_201604112 crossref_primary_10_1139_bcb_2016_0001 crossref_primary_10_1111_ijlh_13874 crossref_primary_10_1002_pbc_31030 crossref_primary_10_3390_ijms24032498 crossref_primary_10_3390_life11060560 crossref_primary_10_1093_nar_gkaf200 crossref_primary_10_1073_pnas_2008830117 crossref_primary_10_1007_s10637_018_0616_7 crossref_primary_10_1080_10409238_2022_2027336 crossref_primary_10_1002_ijc_33038 crossref_primary_10_1038_s41467_019_11795_5 crossref_primary_10_3389_fgene_2020_607428 crossref_primary_10_1038_s41419_022_05092_1 crossref_primary_10_1248_bpb_b25_00072 crossref_primary_10_1016_j_ecoenv_2020_111846 crossref_primary_10_1016_j_ijbiomac_2024_130351 crossref_primary_10_1093_abbs_gmw045 crossref_primary_10_1016_j_semcancer_2022_02_001 crossref_primary_10_1073_pnas_1816606115 crossref_primary_10_1016_j_mrrev_2016_07_004 crossref_primary_10_1002_aac2_12047 crossref_primary_10_1016_j_clon_2018_07_001 crossref_primary_10_1016_j_mrgentox_2021_503438 crossref_primary_10_1111_nph_15680 crossref_primary_10_1007_s42764_021_00056_9 crossref_primary_10_1007_s11033_020_05285_x crossref_primary_10_1016_j_semcancer_2021_05_004 crossref_primary_10_1038_s41417_021_00355_z crossref_primary_10_1016_j_molcel_2024_06_031 crossref_primary_10_3390_ijms25115629 crossref_primary_10_1007_s00299_021_02678_5 crossref_primary_10_1002_advs_202206931 crossref_primary_10_1093_nar_gky764 crossref_primary_10_1038_s41598_022_14374_9 crossref_primary_10_1016_j_dnarep_2019_102662 crossref_primary_10_1093_hr_uhac154 crossref_primary_10_1080_10985549_2023_2187105 crossref_primary_10_1038_s41467_020_16643_5 crossref_primary_10_3390_biology10060530 crossref_primary_10_1002_cnr2_1341 crossref_primary_10_3390_cancers11111671 crossref_primary_10_3390_biom13101480 crossref_primary_10_1007_s42764_022_00073_2 crossref_primary_10_1073_pnas_1521597113 crossref_primary_10_1186_s13048_023_01221_2 crossref_primary_10_1002_mco2_613 crossref_primary_10_1038_s41392_020_00358_6 crossref_primary_10_1016_j_dnarep_2018_11_005 crossref_primary_10_1016_j_dnarep_2019_102650 crossref_primary_10_3390_dna5010003 crossref_primary_10_3389_fmolb_2023_1116660 crossref_primary_10_3892_ijmm_2022_5145 crossref_primary_10_3390_ijms23052484 crossref_primary_10_1093_nar_gkz1101 crossref_primary_10_3390_dna5020017 crossref_primary_10_1038_s41580_021_00394_2 crossref_primary_10_1186_s13578_020_00401_7 crossref_primary_10_1038_s41433_024_03441_2 crossref_primary_10_1016_j_dnarep_2019_102686 crossref_primary_10_15252_embj_2019102718 crossref_primary_10_1042_EBC20190092 crossref_primary_10_3389_fonc_2018_00245 crossref_primary_10_1016_j_molcel_2022_03_031 crossref_primary_10_3389_fonc_2021_675972 crossref_primary_10_3389_fphy_2020_578662 crossref_primary_10_1038_s43018_021_00203_x crossref_primary_10_1080_17460751_2025_2526253 crossref_primary_10_1016_j_ceb_2020_02_014 crossref_primary_10_1038_s41420_021_00633_7 crossref_primary_10_1093_nar_gkae156 crossref_primary_10_1371_journal_ppat_1010275 crossref_primary_10_1016_j_biopha_2019_109661 crossref_primary_10_1073_pnas_1611673113 crossref_primary_10_1111_nyas_13125 crossref_primary_10_3389_fcell_2021_745195 crossref_primary_10_1534_genetics_118_300686 crossref_primary_10_1002_bies_202100279 crossref_primary_10_1093_nar_gkad073 crossref_primary_10_3390_ijms21218039 crossref_primary_10_3390_ijms21020446 crossref_primary_10_1080_15384101_2018_1520567 crossref_primary_10_5713_ab_24_0206 crossref_primary_10_1016_j_dnarep_2016_10_008 crossref_primary_10_3390_genes8030105 crossref_primary_10_1038_s41467_019_10153_9 crossref_primary_10_3390_genes13020215 crossref_primary_10_1007_s00439_021_02399_5 crossref_primary_10_34172_bi_2022_23871 crossref_primary_10_1007_s00018_022_04550_5 crossref_primary_10_1093_nar_gkz897 crossref_primary_10_1007_s42764_019_00002_w crossref_primary_10_1016_j_molcel_2022_01_001 crossref_primary_10_1101_gr_276617_122 crossref_primary_10_3389_fphar_2025_1557925 crossref_primary_10_1134_S000629792312009X crossref_primary_10_1002_1878_0261_13448 crossref_primary_10_1002_tpg2_20220 crossref_primary_10_1128_spectrum_02326_21 crossref_primary_10_1101_gad_350740_123 crossref_primary_10_1016_j_bcp_2018_12_002 crossref_primary_10_1523_JNEUROSCI_1806_20_2021 crossref_primary_10_1038_srep27797 crossref_primary_10_1111_tpj_15363 crossref_primary_10_1038_s41467_024_51242_8 crossref_primary_10_1089_crispr_2023_0029 crossref_primary_10_1186_s13020_025_01089_y crossref_primary_10_3390_ijms21239176 crossref_primary_10_3390_ijms25010658 crossref_primary_10_1093_nar_gkw153 crossref_primary_10_1038_onc_2017_60 crossref_primary_10_3389_fgene_2021_747734 crossref_primary_10_1016_j_jbc_2021_100401 crossref_primary_10_3390_cancers12020402 crossref_primary_10_3390_ijms232113356 crossref_primary_10_3390_life13010006 crossref_primary_10_1136_ijgc_2023_004483 crossref_primary_10_1038_s41419_024_07116_4 crossref_primary_10_1038_s41556_019_0442_y crossref_primary_10_1038_s41467_021_27408_z crossref_primary_10_1146_annurev_cancerbio_030617_050422 crossref_primary_10_1016_j_tranon_2022_101517 crossref_primary_10_1105_tpc_17_00659 crossref_primary_10_1002_path_5025 crossref_primary_10_1111_febs_15588 crossref_primary_10_1007_s00262_024_03681_x crossref_primary_10_3389_fonc_2019_01388 crossref_primary_10_1016_j_tibtech_2023_03_004 crossref_primary_10_1158_1078_0432_CCR_16_0247 crossref_primary_10_1038_s41467_022_32920_x crossref_primary_10_1038_s41467_023_37096_6 crossref_primary_10_1007_s12033_024_01209_3 crossref_primary_10_1038_s41467_021_22484_7 crossref_primary_10_1002_mgg3_1165 crossref_primary_10_1016_j_molcel_2022_02_021 crossref_primary_10_1016_j_pmpp_2025_102640 crossref_primary_10_1016_j_tcb_2021_09_003 crossref_primary_10_3389_fcell_2022_820781 crossref_primary_10_1016_j_dnarep_2020_102828 crossref_primary_10_1007_s00109_020_01935_6 crossref_primary_10_1016_j_tice_2025_102811 crossref_primary_10_1007_s00277_023_05359_3 crossref_primary_10_1186_s12867_016_0073_9 crossref_primary_10_1371_journal_pgen_1006479 crossref_primary_10_1007_s00535_019_01620_7 crossref_primary_10_1053_j_seminoncol_2023_09_003 crossref_primary_10_3389_fphar_2019_01311 crossref_primary_10_1186_s12934_019_1112_2 crossref_primary_10_1016_j_repbio_2022_100709 crossref_primary_10_1016_j_jmb_2016_11_002 crossref_primary_10_3390_biom10060839 crossref_primary_10_1080_0284186X_2017_1398837 crossref_primary_10_1016_j_critrevonc_2022_103621 crossref_primary_10_1016_j_molcel_2017_08_021 crossref_primary_10_1177_17588359231220511 crossref_primary_10_1007_s12192_017_0843_4 crossref_primary_10_1016_j_bioorg_2020_104210 crossref_primary_10_1093_nsr_nwae404 crossref_primary_10_1016_j_bioorg_2024_107608 crossref_primary_10_1016_j_dnarep_2022_103371 crossref_primary_10_1002_tox_24020 crossref_primary_10_1007_s00203_021_02723_7 crossref_primary_10_1007_s11103_022_01321_5 crossref_primary_10_1016_j_copbio_2018_03_007 crossref_primary_10_1093_nar_gkaa897 crossref_primary_10_1093_plcell_koac184 crossref_primary_10_1200_JCO_19_00693 crossref_primary_10_1101_gr_246082_118 crossref_primary_10_1186_s13046_021_02005_6 crossref_primary_10_1038_s41467_019_12829_8 crossref_primary_10_1111_gtc_13156 crossref_primary_10_1007_s00294_018_0875_z crossref_primary_10_1186_s12885_020_07524_7 crossref_primary_10_7554_eLife_53968 crossref_primary_10_1371_journal_pone_0294683 crossref_primary_10_1134_S002689332102014X crossref_primary_10_1089_crispr_2019_0001 crossref_primary_10_1002_mlf2_70007 crossref_primary_10_1038_s41467_024_54978_5 crossref_primary_10_3390_ijms242115975 crossref_primary_10_1016_j_dnarep_2017_06_007 crossref_primary_10_1016_j_pharmthera_2019_07_002 crossref_primary_10_1111_pbi_12596 crossref_primary_10_3390_ijms19123713 crossref_primary_10_1016_j_ijbiomac_2023_124926 crossref_primary_10_1016_j_dnarep_2017_06_001 crossref_primary_10_3390_cancers13215561 crossref_primary_10_3390_cells9010112 crossref_primary_10_1073_pnas_2322972121 crossref_primary_10_1093_jrr_rrx074 crossref_primary_10_3390_genes12060920 crossref_primary_10_3389_fgene_2019_00393 crossref_primary_10_1002_ps_8003 crossref_primary_10_1093_nar_gkaa631 crossref_primary_10_3390_pharmaceutics14050894 crossref_primary_10_1093_genetics_iyab054 crossref_primary_10_1016_j_semcdb_2020_09_003 crossref_primary_10_3390_ijms241411836 crossref_primary_10_1038_s42003_021_01998_2 crossref_primary_10_1007_s00018_024_05154_x crossref_primary_10_1155_2017_3574840 crossref_primary_10_1177_1535370219862282 crossref_primary_10_1038_s41388_020_1343_z crossref_primary_10_1038_s41580_025_00841_4 crossref_primary_10_3390_cells11203311 crossref_primary_10_1016_j_semcdb_2018_04_013 crossref_primary_10_1002_1878_0261_12665 crossref_primary_10_1016_j_gde_2016_05_013 crossref_primary_10_1038_s41598_024_55088_4 crossref_primary_10_1186_s12934_023_02104_3 crossref_primary_10_3390_ijms21249488 crossref_primary_10_1016_j_dnarep_2021_103047 crossref_primary_10_3390_biomedicines13071727 crossref_primary_10_1093_nar_gkae807 crossref_primary_10_1016_j_ymthe_2020_10_006 crossref_primary_10_1038_s41419_020_03013_8 crossref_primary_10_1088_2050_6120_abf239 crossref_primary_10_71150_jm_2504012 crossref_primary_10_1016_j_jgg_2019_03_002 crossref_primary_10_1093_nar_gkab540 crossref_primary_10_1371_journal_pgen_1009816 crossref_primary_10_1093_nar_gkad727 crossref_primary_10_1186_s13578_020_00412_4 crossref_primary_10_1093_nar_gkad723 crossref_primary_10_1111_febs_15082 crossref_primary_10_1093_nar_gkaa215 crossref_primary_10_3390_ijms23147506 crossref_primary_10_1186_s13046_024_03049_0 crossref_primary_10_1038_s41467_020_19961_w crossref_primary_10_3390_ijms20246316 crossref_primary_10_1038_s41467_020_17551_4 crossref_primary_10_3389_fgeed_2025_1565387 crossref_primary_10_1007_s12094_019_02165_0 crossref_primary_10_3390_genes13010007 crossref_primary_10_3390_genes11080912 crossref_primary_10_1016_j_dnarep_2019_102691 crossref_primary_10_1016_j_molcel_2018_02_016 crossref_primary_10_1128_msphere_00156_22 crossref_primary_10_1186_s13059_018_1401_9 crossref_primary_10_1016_j_mrrev_2018_06_001 crossref_primary_10_1371_journal_ppat_1008201 crossref_primary_10_1016_j_tig_2021_02_008 crossref_primary_10_1038_s42003_025_08187_5 crossref_primary_10_1038_s41388_022_02176_2 crossref_primary_10_1093_plcell_koac191 crossref_primary_10_1073_pnas_1903150116 crossref_primary_10_1038_s41388_021_01788_4 crossref_primary_10_2903_j_efsa_2021_6611 crossref_primary_10_3389_fmicb_2016_00627 crossref_primary_10_1038_s41391_019_0153_2 crossref_primary_10_1038_s41392_021_00648_7 crossref_primary_10_1016_j_semcancer_2020_10_016 crossref_primary_10_1186_s13073_025_01488_8 crossref_primary_10_3390_genes11040466 crossref_primary_10_1177_11782234221080553 crossref_primary_10_3389_fcell_2022_910440 crossref_primary_10_1016_j_dnarep_2022_103315 crossref_primary_10_1186_s12864_019_6436_0 crossref_primary_10_3390_cancers16112129 crossref_primary_10_3390_ijms25053049 crossref_primary_10_3390_ijms23169180 crossref_primary_10_1093_nsr_nwz005 crossref_primary_10_1093_nar_gkae1207 crossref_primary_10_1038_s41401_021_00839_6 crossref_primary_10_1016_j_jgeb_2024_100435 crossref_primary_10_3390_cancers11010119 crossref_primary_10_1038_s41419_020_02812_3 crossref_primary_10_1038_s41467_020_19060_w crossref_primary_10_1016_j_devcel_2024_06_004 crossref_primary_10_1038_s41392_025_02250_7 crossref_primary_10_3389_fnins_2020_00838 crossref_primary_10_1016_j_isci_2023_106276 crossref_primary_10_1089_ars_2017_7423 crossref_primary_10_15252_embr_201846166 crossref_primary_10_3390_ijms19082263 crossref_primary_10_1016_S0021_9258_17_49903_0 crossref_primary_10_1007_s11684_023_1013_y crossref_primary_10_1016_j_isci_2021_103676 crossref_primary_10_32604_biocell_2022_021107 crossref_primary_10_1038_s41598_022_05172_4 crossref_primary_10_1242_jcs_258500 crossref_primary_10_1038_s41416_024_02935_w crossref_primary_10_1667_RR003CC_1 crossref_primary_10_1371_journal_pgen_1011250 crossref_primary_10_3390_nu16234202 crossref_primary_10_1002_1873_3468_12724 crossref_primary_10_1073_pnas_1617110113 crossref_primary_10_1038_s41568_023_00586_2 crossref_primary_10_1093_nar_gkac676 crossref_primary_10_1016_j_tcb_2021_05_009 crossref_primary_10_1534_genetics_120_303328 crossref_primary_10_3892_or_2024_8749 crossref_primary_10_1093_jxb_eraf272 crossref_primary_10_1007_s00018_016_2436_2 crossref_primary_10_1093_genetics_iyad052 crossref_primary_10_1080_14728222_2021_1954162 crossref_primary_10_1016_j_fbr_2024_100366 crossref_primary_10_1038_s41551_023_01157_4 crossref_primary_10_3390_ijms26062405 crossref_primary_10_1016_j_ceb_2018_03_006 crossref_primary_10_1093_nar_gkab110 crossref_primary_10_1093_nar_gkad533 crossref_primary_10_1158_0008_5472_CAN_20_2626 crossref_primary_10_3390_curroncol32070367 crossref_primary_10_1016_j_wneu_2022_12_119 crossref_primary_10_1016_j_gde_2021_06_011 crossref_primary_10_1089_crispr_2020_0034 crossref_primary_10_1038_s41417_024_00815_2 crossref_primary_10_3389_fbioe_2020_00711 crossref_primary_10_3892_ol_2025_14944 crossref_primary_10_1080_14737159_2016_1212662 crossref_primary_10_1089_dna_2019_4842 crossref_primary_10_1128_mSphere_00446_17 crossref_primary_10_3390_cancers14225619 crossref_primary_10_1007_s00204_020_02692_8 crossref_primary_10_1186_s13059_017_1220_4 crossref_primary_10_3390_v17060821 crossref_primary_10_1038_s41586_023_06506_6 crossref_primary_10_1101_gad_280545_116 crossref_primary_10_3390_genes12081229 crossref_primary_10_1073_pnas_1900308116 crossref_primary_10_1089_hum_2024_260 crossref_primary_10_3390_cells12101375 crossref_primary_10_3389_fcell_2021_699639 crossref_primary_10_1016_j_jbc_2024_107554 crossref_primary_10_1042_BST20190563 crossref_primary_10_71150_jm_2409006 crossref_primary_10_3390_genes10100791 crossref_primary_10_1038_s41388_020_1372_7 crossref_primary_10_3389_fcell_2021_640755 crossref_primary_10_1016_j_tibtech_2019_09_005 crossref_primary_10_1111_acel_13307 crossref_primary_10_1093_nar_gkaa483 crossref_primary_10_1038_s41467_018_07799_2 crossref_primary_10_1126_scitranslmed_aaf9246 crossref_primary_10_1038_s41598_020_58893_9 crossref_primary_10_1016_j_celrep_2025_116236 crossref_primary_10_1016_j_dnarep_2021_103206 crossref_primary_10_1038_s41551_017_0145_2 crossref_primary_10_1038_s41467_022_31415_z crossref_primary_10_1016_j_cej_2023_147802 crossref_primary_10_1002_1873_3468_14938 crossref_primary_10_1146_annurev_cancerbio_042324_103725 crossref_primary_10_1093_nar_gkac469 crossref_primary_10_3390_cancers17121936 crossref_primary_10_1093_biomethods_bpaf018 crossref_primary_10_3390_ijms222413674 crossref_primary_10_1172_JCI122085 crossref_primary_10_1016_j_cell_2018_03_050 crossref_primary_10_1038_s41388_023_02812_5 crossref_primary_10_1002_2211_5463_12954 crossref_primary_10_1038_s42003_023_05540_4 crossref_primary_10_1111_cas_15896 crossref_primary_10_1186_s12920_019_0545_0 crossref_primary_10_1016_j_jgr_2024_04_001 crossref_primary_10_1007_s42764_024_00131_x crossref_primary_10_1002_ijc_32670 crossref_primary_10_3390_ph18060895 crossref_primary_10_1080_03602532_2021_1955916 crossref_primary_10_1038_s41419_022_04644_9 crossref_primary_10_1007_s00439_018_1953_5 crossref_primary_10_1038_s41551_024_01252_0 crossref_primary_10_1016_j_molcel_2021_05_010 crossref_primary_10_1016_j_biochi_2022_07_013 crossref_primary_10_1111_bju_14576 crossref_primary_10_1016_j_canlet_2021_05_029 crossref_primary_10_1089_crispr_2022_0011 crossref_primary_10_1016_j_tcb_2017_08_005 crossref_primary_10_1038_s41392_022_01176_8 crossref_primary_10_1038_s41421_019_0109_7 crossref_primary_10_1016_j_tem_2016_02_004 crossref_primary_10_1073_pnas_2215958120 crossref_primary_10_1038_ncomms16112 crossref_primary_10_1093_nar_gkab151 crossref_primary_10_3390_cells11132099 crossref_primary_10_1016_j_canlet_2021_10_001 crossref_primary_10_2147_CMAR_S346052 crossref_primary_10_1093_nar_gkad776 crossref_primary_10_1111_febs_14816 crossref_primary_10_1038_s41467_021_26811_w crossref_primary_10_1016_j_tranon_2020_100986 crossref_primary_10_3390_cancers13225714 crossref_primary_10_3390_cancers12071991 crossref_primary_10_1007_s11864_017_0480_2 crossref_primary_10_3390_cancers12071769 crossref_primary_10_3390_cancers12092684 crossref_primary_10_1038_s41418_020_0521_4 crossref_primary_10_1016_j_jid_2019_03_1146 crossref_primary_10_1158_0008_5472_CAN_18_0273 crossref_primary_10_1080_09553002_2019_1524940 crossref_primary_10_3389_fcell_2021_642737 crossref_primary_10_1139_bcb_2017_0063 crossref_primary_10_26508_lsa_202402845 crossref_primary_10_1093_carcin_bgaa135 crossref_primary_10_1016_j_dnarep_2018_02_003 crossref_primary_10_1016_j_fertnstert_2018_11_035 crossref_primary_10_1080_07388551_2022_2042481 crossref_primary_10_1038_s41418_020_0493_4 crossref_primary_10_1534_genetics_117_203414 crossref_primary_10_1080_13543784_2022_2067527 crossref_primary_10_1038_s41556_023_01165_1 crossref_primary_10_2174_0929867327666200224102309 crossref_primary_10_1016_j_jsbmb_2021_105853 crossref_primary_10_1016_j_molcel_2019_08_023 crossref_primary_10_1038_s41588_019_0421_z crossref_primary_10_1111_his_13069 crossref_primary_10_1038_s41467_018_07729_2 crossref_primary_10_1111_febs_16933 crossref_primary_10_3389_fpls_2021_773052 crossref_primary_10_1007_s13577_021_00630_z crossref_primary_10_3390_cancers11071038 crossref_primary_10_1007_s11010_024_05131_9 crossref_primary_10_1016_j_clon_2020_12_006 crossref_primary_10_1101_gad_344044_120 crossref_primary_10_1016_j_preteyeres_2016_09_001 crossref_primary_10_1038_s41598_024_51509_6 crossref_primary_10_1371_journal_pcbi_1007480 crossref_primary_10_1172_JCI189511 crossref_primary_10_3390_cancers15010116 crossref_primary_10_1074_jbc_M116_745646 crossref_primary_10_1016_j_ccell_2019_12_015 crossref_primary_10_1093_nar_gkac1264 crossref_primary_10_1016_j_mrgentox_2021_503372 crossref_primary_10_1186_s12935_021_01953_5 crossref_primary_10_1016_j_lfs_2022_120409 crossref_primary_10_1016_j_dnarep_2025_103873 crossref_primary_10_1016_j_cpet_2023_02_006 crossref_primary_10_1158_1078_0432_CCR_18_1346 crossref_primary_10_1038_s41568_025_00819_6 crossref_primary_10_1007_s13402_023_00834_5 crossref_primary_10_3389_fphys_2019_01144 crossref_primary_10_1007_s11427_021_2057_0 crossref_primary_10_1073_pnas_2021963118 crossref_primary_10_1146_annurev_biochem_062917_012405 crossref_primary_10_1038_s44321_023_00008_8 crossref_primary_10_1042_BSR20180457 crossref_primary_10_1038_s41467_024_50788_x crossref_primary_10_1016_j_radonc_2024_110475 crossref_primary_10_3390_ijms22042167 crossref_primary_10_1007_s13238_020_00765_z crossref_primary_10_1016_j_omtn_2025_102482 crossref_primary_10_1016_j_bbagrm_2016_12_008 crossref_primary_10_1093_nar_gkab178 crossref_primary_10_1016_j_biocel_2020_105827 crossref_primary_10_1080_10428194_2019_1571197 crossref_primary_10_1093_plphys_kiab572 crossref_primary_10_1038_s41580_019_0169_4 crossref_primary_10_1002_ajmg_a_61890 crossref_primary_10_1158_1541_7786_MCR_21_0301 crossref_primary_10_3390_ijms21218182 crossref_primary_10_1371_journal_pgen_1009256 crossref_primary_10_1038_s41556_025_01760_4 crossref_primary_10_1093_nar_gkad160 crossref_primary_10_1186_s12943_019_1100_5 crossref_primary_10_1139_bcb_2016_0137 crossref_primary_10_3389_freae_2024_1445765 crossref_primary_10_1093_nar_gkae1099 crossref_primary_10_1002_mco2_388 crossref_primary_10_1134_S0026893316040038 crossref_primary_10_1016_j_jgg_2016_03_006 crossref_primary_10_1038_s41467_017_02146_3 crossref_primary_10_1016_j_redox_2022_102443 crossref_primary_10_2147_CMAR_S254412 crossref_primary_10_1080_21655979_2025_2458376 crossref_primary_10_3390_cancers12020399 crossref_primary_10_1007_s13238_021_00838_7 crossref_primary_10_1158_1078_0432_CCR_18_2207 crossref_primary_10_1186_s43556_021_00057_w crossref_primary_10_1093_toxsci_kfab005 crossref_primary_10_1136_gutjnl_2024_332782 crossref_primary_10_3389_fpls_2021_626528 crossref_primary_10_1016_j_tcb_2019_08_004 crossref_primary_10_1080_1744666X_2017_1392856 crossref_primary_10_1038_s41598_025_17538_5 crossref_primary_10_1186_s13148_022_01251_5 crossref_primary_10_1038_s41594_025_01514_8 crossref_primary_10_3390_v9050125 crossref_primary_10_1038_s42003_021_02597_x crossref_primary_10_1039_C9NR03696B crossref_primary_10_1016_j_neulet_2022_136740 crossref_primary_10_1016_j_molcel_2016_08_004 crossref_primary_10_1038_s41598_017_13695_4 crossref_primary_10_1371_journal_ppat_1005613 crossref_primary_10_1667_RADE_20_00195_1 crossref_primary_10_1038_s41467_024_49066_7 crossref_primary_10_2174_0929867325666180201114306 crossref_primary_10_1038_cdd_2016_88 crossref_primary_10_1016_j_semcancer_2019_02_005 crossref_primary_10_1080_15592294_2017_1395121 crossref_primary_10_1038_s41594_023_01107_3 crossref_primary_10_3390_cells12111530 crossref_primary_10_1111_febs_15852 crossref_primary_10_1002_2211_5463_13198 crossref_primary_10_1038_s41389_021_00365_4 crossref_primary_10_1186_s41021_025_00329_9 crossref_primary_10_1007_s12079_019_00538_2 crossref_primary_10_1016_j_dnarep_2019_01_007 crossref_primary_10_1093_nar_gkz977 crossref_primary_10_3390_ijms22020786 crossref_primary_10_1080_15384101_2017_1403681 crossref_primary_10_1016_j_biocel_2018_04_011 crossref_primary_10_1186_s12864_020_06865_8 crossref_primary_10_1038_ncomms12628 crossref_primary_10_1177_17588359221075458 crossref_primary_10_1371_journal_pgen_1006107 crossref_primary_10_1371_journal_pgen_1007439 crossref_primary_10_3390_genes10110901 crossref_primary_10_3390_ijms24054741 crossref_primary_10_1155_2020_4834965 crossref_primary_10_3390_ijms242115907 crossref_primary_10_1111_febs_16771 crossref_primary_10_1016_j_preteyeres_2021_101029 crossref_primary_10_3390_ijms22168458 crossref_primary_10_1016_j_prp_2024_155405 crossref_primary_10_1134_S0026893319030026 crossref_primary_10_1186_s12934_025_02654_8 crossref_primary_10_1038_s41419_018_0362_y crossref_primary_10_1002_jcp_31503 crossref_primary_10_1016_j_dnarep_2024_103781 crossref_primary_10_1080_09553002_2018_1564083 crossref_primary_10_1002_mco2_736 crossref_primary_10_1002_dvdy_357 crossref_primary_10_1038_s41598_019_44771_6 crossref_primary_10_1038_ng_3771 crossref_primary_10_1016_j_drup_2021_100744 crossref_primary_10_1038_s41588_020_00739_1 crossref_primary_10_3389_fonc_2022_949435 crossref_primary_10_1016_j_dnarep_2024_103787 crossref_primary_10_1038_s41467_019_08676_2 crossref_primary_10_1083_jcb_202106116 crossref_primary_10_1158_1078_0432_CCR_21_2846 crossref_primary_10_1007_s00203_019_01658_4 crossref_primary_10_1016_j_bbrc_2021_12_099 crossref_primary_10_1038_s41586_020_1943_3 crossref_primary_10_3390_cells9112342 crossref_primary_10_3389_fcell_2021_708763 crossref_primary_10_1016_j_omtn_2022_12_020 crossref_primary_10_3389_fnagi_2022_1018180 crossref_primary_10_1016_j_bulcan_2017_09_005 crossref_primary_10_1186_s13578_025_01367_0 crossref_primary_10_1002_hon_3225 crossref_primary_10_1038_s41388_021_02052_5 crossref_primary_10_1089_hum_2016_037 crossref_primary_10_1007_s11248_021_00287_2 crossref_primary_10_3390_ijms23063231 crossref_primary_10_1097_CAD_0000000000001682 crossref_primary_10_1002_glia_70028 crossref_primary_10_1128_msphere_00427_23 crossref_primary_10_1016_j_clinthera_2016_06_006 crossref_primary_10_1038_s12276_023_01139_1 crossref_primary_10_1371_journal_pgen_1010889 crossref_primary_10_1016_j_synbio_2023_08_007 crossref_primary_10_1016_j_dnarep_2025_103847 crossref_primary_10_1016_j_virusres_2016_11_006 crossref_primary_10_1016_j_envint_2021_106704 crossref_primary_10_3390_cells11010063 crossref_primary_10_3390_cancers14174077 crossref_primary_10_1631_jzus_B2000309 crossref_primary_10_1002_mco2_788 crossref_primary_10_1016_j_dnarep_2025_103850 crossref_primary_10_1093_nar_gkw261 crossref_primary_10_3389_fonc_2022_1061988 crossref_primary_10_1002_em_22087 crossref_primary_10_1093_nar_gkaa733 crossref_primary_10_1093_nar_gkaa975 crossref_primary_10_3390_ijms19113442 crossref_primary_10_1080_14796694_2024_2421160 crossref_primary_10_1016_j_semcdb_2019_04_010 crossref_primary_10_1016_j_mrrev_2021_108388 crossref_primary_10_1021_acs_biochem_5c00333 crossref_primary_10_1038_s41420_017_0008_3 crossref_primary_10_1134_S0026893323020139 crossref_primary_10_1186_s13227_022_00207_3 crossref_primary_10_1038_s43018_021_00200_0 crossref_primary_10_1089_crispr_2021_0039 crossref_primary_10_1016_j_dnarep_2024_103736 crossref_primary_10_1038_nsmb_3274 crossref_primary_10_3390_genes10020118 crossref_primary_10_1093_nar_gkw274 crossref_primary_10_1099_jgv_0_001034 crossref_primary_10_1158_0008_5472_CAN_22_1124 crossref_primary_10_1080_09553002_2021_1956001 crossref_primary_10_1128_JVI_01380_17 crossref_primary_10_7554_eLife_15129 crossref_primary_10_1155_2017_8193892 crossref_primary_10_1038_s41597_023_02331_8 crossref_primary_10_1371_journal_pone_0216674 crossref_primary_10_1038_s41556_021_00731_9 crossref_primary_10_1038_s41467_017_02653_3 crossref_primary_10_1099_jgv_0_001478 crossref_primary_10_1016_j_neo_2025_101164 crossref_primary_10_7554_eLife_42733 crossref_primary_10_1007_s00018_019_03140_2 crossref_primary_10_1038_s41467_024_49985_5 crossref_primary_10_1111_febs_15465 crossref_primary_10_1016_j_arr_2021_101264 crossref_primary_10_1186_s40694_019_0066_9 crossref_primary_10_3390_cancers13133130 crossref_primary_10_1016_j_ebiom_2018_11_025 crossref_primary_10_1371_journal_pgen_1006368 crossref_primary_10_1007_s42764_022_00063_4 crossref_primary_10_1016_j_omtm_2019_12_004 crossref_primary_10_3390_cancers11101593 crossref_primary_10_1016_j_ijbiomac_2020_07_039 crossref_primary_10_1038_s41388_020_01445_2 crossref_primary_10_3389_fcell_2022_1016951 crossref_primary_10_1007_s42764_021_00042_1 crossref_primary_10_1038_s41467_020_15845_1 crossref_primary_10_1038_nsmb_3251 crossref_primary_10_1038_s41467_017_02688_6 crossref_primary_10_1038_s41421_021_00283_0 crossref_primary_10_1093_nar_gkx586 crossref_primary_10_1089_crispr_2018_0054 crossref_primary_10_1097_MD_0000000000038036 crossref_primary_10_3390_genes11101159 crossref_primary_10_3389_fphar_2022_1015926 crossref_primary_10_1002_ijc_35170 crossref_primary_10_1038_s41420_024_02267_x |
| Cites_doi | 10.1146/annurev-genet-051710-150955 10.1084/jem.20131939 10.1038/nature03443 10.1074/jbc.M112.375014 10.1093/genetics/142.3.693 10.1016/j.cell.2013.05.023 10.1158/0008-5472.CAN-04-3055 10.1016/j.celrep.2014.04.005 10.1093/nar/gkv336 10.1126/science.1140321 10.1016/j.febslet.2010.05.023 10.1371/journal.pgen.1001005 10.1038/nrc2644 10.1128/MCB.25.13.5738-5751.2005 10.1038/sj.onc.1207604 10.1534/genetics.114.162297 10.1038/nature14216 10.1083/jcb.201401146 10.1038/nature14328 10.1093/nar/gkh842 10.1093/emboj/cdg206 10.1093/nar/gku174 10.1038/nsmb.1773 10.1038/nsmb.2961 10.1146/annurev-genet-110711-155540 10.1074/jbc.M809019200 10.1038/nsmb.2786 10.1016/j.cell.2010.03.012 10.1158/0008-5472.CAN-12-3313 10.1016/j.molcel.2012.05.052 10.1016/j.bbrc.2007.11.132 10.1016/j.molcel.2013.01.001 10.1038/nsmb.2105 10.1128/MCB.02043-06 10.1016/j.cell.2008.08.016 10.1016/j.molcel.2007.11.032 10.1101/cshperspect.a012757 10.15252/embj.201570610 10.1074/jbc.M801097200 10.1074/jbc.M110.110478 10.1073/pnas.1213431110 10.1038/nsmb1245 10.1146/annurev-med-050913-022545 10.1016/j.molcel.2013.04.032 10.1038/nsmb.2993 10.1093/nar/gkq379 10.1016/j.dnarep.2012.10.004 10.1016/j.celrep.2014.03.069 10.1016/j.molcel.2011.11.028 10.1158/2159-8290.CD-14-1092 10.1101/gad.503108 10.1111/j.1365-2958.2008.06116.x 10.1158/0008-5472.CAN-12-1470 10.1038/ncomms4561 10.1093/nar/gkl840 10.1038/nature01577 10.1074/jbc.M808906200 10.1038/nature14184 10.1038/nrg3729 10.1158/2159-8290.CD-13-0891 10.1093/nar/gkv160 10.1038/nature09803 10.1371/journal.pgen.1000110 10.1101/gad.252478.114 10.1038/35018134 10.1038/onc.2012.391 10.1128/MCB.24.23.10381-10389.2004 10.1038/nature12477 10.1038/nature14157 10.1016/j.tig.2008.08.007 10.1146/annurev-genet-110410-132435 10.1002/bies.201000087 10.1016/j.molcel.2013.01.002 10.1093/nar/gku1334 10.1016/j.cell.2012.04.023 10.1200/JCO.2005.05.4171 10.1093/nar/gku1384 10.1371/journal.pgen.1004943 10.1371/journal.pgen.1004899 10.1016/j.molcel.2011.03.019 10.1074/jbc.M114.578823 10.1016/j.molcel.2011.11.010 10.1038/nrc3537 10.1016/j.dnarep.2007.12.008 10.1016/j.molcel.2009.12.026 10.1016/j.celrep.2013.08.034 10.1371/journal.pgen.1003277 10.1074/jbc.M113.484493 10.1016/j.celrep.2015.02.053 10.1371/journal.pbio.0020021 10.1038/nsmb.1940 10.1016/j.cub.2009.05.057 10.1016/j.dnarep.2014.03.014 10.1093/nar/gkt1263 10.1074/jbc.272.45.28194 10.1016/j.molcel.2012.11.020 10.1038/35006670 10.1038/nature01585 10.1016/j.molcel.2008.02.028 10.1534/genetics.107.076539 10.1128/MCB.01124-09 10.1038/nature03445 10.1038/nature07955 10.1073/pnas.1106971108 10.1038/nature06168 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.tcb.2015.07.009 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1879-3088 |
| EndPage | 64 |
| ExternalDocumentID | PMC4862604 26437586 10_1016_j_tcb_2015_07_009 S0962892415001427 1_s2_0_S0962892415001427 |
| Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: P50 CA168504 – fundername: NCI NIH HHS grantid: P50CA168504 – fundername: NHLBI NIH HHS grantid: R01HL52725 – fundername: NHLBI NIH HHS grantid: R01 HL052725 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 186 1B1 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX ADVLN AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D0L DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IH2 IHE J1W KOM LX3 M41 MO0 MVM N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XPP Y6R YNT Z5R ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW RCE RIG VQA AAIAV ABYKQ AJBFU DOVZS ZA5 9DU AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c692t-62daa2ac3fe7e8993197da7539d3dff149bf8a979e1acd9fdca04c787eb496c13 |
| ISICitedReferencesCount | 1136 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000368206000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0962-8924 |
| IngestDate | Tue Sep 30 16:48:47 EDT 2025 Sun Sep 28 07:02:33 EDT 2025 Wed Feb 19 02:41:49 EST 2025 Tue Nov 18 21:56:45 EST 2025 Sat Nov 29 03:09:39 EST 2025 Fri Feb 23 02:20:26 EST 2024 Sun Feb 23 10:19:08 EST 2025 Tue Oct 14 19:30:32 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | homologous recombination DNA repair Polθ alternative end joining synthetic lethality |
| Language | English |
| License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c692t-62daa2ac3fe7e8993197da7539d3dff149bf8a979e1acd9fdca04c787eb496c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-2 |
| OpenAccessLink | http://doi.org/10.1016/j.tcb.2015.07.009 |
| PMID | 26437586 |
| PQID | 1753230558 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4862604 proquest_miscellaneous_1753230558 pubmed_primary_26437586 crossref_citationtrail_10_1016_j_tcb_2015_07_009 crossref_primary_10_1016_j_tcb_2015_07_009 elsevier_sciencedirect_doi_10_1016_j_tcb_2015_07_009 elsevier_clinicalkeyesjournals_1_s2_0_S0962892415001427 elsevier_clinicalkey_doi_10_1016_j_tcb_2015_07_009 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-01-01 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Trends in cell biology |
| PublicationTitleAlternate | Trends Cell Biol |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Simandlova (bib0830) 2013; 288 Sung (bib0965) 1997; 272 Nik-Zainal (bib1010) 2012; 149 Bunting (bib0660) 2010; 141 Symington, Gautier (bib0585) 2011; 45 Heyer (bib0550) 2010; 44 Zahn (bib0945) 2015; 22 Wang, Haber (bib0725) 2004; 2 Ivanov (bib0980) 1996; 142 Lok (bib0990) 2013; 32 Moldovan (bib0870) 2010; 30 Chen (bib0605) 2011; 18 Callen (bib0675) 2013; 153 Sommers (bib0815) 2009; 284 Grabarz (bib0825) 2013; 5 Andersen, Sekelsky (bib0840) 2010; 32 Wang (bib0680) 2014; 28 Klein (bib0935) 2008; 7 Wang (bib0575) 2006; 34 Kent (bib0940) 2015; 22 Huertas, Jackson (bib0595) 2009; 284 Jimeno (bib0645) 2015; 43 Ceccaldi (bib0770) 2015; 518 Difilippantonio (bib0545) 2000; 404 Simsek, Jasin (bib0560) 2010; 17 Kohzaki (bib0835) 2007; 27 Shima (bib1000) 2004; 24 Veaute (bib0910) 2003; 423 Menissier de Murcia (bib0930) 2003; 22 Gari (bib0850) 2008; 29 Sarangi (bib0640) 2015; 11 Matsuoka (bib0705) 2007; 316 Barton (bib1050) 2014; 206 Truong (bib0590) 2013; 110 Lee, Lee (bib0775) 2007; 176 Deng (bib0735) 2014; 21 O’Connor (bib0790) 2013; 73 Carreira, Kowalczykowski (bib0740) 2011; 108 Peterson (bib0720) 2013; 49 Islam (bib0800) 2012; 287 Bryant (bib0920) 2005; 434 Kojic (bib0975) 2008; 67 Schwendener (bib0795) 2010; 285 Bennardo (bib0610) 2008; 4 Badie (bib0650) 2015; 34 Corneo (bib0570) 2007; 449 Robert (bib0630) 2011; 471 Barber (bib0845) 2008; 135 Wang (bib0580) 2005; 65 Chen (bib0730) 2013; 50 Krejci (bib0755) 2003; 423 Esashi (bib0745) 2007; 14 Chiruvella (bib0535) 2013; 5 Chan (bib0900) 2010; 6 Gravel (bib0820) 2008; 22 Li (bib0780) 2008; 30 Adelman, Boulton (bib0860) 2010; 584 Xu (bib0695) 2015; 521 Escribano-Diaz (bib0665) 2013; 49 Kim (bib0810) 2015; 43 Wang (bib0715) 2013; 9 Boersma (bib0700) 2015; 521 Popova (bib1005) 2012; 72 Chiolo (bib0760) 2005; 25 Lord (bib1045) 2015; 66 Alexandrov (bib1015) 2013; 500 Ayoub (bib0750) 2009; 19 Liang (bib0970) 2015; 10 Tomimatsu (bib0625) 2014; 5 Bunting, Nussenzweig (bib0885) 2013; 13 Yousefzadeh, Wood (bib1030) 2013; 12 Murina (bib0960) 2014; 7 Paliwal (bib0805) 2014; 42 Treuner (bib0995) 2004; 23 Kennedy, D’Andrea (bib1035) 2006; 24 McVey, Lee (bib0905) 2008; 24 Ward (bib0875) 2010; 37 Bentley (bib0880) 2004; 32 Chapman (bib0670) 2013; 49 Mateos-Gomez (bib0890) 2015; 518 Wu (bib0985) 2008; 283 Moldovan (bib0765) 2012; 45 Yu, McVey (bib0785) 2010; 38 Hu (bib0655) 2014; 4 Zhang, Jasin (bib0565) 2011; 18 Cremona (bib0635) 2012; 45 Sturzenegger (bib0600) 2014; 289 Zong (bib0685) 2015; 43 Bast (bib1040) 2009; 9 Watkins (bib1020) 2015; 5 Stafa (bib0855) 2014; 196 Li (bib0710) 2000; 406 Helleday (bib1025) 2014; 15 Aparicio (bib0530) 2014; 19 Bakr (bib0865) 2015; 43 Bothmer (bib0690) 2011; 42 Farmer (bib0915) 2005; 434 Karanam (bib0540) 2012; 47 Beck (bib0925) 2014; 42 Deriano, Roth (bib0555) 2013; 47 Polato (bib0620) 2014; 211 Audebert (bib0895) 2008; 369 Yun, Hiom (bib0615) 2009; 459 Unno (bib0955) 2014; 7 Howard (bib0950) 2015; 11 Beck (10.1016/j.tcb.2015.07.009_bib0925) 2014; 42 Kohzaki (10.1016/j.tcb.2015.07.009_bib0835) 2007; 27 Barber (10.1016/j.tcb.2015.07.009_bib0845) 2008; 135 Wang (10.1016/j.tcb.2015.07.009_bib0680) 2014; 28 Klein (10.1016/j.tcb.2015.07.009_bib0935) 2008; 7 Lord (10.1016/j.tcb.2015.07.009_bib1045) 2015; 66 Sturzenegger (10.1016/j.tcb.2015.07.009_bib0600) 2014; 289 Wang (10.1016/j.tcb.2015.07.009_bib0580) 2005; 65 Gravel (10.1016/j.tcb.2015.07.009_bib0820) 2008; 22 Islam (10.1016/j.tcb.2015.07.009_bib0800) 2012; 287 Treuner (10.1016/j.tcb.2015.07.009_bib0995) 2004; 23 Lee (10.1016/j.tcb.2015.07.009_bib0775) 2007; 176 Esashi (10.1016/j.tcb.2015.07.009_bib0745) 2007; 14 Yu (10.1016/j.tcb.2015.07.009_bib0785) 2010; 38 Barton (10.1016/j.tcb.2015.07.009_bib1050) 2014; 206 Menissier de Murcia (10.1016/j.tcb.2015.07.009_bib0930) 2003; 22 Bennardo (10.1016/j.tcb.2015.07.009_bib0610) 2008; 4 Popova (10.1016/j.tcb.2015.07.009_bib1005) 2012; 72 Difilippantonio (10.1016/j.tcb.2015.07.009_bib0545) 2000; 404 Mateos-Gomez (10.1016/j.tcb.2015.07.009_bib0890) 2015; 518 Paliwal (10.1016/j.tcb.2015.07.009_bib0805) 2014; 42 Huertas (10.1016/j.tcb.2015.07.009_bib0595) 2009; 284 Ceccaldi (10.1016/j.tcb.2015.07.009_bib0770) 2015; 518 Krejci (10.1016/j.tcb.2015.07.009_bib0755) 2003; 423 Jimeno (10.1016/j.tcb.2015.07.009_bib0645) 2015; 43 Kojic (10.1016/j.tcb.2015.07.009_bib0975) 2008; 67 Wang (10.1016/j.tcb.2015.07.009_bib0725) 2004; 2 Wu (10.1016/j.tcb.2015.07.009_bib0985) 2008; 283 Escribano-Diaz (10.1016/j.tcb.2015.07.009_bib0665) 2013; 49 Karanam (10.1016/j.tcb.2015.07.009_bib0540) 2012; 47 Murina (10.1016/j.tcb.2015.07.009_bib0960) 2014; 7 Bothmer (10.1016/j.tcb.2015.07.009_bib0690) 2011; 42 Zahn (10.1016/j.tcb.2015.07.009_bib0945) 2015; 22 Peterson (10.1016/j.tcb.2015.07.009_bib0720) 2013; 49 Gari (10.1016/j.tcb.2015.07.009_bib0850) 2008; 29 Nik-Zainal (10.1016/j.tcb.2015.07.009_bib1010) 2012; 149 Bentley (10.1016/j.tcb.2015.07.009_bib0880) 2004; 32 Watkins (10.1016/j.tcb.2015.07.009_bib1020) 2015; 5 Tomimatsu (10.1016/j.tcb.2015.07.009_bib0625) 2014; 5 Unno (10.1016/j.tcb.2015.07.009_bib0955) 2014; 7 Stafa (10.1016/j.tcb.2015.07.009_bib0855) 2014; 196 Helleday (10.1016/j.tcb.2015.07.009_bib1025) 2014; 15 Deng (10.1016/j.tcb.2015.07.009_bib0735) 2014; 21 Chen (10.1016/j.tcb.2015.07.009_bib0730) 2013; 50 Cremona (10.1016/j.tcb.2015.07.009_bib0635) 2012; 45 Bakr (10.1016/j.tcb.2015.07.009_bib0865) 2015; 43 Deriano (10.1016/j.tcb.2015.07.009_bib0555) 2013; 47 Moldovan (10.1016/j.tcb.2015.07.009_bib0765) 2012; 45 McVey (10.1016/j.tcb.2015.07.009_bib0905) 2008; 24 Li (10.1016/j.tcb.2015.07.009_bib0710) 2000; 406 Bryant (10.1016/j.tcb.2015.07.009_bib0920) 2005; 434 Truong (10.1016/j.tcb.2015.07.009_bib0590) 2013; 110 Badie (10.1016/j.tcb.2015.07.009_bib0650) 2015; 34 Ward (10.1016/j.tcb.2015.07.009_bib0875) 2010; 37 Li (10.1016/j.tcb.2015.07.009_bib0780) 2008; 30 Grabarz (10.1016/j.tcb.2015.07.009_bib0825) 2013; 5 Moldovan (10.1016/j.tcb.2015.07.009_bib0870) 2010; 30 Corneo (10.1016/j.tcb.2015.07.009_bib0570) 2007; 449 Lok (10.1016/j.tcb.2015.07.009_bib0990) 2013; 32 O’Connor (10.1016/j.tcb.2015.07.009_bib0790) 2013; 73 Bunting (10.1016/j.tcb.2015.07.009_bib0885) 2013; 13 Zong (10.1016/j.tcb.2015.07.009_bib0685) 2015; 43 Bast (10.1016/j.tcb.2015.07.009_bib1040) 2009; 9 Veaute (10.1016/j.tcb.2015.07.009_bib0910) 2003; 423 Farmer (10.1016/j.tcb.2015.07.009_bib0915) 2005; 434 Simsek (10.1016/j.tcb.2015.07.009_bib0560) 2010; 17 Symington (10.1016/j.tcb.2015.07.009_bib0585) 2011; 45 Sarangi (10.1016/j.tcb.2015.07.009_bib0640) 2015; 11 Andersen (10.1016/j.tcb.2015.07.009_bib0840) 2010; 32 Chan (10.1016/j.tcb.2015.07.009_bib0900) 2010; 6 Matsuoka (10.1016/j.tcb.2015.07.009_bib0705) 2007; 316 Ayoub (10.1016/j.tcb.2015.07.009_bib0750) 2009; 19 Boersma (10.1016/j.tcb.2015.07.009_bib0700) 2015; 521 Yun (10.1016/j.tcb.2015.07.009_bib0615) 2009; 459 Kent (10.1016/j.tcb.2015.07.009_bib0940) 2015; 22 Schwendener (10.1016/j.tcb.2015.07.009_bib0795) 2010; 285 Heyer (10.1016/j.tcb.2015.07.009_bib0550) 2010; 44 Zhang (10.1016/j.tcb.2015.07.009_bib0565) 2011; 18 Wang (10.1016/j.tcb.2015.07.009_bib0715) 2013; 9 Wang (10.1016/j.tcb.2015.07.009_bib0575) 2006; 34 Kim (10.1016/j.tcb.2015.07.009_bib0810) 2015; 43 Xu (10.1016/j.tcb.2015.07.009_bib0695) 2015; 521 Audebert (10.1016/j.tcb.2015.07.009_bib0895) 2008; 369 Adelman (10.1016/j.tcb.2015.07.009_bib0860) 2010; 584 Polato (10.1016/j.tcb.2015.07.009_bib0620) 2014; 211 Chapman (10.1016/j.tcb.2015.07.009_bib0670) 2013; 49 Chen (10.1016/j.tcb.2015.07.009_bib0605) 2011; 18 Hu (10.1016/j.tcb.2015.07.009_bib0655) 2014; 4 Alexandrov (10.1016/j.tcb.2015.07.009_bib1015) 2013; 500 Yousefzadeh (10.1016/j.tcb.2015.07.009_bib1030) 2013; 12 Kennedy (10.1016/j.tcb.2015.07.009_bib1035) 2006; 24 Bunting (10.1016/j.tcb.2015.07.009_bib0660) 2010; 141 Chiruvella (10.1016/j.tcb.2015.07.009_bib0535) 2013; 5 Liang (10.1016/j.tcb.2015.07.009_bib0970) 2015; 10 Ivanov (10.1016/j.tcb.2015.07.009_bib0980) 1996; 142 Howard (10.1016/j.tcb.2015.07.009_bib0950) 2015; 11 Robert (10.1016/j.tcb.2015.07.009_bib0630) 2011; 471 Sung (10.1016/j.tcb.2015.07.009_bib0965) 1997; 272 Callen (10.1016/j.tcb.2015.07.009_bib0675) 2013; 153 Simandlova (10.1016/j.tcb.2015.07.009_bib0830) 2013; 288 Sommers (10.1016/j.tcb.2015.07.009_bib0815) 2009; 284 Carreira (10.1016/j.tcb.2015.07.009_bib0740) 2011; 108 Aparicio (10.1016/j.tcb.2015.07.009_bib0530) 2014; 19 Shima (10.1016/j.tcb.2015.07.009_bib1000) 2004; 24 Chiolo (10.1016/j.tcb.2015.07.009_bib0760) 2005; 25 23945592 - Nature. 2013 Aug 22;500(7463):415-21 24842372 - J Exp Med. 2014 Jun 2;211(6):1027-36 20617203 - PLoS Genet. 2010 Jul;6(7):e1001005 25122754 - J Biol Chem. 2014 Sep 26;289(39):27314-26 24608368 - Nat Struct Mol Biol. 2014 Apr;21(4):405-12 20348101 - J Biol Chem. 2010 May 21;285(21):15739-45 22933060 - Cancer Res. 2012 Nov 1;72(21):5454-62 23436799 - Cancer Res. 2013 Apr 15;73(8):2529-39 17565964 - Genetics. 2007 Aug;176(4):2003-14 24496010 - Genetics. 2014 Apr;196(4):1017-28 24108124 - J Biol Chem. 2013 Nov 22;288(47):34168-80 14737196 - PLoS Biol. 2004 Jan;2(1):E21 25520194 - Nucleic Acids Res. 2015 Jan;43(2):893-903 18337252 - J Biol Chem. 2008 May 23;283(21):14883-92 20690856 - Annu Rev Genet. 2010;44:113-39 8849880 - Genetics. 1996 Mar;142(3):693-704 24319145 - Nucleic Acids Res. 2014 Feb;42(4):2380-90 15964827 - Mol Cell Biol. 2005 Jul;25(13):5738-51 15829967 - Nature. 2005 Apr 14;434(7035):917-21 22645136 - J Biol Chem. 2012 Jul 6;287(28):23808-18 23333306 - Mol Cell. 2013 Mar 7;49(5):872-83 18243065 - DNA Repair (Amst). 2008 May 3;7(5):686-93 17283053 - Mol Cell Biol. 2007 Apr;27(8):2812-20 12748644 - Nature. 2003 May 15;423(6937):305-9 25267294 - J Cell Biol. 2014 Sep 29;206(7):877-94 25766694 - EMBO J. 2015 Mar 12;34(6):828 23706822 - Mol Cell. 2013 May 23;50(4):589-600 18206976 - Mol Cell. 2008 Jan 18;29(1):141-8 12748645 - Nature. 2003 May 15;423(6937):309-12 24981601 - Nat Rev Genet. 2014 Sep;15(9):585-98 23468639 - PLoS Genet. 2013;9(2):e1003277 25801034 - Cell Rep. 2015 Mar 31;10(12):1947-56 25753674 - Nucleic Acids Res. 2015 Mar 31;43(6):3154-66 20460465 - Nucleic Acids Res. 2010 Sep;38(17):5706-17 19202191 - J Biol Chem. 2009 Apr 3;284(14):9558-65 25569253 - PLoS Genet. 2015 Jan;11(1):e1004899 15829966 - Nature. 2005 Apr 14;434(7035):913-7 18054777 - Biochem Biophys Res Commun. 2008 May 9;369(3):982-8 21549309 - Mol Cell. 2011 May 6;42(3):319-29 23219161 - DNA Repair (Amst). 2013 Jan 1;12(1):1-9 18957201 - Cell. 2008 Oct 17;135(2):261-71 22841003 - Mol Cell. 2012 Jul 27;47(2):320-9 24598253 - Nucleic Acids Res. 2014 May;42(9):5616-32 20362325 - Cell. 2010 Apr 16;141(2):243-54 25916843 - Nucleic Acids Res. 2015 May 26;43(10):4950-61 25252691 - Cancer Discov. 2014 Dec;4(12):1430-47 19150983 - J Biol Chem. 2009 Mar 20;284(12):7505-17 12727891 - EMBO J. 2003 May 1;22(9):2255-63 15466592 - Nucleic Acids Res. 2004;32(17):5249-59 25512557 - Genes Dev. 2014 Dec 15;28(24):2693-8 22964643 - Oncogene. 2013 Jul 25;32(30):3552-8 19357644 - Nature. 2009 May 21;459(7245):460-3 9353267 - J Biol Chem. 1997 Nov 7;272(45):28194-7 19461667 - Nat Rev Cancer. 2009 Jun;9(6):415-28 10761921 - Nature. 2000 Mar 30;404(6777):510-4 23727112 - Cell. 2013 Jun 6;153(6):1266-80 25643323 - Nat Struct Mol Biol. 2015 Mar;22(3):230-7 18208529 - Mol Microbiol. 2008 Mar;67(5):1156-68 25770156 - Cancer Discov. 2015 May;5(5):488-505 25642963 - Nature. 2015 Feb 12;518(7538):258-62 18923075 - Genes Dev. 2008 Oct 15;22(20):2767-72 25775267 - Nat Struct Mol Biol. 2015 Apr;22(4):304-11 16896009 - J Clin Oncol. 2006 Aug 10;24(23):3799-808 23273981 - Mol Cell. 2013 Feb 21;49(4):657-67 25799990 - Nature. 2015 May 28;521(7553):537-40 17515904 - Nat Struct Mol Biol. 2007 Jun;14(6):468-74 21131978 - Nat Struct Mol Biol. 2011 Jan;18(1):80-4 21670257 - Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10448-53 20122407 - Mol Cell. 2010 Jan 29;37(2):259-72 24705021 - Nat Commun. 2014;5:3561 24794430 - Cell Rep. 2014 May 22;7(4):1039-47 15122331 - Oncogene. 2004 Jun 10;23(27):4655-61 15899791 - Cancer Res. 2005 May 15;65(10):4020-30 25629353 - PLoS Genet. 2015 Jan;11(1):e1004943 24050180 - Annu Rev Genet. 2013;47:433-55 25341009 - Annu Rev Med. 2015;66:455-70 20493853 - FEBS Lett. 2010 Sep 10;584(17):3709-16 21841787 - Nat Struct Mol Biol. 2011 Sep;18(9):1015-9 17525332 - Science. 2007 May 25;316(5828):1160-6 21368826 - Nature. 2011 Mar 3;471(7336):74-9 23760025 - Nat Rev Cancer. 2013 Jul;13(7):443-54 24794434 - Cell Rep. 2014 May 22;7(4):1030-8 23610439 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7720-5 20208544 - Nat Struct Mol Biol. 2010 Apr;17(4):410-6 19995904 - Mol Cell Biol. 2010 Feb;30(4):1088-96 17088286 - Nucleic Acids Res. 2006;34(21):6170-82 15542845 - Mol Cell Biol. 2004 Dec;24(23):10381-9 24095737 - Cell Rep. 2013 Oct 17;5(1):21-8 18584027 - PLoS Genet. 2008 Jun;4(6):e1000110 22285753 - Mol Cell. 2012 Feb 10;45(3):422-32 24746645 - DNA Repair (Amst). 2014 Jul;19:169-75 25567988 - Nucleic Acids Res. 2015 Jan;43(2):987-99 10910365 - Nature. 2000 Jul 13;406(6792):210-5 19540122 - Curr Biol. 2009 Jul 14;19(13):1075-85 18471978 - Mol Cell. 2008 May 9;30(3):325-35 18809224 - Trends Genet. 2008 Nov;24(11):529-38 22153967 - Mol Cell. 2012 Jan 13;45(1):75-86 22608083 - Cell. 2012 May 25;149(5):994-1007 17898768 - Nature. 2007 Sep 27;449(7161):483-6 23637284 - Cold Spring Harb Perspect Biol. 2013 May;5(5):a012757 21910633 - Annu Rev Genet. 2011;45:247-71 23333305 - Mol Cell. 2013 Mar 7;49(5):858-71 25799992 - Nature. 2015 May 28;521(7553):541-4 20967781 - Bioessays. 2010 Dec;32(12):1058-66 25642960 - Nature. 2015 Feb 12;518(7538):254-7 |
| References_xml | – volume: 14 start-page: 468 year: 2007 end-page: 474 ident: bib0745 article-title: Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2 publication-title: Nat. Struct. Mol. Biol. – volume: 44 start-page: 113 year: 2010 end-page: 139 ident: bib0550 article-title: Regulation of homologous recombination in eukaryotes publication-title: Annu. Rev. Genet. – volume: 284 start-page: 7505 year: 2009 end-page: 7517 ident: bib0815 article-title: FANCJ uses its motor ATPase to destabilize protein–DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange publication-title: J. Biol. Chem. – volume: 404 start-page: 510 year: 2000 end-page: 514 ident: bib0545 article-title: DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation publication-title: Nature – volume: 34 start-page: 6170 year: 2006 end-page: 6182 ident: bib0575 article-title: PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways publication-title: Nucleic Acids Res. – volume: 471 start-page: 74 year: 2011 end-page: 79 ident: bib0630 article-title: HDACs link the DNA damage response, processing of double-strand breaks and autophagy publication-title: Nature – volume: 584 start-page: 3709 year: 2010 end-page: 3716 ident: bib0860 article-title: Metabolism of postsynaptic recombination intermediates publication-title: FEBS Lett. – volume: 67 start-page: 1156 year: 2008 end-page: 1168 ident: bib0975 article-title: Compensatory role for Rad52 during recombinational repair in publication-title: Mol. Microbiol. – volume: 4 start-page: e1000110 year: 2008 ident: bib0610 article-title: Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair publication-title: PLoS Genet. – volume: 37 start-page: 259 year: 2010 end-page: 272 ident: bib0875 article-title: Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair publication-title: Mol. Cell – volume: 28 start-page: 2693 year: 2014 end-page: 2698 ident: bib0680 article-title: PTIP associates with Artemis to dictate DNA repair pathway choice publication-title: Genes Dev. – volume: 43 start-page: 987 year: 2015 end-page: 999 ident: bib0645 article-title: Neddylation inhibits CtIP-mediated resection and regulates DNA double strand break repair pathway choice publication-title: Nucleic Acids Res. – volume: 141 start-page: 243 year: 2010 end-page: 254 ident: bib0660 article-title: 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks publication-title: Cell – volume: 521 start-page: 541 year: 2015 end-page: 544 ident: bib0695 article-title: REV7 counteracts DNA double-strand break resection and affects PARP inhibition publication-title: Nature – volume: 500 start-page: 415 year: 2013 end-page: 421 ident: bib1015 article-title: Signatures of mutational processes in human cancer publication-title: Nature – volume: 153 start-page: 1266 year: 2013 end-page: 1280 ident: bib0675 article-title: 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions publication-title: Cell – volume: 49 start-page: 858 year: 2013 end-page: 871 ident: bib0670 article-title: RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection publication-title: Mol. Cell – volume: 284 start-page: 9558 year: 2009 end-page: 9565 ident: bib0595 article-title: Human CtIP mediates cell cycle control of DNA end resection and double strand break repair publication-title: J. Biol. Chem. – volume: 434 start-page: 917 year: 2005 end-page: 921 ident: bib0915 article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy publication-title: Nature – volume: 459 start-page: 460 year: 2009 end-page: 463 ident: bib0615 article-title: CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle publication-title: Nature – volume: 7 start-page: 1030 year: 2014 end-page: 1038 ident: bib0960 article-title: FANCD2 and CtIP cooperate to repair DNA interstrand crosslinks publication-title: Cell Rep. – volume: 518 start-page: 254 year: 2015 end-page: 257 ident: bib0890 article-title: Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination publication-title: Nature – volume: 9 start-page: 415 year: 2009 end-page: 428 ident: bib1040 article-title: The biology of ovarian cancer: new opportunities for translation publication-title: Nat. Rev. Cancer – volume: 38 start-page: 5706 year: 2010 end-page: 5717 ident: bib0785 article-title: Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions publication-title: Nucleic Acids Res. – volume: 5 start-page: 3561 year: 2014 ident: bib0625 article-title: Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice publication-title: Nat. Commun. – volume: 34 start-page: 828 year: 2015 ident: bib0650 article-title: BRCA1 and CtIP promote alternative non-homologous end-joining at uncapped telomeres publication-title: EMBO J. – volume: 24 start-page: 10381 year: 2004 end-page: 10389 ident: bib1000 article-title: The mouse genomic instability mutation chaos1 is an allele of Polq that exhibits genetic interaction with Atm publication-title: Mol. Cell. Biol. – volume: 19 start-page: 169 year: 2014 end-page: 175 ident: bib0530 article-title: DNA double-strand break repair pathway choice and cancer publication-title: DNA Repair – volume: 65 start-page: 4020 year: 2005 end-page: 4030 ident: bib0580 article-title: DNA ligase III as a candidate component of backup pathways of nonhomologous end joining publication-title: Cancer Res. – volume: 5 start-page: 488 year: 2015 end-page: 505 ident: bib1020 article-title: Genomic complexity profiling reveals that HORMAD1 overexpression contributes to homologous recombination deficiency in triple-negative breast cancers publication-title: Cancer Discov. – volume: 5 start-page: 21 year: 2013 end-page: 28 ident: bib0825 article-title: A role for BLM in double-strand break repair pathway choice: prevention of CtIP/Mre11-mediated alternative nonhomologous end-joining publication-title: Cell Rep. – volume: 142 start-page: 693 year: 1996 end-page: 704 ident: bib0980 article-title: Genetic requirements for the single-strand annealing pathway of double-strand break repair in publication-title: Genetics – volume: 72 start-page: 5454 year: 2012 end-page: 5462 ident: bib1005 article-title: Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation publication-title: Cancer Res. – volume: 19 start-page: 1075 year: 2009 end-page: 1085 ident: bib0750 article-title: The carboxyl terminus of Brca2 links the disassembly of Rad51 complexes to mitotic entry publication-title: Curr. Biol. – volume: 287 start-page: 23808 year: 2012 end-page: 23818 ident: bib0800 article-title: A variant of the breast cancer type 2 susceptibility protein (BRC) repeat is essential for the RECQL5 helicase to interact with RAD51 recombinase for genome stabilization publication-title: J. Biol. Chem. – volume: 22 start-page: 2767 year: 2008 end-page: 2772 ident: bib0820 article-title: DNA helicases Sgs1 and BLM promote DNA double-strand break resection publication-title: Genes Dev. – volume: 406 start-page: 210 year: 2000 end-page: 215 ident: bib0710 article-title: Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response publication-title: Nature – volume: 272 start-page: 28194 year: 1997 end-page: 28197 ident: bib0965 article-title: Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase publication-title: J. Biol. Chem. – volume: 30 start-page: 325 year: 2008 end-page: 335 ident: bib0780 article-title: Microarray-based genetic screen defines SAW1, a gene required for Rad1/Rad10-dependent processing of recombination intermediates publication-title: Mol. Cell – volume: 423 start-page: 309 year: 2003 end-page: 312 ident: bib0910 article-title: The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments publication-title: Nature – volume: 32 start-page: 3552 year: 2013 end-page: 3558 ident: bib0990 article-title: RAD52 inactivation is synthetically lethal with deficiencies in BRCA1 and PALB2 in addition to BRCA2 through RAD51-mediated homologous recombination publication-title: Oncogene – volume: 47 start-page: 433 year: 2013 end-page: 455 ident: bib0555 article-title: Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage publication-title: Annu. Rev. Genet. – volume: 176 start-page: 2003 year: 2007 end-page: 2014 ident: bib0775 article-title: Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining publication-title: Genetics – volume: 45 start-page: 75 year: 2012 end-page: 86 ident: bib0765 article-title: Inhibition of homologous recombination by the PCNA-interacting protein PARI publication-title: Mol. Cell – volume: 283 start-page: 14883 year: 2008 end-page: 14892 ident: bib0985 article-title: Rad51 protein controls Rad52-mediated DNA annealing publication-title: J. Biol. Chem. – volume: 22 start-page: 2255 year: 2003 end-page: 2263 ident: bib0930 article-title: Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse publication-title: EMBO J. – volume: 149 start-page: 994 year: 2012 end-page: 1007 ident: bib1010 article-title: The life history of 21 breast cancers publication-title: Cell – volume: 66 start-page: 455 year: 2015 end-page: 470 ident: bib1045 article-title: Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors publication-title: Annu. Rev. Med. – volume: 24 start-page: 529 year: 2008 end-page: 538 ident: bib0905 article-title: MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings publication-title: Trends Genet. – volume: 6 start-page: e1001005 year: 2010 ident: bib0900 article-title: Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in publication-title: PLoS Genet. – volume: 45 start-page: 422 year: 2012 end-page: 432 ident: bib0635 article-title: Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint publication-title: Mol. Cell – volume: 7 start-page: 686 year: 2008 end-page: 693 ident: bib0935 article-title: The consequences of Rad51 overexpression for normal and tumor cells publication-title: DNA Repair – volume: 423 start-page: 305 year: 2003 end-page: 309 ident: bib0755 article-title: DNA helicase Srs2 disrupts the Rad51 presynaptic filament publication-title: Nature – volume: 11 start-page: e1004899 year: 2015 ident: bib0640 article-title: Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein publication-title: PLoS Genet. – volume: 211 start-page: 1027 year: 2014 end-page: 1036 ident: bib0620 article-title: CtIP-mediated resection is essential for viability and can operate independently of BRCA1 publication-title: J. Exp. Med. – volume: 7 start-page: 1039 year: 2014 end-page: 1047 ident: bib0955 article-title: FANCD2 binds CtIP and regulates DNA-end resection during DNA interstrand crosslink repair publication-title: Cell Rep. – volume: 110 start-page: 7720 year: 2013 end-page: 7725 ident: bib0590 article-title: Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 23 start-page: 4655 year: 2004 end-page: 4661 ident: bib0995 article-title: Loss of Rad52 partially rescues tumorigenesis and T-cell maturation in Atm-deficient mice publication-title: Oncogene – volume: 50 start-page: 589 year: 2013 end-page: 600 ident: bib0730 article-title: RPA coordinates DNA end resection and prevents formation of DNA hairpins publication-title: Mol. Cell – volume: 27 start-page: 2812 year: 2007 end-page: 2820 ident: bib0835 article-title: Cooperative roles of vertebrate Fbh1 and Blm DNA helicases in avoidance of crossovers during recombination initiated by replication fork collapse publication-title: Mol. Cell. Biol. – volume: 43 start-page: 3154 year: 2015 end-page: 3166 ident: bib0865 article-title: Involvement of ATM in homologous recombination after end resection and RAD51 nucleofilament formation publication-title: Nucleic Acids Res. – volume: 22 start-page: 304 year: 2015 end-page: 311 ident: bib0945 article-title: Human DNA polymerase theta grasps the primer terminus to mediate DNA repair publication-title: Nat. Struct. Mol. Biol. – volume: 288 start-page: 34168 year: 2013 end-page: 34180 ident: bib0830 article-title: FBH1 helicase disrupts RAD51 filaments in vitro and modulates homologous recombination in mammalian cells publication-title: J. Biol. Chem. – volume: 316 start-page: 1160 year: 2007 end-page: 1166 ident: bib0705 article-title: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage publication-title: Science – volume: 18 start-page: 80 year: 2011 end-page: 84 ident: bib0565 article-title: An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway publication-title: Nat. Struct. Mol. Biol. – volume: 21 start-page: 405 year: 2014 end-page: 412 ident: bib0735 article-title: RPA antagonizes microhomology-mediated repair of DNA double-strand breaks publication-title: Nat. Struct. Mol. Biol. – volume: 9 start-page: e1003277 year: 2013 ident: bib0715 article-title: The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair publication-title: PLoS Genet. – volume: 108 start-page: 10448 year: 2011 end-page: 10453 ident: bib0740 article-title: Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 135 start-page: 261 year: 2008 end-page: 271 ident: bib0845 article-title: RTEL1 maintains genomic stability by suppressing homologous recombination publication-title: Cell – volume: 4 start-page: 1430 year: 2014 end-page: 1447 ident: bib0655 article-title: PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination mediated DNA repair publication-title: Cancer Discov. – volume: 15 start-page: 585 year: 2014 end-page: 598 ident: bib1025 article-title: Mechanisms underlying mutational signatures in human cancers publication-title: Nat. Rev. Genet. – volume: 43 start-page: 893 year: 2015 end-page: 903 ident: bib0810 article-title: RECQL5 and BLM exhibit divergent functions in cells defective for the Fanconi anemia pathway publication-title: Nucleic Acids Res. – volume: 12 start-page: 1 year: 2013 end-page: 9 ident: bib1030 article-title: DNA polymerase POLQ and cellular defense against DNA damage publication-title: DNA Repair – volume: 42 start-page: 5616 year: 2014 end-page: 5632 ident: bib0925 article-title: PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways publication-title: Nucleic Acids Res. – volume: 42 start-page: 319 year: 2011 end-page: 329 ident: bib0690 article-title: Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1 publication-title: Mol. Cell – volume: 22 start-page: 230 year: 2015 end-page: 237 ident: bib0940 article-title: Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase theta publication-title: Nat. Struct. Mol. Biol. – volume: 73 start-page: 2529 year: 2013 end-page: 2539 ident: bib0790 article-title: PARI overexpression promotes genomic instability and pancreatic tumorigenesis publication-title: Cancer Res. – volume: 29 start-page: 141 year: 2008 end-page: 148 ident: bib0850 article-title: The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks publication-title: Mol. Cell – volume: 13 start-page: 443 year: 2013 end-page: 454 ident: bib0885 article-title: End-joining, translocations and cancer publication-title: Nat. Rev. Cancer – volume: 17 start-page: 410 year: 2010 end-page: 416 ident: bib0560 article-title: Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation publication-title: Nat. Struct. Mol. Biol. – volume: 285 start-page: 15739 year: 2010 end-page: 15745 ident: bib0795 article-title: Physical interaction of RECQ5 helicase with RAD51 facilitates its anti-recombinase activity publication-title: J. Biol. Chem. – volume: 449 start-page: 483 year: 2007 end-page: 486 ident: bib0570 article-title: Rag mutations reveal robust alternative end joining publication-title: Nature – volume: 2 start-page: E21 year: 2004 ident: bib0725 article-title: Role of publication-title: PLoS Biol. – volume: 369 start-page: 982 year: 2008 end-page: 988 ident: bib0895 article-title: Effect of double-strand break DNA sequence on the PARP-1 NHEJ pathway publication-title: Biochem. Biophys. Res. Commun. – volume: 45 start-page: 247 year: 2011 end-page: 271 ident: bib0585 article-title: Double-strand break end resection and repair pathway choice publication-title: Annu. Rev. Genet. – volume: 49 start-page: 872 year: 2013 end-page: 883 ident: bib0665 article-title: A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice publication-title: Mol. Cell – volume: 42 start-page: 2380 year: 2014 end-page: 2390 ident: bib0805 article-title: Human RECQ5 helicase promotes repair of DNA double-strand breaks by synthesis-dependent strand annealing publication-title: Nucleic Acids Res. – volume: 11 start-page: e1004943 year: 2015 ident: bib0950 article-title: DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining publication-title: PLoS Genet. – volume: 18 start-page: 1015 year: 2011 end-page: 1019 ident: bib0605 article-title: Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation publication-title: Nat. Struct. Mol. Biol. – volume: 30 start-page: 1088 year: 2010 end-page: 1096 ident: bib0870 article-title: DNA polymerase POLN participates in cross-link repair and homologous recombination publication-title: Mol. Cell. Biol. – volume: 5 start-page: a012757 year: 2013 ident: bib0535 article-title: Repair of double-strand breaks by end joining publication-title: Cold Spring Harb. Perspect. Biol. – volume: 196 start-page: 1017 year: 2014 end-page: 1028 ident: bib0855 article-title: Template switching during break-induced replication is promoted by the Mph1 helicase in publication-title: Genetics – volume: 206 start-page: 877 year: 2014 end-page: 894 ident: bib1050 article-title: Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1 publication-title: J. Cell Biol. – volume: 521 start-page: 537 year: 2015 end-page: 540 ident: bib0700 article-title: MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection publication-title: Nature – volume: 32 start-page: 5249 year: 2004 end-page: 5259 ident: bib0880 article-title: DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining publication-title: Nucleic Acids Res. – volume: 32 start-page: 1058 year: 2010 end-page: 1066 ident: bib0840 article-title: Meiotic versus mitotic recombination: two different routes for double-strand break repair: the different functions of meiotic versus mitotic DSB repair are reflected in different pathway usage and different outcomes publication-title: BioEssays – volume: 25 start-page: 5738 year: 2005 end-page: 5751 ident: bib0760 article-title: Srs2 and Sgs1 DNA helicases associate with Mre11 in different subcomplexes following checkpoint activation and CDK1-mediated Srs2 phosphorylation publication-title: Mol. Cell. Biol. – volume: 24 start-page: 3799 year: 2006 end-page: 3808 ident: bib1035 article-title: DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes publication-title: J. Clin. Oncol. – volume: 289 start-page: 27314 year: 2014 end-page: 27326 ident: bib0600 article-title: DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells publication-title: J. Biol. Chem. – volume: 49 start-page: 657 year: 2013 end-page: 667 ident: bib0720 article-title: Activation of DSB processing requires phosphorylation of CtIP by ATR publication-title: Mol. Cell – volume: 47 start-page: 320 year: 2012 end-page: 329 ident: bib0540 article-title: Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase publication-title: Mol. Cell – volume: 434 start-page: 913 year: 2005 end-page: 917 ident: bib0920 article-title: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase publication-title: Nature – volume: 43 start-page: 4950 year: 2015 end-page: 4961 ident: bib0685 article-title: Ectopic expression of RNF168 and 53BP1 increases mutagenic but not physiological non-homologous end joining publication-title: Nucleic Acids Res. – volume: 518 start-page: 258 year: 2015 end-page: 262 ident: bib0770 article-title: Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair publication-title: Nature – volume: 10 start-page: 1947 year: 2015 end-page: 1956 ident: bib0970 article-title: UHRF1 is a sensor for DNA interstrand crosslinks and recruits FANCD2 to initiate the Fanconi anemia pathway publication-title: Cell Rep. – volume: 44 start-page: 113 year: 2010 ident: 10.1016/j.tcb.2015.07.009_bib0550 article-title: Regulation of homologous recombination in eukaryotes publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-051710-150955 – volume: 211 start-page: 1027 year: 2014 ident: 10.1016/j.tcb.2015.07.009_bib0620 article-title: CtIP-mediated resection is essential for viability and can operate independently of BRCA1 publication-title: J. Exp. Med. doi: 10.1084/jem.20131939 – volume: 434 start-page: 913 year: 2005 ident: 10.1016/j.tcb.2015.07.009_bib0920 article-title: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase publication-title: Nature doi: 10.1038/nature03443 – volume: 287 start-page: 23808 year: 2012 ident: 10.1016/j.tcb.2015.07.009_bib0800 article-title: A variant of the breast cancer type 2 susceptibility protein (BRC) repeat is essential for the RECQL5 helicase to interact with RAD51 recombinase for genome stabilization publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.375014 – volume: 142 start-page: 693 year: 1996 ident: 10.1016/j.tcb.2015.07.009_bib0980 article-title: Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1093/genetics/142.3.693 – volume: 153 start-page: 1266 year: 2013 ident: 10.1016/j.tcb.2015.07.009_bib0675 article-title: 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions publication-title: Cell doi: 10.1016/j.cell.2013.05.023 – volume: 65 start-page: 4020 year: 2005 ident: 10.1016/j.tcb.2015.07.009_bib0580 article-title: DNA ligase III as a candidate component of backup pathways of nonhomologous end joining publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-3055 – volume: 7 start-page: 1039 year: 2014 ident: 10.1016/j.tcb.2015.07.009_bib0955 article-title: FANCD2 binds CtIP and regulates DNA-end resection during DNA interstrand crosslink repair publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.04.005 – volume: 43 start-page: 4950 year: 2015 ident: 10.1016/j.tcb.2015.07.009_bib0685 article-title: Ectopic expression of RNF168 and 53BP1 increases mutagenic but not physiological non-homologous end joining publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv336 – volume: 316 start-page: 1160 year: 2007 ident: 10.1016/j.tcb.2015.07.009_bib0705 article-title: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage publication-title: Science doi: 10.1126/science.1140321 – volume: 584 start-page: 3709 year: 2010 ident: 10.1016/j.tcb.2015.07.009_bib0860 article-title: Metabolism of postsynaptic recombination intermediates publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.05.023 – volume: 6 start-page: e1001005 year: 2010 ident: 10.1016/j.tcb.2015.07.009_bib0900 article-title: Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001005 – volume: 9 start-page: 415 year: 2009 ident: 10.1016/j.tcb.2015.07.009_bib1040 article-title: The biology of ovarian cancer: new opportunities for translation publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2644 – volume: 25 start-page: 5738 year: 2005 ident: 10.1016/j.tcb.2015.07.009_bib0760 article-title: Srs2 and Sgs1 DNA helicases associate with Mre11 in different subcomplexes following checkpoint activation and CDK1-mediated Srs2 phosphorylation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.13.5738-5751.2005 – volume: 23 start-page: 4655 year: 2004 ident: 10.1016/j.tcb.2015.07.009_bib0995 article-title: Loss of Rad52 partially rescues tumorigenesis and T-cell maturation in Atm-deficient mice publication-title: Oncogene doi: 10.1038/sj.onc.1207604 – volume: 196 start-page: 1017 year: 2014 ident: 10.1016/j.tcb.2015.07.009_bib0855 article-title: Template switching during break-induced replication is promoted by the Mph1 helicase in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1534/genetics.114.162297 – volume: 521 start-page: 537 year: 2015 ident: 10.1016/j.tcb.2015.07.009_bib0700 article-title: MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection publication-title: Nature doi: 10.1038/nature14216 – volume: 206 start-page: 877 year: 2014 ident: 10.1016/j.tcb.2015.07.009_bib1050 article-title: Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1 publication-title: J. Cell Biol. doi: 10.1083/jcb.201401146 – volume: 521 start-page: 541 year: 2015 ident: 10.1016/j.tcb.2015.07.009_bib0695 article-title: REV7 counteracts DNA double-strand break resection and affects PARP inhibition publication-title: Nature doi: 10.1038/nature14328 – volume: 32 start-page: 5249 year: 2004 ident: 10.1016/j.tcb.2015.07.009_bib0880 article-title: DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh842 – volume: 22 start-page: 2255 year: 2003 ident: 10.1016/j.tcb.2015.07.009_bib0930 article-title: Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse publication-title: EMBO J. doi: 10.1093/emboj/cdg206 – volume: 42 start-page: 5616 year: 2014 ident: 10.1016/j.tcb.2015.07.009_bib0925 article-title: PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku174 – volume: 17 start-page: 410 year: 2010 ident: 10.1016/j.tcb.2015.07.009_bib0560 article-title: Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1773 – volume: 22 start-page: 230 year: 2015 ident: 10.1016/j.tcb.2015.07.009_bib0940 article-title: Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase theta publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2961 – volume: 47 start-page: 433 year: 2013 ident: 10.1016/j.tcb.2015.07.009_bib0555 article-title: Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-110711-155540 – volume: 284 start-page: 7505 year: 2009 ident: 10.1016/j.tcb.2015.07.009_bib0815 article-title: FANCJ uses its motor ATPase to destabilize protein–DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange publication-title: J. Biol. Chem. doi: 10.1074/jbc.M809019200 – volume: 21 start-page: 405 year: 2014 ident: 10.1016/j.tcb.2015.07.009_bib0735 article-title: RPA antagonizes microhomology-mediated repair of DNA double-strand breaks publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2786 – volume: 141 start-page: 243 year: 2010 ident: 10.1016/j.tcb.2015.07.009_bib0660 article-title: 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks publication-title: Cell doi: 10.1016/j.cell.2010.03.012 – volume: 73 start-page: 2529 year: 2013 ident: 10.1016/j.tcb.2015.07.009_bib0790 article-title: PARI overexpression promotes genomic instability and pancreatic tumorigenesis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-3313 – volume: 47 start-page: 320 year: 2012 ident: 10.1016/j.tcb.2015.07.009_bib0540 article-title: Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.052 – volume: 369 start-page: 982 year: 2008 ident: 10.1016/j.tcb.2015.07.009_bib0895 article-title: Effect of double-strand break DNA sequence on the PARP-1 NHEJ pathway publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.11.132 – volume: 49 start-page: 872 year: 2013 ident: 10.1016/j.tcb.2015.07.009_bib0665 article-title: A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.01.001 – volume: 18 start-page: 1015 year: 2011 ident: 10.1016/j.tcb.2015.07.009_bib0605 article-title: Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2105 – volume: 27 start-page: 2812 year: 2007 ident: 10.1016/j.tcb.2015.07.009_bib0835 article-title: Cooperative roles of vertebrate Fbh1 and Blm DNA helicases in avoidance of crossovers during recombination initiated by replication fork collapse publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.02043-06 – volume: 135 start-page: 261 year: 2008 ident: 10.1016/j.tcb.2015.07.009_bib0845 article-title: RTEL1 maintains genomic stability by suppressing homologous recombination publication-title: Cell doi: 10.1016/j.cell.2008.08.016 – volume: 29 start-page: 141 year: 2008 ident: 10.1016/j.tcb.2015.07.009_bib0850 article-title: The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.11.032 – volume: 5 start-page: a012757 year: 2013 ident: 10.1016/j.tcb.2015.07.009_bib0535 article-title: Repair of double-strand breaks by end joining publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a012757 – volume: 34 start-page: 828 year: 2015 ident: 10.1016/j.tcb.2015.07.009_bib0650 article-title: BRCA1 and CtIP promote alternative non-homologous end-joining at uncapped telomeres publication-title: EMBO J. doi: 10.15252/embj.201570610 – volume: 283 start-page: 14883 year: 2008 ident: 10.1016/j.tcb.2015.07.009_bib0985 article-title: Rad51 protein controls Rad52-mediated DNA annealing publication-title: J. Biol. Chem. doi: 10.1074/jbc.M801097200 – volume: 285 start-page: 15739 year: 2010 ident: 10.1016/j.tcb.2015.07.009_bib0795 article-title: Physical interaction of RECQ5 helicase with RAD51 facilitates its anti-recombinase activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.110478 – volume: 110 start-page: 7720 year: 2013 ident: 10.1016/j.tcb.2015.07.009_bib0590 article-title: Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1213431110 – volume: 14 start-page: 468 year: 2007 ident: 10.1016/j.tcb.2015.07.009_bib0745 article-title: Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1245 – volume: 66 start-page: 455 year: 2015 ident: 10.1016/j.tcb.2015.07.009_bib1045 article-title: Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors publication-title: Annu. Rev. Med. doi: 10.1146/annurev-med-050913-022545 – volume: 50 start-page: 589 year: 2013 ident: 10.1016/j.tcb.2015.07.009_bib0730 article-title: RPA coordinates DNA end resection and prevents formation of DNA hairpins publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.04.032 – volume: 22 start-page: 304 year: 2015 ident: 10.1016/j.tcb.2015.07.009_bib0945 article-title: Human DNA polymerase theta grasps the primer terminus to mediate DNA repair publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2993 – volume: 38 start-page: 5706 year: 2010 ident: 10.1016/j.tcb.2015.07.009_bib0785 article-title: Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq379 – volume: 12 start-page: 1 year: 2013 ident: 10.1016/j.tcb.2015.07.009_bib1030 article-title: DNA polymerase POLQ and cellular defense against DNA damage publication-title: DNA Repair doi: 10.1016/j.dnarep.2012.10.004 – volume: 7 start-page: 1030 year: 2014 ident: 10.1016/j.tcb.2015.07.009_bib0960 article-title: FANCD2 and CtIP cooperate to repair DNA interstrand crosslinks publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.03.069 – volume: 45 start-page: 422 year: 2012 ident: 10.1016/j.tcb.2015.07.009_bib0635 article-title: Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.11.028 – volume: 5 start-page: 488 year: 2015 ident: 10.1016/j.tcb.2015.07.009_bib1020 article-title: Genomic complexity profiling reveals that HORMAD1 overexpression contributes to homologous recombination deficiency in triple-negative breast cancers publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-14-1092 – volume: 22 start-page: 2767 year: 2008 ident: 10.1016/j.tcb.2015.07.009_bib0820 article-title: DNA helicases Sgs1 and BLM promote DNA double-strand break resection publication-title: Genes Dev. doi: 10.1101/gad.503108 – volume: 67 start-page: 1156 year: 2008 ident: 10.1016/j.tcb.2015.07.009_bib0975 article-title: Compensatory role for Rad52 during recombinational repair in Ustilago maydis publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2008.06116.x – volume: 72 start-page: 5454 year: 2012 ident: 10.1016/j.tcb.2015.07.009_bib1005 article-title: Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-1470 – volume: 5 start-page: 3561 year: 2014 ident: 10.1016/j.tcb.2015.07.009_bib0625 article-title: Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice publication-title: Nat. Commun. doi: 10.1038/ncomms4561 – volume: 34 start-page: 6170 year: 2006 ident: 10.1016/j.tcb.2015.07.009_bib0575 article-title: PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl840 – volume: 423 start-page: 305 year: 2003 ident: 10.1016/j.tcb.2015.07.009_bib0755 article-title: DNA helicase Srs2 disrupts the Rad51 presynaptic filament publication-title: Nature doi: 10.1038/nature01577 – volume: 284 start-page: 9558 year: 2009 ident: 10.1016/j.tcb.2015.07.009_bib0595 article-title: Human CtIP mediates cell cycle control of DNA end resection and double strand break repair publication-title: J. Biol. Chem. doi: 10.1074/jbc.M808906200 – volume: 518 start-page: 258 year: 2015 ident: 10.1016/j.tcb.2015.07.009_bib0770 article-title: Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair publication-title: Nature doi: 10.1038/nature14184 – volume: 15 start-page: 585 year: 2014 ident: 10.1016/j.tcb.2015.07.009_bib1025 article-title: Mechanisms underlying mutational signatures in human cancers publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3729 – volume: 4 start-page: 1430 year: 2014 ident: 10.1016/j.tcb.2015.07.009_bib0655 article-title: PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination mediated DNA repair publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-13-0891 – volume: 43 start-page: 3154 year: 2015 ident: 10.1016/j.tcb.2015.07.009_bib0865 article-title: Involvement of ATM in homologous recombination after end resection and RAD51 nucleofilament formation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv160 – volume: 471 start-page: 74 year: 2011 ident: 10.1016/j.tcb.2015.07.009_bib0630 article-title: HDACs link the DNA damage response, processing of double-strand breaks and autophagy publication-title: Nature doi: 10.1038/nature09803 – volume: 4 start-page: e1000110 year: 2008 ident: 10.1016/j.tcb.2015.07.009_bib0610 article-title: Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000110 – volume: 28 start-page: 2693 year: 2014 ident: 10.1016/j.tcb.2015.07.009_bib0680 article-title: PTIP associates with Artemis to dictate DNA repair pathway choice publication-title: Genes Dev. doi: 10.1101/gad.252478.114 – volume: 406 start-page: 210 year: 2000 ident: 10.1016/j.tcb.2015.07.009_bib0710 article-title: Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response publication-title: Nature doi: 10.1038/35018134 – volume: 32 start-page: 3552 year: 2013 ident: 10.1016/j.tcb.2015.07.009_bib0990 article-title: RAD52 inactivation is synthetically lethal with deficiencies in BRCA1 and PALB2 in addition to BRCA2 through RAD51-mediated homologous recombination publication-title: Oncogene doi: 10.1038/onc.2012.391 – volume: 24 start-page: 10381 year: 2004 ident: 10.1016/j.tcb.2015.07.009_bib1000 article-title: The mouse genomic instability mutation chaos1 is an allele of Polq that exhibits genetic interaction with Atm publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.23.10381-10389.2004 – volume: 500 start-page: 415 year: 2013 ident: 10.1016/j.tcb.2015.07.009_bib1015 article-title: Signatures of mutational processes in human cancer publication-title: Nature doi: 10.1038/nature12477 – volume: 518 start-page: 254 year: 2015 ident: 10.1016/j.tcb.2015.07.009_bib0890 article-title: Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination publication-title: Nature doi: 10.1038/nature14157 – volume: 24 start-page: 529 year: 2008 ident: 10.1016/j.tcb.2015.07.009_bib0905 article-title: MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings publication-title: Trends Genet. doi: 10.1016/j.tig.2008.08.007 – volume: 45 start-page: 247 year: 2011 ident: 10.1016/j.tcb.2015.07.009_bib0585 article-title: Double-strand break end resection and repair pathway choice publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-110410-132435 – volume: 32 start-page: 1058 year: 2010 ident: 10.1016/j.tcb.2015.07.009_bib0840 article-title: Meiotic versus mitotic recombination: two different routes for double-strand break repair: the different functions of meiotic versus mitotic DSB repair are reflected in different pathway usage and different outcomes publication-title: BioEssays doi: 10.1002/bies.201000087 – volume: 49 start-page: 858 year: 2013 ident: 10.1016/j.tcb.2015.07.009_bib0670 article-title: RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.01.002 – volume: 43 start-page: 893 year: 2015 ident: 10.1016/j.tcb.2015.07.009_bib0810 article-title: RECQL5 and BLM exhibit divergent functions in cells defective for the Fanconi anemia pathway publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1334 – volume: 149 start-page: 994 year: 2012 ident: 10.1016/j.tcb.2015.07.009_bib1010 article-title: The life history of 21 breast cancers publication-title: Cell doi: 10.1016/j.cell.2012.04.023 – volume: 24 start-page: 3799 year: 2006 ident: 10.1016/j.tcb.2015.07.009_bib1035 article-title: DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2005.05.4171 – volume: 43 start-page: 987 year: 2015 ident: 10.1016/j.tcb.2015.07.009_bib0645 article-title: Neddylation inhibits CtIP-mediated resection and regulates DNA double strand break repair pathway choice publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1384 – volume: 11 start-page: e1004943 year: 2015 ident: 10.1016/j.tcb.2015.07.009_bib0950 article-title: DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004943 – volume: 11 start-page: e1004899 year: 2015 ident: 10.1016/j.tcb.2015.07.009_bib0640 article-title: Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004899 – volume: 42 start-page: 319 year: 2011 ident: 10.1016/j.tcb.2015.07.009_bib0690 article-title: Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.03.019 – volume: 289 start-page: 27314 year: 2014 ident: 10.1016/j.tcb.2015.07.009_bib0600 article-title: DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.578823 – volume: 45 start-page: 75 year: 2012 ident: 10.1016/j.tcb.2015.07.009_bib0765 article-title: Inhibition of homologous recombination by the PCNA-interacting protein PARI publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.11.010 – volume: 13 start-page: 443 year: 2013 ident: 10.1016/j.tcb.2015.07.009_bib0885 article-title: End-joining, translocations and cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3537 – volume: 7 start-page: 686 year: 2008 ident: 10.1016/j.tcb.2015.07.009_bib0935 article-title: The consequences of Rad51 overexpression for normal and tumor cells publication-title: DNA Repair doi: 10.1016/j.dnarep.2007.12.008 – volume: 37 start-page: 259 year: 2010 ident: 10.1016/j.tcb.2015.07.009_bib0875 article-title: Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.12.026 – volume: 5 start-page: 21 year: 2013 ident: 10.1016/j.tcb.2015.07.009_bib0825 article-title: A role for BLM in double-strand break repair pathway choice: prevention of CtIP/Mre11-mediated alternative nonhomologous end-joining publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.08.034 – volume: 9 start-page: e1003277 year: 2013 ident: 10.1016/j.tcb.2015.07.009_bib0715 article-title: The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003277 – volume: 288 start-page: 34168 year: 2013 ident: 10.1016/j.tcb.2015.07.009_bib0830 article-title: FBH1 helicase disrupts RAD51 filaments in vitro and modulates homologous recombination in mammalian cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.484493 – volume: 10 start-page: 1947 year: 2015 ident: 10.1016/j.tcb.2015.07.009_bib0970 article-title: UHRF1 is a sensor for DNA interstrand crosslinks and recruits FANCD2 to initiate the Fanconi anemia pathway publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.02.053 – volume: 2 start-page: E21 year: 2004 ident: 10.1016/j.tcb.2015.07.009_bib0725 article-title: Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0020021 – volume: 18 start-page: 80 year: 2011 ident: 10.1016/j.tcb.2015.07.009_bib0565 article-title: An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1940 – volume: 19 start-page: 1075 year: 2009 ident: 10.1016/j.tcb.2015.07.009_bib0750 article-title: The carboxyl terminus of Brca2 links the disassembly of Rad51 complexes to mitotic entry publication-title: Curr. Biol. doi: 10.1016/j.cub.2009.05.057 – volume: 19 start-page: 169 year: 2014 ident: 10.1016/j.tcb.2015.07.009_bib0530 article-title: DNA double-strand break repair pathway choice and cancer publication-title: DNA Repair doi: 10.1016/j.dnarep.2014.03.014 – volume: 42 start-page: 2380 year: 2014 ident: 10.1016/j.tcb.2015.07.009_bib0805 article-title: Human RECQ5 helicase promotes repair of DNA double-strand breaks by synthesis-dependent strand annealing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1263 – volume: 272 start-page: 28194 year: 1997 ident: 10.1016/j.tcb.2015.07.009_bib0965 article-title: Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.45.28194 – volume: 49 start-page: 657 year: 2013 ident: 10.1016/j.tcb.2015.07.009_bib0720 article-title: Activation of DSB processing requires phosphorylation of CtIP by ATR publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.11.020 – volume: 404 start-page: 510 year: 2000 ident: 10.1016/j.tcb.2015.07.009_bib0545 article-title: DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation publication-title: Nature doi: 10.1038/35006670 – volume: 423 start-page: 309 year: 2003 ident: 10.1016/j.tcb.2015.07.009_bib0910 article-title: The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments publication-title: Nature doi: 10.1038/nature01585 – volume: 30 start-page: 325 year: 2008 ident: 10.1016/j.tcb.2015.07.009_bib0780 article-title: Microarray-based genetic screen defines SAW1, a gene required for Rad1/Rad10-dependent processing of recombination intermediates publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.02.028 – volume: 176 start-page: 2003 year: 2007 ident: 10.1016/j.tcb.2015.07.009_bib0775 article-title: Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining publication-title: Genetics doi: 10.1534/genetics.107.076539 – volume: 30 start-page: 1088 year: 2010 ident: 10.1016/j.tcb.2015.07.009_bib0870 article-title: DNA polymerase POLN participates in cross-link repair and homologous recombination publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01124-09 – volume: 434 start-page: 917 year: 2005 ident: 10.1016/j.tcb.2015.07.009_bib0915 article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy publication-title: Nature doi: 10.1038/nature03445 – volume: 459 start-page: 460 year: 2009 ident: 10.1016/j.tcb.2015.07.009_bib0615 article-title: CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle publication-title: Nature doi: 10.1038/nature07955 – volume: 108 start-page: 10448 year: 2011 ident: 10.1016/j.tcb.2015.07.009_bib0740 article-title: Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1106971108 – volume: 449 start-page: 483 year: 2007 ident: 10.1016/j.tcb.2015.07.009_bib0570 article-title: Rag mutations reveal robust alternative end joining publication-title: Nature doi: 10.1038/nature06168 – reference: 23219161 - DNA Repair (Amst). 2013 Jan 1;12(1):1-9 – reference: 24598253 - Nucleic Acids Res. 2014 May;42(9):5616-32 – reference: 18957201 - Cell. 2008 Oct 17;135(2):261-71 – reference: 14737196 - PLoS Biol. 2004 Jan;2(1):E21 – reference: 23760025 - Nat Rev Cancer. 2013 Jul;13(7):443-54 – reference: 17565964 - Genetics. 2007 Aug;176(4):2003-14 – reference: 19357644 - Nature. 2009 May 21;459(7245):460-3 – reference: 25341009 - Annu Rev Med. 2015;66:455-70 – reference: 18471978 - Mol Cell. 2008 May 9;30(3):325-35 – reference: 8849880 - Genetics. 1996 Mar;142(3):693-704 – reference: 21549309 - Mol Cell. 2011 May 6;42(3):319-29 – reference: 23333305 - Mol Cell. 2013 Mar 7;49(5):858-71 – reference: 25520194 - Nucleic Acids Res. 2015 Jan;43(2):893-903 – reference: 20493853 - FEBS Lett. 2010 Sep 10;584(17):3709-16 – reference: 17088286 - Nucleic Acids Res. 2006;34(21):6170-82 – reference: 15899791 - Cancer Res. 2005 May 15;65(10):4020-30 – reference: 25799990 - Nature. 2015 May 28;521(7553):537-40 – reference: 10761921 - Nature. 2000 Mar 30;404(6777):510-4 – reference: 23945592 - Nature. 2013 Aug 22;500(7463):415-21 – reference: 24095737 - Cell Rep. 2013 Oct 17;5(1):21-8 – reference: 19540122 - Curr Biol. 2009 Jul 14;19(13):1075-85 – reference: 17898768 - Nature. 2007 Sep 27;449(7161):483-6 – reference: 25766694 - EMBO J. 2015 Mar 12;34(6):828 – reference: 15466592 - Nucleic Acids Res. 2004;32(17):5249-59 – reference: 25916843 - Nucleic Acids Res. 2015 May 26;43(10):4950-61 – reference: 23706822 - Mol Cell. 2013 May 23;50(4):589-600 – reference: 23637284 - Cold Spring Harb Perspect Biol. 2013 May;5(5):a012757 – reference: 25512557 - Genes Dev. 2014 Dec 15;28(24):2693-8 – reference: 12727891 - EMBO J. 2003 May 1;22(9):2255-63 – reference: 23273981 - Mol Cell. 2013 Feb 21;49(4):657-67 – reference: 24842372 - J Exp Med. 2014 Jun 2;211(6):1027-36 – reference: 23468639 - PLoS Genet. 2013;9(2):e1003277 – reference: 15829966 - Nature. 2005 Apr 14;434(7035):913-7 – reference: 25252691 - Cancer Discov. 2014 Dec;4(12):1430-47 – reference: 25122754 - J Biol Chem. 2014 Sep 26;289(39):27314-26 – reference: 17525332 - Science. 2007 May 25;316(5828):1160-6 – reference: 18584027 - PLoS Genet. 2008 Jun;4(6):e1000110 – reference: 25629353 - PLoS Genet. 2015 Jan;11(1):e1004943 – reference: 18243065 - DNA Repair (Amst). 2008 May 3;7(5):686-93 – reference: 18923075 - Genes Dev. 2008 Oct 15;22(20):2767-72 – reference: 15542845 - Mol Cell Biol. 2004 Dec;24(23):10381-9 – reference: 24794434 - Cell Rep. 2014 May 22;7(4):1030-8 – reference: 22608083 - Cell. 2012 May 25;149(5):994-1007 – reference: 19202191 - J Biol Chem. 2009 Apr 3;284(14):9558-65 – reference: 20362325 - Cell. 2010 Apr 16;141(2):243-54 – reference: 20967781 - Bioessays. 2010 Dec;32(12):1058-66 – reference: 12748644 - Nature. 2003 May 15;423(6937):305-9 – reference: 23727112 - Cell. 2013 Jun 6;153(6):1266-80 – reference: 12748645 - Nature. 2003 May 15;423(6937):309-12 – reference: 15829967 - Nature. 2005 Apr 14;434(7035):917-21 – reference: 20690856 - Annu Rev Genet. 2010;44:113-39 – reference: 20348101 - J Biol Chem. 2010 May 21;285(21):15739-45 – reference: 25801034 - Cell Rep. 2015 Mar 31;10(12):1947-56 – reference: 18208529 - Mol Microbiol. 2008 Mar;67(5):1156-68 – reference: 15122331 - Oncogene. 2004 Jun 10;23(27):4655-61 – reference: 19995904 - Mol Cell Biol. 2010 Feb;30(4):1088-96 – reference: 24794430 - Cell Rep. 2014 May 22;7(4):1039-47 – reference: 24108124 - J Biol Chem. 2013 Nov 22;288(47):34168-80 – reference: 22285753 - Mol Cell. 2012 Feb 10;45(3):422-32 – reference: 18054777 - Biochem Biophys Res Commun. 2008 May 9;369(3):982-8 – reference: 22841003 - Mol Cell. 2012 Jul 27;47(2):320-9 – reference: 17515904 - Nat Struct Mol Biol. 2007 Jun;14(6):468-74 – reference: 23333306 - Mol Cell. 2013 Mar 7;49(5):872-83 – reference: 23436799 - Cancer Res. 2013 Apr 15;73(8):2529-39 – reference: 21368826 - Nature. 2011 Mar 3;471(7336):74-9 – reference: 19150983 - J Biol Chem. 2009 Mar 20;284(12):7505-17 – reference: 20208544 - Nat Struct Mol Biol. 2010 Apr;17(4):410-6 – reference: 25770156 - Cancer Discov. 2015 May;5(5):488-505 – reference: 24319145 - Nucleic Acids Res. 2014 Feb;42(4):2380-90 – reference: 24496010 - Genetics. 2014 Apr;196(4):1017-28 – reference: 22153967 - Mol Cell. 2012 Jan 13;45(1):75-86 – reference: 24608368 - Nat Struct Mol Biol. 2014 Apr;21(4):405-12 – reference: 9353267 - J Biol Chem. 1997 Nov 7;272(45):28194-7 – reference: 23610439 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7720-5 – reference: 25642963 - Nature. 2015 Feb 12;518(7538):258-62 – reference: 25753674 - Nucleic Acids Res. 2015 Mar 31;43(6):3154-66 – reference: 21131978 - Nat Struct Mol Biol. 2011 Jan;18(1):80-4 – reference: 25775267 - Nat Struct Mol Biol. 2015 Apr;22(4):304-11 – reference: 22964643 - Oncogene. 2013 Jul 25;32(30):3552-8 – reference: 20460465 - Nucleic Acids Res. 2010 Sep;38(17):5706-17 – reference: 24705021 - Nat Commun. 2014;5:3561 – reference: 21841787 - Nat Struct Mol Biol. 2011 Sep;18(9):1015-9 – reference: 21670257 - Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10448-53 – reference: 18337252 - J Biol Chem. 2008 May 23;283(21):14883-92 – reference: 22645136 - J Biol Chem. 2012 Jul 6;287(28):23808-18 – reference: 16896009 - J Clin Oncol. 2006 Aug 10;24(23):3799-808 – reference: 24746645 - DNA Repair (Amst). 2014 Jul;19:169-75 – reference: 20617203 - PLoS Genet. 2010 Jul;6(7):e1001005 – reference: 18206976 - Mol Cell. 2008 Jan 18;29(1):141-8 – reference: 24981601 - Nat Rev Genet. 2014 Sep;15(9):585-98 – reference: 18809224 - Trends Genet. 2008 Nov;24(11):529-38 – reference: 17283053 - Mol Cell Biol. 2007 Apr;27(8):2812-20 – reference: 25799992 - Nature. 2015 May 28;521(7553):541-4 – reference: 25567988 - Nucleic Acids Res. 2015 Jan;43(2):987-99 – reference: 25569253 - PLoS Genet. 2015 Jan;11(1):e1004899 – reference: 10910365 - Nature. 2000 Jul 13;406(6792):210-5 – reference: 19461667 - Nat Rev Cancer. 2009 Jun;9(6):415-28 – reference: 25267294 - J Cell Biol. 2014 Sep 29;206(7):877-94 – reference: 21910633 - Annu Rev Genet. 2011;45:247-71 – reference: 15964827 - Mol Cell Biol. 2005 Jul;25(13):5738-51 – reference: 25643323 - Nat Struct Mol Biol. 2015 Mar;22(3):230-7 – reference: 25642960 - Nature. 2015 Feb 12;518(7538):254-7 – reference: 22933060 - Cancer Res. 2012 Nov 1;72(21):5454-62 – reference: 20122407 - Mol Cell. 2010 Jan 29;37(2):259-72 – reference: 24050180 - Annu Rev Genet. 2013;47:433-55 |
| SSID | ssj0007213 |
| Score | 2.6736042 |
| SecondaryResourceType | review_article |
| Snippet | DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 52 |
| SubjectTerms | alternative end joining Animals Cell Survival DNA Breaks, Double-Stranded DNA Repair Genomic Instability homologous recombination Humans Mutation Pathology Polθ synthetic lethality |
| Title | Repair Pathway Choices and Consequences at the Double-Strand Break |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0962892415001427 https://www.clinicalkey.es/playcontent/1-s2.0-S0962892415001427 https://dx.doi.org/10.1016/j.tcb.2015.07.009 https://www.ncbi.nlm.nih.gov/pubmed/26437586 https://www.proquest.com/docview/1753230558 https://pubmed.ncbi.nlm.nih.gov/PMC4862604 |
| Volume | 26 |
| WOSCitedRecordID | wos000368206000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3088 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007213 issn: 0962-8924 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYBhIviG86YAoSvICCEjuN48d9IUBoQjBQ3yzHdrSOLq3aDMZ_z53tZGnHBjzwElVJbKe-n8935_PPhDzXw4QZ3H5mTKriTKQsLmxm48wURjClc-4W2r9-4AcHxWgkPgZChYU7ToDXdXF2Jmb_VdRwD4SNW2f_QdxdpXADfoPQ4Qpih-tfCR5MajWeI_f-0Q-F3MVT1AVukWC3lzoddjGiBV1ObIwstfDGDtiQ3_oG63nOLIb4XwXOpm7lAkUzMS4j4JOadQn4bgUH98sg3aeDkHVHAXQo2ntBucul9GHdCWiZvX4AIu0HIKxXmgXH_Al_PF-rVf0--CX0eBXpCWsvaG4fRDh-3egSE-6GjlLVMSc0PaHNTpzUKC43Dlc5tN2s3D5aIxuUDwXo6o3td_uj9930DC4va5e3XaLfSotIDx3quMxWueiLrKbU9myUw9vkVnAuom0Pijvkmq3vkhv-uNGf98iOh0YUoBEFaEQg-KgPjUg1EUAjWoJG5KBxn3x5s3-4-zYOZ2jEOhe0iXNqlKJKs8pyC741aFxuFPiowjBTVeAfl1WhBBc2VdqIymiVZBq0uC0zkeuUPSDr9bS2j0iUprm1FStoxVjGKlVSLqBuplJlGC_1gCRtb0kdCObxnJOJbDMJjyX0tcS-lgmmPYgBedkVmXl2latepq0IZLttGCY6CQi6qhD_XSG7CCN2IVO5oDKRn8GXp4VAgxbDBpQPSNaVDNaotzL_1OCzFh0SNDWOTVXb6Sk0BL1OkWCvGJCHHi3dn24RB5-7hKPuBWSBX35Sj48cG3zmYhLZ5qV1PiY3z4ftE7LezE_tU3Jdf2_Gi_kWWeOjYisMkl9M6cwb |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repair+Pathway+Choices+and+Consequences+at+the+Double-Strand+Break&rft.jtitle=Trends+in+cell+biology&rft.au=Ceccaldi%2C+Raphael&rft.au=Rondinelli%2C+Beatrice&rft.au=D%27Andrea%2C+Alan+D&rft.date=2016-01-01&rft.eissn=1879-3088&rft.volume=26&rft.issue=1&rft.spage=52&rft_id=info:doi/10.1016%2Fj.tcb.2015.07.009&rft_id=info%3Apmid%2F26437586&rft.externalDocID=26437586 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09628924%2FS0962892415X0002X%2Fcov150h.gif |