Data-driven diagnosis of spinal abnormalities using feature selection and machine learning algorithms

This paper focuses on the application of machine learning algorithms for predicting spinal abnormalities. As a data preprocessing step, univariate feature selection as a filter based feature selection, and principal component analysis (PCA) as a feature extraction algorithm are considered. A number...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 15; číslo 2; s. e0228422
Hlavní autoři: Raihan-Al-Masud, Md, Mondal, M. Rubaiyat Hossain
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 06.02.2020
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper focuses on the application of machine learning algorithms for predicting spinal abnormalities. As a data preprocessing step, univariate feature selection as a filter based feature selection, and principal component analysis (PCA) as a feature extraction algorithm are considered. A number of machine learning approaches namely support vector machine (SVM), logistic regression (LR), bagging ensemble methods are considered for the diagnosis of spinal abnormality. The SVM, LR, bagging SVM and bagging LR models are applied on a dataset of 310 samples publicly available in Kaggle repository. The performance of classification of abnormal and normal spinal patients is evaluated in terms of a number of factors including training and testing accuracy, recall, and miss rate. The classifier models are also evaluated by optimizing the kernel parameters, and by using the results of receiver operating characteristic (ROC) and precision-recall curves. Results indicate that when 78% data are used for training, the observed training accuracies for SVM, LR, bagging SVM and bagging LR are 86.30%, 85.47%, 86.72% and 85.06%, respectively. On the other hand, the accuracies for the test dataset for SVM, LR, bagging SVM and bagging LR are the same being 86.96%. However, bagging SVM is the most attractive as it has a higher recall value and a lower miss rate compared to others. Hence, bagging SVM is suitable for the classification of spinal patients when applied on the most five important features of spinal samples.
AbstractList This paper focuses on the application of machine learning algorithms for predicting spinal abnormalities. As a data preprocessing step, univariate feature selection as a filter based feature selection, and principal component analysis (PCA) as a feature extraction algorithm are considered. A number of machine learning approaches namely support vector machine (SVM), logistic regression (LR), bagging ensemble methods are considered for the diagnosis of spinal abnormality. The SVM, LR, bagging SVM and bagging LR models are applied on a dataset of 310 samples publicly available in Kaggle repository. The performance of classification of abnormal and normal spinal patients is evaluated in terms of a number of factors including training and testing accuracy, recall, and miss rate. The classifier models are also evaluated by optimizing the kernel parameters, and by using the results of receiver operating characteristic (ROC) and precision-recall curves. Results indicate that when 78% data are used for training, the observed training accuracies for SVM, LR, bagging SVM and bagging LR are 86.30%, 85.47%, 86.72% and 85.06%, respectively. On the other hand, the accuracies for the test dataset for SVM, LR, bagging SVM and bagging LR are the same being 86.96%. However, bagging SVM is the most attractive as it has a higher recall value and a lower miss rate compared to others. Hence, bagging SVM is suitable for the classification of spinal patients when applied on the most five important features of spinal samples.This paper focuses on the application of machine learning algorithms for predicting spinal abnormalities. As a data preprocessing step, univariate feature selection as a filter based feature selection, and principal component analysis (PCA) as a feature extraction algorithm are considered. A number of machine learning approaches namely support vector machine (SVM), logistic regression (LR), bagging ensemble methods are considered for the diagnosis of spinal abnormality. The SVM, LR, bagging SVM and bagging LR models are applied on a dataset of 310 samples publicly available in Kaggle repository. The performance of classification of abnormal and normal spinal patients is evaluated in terms of a number of factors including training and testing accuracy, recall, and miss rate. The classifier models are also evaluated by optimizing the kernel parameters, and by using the results of receiver operating characteristic (ROC) and precision-recall curves. Results indicate that when 78% data are used for training, the observed training accuracies for SVM, LR, bagging SVM and bagging LR are 86.30%, 85.47%, 86.72% and 85.06%, respectively. On the other hand, the accuracies for the test dataset for SVM, LR, bagging SVM and bagging LR are the same being 86.96%. However, bagging SVM is the most attractive as it has a higher recall value and a lower miss rate compared to others. Hence, bagging SVM is suitable for the classification of spinal patients when applied on the most five important features of spinal samples.
This paper focuses on the application of machine learning algorithms for predicting spinal abnormalities. As a data preprocessing step, univariate feature selection as a filter based feature selection, and principal component analysis (PCA) as a feature extraction algorithm are considered. A number of machine learning approaches namely support vector machine (SVM), logistic regression (LR), bagging ensemble methods are considered for the diagnosis of spinal abnormality. The SVM, LR, bagging SVM and bagging LR models are applied on a dataset of 310 samples publicly available in Kaggle repository. The performance of classification of abnormal and normal spinal patients is evaluated in terms of a number of factors including training and testing accuracy, recall, and miss rate. The classifier models are also evaluated by optimizing the kernel parameters, and by using the results of receiver operating characteristic (ROC) and precision-recall curves. Results indicate that when 78% data are used for training, the observed training accuracies for SVM, LR, bagging SVM and bagging LR are 86.30%, 85.47%, 86.72% and 85.06%, respectively. On the other hand, the accuracies for the test dataset for SVM, LR, bagging SVM and bagging LR are the same being 86.96%. However, bagging SVM is the most attractive as it has a higher recall value and a lower miss rate compared to others. Hence, bagging SVM is suitable for the classification of spinal patients when applied on the most five important features of spinal samples.
Audience Academic
Author Mondal, M. Rubaiyat Hossain
Raihan-Al-Masud, Md
AuthorAffiliation Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
Universidad de Zaragoza, SPAIN
AuthorAffiliation_xml – name: Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
– name: Universidad de Zaragoza, SPAIN
Author_xml – sequence: 1
  givenname: Md
  orcidid: 0000-0003-4280-7091
  surname: Raihan-Al-Masud
  fullname: Raihan-Al-Masud, Md
– sequence: 2
  givenname: M. Rubaiyat Hossain
  orcidid: 0000-0002-8582-9197
  surname: Mondal
  fullname: Mondal, M. Rubaiyat Hossain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32027680$$D View this record in MEDLINE/PubMed
BookMark eNqNk9uL1DAUxousuBf9D0QLgujDjLm0accHYVlvAwsL3l7DaXrayZAmY5Iu-t-bOrPLzLKI9KHl9Pd9J_k45zQ7ss5ilj2lZE55Rd-s3egtmPkmleeEsbpg7EF2QheczQQj_Gjv-zg7DWFNSMlrIR5lx5wRVomanGT4HiLMWq-v0eatht66oEPuujxsdLLPobHOD2B01BjyMWjb5x1CHD3mAQ2qqJ3Nwbb5AGqlLeYGwdsJA9M7r-NqCI-zhx2YgE9277Ps-8cP3y4-zy6vPi0vzi9nSixYnJUdY6VSomiAtVhi1VSdKkjBFGOLsq6FUtDSTlFsUaHgJcOqgrbsyo4yQoGfZc-3vhvjgtwlFCRLJClKKopELLdE62AtN14P4H9LB1r-LTjfS_BRK4NSkYa1ZcUrRrGomWoICFZVDSENX4hFk7ze7bqNzYCtQhs9mAPTwz9Wr2TvrmVFSMELngxe7Qy8-zliiHLQQaExYNGN23OLglREJPTFHfT-2-2oHtIFtO1c6qsmU3kuKOe0rBlL1PweKj0tDlqlcep0qh8IXh8IEhPxV-xhDEEuv375f_bqxyH7co9dIZi4Cs6M00iFQ_DZftK3Ed_McQKKLaC8C8Fjd4tQIqd1uYlLTusid-uSZG_vyJSOMLVPiWjzb_Efl1gbyw
CitedBy_id crossref_primary_10_3390_diagnostics13091559
crossref_primary_10_7717_peerj_cs_1280
crossref_primary_10_1016_j_bdr_2025_100533
crossref_primary_10_1109_ACCESS_2022_3190416
crossref_primary_10_1007_s43390_024_00954_4
crossref_primary_10_1007_s00500_023_08744_2
crossref_primary_10_3389_fgene_2022_963349
crossref_primary_10_1080_00140139_2023_2221413
crossref_primary_10_1016_j_bspc_2022_104367
crossref_primary_10_1016_j_msksp_2024_103230
crossref_primary_10_3390_app13085012
crossref_primary_10_1016_j_cmpb_2022_106992
crossref_primary_10_3390_ijerph21111474
crossref_primary_10_1016_j_imu_2020_100374
crossref_primary_10_1016_j_bspc_2024_106879
crossref_primary_10_3390_ijms26062428
crossref_primary_10_1371_journal_pone_0259179
crossref_primary_10_1007_s10586_025_05267_3
crossref_primary_10_1016_j_jns_2023_120812
crossref_primary_10_1016_j_procs_2024_06_371
crossref_primary_10_1016_j_rsase_2024_101246
crossref_primary_10_1155_2020_2858471
Cites_doi 10.1016/S0140-6736(11)60937-9
10.1093/ageing/afj055
10.1016/j.apmr.2013.10.032
10.1162/089976603321891855
10.1371/journal.pone.0118432
10.1016/j.eswa.2005.09.045
10.1007/978-3-642-21257-4_73
10.1097/00024720-200210000-00007
10.1093/bioinformatics/btm344
10.1109/ICHI.2016.90
10.1109/ICASSDA.2018.8477622
10.1155/2011/876306
10.1109/WICT.2014.7077287
10.1080/00140138508963114
10.1111/ner.12018
10.1001/jama.280.2.147
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Raihan-Al-Masud, Mondal. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Raihan-Al-Masud, Mondal 2020 Raihan-Al-Masud, Mondal
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Raihan-Al-Masud, Mondal. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Raihan-Al-Masud, Mondal 2020 Raihan-Al-Masud, Mondal
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0228422
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Biological Science
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Agricultural Science Database


MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Data-driven diagnosis of spinal abnormalities
EISSN 1932-6203
ExternalDocumentID 2352045164
oai_doaj_org_article_c0b2d573721e482cb0a6277b00b3969b
PMC7004343
A613315822
32027680
10_1371_journal_pone_0228422
Genre Evaluation Study
Journal Article
GeographicLocations Taiwan
Bangladesh
GeographicLocations_xml – name: Taiwan
– name: Bangladesh
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
PUEGO
5PM
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c692t-5f225cc64ba2de5e7b7fc4042c2295886ccad1fc1edece6352e77ad5f5f1201a3
IEDL.DBID FPL
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000534623800030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Fri Nov 26 17:13:58 EST 2021
Fri Oct 03 12:53:38 EDT 2025
Tue Nov 04 01:45:52 EST 2025
Thu Oct 02 07:38:30 EDT 2025
Tue Oct 07 07:49:39 EDT 2025
Sat Nov 29 13:00:17 EST 2025
Sat Nov 29 10:06:39 EST 2025
Wed Nov 26 10:19:20 EST 2025
Wed Nov 26 10:15:34 EST 2025
Thu May 22 21:20:04 EDT 2025
Wed Feb 19 02:31:08 EST 2025
Sat Nov 29 03:10:09 EST 2025
Tue Nov 18 22:11:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-5f225cc64ba2de5e7b7fc4042c2295886ccad1fc1edece6352e77ad5f5f1201a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-8582-9197
0000-0003-4280-7091
OpenAccessLink http://dx.doi.org/10.1371/journal.pone.0228422
PMID 32027680
PQID 2352045164
PQPubID 1436336
PageCount e0228422
ParticipantIDs plos_journals_2352045164
doaj_primary_oai_doaj_org_article_c0b2d573721e482cb0a6277b00b3969b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7004343
proquest_miscellaneous_2352640706
proquest_journals_2352045164
gale_infotracmisc_A613315822
gale_infotracacademiconefile_A613315822
gale_incontextgauss_ISR_A613315822
gale_incontextgauss_IOV_A613315822
gale_healthsolutions_A613315822
pubmed_primary_32027680
crossref_primary_10_1371_journal_pone_0228422
crossref_citationtrail_10_1371_journal_pone_0228422
PublicationCentury 2000
PublicationDate 2020-02-06
PublicationDateYYYYMMDD 2020-02-06
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References VY Ma (pone.0228422.ref008) 2014; 95
pone.0228422.ref014
Y Saeys (pone.0228422.ref024) 2007; 23
P Korovessis (pone.0228422.ref002) 2002; 15
pone.0228422.ref016
J He (pone.0228422.ref026) 2006; 30
M Vassilaki (pone.0228422.ref015) 2014; 73
P. Brinckmann (pone.0228422.ref001) 1985; 28
HT Lin (pone.0228422.ref029) 2003
CE Dionne (pone.0228422.ref007) 2006; 35
H Ung (pone.0228422.ref005) 2012
M Chen (pone.0228422.ref021) 2016
IH Witten (pone.0228422.ref027) 2006; 5
SS Keerthi (pone.0228422.ref028) 2003; 15
D Schopflocher (pone.0228422.ref011) 2011; 16
T Saito (pone.0228422.ref030) 2015; 10
pone.0228422.ref022
pone.0228422.ref020
pone.0228422.ref003
M Bhatt (pone.0228422.ref017) 2018
pone.0228422.ref025
pone.0228422.ref023
JC Hill (pone.0228422.ref004) 2011; 378
MG Salvetti (pone.0228422.ref009) 2012; 46
PLR Morin (pone.0228422.ref013) 2010; 21
O Gureje (pone.0228422.ref012) 1998; 280
RA Last (pone.0228422.ref019) 2009; 79
P Bodera (pone.0228422.ref010) 2012; 88
WO Nijeweme-d (pone.0228422.ref018) 2017
L Manchikanti (pone.0228422.ref006) 2014; 17
References_xml – volume: 378
  start-page: 1560
  issue: 9802
  year: 2011
  ident: pone.0228422.ref004
  article-title: Comparison of stratified primary care management for low back pain with current best practice (STarT Back): a randomised controlled trial
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(11)60937-9
– volume: 35
  start-page: 229
  issue: 3
  year: 2006
  ident: pone.0228422.ref007
  article-title: Does back pain prevalence really decrease with increasing age? A systematic review
  publication-title: Age and Ageing
  doi: 10.1093/ageing/afj055
– volume: 95
  start-page: 986
  issue: 5
  year: 2014
  ident: pone.0228422.ref008
  article-title: The incidence, prevalence, costs and impact on disability of common conditions requiring rehabilitation in the US: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain
  publication-title: Archives of Physical Medicine and Rehabilitation
  doi: 10.1016/j.apmr.2013.10.032
– volume: 15
  start-page: 1667
  issue: 7
  year: 2003
  ident: pone.0228422.ref028
  article-title: Asymptotic behaviors of support vector machines with Gaussian kernel
  publication-title: Neural Computation
  doi: 10.1162/089976603321891855
– volume: 10
  start-page: e0118432
  issue: 3
  year: 2015
  ident: pone.0228422.ref030
  article-title: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0118432
– volume: 30
  start-page: 64
  issue: 1
  year: 2006
  ident: pone.0228422.ref026
  article-title: Transmembrane segments prediction and understanding using support vector machine and decision tree
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.09.045
– year: 2016
  ident: pone.0228422.ref021
  article-title: Disease prediction by machine learning over big data from healthcare communities
  publication-title: IEEE Access
– volume: 88
  start-page: 115
  issue: 12b
  year: 2012
  ident: pone.0228422.ref010
  article-title: The surface electromyography biofeedback in pain management—theoretical assumptions and possibilities of using the method
  publication-title: Przeglad Elektrotechniczny
– ident: pone.0228422.ref003
  doi: 10.1007/978-3-642-21257-4_73
– ident: pone.0228422.ref022
– volume-title: A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods
  year: 2003
  ident: pone.0228422.ref029
– volume: 15
  start-page: 384
  issue: 5
  year: 2002
  ident: pone.0228422.ref002
  article-title: Correlative analysis of lateral vertebral radiographic variables and medical outcomes study short-form health survey: a comparative study in asymptomatic volunteers versus patients with low back pain
  publication-title: Journal of Spinal Disorders & Techniques
  doi: 10.1097/00024720-200210000-00007
– year: 2018
  ident: pone.0228422.ref017
  article-title: A comparative analysis of classification methods for diagnosis of Lower Back Pain
  publication-title: Oriental Journal of Computer Science and Technology
– year: 2012
  ident: pone.0228422.ref005
  article-title: Multivariate classification of structural MRI data detects chronic low back pain
  publication-title: Cerebral Cortex
– volume: 5
  start-page: 51
  year: 2006
  ident: pone.0228422.ref027
  article-title: Data mining: practical machine learning tools and techniques
  publication-title: BioMedical Engineering
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: pone.0228422.ref024
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– year: 2017
  ident: pone.0228422.ref018
  article-title: Evaluation of three machine learning models for self-referral decision support on low back pain in primary care
  publication-title: International Journal of Medical Informatics
– ident: pone.0228422.ref014
  doi: 10.1109/ICHI.2016.90
– volume: 21
  start-page: 82
  issue: 4
  year: 2010
  ident: pone.0228422.ref013
  article-title: Chronic pain at ages 12 to 44
  publication-title: Health matters. Statistics Canada. Toronto
– ident: pone.0228422.ref016
  doi: 10.1109/ICASSDA.2018.8477622
– volume: 16
  start-page: 445
  issue: 6
  year: 2011
  ident: pone.0228422.ref011
  article-title: The prevalence of chronic pain in Canada
  publication-title: Pain Res Manag
  doi: 10.1155/2011/876306
– volume: 73
  start-page: 122
  issue: 4
  year: 2014
  ident: pone.0228422.ref015
  article-title: Insights in public health: perspectives on pain in the low back and neck: global burden, epidemiology, and management
  publication-title: Hawai'i journal of medicine & public health: a journal of Asia Pacific Medicine & Public Health
– volume: 46
  start-page: 16
  year: 2012
  ident: pone.0228422.ref009
  article-title: Disability related to chronic low back pain: prevalence and associated factors
  publication-title: Revista Da Escola De Enfermagem Da USP
– ident: pone.0228422.ref023
– volume: 79
  start-page: 1067
  issue: 12
  year: 2009
  ident: pone.0228422.ref019
  article-title: Chronic lower back pain: evaluation and management
  publication-title: American Family Physician
– ident: pone.0228422.ref025
– ident: pone.0228422.ref020
  doi: 10.1109/WICT.2014.7077287
– volume: 28
  start-page: 77
  issue: 1
  year: 1985
  ident: pone.0228422.ref001
  article-title: Pathology of the vertebral column
  publication-title: Ergonomics
  doi: 10.1080/00140138508963114
– volume: 17
  start-page: 3
  issue: S2
  year: 2014
  ident: pone.0228422.ref006
  article-title: Epidemiology of low back pain in adults
  publication-title: Neuromodulation
  doi: 10.1111/ner.12018
– volume: 280
  start-page: 147
  issue: 2
  year: 1998
  ident: pone.0228422.ref012
  article-title: Persistent pain and well-being: a world health organization study in primary care
  publication-title: JAMA
  doi: 10.1001/jama.280.2.147
SSID ssj0053866
Score 2.5405483
Snippet This paper focuses on the application of machine learning algorithms for predicting spinal abnormalities. As a data preprocessing step, univariate feature...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0228422
SubjectTerms Abnormalities
Accuracy
Algorithms
Analysis
Back pain
Bagging
Biology and Life Sciences
Classification
Computer and Information Sciences
Data mining
Datasets
Datasets as Topic - statistics & numerical data
Diagnosis
Diagnosis, Computer-Assisted - methods
Diagnosis, Differential
Feature extraction
Humans
Image Interpretation, Computer-Assisted - methods
Information technology
Learning algorithms
Libraries
Logistic Models
Machine Learning
Medical diagnosis
Medicine and Health Sciences
Methods
Physical Sciences
Posture - physiology
Predictive Value of Tests
Principal components analysis
Recall
Regression analysis
Reproducibility of Results
Research and Analysis Methods
Spinal Diseases - diagnosis
Spinal Diseases - epidemiology
Spine - abnormalities
Spine - diagnostic imaging
Support Vector Machine
Support vector machines
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQigMXRHl1oYBBSMAhrRM7dnIsjwokVBAv9RY5jr1daZus1ll-PzOON2pQpXLgGk9e88rYGX8fIS85a1JhrIPKzahEpFolWjuWNIVlhRBK1WnYKPxZnZ4WZ2fl10tUX9gTNsADD4o7MqzOmhzJVFIriszUTMsMLsFYzUtZ1ph9oerZTaaGHAxRLGXcKMdVehTtcrjuWnuIiC8iyyYfooDXP2bl2XrV-atKzr87Jy99ik7ukNuxhqTHw7PvkRu2vUv2YpR6-jpCSb-5R-x73euk2WBKo83QVbf0tHPUr5EOi-q6xaJ1FXBVKTbBL6izAeyT-kCRA3ajum3oRei6tDTSTCyoXi26zbI_v_D3yc-TDz_efUwisUJiZJn1Se4gio2RotZZY3OrauWMgPA1SO5dFBLM2qTOpLaxxkJJklmldJO73KVQMGj-gMxaUOU-oVqXFmaNStpcidzImgtR8sIxrkxpjJ0TvtNyZSLqOJJfrKrwK03B7GNQWoW2qaJt5iQZz1oPqBvXyL9FA46yiJkdDoAnVdGTqus8aU6eofmrYQPqGPnVMVQ8PM0LvM2LIIG4GS025iz01vvq05df_yD0_dtE6FUUch2ow-i4GQLeCfG4JpIHE0mIfjMZ3kdn3WnFVxlYCzGDpIAzdw589fDzcRgvis12re22gwz-32VyTh4O_j5qluNimSzYnKhJJExUPx1pl-cBthyJFLjgj_6HrR6TWxkufGD7vDwgs36ztU_ITfO7X_rN05AL_gDw3WTr
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZg4MAFKFsDBQxCAg5pk9ixkxMqSwUSKhWbql4ix0s60jQZxjP8fvwcJxBUARLX-GV7y5cX-_l7CD0hiUqp1MZlbpLHNBU8FsIksSp0UlDKeZ36jcLv-eFhcXxcHoUJNxvKKgdM9ECtOglz5HuZyxSAC4XRF8tvMXSNgtXV0ELjIroELAkQmEf5yYDELpYZC9vlCE_3gnV2l12rd4H3hWbZ5HPkWftHbJ4tF509L_H8vX7ylw_SwbX_fZXr6GpIRfF-7ztb6IJub6CtEOwWPwuM1M9vIv1arEWsVoCMWPXFeXOLO4PtErpqYVG3kPsuPD0rhlr6BhvtOUOx9Z12nPmxaBU-88WbGoduFQ0Wi8Y92_r0zN5CXw7efH71Ng79GWLJymwd58aBgZSM1iJTOte85kZShwISeoQXBXPeoVIjU6201C6zyTTnQuUmN6nLOwS5jWats8U2wkKU2v18cqZzTnPJakJpSQqTEC5LKXWEyGCmSgbycuihsaj8ihx3PzG90iowbhWMG6F4PGvZk3f8Rf4leMAoC9Tb_kC3aqoQyZVM6kzl0N0n1bTIZJ0IljmfTpKalKysI_QQ_Kfq97GOAFLtu8SJpHkBt3nsJYB-o4X6nkZsrK3effj6D0KfPk6EngYh0zl1SBH2VLh3AlqvieTORNKBiJwMb4O3D1qx1U8fdWcOXnz-8KNxGC4KNXut7ja9DCwTJyxCd_qAGTVLYM6NFUmE-CSUJqqfjrTzU89-Dv0YCCV3__xY99CVDGZGoL6e7aDZerXR99Fl-X09t6sHHiZ-AMIic74
  priority: 102
  providerName: ProQuest
Title Data-driven diagnosis of spinal abnormalities using feature selection and machine learning algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/32027680
https://www.proquest.com/docview/2352045164
https://www.proquest.com/docview/2352640706
https://pubmed.ncbi.nlm.nih.gov/PMC7004343
https://doaj.org/article/c0b2d573721e482cb0a6277b00b3969b
http://dx.doi.org/10.1371/journal.pone.0228422
Volume 15
WOSCitedRecordID wos000534623800030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health Medical collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & allied health premium.
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Biological Science
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELeg44EXYHytMIpBSMBDShI7dvK4jk1M20rUwdTxEjmO01Xqkqpp-fu5c9JCpk3Ayz3E53zc-S5n-_w7Qt4xN_O4NjlEblo63FPSUSp3nSw0bsi5lKlnDwqfyOEwHI-j-PdE8doOPpPep0am_XlZmD6itXAfXO6Wz4TAFK7D-GTtecF2hWiOx93Ws_X7sSj9G1_cmc_K6qZA83q-5B8_oMOH__vqj8iDJtSke_XY2CZ3TPGYbDfGXNEPDeL0xyfEfFZL5WQL9Hw0q5PvphUtc1rNsWoWVWmBse3Mwq9SzJWf0NxYTFBa2Uo6oF6qioxe2eRMQ5tqFBOqZpNyMV1eXlVPyffDg2_7X5ym_oKjReQvnSAHY9da8FT5mQmMTGWuOVi5xhrgYShA-5mXa89kRhuIXHwjpcqCPMg9iCsUe0Y6BXz6DqFKRQYml1KYQPJAi5RxHrEwd5nUkdamS9haLYluwMmxRsYssTtuEiYptdASlGXSyLJLnE2veQ3O8Rf-AWp8w4vQ2vYCKC1pLDXRbupnAVbv8QwPfZ26SvgwZl03ZZGI0i55jeMlqc-pbhxEsgeBEfOCEB_z1nIgvEaB-TsTtaqq5Ojr-T8wnY1aTO8bprwEcWjVnJmAb0LYrhbnbosTnIRuNe_g6F5LpUp80BZCCwkOPdcj_ubmN5tmvCnm5BWmXNU8uA3sii55XhvIRrIM19RE6HaJbJlOS_TtlmJ6adHNsd4C4-zF7W_8ktz3cdUDc-fFLuksFyvzitzTP5fTatEjd-XoHOlYWhoCDfe9HtkaHAzjUc-uuvSs4wB6POgDPXWPkcrY0jOgcfADesRHp_HFL8F4bpU
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELZGQYIXYPxaYTCDQMBDtsR27OQBocGYVq0UBAP1LTiO01XqktK0IP4p_kZ8jhMImoCXPfBaX5L6cnc-O3ffh9BD6mcBUzo3mZsSHguk8KTMfS-LtB8xJkQa2EbhoRiNovE4fruGvje9MFBW2cREG6izUsEZ-Q4xmQJgoXD2fP7ZA9Yo-LraUGjUZnGov301W7bq2WDPvN9HhOy_Onp54DlWAU_xmCy9MDcmrBRnqSSZDrVIRa6YsV0FzNZRxM2csiBXgc600mY9JloImYV5mAdmtZTU3PccOm_iuIASMjFuN3gmdnDu2vOoCHacNWzPy0JvA84MI6Sz_FmWgHYt6M1nZXVaovt7veYvC-D-lf9NdVfRZZdq493aN9bRmi6uoXUXzCr8xCFuP72O9J5cSi9bQOTHWV18OK1wmeNqDqxhWKYF5PYzCz-LoVdggnNtMVFxZZmEjHljWWT4xBanauzYOCZYziZGF8vjk-oG-nAm072JeoV59xsISxlrs7kWXIeChYqnlLGYRrlPhYqV0n1EG7NIlANnB46QWWK_OAqzSauVloAxJc6Y-shrr5rX4CR_kX8BFtfKArS4_aFcTBIXqRLlpyQLgb0o0CwiKvUlJ8ZnfT-lMY_TPtoCe03qPt02QCa7JjGkQRjBYx5YCYAXKaB-aSJXVZUM3nz8B6H37zpCj51QXhp1KOl6RsycALasI7nZkTRBUnWGN8C7Gq1UyU-fMFc2XnP68P12GG4KNYmFLle1DHwG93kf3aodtNUshTNFHvl9JDqu21F9d6SYHlt0d-CboIze_vPf2kIXD45eD5PhYHR4B10icAoEvQR8E_WWi5W-iy6oL8tptbhnQxRGn87asX8AQGfS9A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLdGQYgLML5WGMwgEHDImtiOnRwQGpSKalOpYKCJS3Acu6vUJaVpQfxr_HX4JU4haAIuO3CtX9L69fe-7PeB0EPqZwFT2ljPTQmPBVJ4UhrfyyLtR4wJkQZVofCBGI2io6N4vIG-N7UwkFbZ6MRKUWeFgjPyHrGeAvRC4axnXFrEuD94Pv_swQQpuGltxmnUENnX377a8K18Nuzb__oRIYNXhy9fe27CgKd4TJZeaCycleIslSTToRapMIpZHCuYch1F3O4vC4wKdKaVtraZaCFkFprQBNZySmrfew6dFzbGhMBvHH5srIDVI5y7Uj0qgp5Dxu68yPUu9JxhhLRMYTUxYG0XOvNZUZ7m9P6eu_mLMRxc-Z_ZeBVddi443qtlZhNt6Pwa2nRKrsRPXCfup9eR7sul9LIFWASc1UmJ0xIXBpdzmCaGZZqDzz-r2tJiqCGYYKOrXqm4rCYMWdhjmWf4pEpa1dhN6ZhgOZtYXiyPT8ob6P2ZbPcm6uQWB1sISxlrG3QLrkPBQsVTylhMI-NToWKldBfRBiKJck3bYXbILKluIoUN3mqmJQCsxAGri7z1U_O6aclf6F8A-ta00HK8-qBYTBKnwRLlpyQLYapRoFlEVOpLTqws-35KYx6nXbQD2E3q-t214kz2rMNIgzCCr3lQUUDbkRyQN5GrskyGbz78A9G7ty2ix47IFJYdSrpaErsnaGfWotxuUVrlqVrLWyBpDVfK5Kd82CcbCTp9-f56GV4KuYq5LlY1DVyP-7yLbtXCuuYshbNGHvldJFpi3GJ9eyWfHldd32EOBWX09p9_1g66aOU5ORiO9u-gSwQOh6DEgG-jznKx0nfRBfVlOS0X9ypthdGns5brH3382-c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+diagnosis+of+spinal+abnormalities+using+feature+selection+and+machine+learning+algorithms&rft.jtitle=PloS+one&rft.au=Raihan-Al-Masud%2C+Md&rft.au=Mondal%2C+M.+Rubaiyat+Hossain&rft.date=2020-02-06&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=2&rft.spage=e0228422&rft_id=info:doi/10.1371%2Fjournal.pone.0228422&rft.externalDocID=A613315822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon