Data-driven diagnosis of spinal abnormalities using feature selection and machine learning algorithms
This paper focuses on the application of machine learning algorithms for predicting spinal abnormalities. As a data preprocessing step, univariate feature selection as a filter based feature selection, and principal component analysis (PCA) as a feature extraction algorithm are considered. A number...
Saved in:
| Published in: | PloS one Vol. 15; no. 2; p. e0228422 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
06.02.2020
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper focuses on the application of machine learning algorithms for predicting spinal abnormalities. As a data preprocessing step, univariate feature selection as a filter based feature selection, and principal component analysis (PCA) as a feature extraction algorithm are considered. A number of machine learning approaches namely support vector machine (SVM), logistic regression (LR), bagging ensemble methods are considered for the diagnosis of spinal abnormality. The SVM, LR, bagging SVM and bagging LR models are applied on a dataset of 310 samples publicly available in Kaggle repository. The performance of classification of abnormal and normal spinal patients is evaluated in terms of a number of factors including training and testing accuracy, recall, and miss rate. The classifier models are also evaluated by optimizing the kernel parameters, and by using the results of receiver operating characteristic (ROC) and precision-recall curves. Results indicate that when 78% data are used for training, the observed training accuracies for SVM, LR, bagging SVM and bagging LR are 86.30%, 85.47%, 86.72% and 85.06%, respectively. On the other hand, the accuracies for the test dataset for SVM, LR, bagging SVM and bagging LR are the same being 86.96%. However, bagging SVM is the most attractive as it has a higher recall value and a lower miss rate compared to others. Hence, bagging SVM is suitable for the classification of spinal patients when applied on the most five important features of spinal samples. |
|---|---|
| AbstractList | This paper focuses on the application of machine learning algorithms for predicting spinal abnormalities. As a data preprocessing step, univariate feature selection as a filter based feature selection, and principal component analysis (PCA) as a feature extraction algorithm are considered. A number of machine learning approaches namely support vector machine (SVM), logistic regression (LR), bagging ensemble methods are considered for the diagnosis of spinal abnormality. The SVM, LR, bagging SVM and bagging LR models are applied on a dataset of 310 samples publicly available in Kaggle repository. The performance of classification of abnormal and normal spinal patients is evaluated in terms of a number of factors including training and testing accuracy, recall, and miss rate. The classifier models are also evaluated by optimizing the kernel parameters, and by using the results of receiver operating characteristic (ROC) and precision-recall curves. Results indicate that when 78% data are used for training, the observed training accuracies for SVM, LR, bagging SVM and bagging LR are 86.30%, 85.47%, 86.72% and 85.06%, respectively. On the other hand, the accuracies for the test dataset for SVM, LR, bagging SVM and bagging LR are the same being 86.96%. However, bagging SVM is the most attractive as it has a higher recall value and a lower miss rate compared to others. Hence, bagging SVM is suitable for the classification of spinal patients when applied on the most five important features of spinal samples.This paper focuses on the application of machine learning algorithms for predicting spinal abnormalities. As a data preprocessing step, univariate feature selection as a filter based feature selection, and principal component analysis (PCA) as a feature extraction algorithm are considered. A number of machine learning approaches namely support vector machine (SVM), logistic regression (LR), bagging ensemble methods are considered for the diagnosis of spinal abnormality. The SVM, LR, bagging SVM and bagging LR models are applied on a dataset of 310 samples publicly available in Kaggle repository. The performance of classification of abnormal and normal spinal patients is evaluated in terms of a number of factors including training and testing accuracy, recall, and miss rate. The classifier models are also evaluated by optimizing the kernel parameters, and by using the results of receiver operating characteristic (ROC) and precision-recall curves. Results indicate that when 78% data are used for training, the observed training accuracies for SVM, LR, bagging SVM and bagging LR are 86.30%, 85.47%, 86.72% and 85.06%, respectively. On the other hand, the accuracies for the test dataset for SVM, LR, bagging SVM and bagging LR are the same being 86.96%. However, bagging SVM is the most attractive as it has a higher recall value and a lower miss rate compared to others. Hence, bagging SVM is suitable for the classification of spinal patients when applied on the most five important features of spinal samples. This paper focuses on the application of machine learning algorithms for predicting spinal abnormalities. As a data preprocessing step, univariate feature selection as a filter based feature selection, and principal component analysis (PCA) as a feature extraction algorithm are considered. A number of machine learning approaches namely support vector machine (SVM), logistic regression (LR), bagging ensemble methods are considered for the diagnosis of spinal abnormality. The SVM, LR, bagging SVM and bagging LR models are applied on a dataset of 310 samples publicly available in Kaggle repository. The performance of classification of abnormal and normal spinal patients is evaluated in terms of a number of factors including training and testing accuracy, recall, and miss rate. The classifier models are also evaluated by optimizing the kernel parameters, and by using the results of receiver operating characteristic (ROC) and precision-recall curves. Results indicate that when 78% data are used for training, the observed training accuracies for SVM, LR, bagging SVM and bagging LR are 86.30%, 85.47%, 86.72% and 85.06%, respectively. On the other hand, the accuracies for the test dataset for SVM, LR, bagging SVM and bagging LR are the same being 86.96%. However, bagging SVM is the most attractive as it has a higher recall value and a lower miss rate compared to others. Hence, bagging SVM is suitable for the classification of spinal patients when applied on the most five important features of spinal samples. |
| Audience | Academic |
| Author | Mondal, M. Rubaiyat Hossain Raihan-Al-Masud, Md |
| AuthorAffiliation | Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh Universidad de Zaragoza, SPAIN |
| AuthorAffiliation_xml | – name: Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh – name: Universidad de Zaragoza, SPAIN |
| Author_xml | – sequence: 1 givenname: Md orcidid: 0000-0003-4280-7091 surname: Raihan-Al-Masud fullname: Raihan-Al-Masud, Md – sequence: 2 givenname: M. Rubaiyat Hossain orcidid: 0000-0002-8582-9197 surname: Mondal fullname: Mondal, M. Rubaiyat Hossain |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32027680$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk9uL1DAUxousuBf9D0QLgujDjLm0accHYVlvAwsL3l7DaXrayZAmY5Iu-t-bOrPLzLKI9KHl9Pd9J_k45zQ7ss5ilj2lZE55Rd-s3egtmPkmleeEsbpg7EF2QheczQQj_Gjv-zg7DWFNSMlrIR5lx5wRVomanGT4HiLMWq-v0eatht66oEPuujxsdLLPobHOD2B01BjyMWjb5x1CHD3mAQ2qqJ3Nwbb5AGqlLeYGwdsJA9M7r-NqCI-zhx2YgE9277Ps-8cP3y4-zy6vPi0vzi9nSixYnJUdY6VSomiAtVhi1VSdKkjBFGOLsq6FUtDSTlFsUaHgJcOqgrbsyo4yQoGfZc-3vhvjgtwlFCRLJClKKopELLdE62AtN14P4H9LB1r-LTjfS_BRK4NSkYa1ZcUrRrGomWoICFZVDSENX4hFk7ze7bqNzYCtQhs9mAPTwz9Wr2TvrmVFSMELngxe7Qy8-zliiHLQQaExYNGN23OLglREJPTFHfT-2-2oHtIFtO1c6qsmU3kuKOe0rBlL1PweKj0tDlqlcep0qh8IXh8IEhPxV-xhDEEuv375f_bqxyH7co9dIZi4Cs6M00iFQ_DZftK3Ed_McQKKLaC8C8Fjd4tQIqd1uYlLTusid-uSZG_vyJSOMLVPiWjzb_Efl1gbyw |
| CitedBy_id | crossref_primary_10_3390_diagnostics13091559 crossref_primary_10_7717_peerj_cs_1280 crossref_primary_10_1016_j_bdr_2025_100533 crossref_primary_10_1109_ACCESS_2022_3190416 crossref_primary_10_1007_s43390_024_00954_4 crossref_primary_10_1007_s00500_023_08744_2 crossref_primary_10_3389_fgene_2022_963349 crossref_primary_10_1080_00140139_2023_2221413 crossref_primary_10_1016_j_bspc_2022_104367 crossref_primary_10_1016_j_msksp_2024_103230 crossref_primary_10_3390_app13085012 crossref_primary_10_1016_j_cmpb_2022_106992 crossref_primary_10_3390_ijerph21111474 crossref_primary_10_1016_j_imu_2020_100374 crossref_primary_10_1016_j_bspc_2024_106879 crossref_primary_10_3390_ijms26062428 crossref_primary_10_1371_journal_pone_0259179 crossref_primary_10_1007_s10586_025_05267_3 crossref_primary_10_1016_j_jns_2023_120812 crossref_primary_10_1016_j_procs_2024_06_371 crossref_primary_10_1016_j_rsase_2024_101246 crossref_primary_10_1155_2020_2858471 |
| Cites_doi | 10.1016/S0140-6736(11)60937-9 10.1093/ageing/afj055 10.1016/j.apmr.2013.10.032 10.1162/089976603321891855 10.1371/journal.pone.0118432 10.1016/j.eswa.2005.09.045 10.1007/978-3-642-21257-4_73 10.1097/00024720-200210000-00007 10.1093/bioinformatics/btm344 10.1109/ICHI.2016.90 10.1109/ICASSDA.2018.8477622 10.1155/2011/876306 10.1109/WICT.2014.7077287 10.1080/00140138508963114 10.1111/ner.12018 10.1001/jama.280.2.147 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 Public Library of Science 2020 Raihan-Al-Masud, Mondal. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Raihan-Al-Masud, Mondal 2020 Raihan-Al-Masud, Mondal |
| Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Raihan-Al-Masud, Mondal. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Raihan-Al-Masud, Mondal 2020 Raihan-Al-Masud, Mondal |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pone.0228422 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals (ODIN) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Data-driven diagnosis of spinal abnormalities |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2352045164 oai_doaj_org_article_c0b2d573721e482cb0a6277b00b3969b PMC7004343 A613315822 32027680 10_1371_journal_pone_0228422 |
| Genre | Evaluation Study Journal Article |
| GeographicLocations | Taiwan Bangladesh |
| GeographicLocations_xml | – name: Taiwan – name: Bangladesh |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 PUEGO 5PM - 02 AAPBV ABPTK ADACO BBAFP KM |
| ID | FETCH-LOGICAL-c692t-5f225cc64ba2de5e7b7fc4042c2295886ccad1fc1edece6352e77ad5f5f1201a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000534623800030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Fri Nov 26 17:13:58 EST 2021 Fri Oct 03 12:53:38 EDT 2025 Tue Nov 04 01:45:52 EST 2025 Thu Oct 02 07:38:30 EDT 2025 Tue Oct 07 07:49:39 EDT 2025 Sat Nov 29 13:00:17 EST 2025 Sat Nov 29 10:06:39 EST 2025 Wed Nov 26 10:19:20 EST 2025 Wed Nov 26 10:15:34 EST 2025 Thu May 22 21:20:04 EDT 2025 Wed Feb 19 02:31:08 EST 2025 Sat Nov 29 03:10:09 EST 2025 Tue Nov 18 22:11:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-5f225cc64ba2de5e7b7fc4042c2295886ccad1fc1edece6352e77ad5f5f1201a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-8582-9197 0000-0003-4280-7091 |
| OpenAccessLink | https://doaj.org/article/c0b2d573721e482cb0a6277b00b3969b |
| PMID | 32027680 |
| PQID | 2352045164 |
| PQPubID | 1436336 |
| PageCount | e0228422 |
| ParticipantIDs | plos_journals_2352045164 doaj_primary_oai_doaj_org_article_c0b2d573721e482cb0a6277b00b3969b pubmedcentral_primary_oai_pubmedcentral_nih_gov_7004343 proquest_miscellaneous_2352640706 proquest_journals_2352045164 gale_infotracmisc_A613315822 gale_infotracacademiconefile_A613315822 gale_incontextgauss_ISR_A613315822 gale_incontextgauss_IOV_A613315822 gale_healthsolutions_A613315822 pubmed_primary_32027680 crossref_primary_10_1371_journal_pone_0228422 crossref_citationtrail_10_1371_journal_pone_0228422 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-06 |
| PublicationDateYYYYMMDD | 2020-02-06 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2020 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | VY Ma (pone.0228422.ref008) 2014; 95 pone.0228422.ref014 Y Saeys (pone.0228422.ref024) 2007; 23 P Korovessis (pone.0228422.ref002) 2002; 15 pone.0228422.ref016 J He (pone.0228422.ref026) 2006; 30 M Vassilaki (pone.0228422.ref015) 2014; 73 P. Brinckmann (pone.0228422.ref001) 1985; 28 HT Lin (pone.0228422.ref029) 2003 CE Dionne (pone.0228422.ref007) 2006; 35 H Ung (pone.0228422.ref005) 2012 M Chen (pone.0228422.ref021) 2016 IH Witten (pone.0228422.ref027) 2006; 5 SS Keerthi (pone.0228422.ref028) 2003; 15 D Schopflocher (pone.0228422.ref011) 2011; 16 T Saito (pone.0228422.ref030) 2015; 10 pone.0228422.ref022 pone.0228422.ref020 pone.0228422.ref003 M Bhatt (pone.0228422.ref017) 2018 pone.0228422.ref025 pone.0228422.ref023 JC Hill (pone.0228422.ref004) 2011; 378 MG Salvetti (pone.0228422.ref009) 2012; 46 PLR Morin (pone.0228422.ref013) 2010; 21 O Gureje (pone.0228422.ref012) 1998; 280 RA Last (pone.0228422.ref019) 2009; 79 P Bodera (pone.0228422.ref010) 2012; 88 WO Nijeweme-d (pone.0228422.ref018) 2017 L Manchikanti (pone.0228422.ref006) 2014; 17 |
| References_xml | – volume: 378 start-page: 1560 issue: 9802 year: 2011 ident: pone.0228422.ref004 article-title: Comparison of stratified primary care management for low back pain with current best practice (STarT Back): a randomised controlled trial publication-title: The Lancet doi: 10.1016/S0140-6736(11)60937-9 – volume: 35 start-page: 229 issue: 3 year: 2006 ident: pone.0228422.ref007 article-title: Does back pain prevalence really decrease with increasing age? A systematic review publication-title: Age and Ageing doi: 10.1093/ageing/afj055 – volume: 95 start-page: 986 issue: 5 year: 2014 ident: pone.0228422.ref008 article-title: The incidence, prevalence, costs and impact on disability of common conditions requiring rehabilitation in the US: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain publication-title: Archives of Physical Medicine and Rehabilitation doi: 10.1016/j.apmr.2013.10.032 – volume: 15 start-page: 1667 issue: 7 year: 2003 ident: pone.0228422.ref028 article-title: Asymptotic behaviors of support vector machines with Gaussian kernel publication-title: Neural Computation doi: 10.1162/089976603321891855 – volume: 10 start-page: e0118432 issue: 3 year: 2015 ident: pone.0228422.ref030 article-title: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets publication-title: PLOS One doi: 10.1371/journal.pone.0118432 – volume: 30 start-page: 64 issue: 1 year: 2006 ident: pone.0228422.ref026 article-title: Transmembrane segments prediction and understanding using support vector machine and decision tree publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.09.045 – year: 2016 ident: pone.0228422.ref021 article-title: Disease prediction by machine learning over big data from healthcare communities publication-title: IEEE Access – volume: 88 start-page: 115 issue: 12b year: 2012 ident: pone.0228422.ref010 article-title: The surface electromyography biofeedback in pain management—theoretical assumptions and possibilities of using the method publication-title: Przeglad Elektrotechniczny – ident: pone.0228422.ref003 doi: 10.1007/978-3-642-21257-4_73 – ident: pone.0228422.ref022 – volume-title: A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods year: 2003 ident: pone.0228422.ref029 – volume: 15 start-page: 384 issue: 5 year: 2002 ident: pone.0228422.ref002 article-title: Correlative analysis of lateral vertebral radiographic variables and medical outcomes study short-form health survey: a comparative study in asymptomatic volunteers versus patients with low back pain publication-title: Journal of Spinal Disorders & Techniques doi: 10.1097/00024720-200210000-00007 – year: 2018 ident: pone.0228422.ref017 article-title: A comparative analysis of classification methods for diagnosis of Lower Back Pain publication-title: Oriental Journal of Computer Science and Technology – year: 2012 ident: pone.0228422.ref005 article-title: Multivariate classification of structural MRI data detects chronic low back pain publication-title: Cerebral Cortex – volume: 5 start-page: 51 year: 2006 ident: pone.0228422.ref027 article-title: Data mining: practical machine learning tools and techniques publication-title: BioMedical Engineering – volume: 23 start-page: 2507 issue: 19 year: 2007 ident: pone.0228422.ref024 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – year: 2017 ident: pone.0228422.ref018 article-title: Evaluation of three machine learning models for self-referral decision support on low back pain in primary care publication-title: International Journal of Medical Informatics – ident: pone.0228422.ref014 doi: 10.1109/ICHI.2016.90 – volume: 21 start-page: 82 issue: 4 year: 2010 ident: pone.0228422.ref013 article-title: Chronic pain at ages 12 to 44 publication-title: Health matters. Statistics Canada. Toronto – ident: pone.0228422.ref016 doi: 10.1109/ICASSDA.2018.8477622 – volume: 16 start-page: 445 issue: 6 year: 2011 ident: pone.0228422.ref011 article-title: The prevalence of chronic pain in Canada publication-title: Pain Res Manag doi: 10.1155/2011/876306 – volume: 73 start-page: 122 issue: 4 year: 2014 ident: pone.0228422.ref015 article-title: Insights in public health: perspectives on pain in the low back and neck: global burden, epidemiology, and management publication-title: Hawai'i journal of medicine & public health: a journal of Asia Pacific Medicine & Public Health – volume: 46 start-page: 16 year: 2012 ident: pone.0228422.ref009 article-title: Disability related to chronic low back pain: prevalence and associated factors publication-title: Revista Da Escola De Enfermagem Da USP – ident: pone.0228422.ref023 – volume: 79 start-page: 1067 issue: 12 year: 2009 ident: pone.0228422.ref019 article-title: Chronic lower back pain: evaluation and management publication-title: American Family Physician – ident: pone.0228422.ref025 – ident: pone.0228422.ref020 doi: 10.1109/WICT.2014.7077287 – volume: 28 start-page: 77 issue: 1 year: 1985 ident: pone.0228422.ref001 article-title: Pathology of the vertebral column publication-title: Ergonomics doi: 10.1080/00140138508963114 – volume: 17 start-page: 3 issue: S2 year: 2014 ident: pone.0228422.ref006 article-title: Epidemiology of low back pain in adults publication-title: Neuromodulation doi: 10.1111/ner.12018 – volume: 280 start-page: 147 issue: 2 year: 1998 ident: pone.0228422.ref012 article-title: Persistent pain and well-being: a world health organization study in primary care publication-title: JAMA doi: 10.1001/jama.280.2.147 |
| SSID | ssj0053866 |
| Score | 2.5405483 |
| Snippet | This paper focuses on the application of machine learning algorithms for predicting spinal abnormalities. As a data preprocessing step, univariate feature... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0228422 |
| SubjectTerms | Abnormalities Accuracy Algorithms Analysis Back pain Bagging Biology and Life Sciences Classification Computer and Information Sciences Data mining Datasets Datasets as Topic - statistics & numerical data Diagnosis Diagnosis, Computer-Assisted - methods Diagnosis, Differential Feature extraction Humans Image Interpretation, Computer-Assisted - methods Information technology Learning algorithms Libraries Logistic Models Machine Learning Medical diagnosis Medicine and Health Sciences Methods Physical Sciences Posture - physiology Predictive Value of Tests Principal components analysis Recall Regression analysis Reproducibility of Results Research and Analysis Methods Spinal Diseases - diagnosis Spinal Diseases - epidemiology Spine - abnormalities Spine - diagnostic imaging Support Vector Machine Support vector machines Training |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg4cCFUl4NLWAQEnBIu3nYcU6oPCq4lIqXKi6R40e60jZZ1rv8fmYcbyCoAiSu60k28cx8mdiT7yPkSS5xZc2aWENWx7nVIq5FLmLOkrpkmquESy82URwfi9PT8iQsuLnQVrnBRA_UulO4Rn6QQqWAXCg8f7H4FqNqFO6uBgmNy-QKsiRgYp6wrxskhlzmPHwulxXJQfDO_qJrzT7yvuRpOnocedb-AZsni3nnLio8f--f_OWBdLT1v7dyg1wPpSg97GNnm1wy7U2yHZLd0WeBkfr5LWJey5WM9RKRkeq-OW_maGepW6CqFpV1i7Xv3NOzUuylb6g1njOUOq-0A-6nstX03DdvGhrUKhoq5w1c2-rs3N0mn4_efHr1Ng76DLHiZbqKmQUwUIrntUy1YaaoC6tyQAGFGuFCcIgOnViVGG2UgcomNUUhNbPMJlB3yOwOmbTgix1CoaoCfxmrpBQ5U7qE0xkmIWKELSWzEck2bqpUIC9HDY155XfkCniJ6SetQudWwbkRiYejFj15x1_sX2IEDLZIve1_6JZNFTK5UtM61QzVfRKTi1TVU8nTogD4qrOSl3VEHmL8VP13rAOAVIdQOGUJE_g3j70F0m-02N_TyLVz1bv3X_7B6OOHkdHTYGQ7mA4lwzcVcE9I6zWy3BtZAoio0fAORvtmVlz1M0bhyE0UXzz8aBjGk2LPXmu6dW-D28RTHpG7fcIMM5vhmhsX04gUo1QaTf14pJ2defZz1GPI8uzeny9rl1xLcWUE--v5Hpmslmtzn1xV31czt3zgYeIH-QN0tQ priority: 102 providerName: ProQuest – databaseName: PLoS Open Access Journals dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLbQlAMXaNkaKGAQEnBImSx2nGNZRiChUrGpN8vxMh1pmowmGX4_7zmeQKpWwHX8nEnelhf7-fsIeZ4rXFlzNjYQ1XHujIgrkYuYs6QqmeE64cqTTRTHx-L0tDz5_aF4YQc_K5LXQaeHq6a2h4jWkqeQcnfSjHNs4ZqdfNpmXohdzsPxuKtmjl4_HqV_yMWT1bJpLys0L_ZL_vECmt3631vfJTdDqUmPet_YI9dsfZvshWBu6cuAOP3qDrHvVKdis8bMR03ffLdoaeNou0LWLKqqGmvbpYdfpdgrP6fOekxQ2nomHTAvVbWh574509LARjGnajlv1ovu7Ly9S77P3n97-yEO_Aux5mXaxcxBsGvN80qlxjJbVIXTOUS5Rg5wIThY3yROJ9ZYbaFySW1RKMMccwnUFSq7RyY1PPo-oVA1gX2s00qJnGlTwuUsU-ARwpWKuYhkW7NIHcDJkSNjKf2OWwEfKb3SJOpSBl1GJB5mrXpwjr_Iv0GLD7IIre1_AKPJEKlST6vUMGTvSWwuUl1NFU-LAtJTlZW8rCLyBP1F9udUhwQhj6AwyhIm8G-eeQmE16ixf2euNm0rP37-8Q9CX7-MhF4EIdeAOrQKZybgmRC2ayR5MJKEJKFHw_vo3VuttDIFayG0EM9h5tbjLx9-OgzjRbEnr7bNppfBbeApj8j9PkAGzWa4psbFNCLFKHRGqh-P1Iszj26OfAtZnj24-o4fkhsprnpg7zw_IJNuvbGPyHX9s1u068c-JfwCBmli_Q priority: 102 providerName: Public Library of Science |
| Title | Data-driven diagnosis of spinal abnormalities using feature selection and machine learning algorithms |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32027680 https://www.proquest.com/docview/2352045164 https://www.proquest.com/docview/2352640706 https://pubmed.ncbi.nlm.nih.gov/PMC7004343 https://doaj.org/article/c0b2d573721e482cb0a6277b00b3969b http://dx.doi.org/10.1371/journal.pone.0228422 |
| Volume | 15 |
| WOSCitedRecordID | wos000534623800030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: PLoS Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5B4MAFUV4NlLAgJODgNH7sw8emNKIqDVYKVcvFWq9300ipHcUJv5-ZtRPVqFI5cJlDdtZJ5ptZj9ez3xDyIVK4s2aNl0NUe5HNpZfJSHqc-VnMcq59rlyzCTEey4uLOLnR6gtrwmp64Npw-3qQBTnDZiq-iWSgs4HigRDgLVkY8zjD1Reyns3DVL0GQxRz3hyUC4W_3-DSX5SF6SPjSxQErRuR4-vfrsqdxbysbks5_66cvHErGj0hj5sckh7Uv32H3DPFU7LTRGlFPzVU0p-fEfNFrZSXL3FJo3ldVTeraGlptcB2WFRlBSatc8erSrEIfkqtcWSftHItcgA3qoqcXruqS0ObNhNTqubTcjlbXV1Xz8nP0dGPw69e01jB0zwOVh6zEMVa8yhTQW6YEZmwOoLw1djcW0oOsOa-1b7JjTaQkgRGCJUzy6wPCYMKX5BOAabcJRTSITC3sVopGTGdx3A5wxRALW2smO2ScGPlVDes49j8Yp66V2kCnj5qo6WITdpg0yXedtaiZt24Q3-IAG51kTPbfQCelDaelN7lSV3yFuFP6wOo28hPDyDjCX0m8WveOw3kzSiwMGeq1lWVHn8__wels0lL6WOjZEswh1bNYQj4T8jH1dLca2lC9OvW8C4668YqVRoAWsgZxCOYuXHg24ffbYfxolhsV5hyXevg-90B75KXtb9vLRviZhmXgy4RrUhomb49UsyuHG05NlIIo_DV_8DqNXkU4MYHls_zPdJZLdfmDXmof69m1bJH7ovJOcoL4aQEKQ_9HnkwPBonk55bK0COkm8gT4Z9kKeDE5QicfIMZMJ-wYzk-DS5_AM6XHJ_ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGQYIXYHytMJhBIOAhW-MkdvKA0GBMqzYGgoH6Fhx_dJW6pDQtiH-Kv5G7xAkETcDLHnitL059uS_bd_cj5GEo8WTNGk-DVnuh1bGXxWHs8cjPkkhz5XNZgU2Iw8N4NErerpDvTS0MplU2NrEy1LpQeEa-xSBSwF4oPHw---whahTerjYQGrVY7JtvX2HLVj4b7sD3fcTY7qujl3ueQxXwFE_YwossiLBSPMwk0yYyIhNWhSC7CpGt45jDmrRvlW-0UQb8MTNCSB3ZyPrgLWUA854j58GOC0whE6N2gwe2g3NXnhcIf8tJw-asyM0m9pkJGeu4vwoloPUFvdm0KE8LdH_P1_zFAe5e-d9Yd5VcdqE23a51Y5WsmPwaWXXGrKRPXMftp9eJ2ZEL6ek5Wn6q6-TDSUkLS8sZooZRmeUY20-r9rMUawXG1JqqJyotKyQhEG8qc01PquRUQx0ax5jK6Rh4sTg-KW-QD2ey3Jukl8O3XyMUokaQD2OVlHEYKZ3AdCaSoBGxTWRk-yRoxCJVrjk7YoRM0-rGUcAmrWZaisKUOmHqE699alY3J_kL_QuUuJYWW4tXPxTzceosVaoGGdMRohf5JoyZygaSMyHAPGdBwpOsTzZQXtO6Trc1kOk2BIaBH8X4mgcVBbYXyTF_aSyXZZkO33z8B6L37zpEjx2RLYAdSrqaEVgTti3rUK53KMFIqs7wGmpXw5Uy_akT8GSjNacP32-HcVLMScxNsaxp8Bp8wPvkVq2gLWcDPFPk8aBPREd1O6zvjuST46q7O-JNBGFw-89_a4Nc3Dt6fZAeDA_375BLDE-BsJaAr5PeYr40d8kF9WUxKef3KhNFyaezVuwfPXDT6w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWghAXYHltYWENAgGHbBsncZIDQgulolpUVry04hIcP7qVuklpWhB_jV_HjOMUglbAZQ9c60laT7952B7PR8j9UODOmtGeAqv2QqMSL0_CxOORn6eR4tLnwpJNxONxcniYHmyQ781dGCyrbHyiddSqlLhH3mOQKWAvFB72jCuLOBgMn84_e8gghSetDZ1GDZF9_e0rLN-qJ6MB_NcPGBu-ePf8pecYBjzJU7b0IgNwlpKHuWBKRzrOYyNDwLFElusk4TA_5Rvpa6WlhtjMdBwLFZnI-BA5RQDvPUPOxrDGxIXfQfSxiQLgRzh3V_WC2O85ZOzOy0LvYs-ZkLFWKLSMAeu40JnPyuqkpPf32s1fguHw0v-sxsvkokvB6V5tM5tkQxdXyKZzchV95DpxP75K9EAshacWGBGoqosSpxUtDa3myCZGRV5gzj-zbWkp3iGYUKNtr1RaWYYhgD0VhaLHtmhVU8fSMaFiNgFdLI-Oq2vk_alM9zrpFICDLUIhmwSsaCOFSMJIqhRepyMBlpKYVESmS4IGIpl0TduRO2SW2ZPIGBZvtdIyBFbmgNUl3vqped205C_yzxB9a1lsOW4_KBeTzHmwTPZzpiJkNfJ1mDCZ9wVncQxuOw9SnuZdsoPYzer7u2vHme1Bwhj4UYJfc89KYNuRApE3EauqykavP_yD0Ns3LaGHTsiUoA4p3F0SmBO2M2tJbrckwXnK1vAWWlqjlSr7aR_wZGNBJw_fXQ_jS7FWsdDlqpbB4_E-75IbtbGuNRvgXiNP-l0St8y4pfr2SDE9sl3fkYciCIObf_5ZO-Q82HP2ajTev0UuMNwcwisGfJt0louVvk3OyS_LabW4Y70VJZ9O265_AIPO3N4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+diagnosis+of+spinal+abnormalities+using+feature+selection+and+machine+learning+algorithms&rft.jtitle=PloS+one&rft.au=Raihan-Al-Masud%2C+Md&rft.au=Mondal%2C+M+Rubaiyat+Hossain&rft.date=2020-02-06&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=2&rft.spage=e0228422&rft_id=info:doi/10.1371%2Fjournal.pone.0228422&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |