Prediction of findings at screening colonoscopy using a machine learning algorithm based on complete blood counts (ColonFlag)
Adenomatous polyps are a common precursor lesion for colorectal cancer. ColonFlag is a machine- learning-based algorithm that uses basic patient information and complete blood cell counts (CBC) to identify individuals at elevated risk of colorectal cancer for intensified screening. The purpose of th...
Saved in:
| Published in: | PloS one Vol. 13; no. 11; p. e0207848 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
27.11.2018
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Adenomatous polyps are a common precursor lesion for colorectal cancer. ColonFlag is a machine- learning-based algorithm that uses basic patient information and complete blood cell counts (CBC) to identify individuals at elevated risk of colorectal cancer for intensified screening. The purpose of this study was to determine whether ColonFlag is also able to predict the presence of high risk adenomatous polyps at colonoscopy. This study was conducted at a large colon cancer screening center in Calgary, Alberta. The study population included asymptomatic individuals between the ages of 50 and 75 who underwent a screening colonoscopy between January 2013 and June 2015. All subjects had at least one CBC result within the year prior to colonoscopy. Based on age, sex, red blood cell parameters, inflammatory cells and platelets, the ColonFlag algorithm generated a score from 0 to 100. We compared the ability of the ColonFlag test result to discriminate between individuals who were found to have a high risk polyp and those with a normal colonoscopy. Among the 17,676 individuals who underwent a screening colonoscopy there were 1,014 found to have a high risk precancerous lesion (5.7%) and 60 were found to have colorectal cancer (0.3%). At a specificity of 95%, the odds ratio for a positive ColonFlag was 2.0 for those with an advanced precancerous lesion compared with those with a normal colonoscopy. The odds ratio did not vary according to patient subgroup, colorectal cancer location or stage. ColonFlag is a passive test that can use routine blood test results to help identify individuals at elevated risk for high risk precancerous polyps as well as frank colorectal cancer. These individuals may be targeted in an effort to achieve greater compliance with conventional screening tests. |
|---|---|
| AbstractList | Adenomatous polyps are a common precursor lesion for colorectal cancer. ColonFlag is a machine- learning-based algorithm that uses basic patient information and complete blood cell counts (CBC) to identify individuals at elevated risk of colorectal cancer for intensified screening. The purpose of this study was to determine whether ColonFlag is also able to predict the presence of high risk adenomatous polyps at colonoscopy. This study was conducted at a large colon cancer screening center in Calgary, Alberta. The study population included asymptomatic individuals between the ages of 50 and 75 who underwent a screening colonoscopy between January 2013 and June 2015. All subjects had at least one CBC result within the year prior to colonoscopy. Based on age, sex, red blood cell parameters, inflammatory cells and platelets, the ColonFlag algorithm generated a score from 0 to 100. We compared the ability of the ColonFlag test result to discriminate between individuals who were found to have a high risk polyp and those with a normal colonoscopy. Among the 17,676 individuals who underwent a screening colonoscopy there were 1,014 found to have a high risk precancerous lesion (5.7%) and 60 were found to have colorectal cancer (0.3%). At a specificity of 95%, the odds ratio for a positive ColonFlag was 2.0 for those with an advanced precancerous lesion compared with those with a normal colonoscopy. The odds ratio did not vary according to patient subgroup, colorectal cancer location or stage. ColonFlag is a passive test that can use routine blood test results to help identify individuals at elevated risk for high risk precancerous polyps as well as frank colorectal cancer. These individuals may be targeted in an effort to achieve greater compliance with conventional screening tests. Adenomatous polyps are a common precursor lesion for colorectal cancer. ColonFlag is a machine- learning-based algorithm that uses basic patient information and complete blood cell counts (CBC) to identify individuals at elevated risk of colorectal cancer for intensified screening. The purpose of this study was to determine whether ColonFlag is also able to predict the presence of high risk adenomatous polyps at colonoscopy. This study was conducted at a large colon cancer screening center in Calgary, Alberta. The study population included asymptomatic individuals between the ages of 50 and 75 who underwent a screening colonoscopy between January 2013 and June 2015. All subjects had at least one CBC result within the year prior to colonoscopy. Based on age, sex, red blood cell parameters, inflammatory cells and platelets, the ColonFlag algorithm generated a score from 0 to 100. We compared the ability of the ColonFlag test result to discriminate between individuals who were found to have a high risk polyp and those with a normal colonoscopy. Among the 17,676 individuals who underwent a screening colonoscopy there were 1,014 found to have a high risk precancerous lesion (5.7%) and 60 were found to have colorectal cancer (0.3%). At a specificity of 95%, the odds ratio for a positive ColonFlag was 2.0 for those with an advanced precancerous lesion compared with those with a normal colonoscopy. The odds ratio did not vary according to patient subgroup, colorectal cancer location or stage. ColonFlag is a passive test that can use routine blood test results to help identify individuals at elevated risk for high risk precancerous polyps as well as frank colorectal cancer. These individuals may be targeted in an effort to achieve greater compliance with conventional screening tests.Adenomatous polyps are a common precursor lesion for colorectal cancer. ColonFlag is a machine- learning-based algorithm that uses basic patient information and complete blood cell counts (CBC) to identify individuals at elevated risk of colorectal cancer for intensified screening. The purpose of this study was to determine whether ColonFlag is also able to predict the presence of high risk adenomatous polyps at colonoscopy. This study was conducted at a large colon cancer screening center in Calgary, Alberta. The study population included asymptomatic individuals between the ages of 50 and 75 who underwent a screening colonoscopy between January 2013 and June 2015. All subjects had at least one CBC result within the year prior to colonoscopy. Based on age, sex, red blood cell parameters, inflammatory cells and platelets, the ColonFlag algorithm generated a score from 0 to 100. We compared the ability of the ColonFlag test result to discriminate between individuals who were found to have a high risk polyp and those with a normal colonoscopy. Among the 17,676 individuals who underwent a screening colonoscopy there were 1,014 found to have a high risk precancerous lesion (5.7%) and 60 were found to have colorectal cancer (0.3%). At a specificity of 95%, the odds ratio for a positive ColonFlag was 2.0 for those with an advanced precancerous lesion compared with those with a normal colonoscopy. The odds ratio did not vary according to patient subgroup, colorectal cancer location or stage. ColonFlag is a passive test that can use routine blood test results to help identify individuals at elevated risk for high risk precancerous polyps as well as frank colorectal cancer. These individuals may be targeted in an effort to achieve greater compliance with conventional screening tests. |
| Audience | Academic |
| Author | Goshen, Ran Hilsden, Robert J. Mizrahi, Barak Heitman, Steven J. Narod, Steven A. |
| AuthorAffiliation | 3 Familial Breast Cancer Research Unit, Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada 2 Medial Cancer Research, Kfar Malal, Israel 5 Medial Early Sign, Kfar Malal, Israel 4 Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada 1 Departments of Medicine and Community Health Sciences, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada Singapore General Hospital, SINGAPORE |
| AuthorAffiliation_xml | – name: 2 Medial Cancer Research, Kfar Malal, Israel – name: 1 Departments of Medicine and Community Health Sciences, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada – name: 5 Medial Early Sign, Kfar Malal, Israel – name: 3 Familial Breast Cancer Research Unit, Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada – name: 4 Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada – name: Singapore General Hospital, SINGAPORE |
| Author_xml | – sequence: 1 givenname: Robert J. orcidid: 0000-0003-1545-1093 surname: Hilsden fullname: Hilsden, Robert J. – sequence: 2 givenname: Steven J. surname: Heitman fullname: Heitman, Steven J. – sequence: 3 givenname: Barak surname: Mizrahi fullname: Mizrahi, Barak – sequence: 4 givenname: Steven A. surname: Narod fullname: Narod, Steven A. – sequence: 5 givenname: Ran surname: Goshen fullname: Goshen, Ran |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30481208$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk01r3DAQhk1JaT7af1BaQ6Ekh91aki3bPRTC0rQLgZR-XYUsj7xaZGkjyaU59L9XzjphN4RSfJA1euYd6WXmODkw1kCSvETZHJESvVvbwRmu55sYnmc4K6u8epIcoZrgGcUZOdj5P0yOvV9nWUEqSp8lhyTLK4Sz6ij588VBq0RQ1qRWplKZVpnOpzykXjgAE3epsNoa64Xd3KSDHyM87blYKQOpBu5uIa4761RY9WnDPbRpFBS232gIkDba2jZuBxN8eroY5S40786eJ08l1x5eTOtJ8uPi4_fF59nl1afl4vxyJmiNw6xoaI4pl5Qg3Oa1kE1FOG6RFEQWBGiGigY3WY5FheuWYkyLCNcl5a0oJEXkJHm91d1o69nknGcYRT-iKXkZieWWaC1fs41TPXc3zHLFbgPWdYy7oIQGxjkSsXpZywpyXkNNagp5XpC6hAZLErU-TNWGpodWgAmO6z3R_ROjVqyzvxjFRVXgOgqcTgLOXg_gA-uVF6A1N2CH6d45otVY680D9PHXTVTH4wOUkTbWFaMoOy8oKVBVlDhS80eo-LXQKxHbTKoY30s420uITIDfoeOD92z57ev_s1c_99m3O-wKuA4rb_UwdqnfB1_tOn1v8V1_RyDfAsJZ7x3IewRlbByjO7vYOEZsGqOY9v5BmlCBj-WjI0r_O_kvyEgkCQ |
| CitedBy_id | crossref_primary_10_1002_nav_22141 crossref_primary_10_1007_s10142_021_00795_8 crossref_primary_10_1016_j_ejca_2025_115786 crossref_primary_10_3390_cancers16223824 crossref_primary_10_1016_j_compbiomed_2025_110179 crossref_primary_10_2147_AABC_S488604 crossref_primary_10_7759_cureus_39634 crossref_primary_10_1007_s40846_020_00532_9 crossref_primary_10_1016_j_isci_2025_112980 crossref_primary_10_1097_SLE_0000000000000881 crossref_primary_10_1007_s40815_021_01182_y crossref_primary_10_3390_diagnostics13020301 crossref_primary_10_2196_70275 crossref_primary_10_1016_j_compbiomed_2025_109918 crossref_primary_10_3390_cancers14051349 crossref_primary_10_1016_j_hsr_2022_100041 crossref_primary_10_1371_journal_pcbi_1012308 crossref_primary_10_1287_mnsc_2021_4289 crossref_primary_10_3390_cancers12092348 |
| Cites_doi | 10.1093/jamia/ocv195 10.15585/mmwr.mm6608a1 10.1038/ajg.2012.161 10.1016/j.cgh.2014.01.042 10.1038/bjc.2017.53 10.1177/0969141315584694 10.1158/1055-9965.EPI-14-0744 10.1038/ajg.2017.174 10.1016/j.ypmed.2014.02.010 10.1007/s10865-015-9668-8 10.1371/journal.pone.0171759 10.1503/cmaj.151125 10.1016/j.gie.2016.09.025 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2018 Public Library of Science 2018 Hilsden et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 Hilsden et al 2018 Hilsden et al |
| Copyright_xml | – notice: COPYRIGHT 2018 Public Library of Science – notice: 2018 Hilsden et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 Hilsden et al 2018 Hilsden et al |
| DBID | AAYXX CITATION NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pone.0207848 |
| DatabaseName | CrossRef PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Agricultural Science Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Prediction of findings at screening colonoscopy using a machine learning algorithm (ColonFlag) |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2138605347 oai_doaj_org_article_aa1ca2d79f8e4a9e9396e445397eb2f3 PMC6258529 A563518572 30481208 10_1371_journal_pone_0207848 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Canada Israel Calgary Alberta Canada United Kingdom--UK Alberta Canada United States--US |
| GeographicLocations_xml | – name: Israel – name: Canada – name: Alberta Canada – name: Calgary Alberta Canada – name: United Kingdom--UK – name: United States--US |
| GrantInformation_xml | – fundername: ; |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ALIPV BBORY IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 PUEGO 5PM AAPBV ABPTK |
| ID | FETCH-LOGICAL-c692t-5b6426af6312d49cfb83a2d1fc3f53e6015b2b042c829d62265af6976adc5f613 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451440000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Sun Nov 05 00:20:43 EDT 2023 Tue Oct 14 18:43:18 EDT 2025 Tue Nov 04 01:50:18 EST 2025 Mon Sep 08 10:28:47 EDT 2025 Tue Oct 07 08:05:52 EDT 2025 Sat Nov 29 13:05:44 EST 2025 Sat Nov 29 10:04:08 EST 2025 Wed Nov 26 09:38:21 EST 2025 Wed Nov 26 08:50:42 EST 2025 Thu May 22 21:22:27 EDT 2025 Wed Feb 19 02:35:24 EST 2025 Sat Nov 29 06:44:04 EST 2025 Tue Nov 18 22:15:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-5b6426af6312d49cfb83a2d1fc3f53e6015b2b042c829d62265af6976adc5f613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: RG was an employee of Medial Early Sign, Inc and BM is an employee of Medial Cancer Research. RJH, SJH and SAN declare that they have no conflicts of interest. This does not alter our adherence to PLOS ONE policies on sharing data and materials. |
| ORCID | 0000-0003-1545-1093 |
| OpenAccessLink | https://doaj.org/article/aa1ca2d79f8e4a9e9396e445397eb2f3 |
| PMID | 30481208 |
| PQID | 2138605347 |
| PQPubID | 1436336 |
| PageCount | e0207848 |
| ParticipantIDs | plos_journals_2138605347 doaj_primary_oai_doaj_org_article_aa1ca2d79f8e4a9e9396e445397eb2f3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6258529 proquest_miscellaneous_2138641683 proquest_journals_2138605347 gale_infotracmisc_A563518572 gale_infotracacademiconefile_A563518572 gale_incontextgauss_ISR_A563518572 gale_incontextgauss_IOV_A563518572 gale_healthsolutions_A563518572 pubmed_primary_30481208 crossref_primary_10_1371_journal_pone_0207848 crossref_citationtrail_10_1371_journal_pone_0207848 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-27 |
| PublicationDateYYYYMMDD | 2018-11-27 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-27 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2018 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | DJ Robertson (ref12) 2017; 85 C Klabunde (ref4) 2015; 22 E Altobelli (ref3) 2014; 62 R Goshen (ref8) 2017; 116 DK Rex (ref15) 2012; 107 A White (ref5) 2017; 66 DK Driman (ref11) 2012; 4 PG Ritvo (ref14) 2015; 24 M Hornbrook (ref9) 2017 Y Kinar (ref7) 2016; 23 (ref10) 2010 TM Atkinson (ref13) 2015; 38 CM Bacchus (ref2) 2016; 188 DK Rex (ref1) 2017; 112 Y Kinar (ref6) 2017; 12 GK Ma (ref16) 2014; 12 |
| References_xml | – year: 2010 ident: ref10 – volume: 23 start-page: 879 issue: 5 year: 2016 ident: ref7 article-title: Development and validation of a predictive model for detection of colorectal cancer in primary care by analysis of complete blood counts: a binational retrospective study publication-title: Journal of the American Medical Informatics Association doi: 10.1093/jamia/ocv195 – volume: 66 start-page: 201 issue: 8 year: 2017 ident: ref5 article-title: Cancer Screening Test Use—United States, 2015 publication-title: MMWR—Morbidity & Mortality Weekly Report doi: 10.15585/mmwr.mm6608a1 – volume: 107 start-page: 1315 issue: 9 year: 2012 ident: ref15 article-title: Serrated Lesions of the Colorectum: Review and Recommendations From an Expert Panel publication-title: Am J Gastroenterol doi: 10.1038/ajg.2012.161 – year: 2017 ident: ref9 article-title: Early colorectal cancer detected by machine-learning model using gender, age and complete blood count data publication-title: Digestive Diseases & Sciences – volume: 4 start-page: 81 year: 2012 ident: ref11 article-title: Pathological reporting of colorectal polyps: Pan-Canadian Consensus Guidelines publication-title: Can J Pathol – volume: 12 start-page: 1624 issue: 10 year: 2014 ident: ref16 article-title: Personalizing colorectal cancer screening: a systematic review of models to predict risk of colorectal neoplasia publication-title: Clinical Gastroenterology & Hepatology doi: 10.1016/j.cgh.2014.01.042 – volume: 116 start-page: 944 issue: 7 year: 2017 ident: ref8 article-title: Predicting the presence of colon cancer in members of a health maintenance organisation by evaluating analytes from standard laboratory records publication-title: British Journal of Cancer doi: 10.1038/bjc.2017.53 – volume: 22 start-page: 119 issue: 3 year: 2015 ident: ref4 article-title: Participation rates for organized colorectal cancer screening programmes: an international comparison publication-title: Journal of Medical Screening doi: 10.1177/0969141315584694 – volume: 24 start-page: 506 issue: 3 year: 2015 ident: ref14 article-title: Personal navigation increases colorectal cancer screening uptake publication-title: Cancer Epidemiology, Biomarkers & Prevention doi: 10.1158/1055-9965.EPI-14-0744 – volume: 112 start-page: 1016 issue: 7 year: 2017 ident: ref1 article-title: Colorectal Cancer Screening: Recommendations for Physicians and Patients from the U.S. Multi-Society Task Force on Colorectal Cancer publication-title: American Journal of Gastroenterology doi: 10.1038/ajg.2017.174 – volume: 62 start-page: 132 year: 2014 ident: ref3 article-title: Colorectal cancer prevention in Europe: burden of disease and status of screening programs publication-title: Preventive Medicine doi: 10.1016/j.ypmed.2014.02.010 – volume: 38 start-page: 837 issue: 6 year: 2015 ident: ref13 article-title: Does colorectal cancer risk perception predict screening behavior? A systematic review and meta-analysis publication-title: Journal of Behavioral Medicine doi: 10.1007/s10865-015-9668-8 – volume: 12 start-page: e0171759 issue: 2 year: 2017 ident: ref6 article-title: Performance analysis of a machine learning flagging system used to identify a group of individuals at a high risk for colorectal cancer publication-title: PLoS ONE doi: 10.1371/journal.pone.0171759 – volume: 188 start-page: 340 issue: 5 year: 2016 ident: ref2 article-title: Recommendations on screening for colorectal cancer in primary care publication-title: CMAJ Canadian Medical Association Journal doi: 10.1503/cmaj.151125 – volume: 85 start-page: 2 issue: 1 year: 2017 ident: ref12 article-title: Recommendations on fecal immunochemical testing to screen for colorectal neoplasia: a consensus statement by the US Multi-Society Task Force on colorectal cancer publication-title: Gastrointestinal Endoscopy doi: 10.1016/j.gie.2016.09.025 |
| SSID | ssj0053866 |
| Score | 2.421252 |
| Snippet | Adenomatous polyps are a common precursor lesion for colorectal cancer. ColonFlag is a machine- learning-based algorithm that uses basic patient information... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0207848 |
| SubjectTerms | Algorithms Anemia Artificial intelligence Biology and Life Sciences Blood Blood tests Cancer Cancer research Cancer screening Colon Colon cancer Colonoscopy Colorectal cancer Colorectal carcinoma Data mining Diagnosis Electronic health records Endoscopy Erythrocytes Feces Gastrointestinal diseases Health care Health risks Health sciences Health screening Hospitals Inflammation Laboratories Learning algorithms Lesions Machine learning Medical records Medical research Medical screening Medical tests Medicine and Health Sciences Mortality Pathology Patient education Patients Platelets Polyps Population Population studies Preventive medicine Primary care Research and Analysis Methods Risk Risk factors Subgroups Systematic review Task forces |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg4cCFUh7tlgIGIUEPaRs7TuITKhUruJQVL_UWOY6dVtomyyaLxIH_zozjhAZVgMRx44nXnrHH38TzIOS5ibXKsXw7l1YHkQrDILdaBIZri7GOOk6sKzaRnJykp6dy7j-4Nd6tsteJTlEXtcZv5Acs5ClAbx4lr5ZfA6wahbervoTGdXIDsyRw57o37zUx7OU49uFyPAkPvHT2l3Vl9gEmJSlW_bl0HLms_YNuniwXdXMV8Pzdf_LSgTTb-N-p3CG3PRSlR93a2STXTHWXbPrN3tCXPiP13j3yY77C-xyUIa0tdffcVdlQ1VLQOmAJwy-K6a-rGqNcvlP0pi-pohfOVdNQX5sCHi1KGEl7dkHx-CwodOic2gG6U-dDT13xCvj3Y-xutlDl3n3yefbm0_HbwNdtCHQsWRuIHIyaWNmYh6yIpLZ5yhUrQqu5FdyACShyloO20CmTRQwAUAAx4CJVaGEBXzwgkwpktE2oiFTBAeNonbDI6lzaQysKgCShsXgFPSW8F1-mfVJzrK2xyNxNXQLGTcfMDIWeeaFPSTC8teySevyF_jWujIEWU3K7B_WqzPwOz5QKNcwykTY1kZJGchmbKBIA-EzOLAz1Ca6rrItvHRRLdiQA82FGLjYlzxwFpuWo0O-nVOumyd69__IPRB8_jIheeCJbAzu08rEWMCdM9zWi3B1RgnLRo-Zt3AU9V5rs19qFN_vVfXXz06EZO0VfvsrUa08DdkAKLNnqNtLAWY7pi9ghcDwZbbER68ct1fmZy4oOhnwqmNz587AeklsAeVOMJmXJLpm0q7V5RG7qb-15s3rs1MdPD498iA priority: 102 providerName: ProQuest – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZg4cCFUl5dKGAQEvSQ0tixEx9LxQokVFa81FvkOHa60jZZbbKVOPDfmfF6A6laAcfEY8cZe8bfyPMg5KWVRhdYvp0rZ6JEx3FUOCMiy43DWEcjU-eLTaTHx9nJiZr-NhQv3ODzNH4TeLq_aGq7D-AmzZLsOrnBuJTowjWZftxoXpBdKUN43FU9B8ePz9Lf6-LRYt60lwHNi_6SfxxAk63_nfodcjtATXq43hvb5Jqt75LtIMwtfR0yTu_dIz-nS7yvwTWijaP-HruuWqo7CloFLF14opjeum4wiuUHRW_5imp65l0xLQ21J-DVvGqWs-70jOLxWFIY0DutAzSn3kee-uIU8PUjHG4y19XeffJt8u7r0fso1GWIjFSsi0QBRovUTvKYlYkyrsi4ZmXsDHeCWzDxRMEK0AYmY6qUAPAEEAPu0aURDvDDAzKqgSU7hIpElxwwjDEpS5wplDtwogTIEVuHV8xjwjfLlZuQtBxrZ8xzfxOXgvGyZmaOPM4Dj8ck6nst1kk7_kL_FndCT4spt_0LWMw8SHCudWzgL1PlMptoZRVX0iaJAEBnC-Zgqs9wH-Xr-NVeceSHAjAdZtxiY_LCU2DajRr9eiq9atv8w6fv_0D05fOA6FUgcg2ww-gQSwH_hOm8BpS7A0pQHmbQvIO7fsOVNmcxCBFIUpJCz40kXN78vG_GQdFXr7bNKtAAzs-AJQ_XgtNzlmN6InYAHE8HIjVg_bClnp36rOdgqGeCqUdXz_gxuQVwNsNIUZbuklG3XNkn5KY572bt8qlXFb8AsuFq6A priority: 102 providerName: Public Library of Science |
| Title | Prediction of findings at screening colonoscopy using a machine learning algorithm based on complete blood counts (ColonFlag) |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30481208 https://www.proquest.com/docview/2138605347 https://www.proquest.com/docview/2138641683 https://pubmed.ncbi.nlm.nih.gov/PMC6258529 https://doaj.org/article/aa1ca2d79f8e4a9e9396e445397eb2f3 http://dx.doi.org/10.1371/journal.pone.0207848 |
| Volume | 13 |
| WOSCitedRecordID | wos000451440000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest_Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELeg8MALYnytMIpBSLCHdMuH4-RxrVYxjZWog2nsJXIcu6vUJVXTIvHA_86d40YNmjQeeDmp8Tltzz77d_L5d4R8UKEUGZZv92MtnUC4rpNpyRzlS413HWXItSk2wcfj6PIyTrZKfWFOWE0PXBvuQAhXCi_nsY5UIGIV-3GogoDBPgpBoTY8n4B6NsFUvQaDF4ehvSjnc_fAjkt_URaqDwCJR1jvZ2sjMnz9zarcWczL6jbI-Xfm5NZWNHpCHlsMSY_q375D7qniKdmxXlrRT5ZKev8Z-Z0s8SAGjU9LTc0BdTGtqFhRWC4ghIVPFHmrixKvp_yimAY_pYLemBxLRW1RCXg0n5bL2er6huK-l1N4oclGB8xNTfI7NVUn4NuH-LrRXEz3n5Pvo-Nvw8-OLbjgyDD2Vg7LIBoJhQ5918uDWOos8sH2rpa-Zr6C2I1lXgZuLiMvzkNAbgyUAdCIXDINwOAF6RRg4l1CWSByH8CJlNwLtMxifahZDljCVRrPjrvE31g_lZaNHItizFNzxMYhKqmNmeKYpXbMusRpei1qNo479Ac4sI0ucmmbBzDDUjvD0rtmWJe8xWmR1hdTmxUhPWIA1pBKy-uS90YD-TQKTNiZinVVpSdfL_5B6XzSUvpolXQJ5pDCXpKA_4Q8XS3NvZYmrAqy1byLk3hjlSr1XPAJcIyAQ8_NxL69-V3TjC_FJLxClWurAwA-ApO8rP2gsayPvEPgiF3CWx7SMn27pZhdGzpziMAj5sWv_sdYvSaPANFGeFnU43uks1qu1RvyUP5czaplj9znkwuUl9zICGQ0dHvkweB4nEx6Zg0BOUq-gDwd9EGeHZ6i5ImR5yATdgU9kpOz5Mcfq_l7sw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKggQXoLy6UKhBIOghbWPneUCoFFatWpaqLVVvwXHstNI2WTa7oB74S_xGZhwnNKgCLj1wTDxx4tmZ8TfreRDyXAVSpNi-ncdaOp5wXSfV0ncUlxpzHWUQatNsIhwOo6OjeHeO_GhyYTCssrGJxlBnpcT_yFeZyyOA3twL34y_ONg1Ck9XmxYatVhsq7Nv4LJVr7fewe_7grHB-4ONTcd2FXBkELOp46cAuQOhA-6yzIulTiMuWOZqybXPFTgofspSkGUZsTgLAJ74QAy7tsikr2H3g3mvkKtgx10MIQv3DhvLD7YjCGx6Hg_dVSsNK-OyUCsAy8IIuwyd2_5Ml4B2L-iNR2V1EdD9PV7z3AY4uPW_se42uWmhNl2vdWOezKniDpm3xqyir2zF7eW75PvuBM-rUEZpqak5xy_yioopBasKnj5cUSzvXZSYxXNGMVsgp4KemlBURW3vDbg1ymHl0-NTivAgozChCdoH14SaHAFqmnPA2zdwusFI5Mv3yKdLYcN90itAJhYI9T2RccBwUobM0zKN9Zr2M4BcrtJ4xN4nvBGXRNqi7dg7ZJSYk8gQnLeamQkKWWKFrE-c9qlxXbTkL_RvURJbWiw5bm6UkzyxFiwRwpWwyjDWkfJErGIeB8rzfAC0KmUaPnUJ5Tip83dbw5ms-4BpseIY65NnhgLLjhQY15SLWVUlWx8P_4Fof69D9NIS6RLYIYXNJYE1YTmzDuVihxKMp-wML6DWNVypkl-6Ak822nTx8NN2GCfFWMVClTNLA35OBCx5UCtuy1mO5ZnYGnA87Kh0h_XdkeLk2FR9Dxh49ix--OfPWiLXNw8-7CQ7W8PtR-QGwPsIM2dZuEh608lMPSbX5NfpSTV5YkwXJZ8vW-F_AvaS2K0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKghAXoLy6UKhBIOgh3cbO84BQ2bJiVbRUvNRbcBw7rbRNls0uqAf-GL-OGccJDaqASw9c44k3mf1m_DmeByGPVSBFiu3beayl4wnXdVItfUdxqTHXUQahNs0mwskkOjiI91fIjyYXBsMqG59oHHVWSvxGPmAuj4B6cy8caBsWsb87ejH74mAHKTxpbdpp1BDZUyffYPtWPR_vwn_9hLHRqw_D147tMODIIGYLx0-BfgdCB9xlmRdLnUZcsMzVkmufK9is-ClLAdcyYnEWAFXxQRhWcJFJX8NKCPNeIBdDDijGLPVhG14CfiQIbKoeD92BRcbWrCzUFlC0MMKOQ6eWQtMxoF0XerNpWZ1Fen-P3Ty1GI6u_c9qvE6uWgpOd2qbWSUrqrhBVq2Tq-gzW4l78yb5vj_HcyzELi01Nef7RV5RsaDgbZXCb0oUy34XJWb3nFDMIsipoMcmRFVR25MDLk1zePPF4TFF2pBRmNAE88OWhZrcAWqadsCvD3G60VTkm7fIx3NRw23SKwAfa4T6nsg4cDspQ-ZpmcZ6W_sZUDFXaTx67xPeQCeRtpg79hSZJuaEMoRNXa3MBAGXWMD1idPeNauLmfxF_iWispXFUuTmQjnPE-vZEiFcCW8ZxjpSnohVzONAeZ4PRFelTMOjbiCmkzqvt3WoyY4PXBcrkbE-eWQksBxJgYjMxbKqkvHbT_8g9P5dR-ipFdIlqEMKm2MC74RlzjqS6x1JcKqyM7yGFthopUp-2Q3c2VjW2cMP22GcFGMYC1UurQzsfyJQyZ3aiFvNcizbxLZB42HHvDuq744UR4emGnzAYMfP4rt_fqwNchnsPHkznuzdI1eA9UeYUMvCddJbzJfqPrkkvy6OqvkD48Uo-Xze9v4TYnPhCA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+findings+at+screening+colonoscopy+using+a+machine+learning+algorithm+based+on+complete+blood+counts+%28ColonFlag%29&rft.jtitle=PloS+one&rft.au=Robert+J+Hilsden&rft.au=Steven+J+Heitman&rft.au=Barak+Mizrahi&rft.au=Steven+A+Narod&rft.date=2018-11-27&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=13&rft.issue=11&rft.spage=e0207848&rft_id=info:doi/10.1371%2Fjournal.pone.0207848&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aa1ca2d79f8e4a9e9396e445397eb2f3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |