Prediction of findings at screening colonoscopy using a machine learning algorithm based on complete blood counts (ColonFlag)

Adenomatous polyps are a common precursor lesion for colorectal cancer. ColonFlag is a machine- learning-based algorithm that uses basic patient information and complete blood cell counts (CBC) to identify individuals at elevated risk of colorectal cancer for intensified screening. The purpose of th...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 13; no. 11; p. e0207848
Main Authors: Hilsden, Robert J., Heitman, Steven J., Mizrahi, Barak, Narod, Steven A., Goshen, Ran
Format: Journal Article
Language:English
Published: United States Public Library of Science 27.11.2018
Public Library of Science (PLoS)
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Adenomatous polyps are a common precursor lesion for colorectal cancer. ColonFlag is a machine- learning-based algorithm that uses basic patient information and complete blood cell counts (CBC) to identify individuals at elevated risk of colorectal cancer for intensified screening. The purpose of this study was to determine whether ColonFlag is also able to predict the presence of high risk adenomatous polyps at colonoscopy. This study was conducted at a large colon cancer screening center in Calgary, Alberta. The study population included asymptomatic individuals between the ages of 50 and 75 who underwent a screening colonoscopy between January 2013 and June 2015. All subjects had at least one CBC result within the year prior to colonoscopy. Based on age, sex, red blood cell parameters, inflammatory cells and platelets, the ColonFlag algorithm generated a score from 0 to 100. We compared the ability of the ColonFlag test result to discriminate between individuals who were found to have a high risk polyp and those with a normal colonoscopy. Among the 17,676 individuals who underwent a screening colonoscopy there were 1,014 found to have a high risk precancerous lesion (5.7%) and 60 were found to have colorectal cancer (0.3%). At a specificity of 95%, the odds ratio for a positive ColonFlag was 2.0 for those with an advanced precancerous lesion compared with those with a normal colonoscopy. The odds ratio did not vary according to patient subgroup, colorectal cancer location or stage. ColonFlag is a passive test that can use routine blood test results to help identify individuals at elevated risk for high risk precancerous polyps as well as frank colorectal cancer. These individuals may be targeted in an effort to achieve greater compliance with conventional screening tests.
AbstractList Adenomatous polyps are a common precursor lesion for colorectal cancer. ColonFlag is a machine- learning-based algorithm that uses basic patient information and complete blood cell counts (CBC) to identify individuals at elevated risk of colorectal cancer for intensified screening. The purpose of this study was to determine whether ColonFlag is also able to predict the presence of high risk adenomatous polyps at colonoscopy. This study was conducted at a large colon cancer screening center in Calgary, Alberta. The study population included asymptomatic individuals between the ages of 50 and 75 who underwent a screening colonoscopy between January 2013 and June 2015. All subjects had at least one CBC result within the year prior to colonoscopy. Based on age, sex, red blood cell parameters, inflammatory cells and platelets, the ColonFlag algorithm generated a score from 0 to 100. We compared the ability of the ColonFlag test result to discriminate between individuals who were found to have a high risk polyp and those with a normal colonoscopy. Among the 17,676 individuals who underwent a screening colonoscopy there were 1,014 found to have a high risk precancerous lesion (5.7%) and 60 were found to have colorectal cancer (0.3%). At a specificity of 95%, the odds ratio for a positive ColonFlag was 2.0 for those with an advanced precancerous lesion compared with those with a normal colonoscopy. The odds ratio did not vary according to patient subgroup, colorectal cancer location or stage. ColonFlag is a passive test that can use routine blood test results to help identify individuals at elevated risk for high risk precancerous polyps as well as frank colorectal cancer. These individuals may be targeted in an effort to achieve greater compliance with conventional screening tests.
Adenomatous polyps are a common precursor lesion for colorectal cancer. ColonFlag is a machine- learning-based algorithm that uses basic patient information and complete blood cell counts (CBC) to identify individuals at elevated risk of colorectal cancer for intensified screening. The purpose of this study was to determine whether ColonFlag is also able to predict the presence of high risk adenomatous polyps at colonoscopy. This study was conducted at a large colon cancer screening center in Calgary, Alberta. The study population included asymptomatic individuals between the ages of 50 and 75 who underwent a screening colonoscopy between January 2013 and June 2015. All subjects had at least one CBC result within the year prior to colonoscopy. Based on age, sex, red blood cell parameters, inflammatory cells and platelets, the ColonFlag algorithm generated a score from 0 to 100. We compared the ability of the ColonFlag test result to discriminate between individuals who were found to have a high risk polyp and those with a normal colonoscopy. Among the 17,676 individuals who underwent a screening colonoscopy there were 1,014 found to have a high risk precancerous lesion (5.7%) and 60 were found to have colorectal cancer (0.3%). At a specificity of 95%, the odds ratio for a positive ColonFlag was 2.0 for those with an advanced precancerous lesion compared with those with a normal colonoscopy. The odds ratio did not vary according to patient subgroup, colorectal cancer location or stage. ColonFlag is a passive test that can use routine blood test results to help identify individuals at elevated risk for high risk precancerous polyps as well as frank colorectal cancer. These individuals may be targeted in an effort to achieve greater compliance with conventional screening tests.Adenomatous polyps are a common precursor lesion for colorectal cancer. ColonFlag is a machine- learning-based algorithm that uses basic patient information and complete blood cell counts (CBC) to identify individuals at elevated risk of colorectal cancer for intensified screening. The purpose of this study was to determine whether ColonFlag is also able to predict the presence of high risk adenomatous polyps at colonoscopy. This study was conducted at a large colon cancer screening center in Calgary, Alberta. The study population included asymptomatic individuals between the ages of 50 and 75 who underwent a screening colonoscopy between January 2013 and June 2015. All subjects had at least one CBC result within the year prior to colonoscopy. Based on age, sex, red blood cell parameters, inflammatory cells and platelets, the ColonFlag algorithm generated a score from 0 to 100. We compared the ability of the ColonFlag test result to discriminate between individuals who were found to have a high risk polyp and those with a normal colonoscopy. Among the 17,676 individuals who underwent a screening colonoscopy there were 1,014 found to have a high risk precancerous lesion (5.7%) and 60 were found to have colorectal cancer (0.3%). At a specificity of 95%, the odds ratio for a positive ColonFlag was 2.0 for those with an advanced precancerous lesion compared with those with a normal colonoscopy. The odds ratio did not vary according to patient subgroup, colorectal cancer location or stage. ColonFlag is a passive test that can use routine blood test results to help identify individuals at elevated risk for high risk precancerous polyps as well as frank colorectal cancer. These individuals may be targeted in an effort to achieve greater compliance with conventional screening tests.
Audience Academic
Author Goshen, Ran
Hilsden, Robert J.
Mizrahi, Barak
Heitman, Steven J.
Narod, Steven A.
AuthorAffiliation 3 Familial Breast Cancer Research Unit, Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
2 Medial Cancer Research, Kfar Malal, Israel
5 Medial Early Sign, Kfar Malal, Israel
4 Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
1 Departments of Medicine and Community Health Sciences, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada
Singapore General Hospital, SINGAPORE
AuthorAffiliation_xml – name: 2 Medial Cancer Research, Kfar Malal, Israel
– name: 1 Departments of Medicine and Community Health Sciences, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada
– name: 5 Medial Early Sign, Kfar Malal, Israel
– name: 3 Familial Breast Cancer Research Unit, Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
– name: 4 Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
– name: Singapore General Hospital, SINGAPORE
Author_xml – sequence: 1
  givenname: Robert J.
  orcidid: 0000-0003-1545-1093
  surname: Hilsden
  fullname: Hilsden, Robert J.
– sequence: 2
  givenname: Steven J.
  surname: Heitman
  fullname: Heitman, Steven J.
– sequence: 3
  givenname: Barak
  surname: Mizrahi
  fullname: Mizrahi, Barak
– sequence: 4
  givenname: Steven A.
  surname: Narod
  fullname: Narod, Steven A.
– sequence: 5
  givenname: Ran
  surname: Goshen
  fullname: Goshen, Ran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30481208$$D View this record in MEDLINE/PubMed
BookMark eNqNk01r3DAQhk1JaT7af1BaQ6Ekh91aki3bPRTC0rQLgZR-XYUsj7xaZGkjyaU59L9XzjphN4RSfJA1euYd6WXmODkw1kCSvETZHJESvVvbwRmu55sYnmc4K6u8epIcoZrgGcUZOdj5P0yOvV9nWUEqSp8lhyTLK4Sz6ij588VBq0RQ1qRWplKZVpnOpzykXjgAE3epsNoa64Xd3KSDHyM87blYKQOpBu5uIa4761RY9WnDPbRpFBS232gIkDba2jZuBxN8eroY5S40786eJ08l1x5eTOtJ8uPi4_fF59nl1afl4vxyJmiNw6xoaI4pl5Qg3Oa1kE1FOG6RFEQWBGiGigY3WY5FheuWYkyLCNcl5a0oJEXkJHm91d1o69nknGcYRT-iKXkZieWWaC1fs41TPXc3zHLFbgPWdYy7oIQGxjkSsXpZywpyXkNNagp5XpC6hAZLErU-TNWGpodWgAmO6z3R_ROjVqyzvxjFRVXgOgqcTgLOXg_gA-uVF6A1N2CH6d45otVY680D9PHXTVTH4wOUkTbWFaMoOy8oKVBVlDhS80eo-LXQKxHbTKoY30s420uITIDfoeOD92z57ev_s1c_99m3O-wKuA4rb_UwdqnfB1_tOn1v8V1_RyDfAsJZ7x3IewRlbByjO7vYOEZsGqOY9v5BmlCBj-WjI0r_O_kvyEgkCQ
CitedBy_id crossref_primary_10_1002_nav_22141
crossref_primary_10_1007_s10142_021_00795_8
crossref_primary_10_1016_j_ejca_2025_115786
crossref_primary_10_3390_cancers16223824
crossref_primary_10_1016_j_compbiomed_2025_110179
crossref_primary_10_2147_AABC_S488604
crossref_primary_10_7759_cureus_39634
crossref_primary_10_1007_s40846_020_00532_9
crossref_primary_10_1016_j_isci_2025_112980
crossref_primary_10_1097_SLE_0000000000000881
crossref_primary_10_1007_s40815_021_01182_y
crossref_primary_10_3390_diagnostics13020301
crossref_primary_10_2196_70275
crossref_primary_10_1016_j_compbiomed_2025_109918
crossref_primary_10_3390_cancers14051349
crossref_primary_10_1016_j_hsr_2022_100041
crossref_primary_10_1371_journal_pcbi_1012308
crossref_primary_10_1287_mnsc_2021_4289
crossref_primary_10_3390_cancers12092348
Cites_doi 10.1093/jamia/ocv195
10.15585/mmwr.mm6608a1
10.1038/ajg.2012.161
10.1016/j.cgh.2014.01.042
10.1038/bjc.2017.53
10.1177/0969141315584694
10.1158/1055-9965.EPI-14-0744
10.1038/ajg.2017.174
10.1016/j.ypmed.2014.02.010
10.1007/s10865-015-9668-8
10.1371/journal.pone.0171759
10.1503/cmaj.151125
10.1016/j.gie.2016.09.025
ContentType Journal Article
Copyright COPYRIGHT 2018 Public Library of Science
2018 Hilsden et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Hilsden et al 2018 Hilsden et al
Copyright_xml – notice: COPYRIGHT 2018 Public Library of Science
– notice: 2018 Hilsden et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Hilsden et al 2018 Hilsden et al
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0207848
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed





Agricultural Science Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Prediction of findings at screening colonoscopy using a machine learning algorithm (ColonFlag)
EISSN 1932-6203
ExternalDocumentID 2138605347
oai_doaj_org_article_aa1ca2d79f8e4a9e9396e445397eb2f3
PMC6258529
A563518572
30481208
10_1371_journal_pone_0207848
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Canada
Israel
Calgary Alberta Canada
United Kingdom--UK
Alberta Canada
United States--US
GeographicLocations_xml – name: Israel
– name: Canada
– name: Alberta Canada
– name: Calgary Alberta Canada
– name: United Kingdom--UK
– name: United States--US
GrantInformation_xml – fundername: ;
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ALIPV
BBORY
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
PUEGO
5PM
AAPBV
ABPTK
ID FETCH-LOGICAL-c692t-5b6426af6312d49cfb83a2d1fc3f53e6015b2b042c829d62265af6976adc5f613
IEDL.DBID DOA
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451440000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Sun Nov 05 00:20:43 EDT 2023
Tue Oct 14 18:43:18 EDT 2025
Tue Nov 04 01:50:18 EST 2025
Mon Sep 08 10:28:47 EDT 2025
Tue Oct 07 08:05:52 EDT 2025
Sat Nov 29 13:05:44 EST 2025
Sat Nov 29 10:04:08 EST 2025
Wed Nov 26 09:38:21 EST 2025
Wed Nov 26 08:50:42 EST 2025
Thu May 22 21:22:27 EDT 2025
Wed Feb 19 02:35:24 EST 2025
Sat Nov 29 06:44:04 EST 2025
Tue Nov 18 22:15:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-5b6426af6312d49cfb83a2d1fc3f53e6015b2b042c829d62265af6976adc5f613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: RG was an employee of Medial Early Sign, Inc and BM is an employee of Medial Cancer Research. RJH, SJH and SAN declare that they have no conflicts of interest. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
ORCID 0000-0003-1545-1093
OpenAccessLink https://doaj.org/article/aa1ca2d79f8e4a9e9396e445397eb2f3
PMID 30481208
PQID 2138605347
PQPubID 1436336
PageCount e0207848
ParticipantIDs plos_journals_2138605347
doaj_primary_oai_doaj_org_article_aa1ca2d79f8e4a9e9396e445397eb2f3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6258529
proquest_miscellaneous_2138641683
proquest_journals_2138605347
gale_infotracmisc_A563518572
gale_infotracacademiconefile_A563518572
gale_incontextgauss_ISR_A563518572
gale_incontextgauss_IOV_A563518572
gale_healthsolutions_A563518572
pubmed_primary_30481208
crossref_primary_10_1371_journal_pone_0207848
crossref_citationtrail_10_1371_journal_pone_0207848
PublicationCentury 2000
PublicationDate 2018-11-27
PublicationDateYYYYMMDD 2018-11-27
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References DJ Robertson (ref12) 2017; 85
C Klabunde (ref4) 2015; 22
E Altobelli (ref3) 2014; 62
R Goshen (ref8) 2017; 116
DK Rex (ref15) 2012; 107
A White (ref5) 2017; 66
DK Driman (ref11) 2012; 4
PG Ritvo (ref14) 2015; 24
M Hornbrook (ref9) 2017
Y Kinar (ref7) 2016; 23
(ref10) 2010
TM Atkinson (ref13) 2015; 38
CM Bacchus (ref2) 2016; 188
DK Rex (ref1) 2017; 112
Y Kinar (ref6) 2017; 12
GK Ma (ref16) 2014; 12
References_xml – year: 2010
  ident: ref10
– volume: 23
  start-page: 879
  issue: 5
  year: 2016
  ident: ref7
  article-title: Development and validation of a predictive model for detection of colorectal cancer in primary care by analysis of complete blood counts: a binational retrospective study
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1093/jamia/ocv195
– volume: 66
  start-page: 201
  issue: 8
  year: 2017
  ident: ref5
  article-title: Cancer Screening Test Use—United States, 2015
  publication-title: MMWR—Morbidity & Mortality Weekly Report
  doi: 10.15585/mmwr.mm6608a1
– volume: 107
  start-page: 1315
  issue: 9
  year: 2012
  ident: ref15
  article-title: Serrated Lesions of the Colorectum: Review and Recommendations From an Expert Panel
  publication-title: Am J Gastroenterol
  doi: 10.1038/ajg.2012.161
– year: 2017
  ident: ref9
  article-title: Early colorectal cancer detected by machine-learning model using gender, age and complete blood count data
  publication-title: Digestive Diseases & Sciences
– volume: 4
  start-page: 81
  year: 2012
  ident: ref11
  article-title: Pathological reporting of colorectal polyps: Pan-Canadian Consensus Guidelines
  publication-title: Can J Pathol
– volume: 12
  start-page: 1624
  issue: 10
  year: 2014
  ident: ref16
  article-title: Personalizing colorectal cancer screening: a systematic review of models to predict risk of colorectal neoplasia
  publication-title: Clinical Gastroenterology & Hepatology
  doi: 10.1016/j.cgh.2014.01.042
– volume: 116
  start-page: 944
  issue: 7
  year: 2017
  ident: ref8
  article-title: Predicting the presence of colon cancer in members of a health maintenance organisation by evaluating analytes from standard laboratory records
  publication-title: British Journal of Cancer
  doi: 10.1038/bjc.2017.53
– volume: 22
  start-page: 119
  issue: 3
  year: 2015
  ident: ref4
  article-title: Participation rates for organized colorectal cancer screening programmes: an international comparison
  publication-title: Journal of Medical Screening
  doi: 10.1177/0969141315584694
– volume: 24
  start-page: 506
  issue: 3
  year: 2015
  ident: ref14
  article-title: Personal navigation increases colorectal cancer screening uptake
  publication-title: Cancer Epidemiology, Biomarkers & Prevention
  doi: 10.1158/1055-9965.EPI-14-0744
– volume: 112
  start-page: 1016
  issue: 7
  year: 2017
  ident: ref1
  article-title: Colorectal Cancer Screening: Recommendations for Physicians and Patients from the U.S. Multi-Society Task Force on Colorectal Cancer
  publication-title: American Journal of Gastroenterology
  doi: 10.1038/ajg.2017.174
– volume: 62
  start-page: 132
  year: 2014
  ident: ref3
  article-title: Colorectal cancer prevention in Europe: burden of disease and status of screening programs
  publication-title: Preventive Medicine
  doi: 10.1016/j.ypmed.2014.02.010
– volume: 38
  start-page: 837
  issue: 6
  year: 2015
  ident: ref13
  article-title: Does colorectal cancer risk perception predict screening behavior? A systematic review and meta-analysis
  publication-title: Journal of Behavioral Medicine
  doi: 10.1007/s10865-015-9668-8
– volume: 12
  start-page: e0171759
  issue: 2
  year: 2017
  ident: ref6
  article-title: Performance analysis of a machine learning flagging system used to identify a group of individuals at a high risk for colorectal cancer
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0171759
– volume: 188
  start-page: 340
  issue: 5
  year: 2016
  ident: ref2
  article-title: Recommendations on screening for colorectal cancer in primary care
  publication-title: CMAJ Canadian Medical Association Journal
  doi: 10.1503/cmaj.151125
– volume: 85
  start-page: 2
  issue: 1
  year: 2017
  ident: ref12
  article-title: Recommendations on fecal immunochemical testing to screen for colorectal neoplasia: a consensus statement by the US Multi-Society Task Force on colorectal cancer
  publication-title: Gastrointestinal Endoscopy
  doi: 10.1016/j.gie.2016.09.025
SSID ssj0053866
Score 2.421252
Snippet Adenomatous polyps are a common precursor lesion for colorectal cancer. ColonFlag is a machine- learning-based algorithm that uses basic patient information...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0207848
SubjectTerms Algorithms
Anemia
Artificial intelligence
Biology and Life Sciences
Blood
Blood tests
Cancer
Cancer research
Cancer screening
Colon
Colon cancer
Colonoscopy
Colorectal cancer
Colorectal carcinoma
Data mining
Diagnosis
Electronic health records
Endoscopy
Erythrocytes
Feces
Gastrointestinal diseases
Health care
Health risks
Health sciences
Health screening
Hospitals
Inflammation
Laboratories
Learning algorithms
Lesions
Machine learning
Medical records
Medical research
Medical screening
Medical tests
Medicine and Health Sciences
Mortality
Pathology
Patient education
Patients
Platelets
Polyps
Population
Population studies
Preventive medicine
Primary care
Research and Analysis Methods
Risk
Risk factors
Subgroups
Systematic review
Task forces
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg4cCFUh7tlgIGIUEPaRs7TuITKhUruJQVL_UWOY6dVtomyyaLxIH_zozjhAZVgMRx44nXnrHH38TzIOS5ibXKsXw7l1YHkQrDILdaBIZri7GOOk6sKzaRnJykp6dy7j-4Nd6tsteJTlEXtcZv5Acs5ClAbx4lr5ZfA6wahbervoTGdXIDsyRw57o37zUx7OU49uFyPAkPvHT2l3Vl9gEmJSlW_bl0HLms_YNuniwXdXMV8Pzdf_LSgTTb-N-p3CG3PRSlR93a2STXTHWXbPrN3tCXPiP13j3yY77C-xyUIa0tdffcVdlQ1VLQOmAJwy-K6a-rGqNcvlP0pi-pohfOVdNQX5sCHi1KGEl7dkHx-CwodOic2gG6U-dDT13xCvj3Y-xutlDl3n3yefbm0_HbwNdtCHQsWRuIHIyaWNmYh6yIpLZ5yhUrQqu5FdyACShyloO20CmTRQwAUAAx4CJVaGEBXzwgkwpktE2oiFTBAeNonbDI6lzaQysKgCShsXgFPSW8F1-mfVJzrK2xyNxNXQLGTcfMDIWeeaFPSTC8teySevyF_jWujIEWU3K7B_WqzPwOz5QKNcwykTY1kZJGchmbKBIA-EzOLAz1Ca6rrItvHRRLdiQA82FGLjYlzxwFpuWo0O-nVOumyd69__IPRB8_jIheeCJbAzu08rEWMCdM9zWi3B1RgnLRo-Zt3AU9V5rs19qFN_vVfXXz06EZO0VfvsrUa08DdkAKLNnqNtLAWY7pi9ghcDwZbbER68ct1fmZy4oOhnwqmNz587AeklsAeVOMJmXJLpm0q7V5RG7qb-15s3rs1MdPD498iA
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZg4cCFUl5dKGAQEvSQ0tixEx9LxQokVFa81FvkOHa60jZZbbKVOPDfmfF6A6laAcfEY8cZe8bfyPMg5KWVRhdYvp0rZ6JEx3FUOCMiy43DWEcjU-eLTaTHx9nJiZr-NhQv3ODzNH4TeLq_aGq7D-AmzZLsOrnBuJTowjWZftxoXpBdKUN43FU9B8ePz9Lf6-LRYt60lwHNi_6SfxxAk63_nfodcjtATXq43hvb5Jqt75LtIMwtfR0yTu_dIz-nS7yvwTWijaP-HruuWqo7CloFLF14opjeum4wiuUHRW_5imp65l0xLQ21J-DVvGqWs-70jOLxWFIY0DutAzSn3kee-uIU8PUjHG4y19XeffJt8u7r0fso1GWIjFSsi0QBRovUTvKYlYkyrsi4ZmXsDHeCWzDxRMEK0AYmY6qUAPAEEAPu0aURDvDDAzKqgSU7hIpElxwwjDEpS5wplDtwogTIEVuHV8xjwjfLlZuQtBxrZ8xzfxOXgvGyZmaOPM4Dj8ck6nst1kk7_kL_FndCT4spt_0LWMw8SHCudWzgL1PlMptoZRVX0iaJAEBnC-Zgqs9wH-Xr-NVeceSHAjAdZtxiY_LCU2DajRr9eiq9atv8w6fv_0D05fOA6FUgcg2ww-gQSwH_hOm8BpS7A0pQHmbQvIO7fsOVNmcxCBFIUpJCz40kXN78vG_GQdFXr7bNKtAAzs-AJQ_XgtNzlmN6InYAHE8HIjVg_bClnp36rOdgqGeCqUdXz_gxuQVwNsNIUZbuklG3XNkn5KY572bt8qlXFb8AsuFq6A
  priority: 102
  providerName: Public Library of Science
Title Prediction of findings at screening colonoscopy using a machine learning algorithm based on complete blood counts (ColonFlag)
URI https://www.ncbi.nlm.nih.gov/pubmed/30481208
https://www.proquest.com/docview/2138605347
https://www.proquest.com/docview/2138641683
https://pubmed.ncbi.nlm.nih.gov/PMC6258529
https://doaj.org/article/aa1ca2d79f8e4a9e9396e445397eb2f3
http://dx.doi.org/10.1371/journal.pone.0207848
Volume 13
WOSCitedRecordID wos000451440000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELeg8MALYnytMIpBSLCHdMuH4-RxrVYxjZWog2nsJXIcu6vUJVXTIvHA_86d40YNmjQeeDmp8Tltzz77d_L5d4R8UKEUGZZv92MtnUC4rpNpyRzlS413HWXItSk2wcfj6PIyTrZKfWFOWE0PXBvuQAhXCi_nsY5UIGIV-3GogoDBPgpBoTY8n4B6NsFUvQaDF4ehvSjnc_fAjkt_URaqDwCJR1jvZ2sjMnz9zarcWczL6jbI-Xfm5NZWNHpCHlsMSY_q375D7qniKdmxXlrRT5ZKev8Z-Z0s8SAGjU9LTc0BdTGtqFhRWC4ghIVPFHmrixKvp_yimAY_pYLemBxLRW1RCXg0n5bL2er6huK-l1N4oclGB8xNTfI7NVUn4NuH-LrRXEz3n5Pvo-Nvw8-OLbjgyDD2Vg7LIBoJhQ5918uDWOos8sH2rpa-Zr6C2I1lXgZuLiMvzkNAbgyUAdCIXDINwOAF6RRg4l1CWSByH8CJlNwLtMxifahZDljCVRrPjrvE31g_lZaNHItizFNzxMYhKqmNmeKYpXbMusRpei1qNo479Ac4sI0ucmmbBzDDUjvD0rtmWJe8xWmR1hdTmxUhPWIA1pBKy-uS90YD-TQKTNiZinVVpSdfL_5B6XzSUvpolXQJ5pDCXpKA_4Q8XS3NvZYmrAqy1byLk3hjlSr1XPAJcIyAQ8_NxL69-V3TjC_FJLxClWurAwA-ApO8rP2gsayPvEPgiF3CWx7SMn27pZhdGzpziMAj5sWv_sdYvSaPANFGeFnU43uks1qu1RvyUP5czaplj9znkwuUl9zICGQ0dHvkweB4nEx6Zg0BOUq-gDwd9EGeHZ6i5ImR5yATdgU9kpOz5Mcfq_l7sw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKggQXoLy6UKhBIOghbWPneUCoFFatWpaqLVVvwXHstNI2WTa7oB74S_xGZhwnNKgCLj1wTDxx4tmZ8TfreRDyXAVSpNi-ncdaOp5wXSfV0ncUlxpzHWUQatNsIhwOo6OjeHeO_GhyYTCssrGJxlBnpcT_yFeZyyOA3twL34y_ONg1Ck9XmxYatVhsq7Nv4LJVr7fewe_7grHB-4ONTcd2FXBkELOp46cAuQOhA-6yzIulTiMuWOZqybXPFTgofspSkGUZsTgLAJ74QAy7tsikr2H3g3mvkKtgx10MIQv3DhvLD7YjCGx6Hg_dVSsNK-OyUCsAy8IIuwyd2_5Ml4B2L-iNR2V1EdD9PV7z3AY4uPW_se42uWmhNl2vdWOezKniDpm3xqyir2zF7eW75PvuBM-rUEZpqak5xy_yioopBasKnj5cUSzvXZSYxXNGMVsgp4KemlBURW3vDbg1ymHl0-NTivAgozChCdoH14SaHAFqmnPA2zdwusFI5Mv3yKdLYcN90itAJhYI9T2RccBwUobM0zKN9Zr2M4BcrtJ4xN4nvBGXRNqi7dg7ZJSYk8gQnLeamQkKWWKFrE-c9qlxXbTkL_RvURJbWiw5bm6UkzyxFiwRwpWwyjDWkfJErGIeB8rzfAC0KmUaPnUJ5Tip83dbw5ms-4BpseIY65NnhgLLjhQY15SLWVUlWx8P_4Fof69D9NIS6RLYIYXNJYE1YTmzDuVihxKMp-wML6DWNVypkl-6Ak822nTx8NN2GCfFWMVClTNLA35OBCx5UCtuy1mO5ZnYGnA87Kh0h_XdkeLk2FR9Dxh49ix--OfPWiLXNw8-7CQ7W8PtR-QGwPsIM2dZuEh608lMPSbX5NfpSTV5YkwXJZ8vW-F_AvaS2K0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKghAXoLy6UKhBIOgh3cbO84BQ2bJiVbRUvNRbcBw7rbRNls0uqAf-GL-OGccJDaqASw9c44k3mf1m_DmeByGPVSBFiu3beayl4wnXdVItfUdxqTHXUQahNs0mwskkOjiI91fIjyYXBsMqG59oHHVWSvxGPmAuj4B6cy8caBsWsb87ejH74mAHKTxpbdpp1BDZUyffYPtWPR_vwn_9hLHRqw_D147tMODIIGYLx0-BfgdCB9xlmRdLnUZcsMzVkmufK9is-ClLAdcyYnEWAFXxQRhWcJFJX8NKCPNeIBdDDijGLPVhG14CfiQIbKoeD92BRcbWrCzUFlC0MMKOQ6eWQtMxoF0XerNpWZ1Fen-P3Ty1GI6u_c9qvE6uWgpOd2qbWSUrqrhBVq2Tq-gzW4l78yb5vj_HcyzELi01Nef7RV5RsaDgbZXCb0oUy34XJWb3nFDMIsipoMcmRFVR25MDLk1zePPF4TFF2pBRmNAE88OWhZrcAWqadsCvD3G60VTkm7fIx3NRw23SKwAfa4T6nsg4cDspQ-ZpmcZ6W_sZUDFXaTx67xPeQCeRtpg79hSZJuaEMoRNXa3MBAGXWMD1idPeNauLmfxF_iWispXFUuTmQjnPE-vZEiFcCW8ZxjpSnohVzONAeZ4PRFelTMOjbiCmkzqvt3WoyY4PXBcrkbE-eWQksBxJgYjMxbKqkvHbT_8g9P5dR-ipFdIlqEMKm2MC74RlzjqS6x1JcKqyM7yGFthopUp-2Q3c2VjW2cMP22GcFGMYC1UurQzsfyJQyZ3aiFvNcizbxLZB42HHvDuq744UR4emGnzAYMfP4rt_fqwNchnsPHkznuzdI1eA9UeYUMvCddJbzJfqPrkkvy6OqvkD48Uo-Xze9v4TYnPhCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+findings+at+screening+colonoscopy+using+a+machine+learning+algorithm+based+on+complete+blood+counts+%28ColonFlag%29&rft.jtitle=PloS+one&rft.au=Robert+J+Hilsden&rft.au=Steven+J+Heitman&rft.au=Barak+Mizrahi&rft.au=Steven+A+Narod&rft.date=2018-11-27&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=13&rft.issue=11&rft.spage=e0207848&rft_id=info:doi/10.1371%2Fjournal.pone.0207848&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aa1ca2d79f8e4a9e9396e445397eb2f3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon