Machine learning algorithm validation with a limited sample size
Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participant...
Saved in:
| Published in: | PloS one Vol. 14; no. 11; p. e0224365 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
07.11.2019
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used. |
|---|---|
| AbstractList | Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used. Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used.Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used. |
| Audience | Academic |
| Author | Gowen, Emma Poliakoff, Ellen Casson, Alexander J. Vabalas, Andrius |
| AuthorAffiliation | 1 Materials, Devices and Systems Division, School of Electrical and Electronic Engineering, The University of Manchester, Manchester, England, United Kingdom Instituto Nacional de Medicina Genomica, MEXICO 2 School of Biological Sciences, The University of Manchester, Manchester, England, United Kingdom |
| AuthorAffiliation_xml | – name: 1 Materials, Devices and Systems Division, School of Electrical and Electronic Engineering, The University of Manchester, Manchester, England, United Kingdom – name: Instituto Nacional de Medicina Genomica, MEXICO – name: 2 School of Biological Sciences, The University of Manchester, Manchester, England, United Kingdom |
| Author_xml | – sequence: 1 givenname: Andrius orcidid: 0000-0002-0659-2890 surname: Vabalas fullname: Vabalas, Andrius – sequence: 2 givenname: Emma surname: Gowen fullname: Gowen, Emma – sequence: 3 givenname: Ellen surname: Poliakoff fullname: Poliakoff, Ellen – sequence: 4 givenname: Alexander J. surname: Casson fullname: Casson, Alexander J. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31697686$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk9tu1DAQhiNURA_wBggiISG42MWHxE64QFQVh5WKKnG6tRxnkvXKsZfYaQtPj3c3rTZVhZAvYk2-_5_MZOY4ObDOQpI8xWiOKcdvVm7orTTzdQzPESEZZfmD5AiXlMwYQfRg736YHHu_QiinBWOPkkOKWclZwY6S91-kWmoLqQHZW23bVJrW9Tosu_RSGl3LoJ1Nr2IglanRnQ5Qp152awOp13_gcfKwkcbDk_F5kvz4-OH72efZ-cWnxdnp-UyxkoRZRoEijFTOVUGqigFAqXKkMCCMSV3LkuQ84w2AVEVTqJo3CjdZxcsSV1BgepI83_mujfNiLN4LQjHhZZ7hLBKLHVE7uRLrXney_y2c1GIbcH0rZB-0MiDqhuKcqrphlcxAqRIIKmnGgbC6bGgRvd6N2Yaqg1qBDb00E9PpG6uXonWXghWUZxmJBq9Gg979GsAH0WmvwBhpwQ3b76bxhyHOI_riDnp_dSPVyliAto2LedXGVJwylKMCc7Lxmt9DxVNDp1WclEbH-ETweiKITIDr0MrBe7H49vX_2YufU_blHrsEacLSOzNspslPwWf7nb5t8c2IRiDbAap33vfQ3CIYic0m3LRLbDZBjJsQZW_vyJQO22GOHdHm3-K_cvoOcw |
| CitedBy_id | crossref_primary_10_3758_s13415_025_01268_2 crossref_primary_10_3389_fnins_2020_558434 crossref_primary_10_1007_s40996_024_01383_z crossref_primary_10_1002_hrm_70012 crossref_primary_10_3390_su14074083 crossref_primary_10_1016_j_dche_2024_100214 crossref_primary_10_1002_mds_30002 crossref_primary_10_1016_j_jenvman_2022_115923 crossref_primary_10_3390_s20174987 crossref_primary_10_1002_jms_4702 crossref_primary_10_1016_j_fertnstert_2020_09_159 crossref_primary_10_1016_j_eja_2023_127076 crossref_primary_10_3390_s25010028 crossref_primary_10_1039_D3NR02322B crossref_primary_10_1136_bmjopen_2025_100358 crossref_primary_10_3390_info15070393 crossref_primary_10_3390_s24144472 crossref_primary_10_1002_pld3_70092 crossref_primary_10_1364_AO_385208 crossref_primary_10_1177_14799731251364875 crossref_primary_10_1038_s41539_024_00237_7 crossref_primary_10_1111_gcbb_12821 crossref_primary_10_3390_toxics12080545 crossref_primary_10_3390_diagnostics13030508 crossref_primary_10_1007_s40846_024_00900_9 crossref_primary_10_3390_app13074241 crossref_primary_10_1002_jts_22868 crossref_primary_10_1016_j_clet_2025_100960 crossref_primary_10_1016_j_agrcom_2024_100060 crossref_primary_10_1080_07448481_2021_1947841 crossref_primary_10_1007_s11306_023_02067_x crossref_primary_10_1038_s41598_020_80749_5 crossref_primary_10_1155_2024_9373931 crossref_primary_10_1016_j_engappai_2025_110090 crossref_primary_10_3389_fnagi_2023_1238065 crossref_primary_10_1108_AFR_08_2023_0105 crossref_primary_10_3389_fnut_2025_1584717 crossref_primary_10_1093_bib_bbac359 crossref_primary_10_1016_j_enbuild_2022_111870 crossref_primary_10_1111_cobi_14316 crossref_primary_10_1155_2022_2016006 crossref_primary_10_1007_s40614_020_00270_y crossref_primary_10_1007_s00500_023_08583_1 crossref_primary_10_1016_j_compbiomed_2022_105959 crossref_primary_10_1183_23120541_01057_2024 crossref_primary_10_1016_j_ijmedinf_2021_104510 crossref_primary_10_2351_7_0000796 crossref_primary_10_1007_s00330_020_07176_y crossref_primary_10_1186_s12859_024_05639_3 crossref_primary_10_1002_ajmg_b_33055 crossref_primary_10_1103_PhysRevPhysEducRes_21_010128 crossref_primary_10_1002_hbm_25679 crossref_primary_10_1007_s00027_022_00854_7 crossref_primary_10_3389_fpsyg_2024_1390199 crossref_primary_10_3390_foods14020169 crossref_primary_10_1007_s13042_024_02363_5 crossref_primary_10_3390_diagnostics15162065 crossref_primary_10_3389_fmed_2021_705071 crossref_primary_10_1111_iwj_14556 crossref_primary_10_1515_revneuro_2023_0117 crossref_primary_10_1145_3699755 crossref_primary_10_1016_j_cmpb_2024_108447 crossref_primary_10_3390_ani13223475 crossref_primary_10_1038_s41598_022_14835_1 crossref_primary_10_1007_s42864_022_00175_0 crossref_primary_10_1016_j_ijforecast_2021_10_008 crossref_primary_10_1016_j_jechem_2024_03_003 crossref_primary_10_1016_j_compag_2024_109215 crossref_primary_10_1016_j_pmcj_2023_101874 crossref_primary_10_3390_jintelligence10010012 crossref_primary_10_3389_fbioe_2023_1285945 crossref_primary_10_3390_s20154098 crossref_primary_10_3389_fvets_2022_802272 crossref_primary_10_1016_j_neuroscience_2024_08_017 crossref_primary_10_1080_17439760_2023_2254743 crossref_primary_10_1111_andr_12826 crossref_primary_10_3390_cancers15041121 crossref_primary_10_3390_app13074289 crossref_primary_10_1007_s11547_024_01878_9 crossref_primary_10_1016_j_ress_2023_109338 crossref_primary_10_1016_j_jad_2024_05_066 crossref_primary_10_1038_s41598_025_87645_w crossref_primary_10_1007_s00330_024_10594_x crossref_primary_10_1038_s41524_023_00967_z crossref_primary_10_1108_JET_12_2021_0068 crossref_primary_10_2196_46464 crossref_primary_10_3390_metabo15080514 crossref_primary_10_1371_journal_pone_0284951 crossref_primary_10_1016_j_cclet_2024_110454 crossref_primary_10_1016_j_envc_2025_101262 crossref_primary_10_1016_j_neuroimage_2023_120205 crossref_primary_10_3390_math12071020 crossref_primary_10_1016_j_foodchem_2025_145059 crossref_primary_10_3390_a17110519 crossref_primary_10_3390_s22072603 crossref_primary_10_1186_s12967_023_03931_z crossref_primary_10_1016_j_jpsychires_2019_12_001 crossref_primary_10_3389_fendo_2024_1379693 crossref_primary_10_1186_s12859_024_05759_w crossref_primary_10_1007_s11739_022_03033_6 crossref_primary_10_1038_s41598_023_27426_5 crossref_primary_10_1038_s41598_025_88826_3 crossref_primary_10_1016_j_asoc_2024_111781 crossref_primary_10_1016_j_rse_2020_111839 crossref_primary_10_1016_j_bspc_2023_105525 crossref_primary_10_1016_j_jpsychires_2022_03_066 crossref_primary_10_3389_fpubh_2024_1373883 crossref_primary_10_1186_s12859_022_04782_z crossref_primary_10_1016_j_seizure_2021_07_025 crossref_primary_10_1038_s44184_025_00140_y crossref_primary_10_1016_j_datak_2022_102042 crossref_primary_10_1002_cpt_2511 crossref_primary_10_3390_cells10030576 crossref_primary_10_1038_s41598_020_61357_9 crossref_primary_10_3389_fchem_2024_1510029 crossref_primary_10_3390_molecules26061734 crossref_primary_10_3390_electronics12214432 crossref_primary_10_1007_s13369_021_06177_3 crossref_primary_10_2196_45991 crossref_primary_10_1523_JNEUROSCI_0529_21_2022 crossref_primary_10_1097_MD_0000000000034285 crossref_primary_10_1109_TSP_2022_3168490 crossref_primary_10_1038_s41598_025_01488_z crossref_primary_10_3390_info14050295 crossref_primary_10_1111_1462_2920_15462 crossref_primary_10_1016_j_seizure_2021_06_009 crossref_primary_10_1038_s41598_023_35194_5 crossref_primary_10_1177_17455057221139664 crossref_primary_10_3390_ijerph20065059 crossref_primary_10_1080_10408363_2025_2488842 crossref_primary_10_1088_1741_2552_adbfbd crossref_primary_10_1121_10_0002884 crossref_primary_10_1038_s41598_025_10907_0 crossref_primary_10_3389_fnins_2020_591662 crossref_primary_10_1007_s00366_023_01809_8 crossref_primary_10_1007_s11306_020_01685_z crossref_primary_10_1038_s41467_022_32598_1 crossref_primary_10_1016_j_jrp_2023_104369 crossref_primary_10_1002_nml_21651 crossref_primary_10_1111_1759_7714_14694 crossref_primary_10_1080_03081060_2025_2520571 crossref_primary_10_1371_journal_pcbi_1012581 crossref_primary_10_3390_diagnostics14111081 crossref_primary_10_1007_s10653_024_02233_7 crossref_primary_10_1088_2632_2153_acac01 crossref_primary_10_1109_ACCESS_2023_3343874 crossref_primary_10_1111_jcpe_13797 crossref_primary_10_1017_S003329172400223X crossref_primary_10_3390_a18080470 crossref_primary_10_1080_01431161_2023_2274320 crossref_primary_10_1016_j_jclepro_2023_136702 crossref_primary_10_1016_j_scitotenv_2023_166863 crossref_primary_10_1016_j_jlb_2025_100313 crossref_primary_10_3390_s23041748 crossref_primary_10_1007_s12145_025_01899_6 crossref_primary_10_3389_fnimg_2023_1090054 crossref_primary_10_1371_journal_pone_0245735 crossref_primary_10_1073_pnas_2308366120 crossref_primary_10_1007_s12065_021_00666_y crossref_primary_10_1016_j_cortex_2024_08_009 crossref_primary_10_1371_journal_pcbi_1009108 crossref_primary_10_1016_j_crmeth_2021_100008 crossref_primary_10_1109_TAFFC_2024_3521327 crossref_primary_10_3390_math12121853 crossref_primary_10_1371_journal_pcbi_1011424 crossref_primary_10_1001_jamanetworkopen_2023_36094 crossref_primary_10_3390_brainsci10050319 crossref_primary_10_1007_s40846_022_00695_7 crossref_primary_10_1177_00037028211019130 crossref_primary_10_1109_ACCESS_2024_3362233 crossref_primary_10_3389_fnins_2021_768602 crossref_primary_10_1007_s11356_022_23392_z crossref_primary_10_1038_s41598_022_06434_x crossref_primary_10_1093_jas_skaf144 crossref_primary_10_1007_s00330_023_10394_9 crossref_primary_10_3390_bioengineering12060591 crossref_primary_10_1186_s13040_021_00245_y crossref_primary_10_1080_02770903_2022_2043364 crossref_primary_10_1109_ACCESS_2023_3316019 crossref_primary_10_1038_s41531_024_00764_5 crossref_primary_10_1038_s41591_023_02574_3 crossref_primary_10_1007_s41870_022_00949_2 crossref_primary_10_1016_j_jhydrol_2023_130076 crossref_primary_10_1016_j_applanim_2021_105491 crossref_primary_10_1002_1878_0261_12920 crossref_primary_10_3390_ijerph19031177 crossref_primary_10_3390_agronomy14050938 crossref_primary_10_3390_aerospace11090747 crossref_primary_10_1007_s10515_023_00388_8 crossref_primary_10_3390_pr9040672 crossref_primary_10_1371_journal_pone_0326449 crossref_primary_10_1038_s41598_023_49552_w crossref_primary_10_1371_journal_pone_0314466 crossref_primary_10_1109_ACCESS_2024_3506433 crossref_primary_10_1016_j_jhazmat_2024_136425 crossref_primary_10_1002_biot_202100212 crossref_primary_10_1016_j_jii_2025_100795 crossref_primary_10_1097_RTI_0000000000000808 crossref_primary_10_1371_journal_pone_0312046 crossref_primary_10_1016_j_compag_2022_107537 crossref_primary_10_1080_10888438_2022_2121655 crossref_primary_10_1128_aac_00591_22 crossref_primary_10_1016_j_chemosphere_2024_142223 crossref_primary_10_1186_s12864_025_11927_w crossref_primary_10_1016_j_actpsy_2024_104629 crossref_primary_10_1208_s12248_024_00934_6 crossref_primary_10_1016_j_health_2025_100417 crossref_primary_10_1002_ail2_118 crossref_primary_10_1016_j_compag_2024_109070 crossref_primary_10_1007_s12161_021_02097_y crossref_primary_10_1177_25152459251345696 crossref_primary_10_1016_j_jhazmat_2024_135564 crossref_primary_10_1371_journal_pntd_0010749 crossref_primary_10_1016_j_biotechadv_2024_108474 crossref_primary_10_20463_pan_2025_0013 crossref_primary_10_1158_1078_0432_CCR_23_3523 crossref_primary_10_1109_ACCESS_2022_3189018 crossref_primary_10_1016_j_addma_2022_102848 crossref_primary_10_1080_1354750X_2021_2016971 crossref_primary_10_1111_joop_12531 crossref_primary_10_1016_j_cageo_2023_105457 crossref_primary_10_1016_j_diabres_2025_112403 crossref_primary_10_1007_s13042_025_02718_6 crossref_primary_10_3389_fpsyt_2022_804440 crossref_primary_10_1016_j_stueduc_2024_101412 crossref_primary_10_3390_diagnostics15020216 crossref_primary_10_1186_s41824_020_00094_8 crossref_primary_10_1111_jmft_70026 crossref_primary_10_1109_TBME_2024_3365131 crossref_primary_10_1080_19490976_2021_1872323 crossref_primary_10_1016_j_patcog_2024_110424 crossref_primary_10_3390_biomedicines10071544 crossref_primary_10_1007_s40520_023_02552_2 crossref_primary_10_1016_j_ultras_2022_106854 crossref_primary_10_1007_s40192_023_00330_6 crossref_primary_10_1038_s41598_023_50601_7 crossref_primary_10_1016_j_engfracmech_2024_110676 crossref_primary_10_1016_j_tics_2024_09_007 crossref_primary_10_3233_JAD_215164 crossref_primary_10_3389_fnins_2023_1124329 crossref_primary_10_3390_s24175752 crossref_primary_10_1016_j_ufug_2022_127786 crossref_primary_10_3389_fpsyt_2023_1001085 crossref_primary_10_1038_s41467_025_60638_z crossref_primary_10_1186_s40708_022_00163_7 crossref_primary_10_1155_da_5734107 crossref_primary_10_1038_s41598_022_17842_4 crossref_primary_10_1088_1741_2552_acad2b crossref_primary_10_1016_j_ejrad_2020_108871 crossref_primary_10_1093_schbul_sbae204 crossref_primary_10_3389_fpsyg_2024_1410396 crossref_primary_10_3390_s24103210 crossref_primary_10_1177_07410883231185287 crossref_primary_10_3390_s21103419 crossref_primary_10_3389_fpsyt_2022_883294 crossref_primary_10_1016_j_seizure_2025_05_007 crossref_primary_10_1523_JNEUROSCI_0176_22_2022 crossref_primary_10_1080_10543406_2025_2511194 crossref_primary_10_3390_diagnostics11050739 crossref_primary_10_1088_1361_6560_acaba6 crossref_primary_10_1177_10870547221146256 crossref_primary_10_1007_s42113_024_00203_x crossref_primary_10_1016_j_asoc_2023_110591 crossref_primary_10_1016_j_giq_2023_101899 crossref_primary_10_1109_LRA_2025_3600170 crossref_primary_10_1371_journal_pcbi_1011876 crossref_primary_10_1016_j_compbiomed_2023_107636 crossref_primary_10_3390_s24227193 crossref_primary_10_5604_01_3001_0015_9501 crossref_primary_10_1038_s41598_023_40245_y crossref_primary_10_1158_1541_7786_MCR_23_0153 crossref_primary_10_3390_bioengineering10070783 crossref_primary_10_1016_j_compstruct_2025_118867 crossref_primary_10_3390_su132413752 crossref_primary_10_1109_TCE_2025_3548303 crossref_primary_10_1016_j_procs_2020_09_272 crossref_primary_10_1177_09544089241263455 crossref_primary_10_1007_s00466_025_02660_y crossref_primary_10_1021_acs_analchem_4c06723 crossref_primary_10_3389_fbioe_2023_1205009 crossref_primary_10_2196_42206 crossref_primary_10_1007_s10661_024_12554_w crossref_primary_10_1002_cpt_2960 crossref_primary_10_1111_epi_18406 crossref_primary_10_3390_rs14102334 crossref_primary_10_1007_s10803_023_06171_8 crossref_primary_10_1016_j_csbj_2020_10_011 crossref_primary_10_1038_s41467_020_19957_6 crossref_primary_10_1038_s41531_024_00647_9 crossref_primary_10_3390_data10060090 crossref_primary_10_2196_18331 crossref_primary_10_1016_j_ibmed_2025_100273 crossref_primary_10_1016_j_foodcont_2021_108353 crossref_primary_10_1038_s41598_025_08003_4 crossref_primary_10_1172_JCI171948 crossref_primary_10_1007_s10661_024_12794_w crossref_primary_10_3390_cancers15082209 crossref_primary_10_3390_cancers15133286 crossref_primary_10_3390_vision4020025 crossref_primary_10_1007_s10163_021_01182_y crossref_primary_10_1038_s41433_024_02933_5 crossref_primary_10_3390_jcm11144004 crossref_primary_10_3389_fneur_2025_1536463 crossref_primary_10_1016_j_cageo_2021_104737 crossref_primary_10_1111_ejn_16557 crossref_primary_10_1186_s12884_022_05025_y crossref_primary_10_1016_j_bspc_2022_103716 crossref_primary_10_1088_2516_1091_ad525b crossref_primary_10_2196_43511 crossref_primary_10_1016_j_rsase_2023_100962 crossref_primary_10_1016_j_csbj_2020_09_033 crossref_primary_10_1051_e3sconf_202131901099 crossref_primary_10_3390_diagnostics11060961 crossref_primary_10_1007_s10339_024_01189_x crossref_primary_10_1016_j_jad_2024_09_066 crossref_primary_10_1007_s00330_025_11406_6 crossref_primary_10_1080_02770903_2022_2059763 crossref_primary_10_1088_1757_899X_1163_1_012027 crossref_primary_10_2196_23938 crossref_primary_10_1186_s40537_021_00445_7 crossref_primary_10_3390_nu15143267 crossref_primary_10_1002_hbm_26172 crossref_primary_10_3389_frai_2023_1154663 crossref_primary_10_1016_j_cmpb_2021_106288 crossref_primary_10_1007_s00521_020_04971_y crossref_primary_10_1002_wcms_1479 crossref_primary_10_1016_j_tsep_2024_103024 crossref_primary_10_1111_pai_13919 crossref_primary_10_1016_j_jbusres_2020_09_028 crossref_primary_10_3390_jcm13051222 crossref_primary_10_1186_s40359_021_00574_x crossref_primary_10_3390_ijms252312512 crossref_primary_10_1093_bib_bbac062 crossref_primary_10_1029_2023EF004106 crossref_primary_10_3389_fcvm_2023_1153814 crossref_primary_10_1007_s12145_024_01268_9 crossref_primary_10_1016_j_jag_2024_103768 crossref_primary_10_1109_JBHI_2025_3552320 crossref_primary_10_1007_s44163_025_00377_8 crossref_primary_10_3390_en15062053 crossref_primary_10_1016_j_bspc_2024_106975 crossref_primary_10_3390_s22010018 crossref_primary_10_3390_cancers14061591 crossref_primary_10_1371_journal_pone_0311810 crossref_primary_10_1080_10447318_2025_2546046 crossref_primary_10_3390_cancers14040895 crossref_primary_10_1016_j_compag_2024_109653 crossref_primary_10_1016_j_rsase_2024_101311 crossref_primary_10_3390_app15189908 crossref_primary_10_1016_j_jsames_2023_104583 crossref_primary_10_1093_bioadv_vbad048 crossref_primary_10_1080_14992027_2021_1884909 crossref_primary_10_1038_s41398_025_03566_2 crossref_primary_10_1088_1755_1315_1190_1_012012 crossref_primary_10_1016_j_foodres_2025_117419 crossref_primary_10_23876_j_krcp_25_046 crossref_primary_10_1007_s11739_020_02475_0 crossref_primary_10_1186_s12888_020_02728_4 crossref_primary_10_3390_cancers15030837 crossref_primary_10_1016_j_renene_2022_08_004 crossref_primary_10_1016_j_aforl_2025_01_001 crossref_primary_10_3389_fninf_2025_1557177 crossref_primary_10_1016_j_prosdent_2022_12_004 crossref_primary_10_1038_s42003_020_01384_4 crossref_primary_10_1016_j_bbi_2023_07_022 crossref_primary_10_1007_s10922_020_09566_5 crossref_primary_10_1038_s41390_020_01134_6 crossref_primary_10_1103_PhysRevPhysEducRes_20_010113 crossref_primary_10_3389_fspor_2024_1456998 crossref_primary_10_3390_healthcare10101997 crossref_primary_10_1080_13854046_2025_2545943 crossref_primary_10_1109_ACCESS_2021_3124628 crossref_primary_10_1080_14413523_2024_2442188 crossref_primary_10_3389_fgene_2022_860510 crossref_primary_10_1002_jcv2_12042 crossref_primary_10_1371_journal_pone_0299947 crossref_primary_10_1007_s00420_020_01648_w crossref_primary_10_1002_acm2_12992 crossref_primary_10_1038_s41598_025_12026_2 crossref_primary_10_1016_j_jer_2023_100003 crossref_primary_10_1016_j_still_2024_106311 crossref_primary_10_1038_s41398_022_02162_y crossref_primary_10_1038_s41598_021_82374_2 crossref_primary_10_1038_s41598_022_18650_6 crossref_primary_10_1061_JSENDH_STENG_13301 crossref_primary_10_1016_j_jmir_2024_101736 crossref_primary_10_3390_app15137022 crossref_primary_10_3390_computers13110293 crossref_primary_10_3390_genes14020248 crossref_primary_10_1016_j_nicl_2022_103090 crossref_primary_10_3389_fnut_2024_1411363 crossref_primary_10_3390_app12126174 crossref_primary_10_3390_aerospace10110963 crossref_primary_10_1007_s00500_023_08466_5 crossref_primary_10_1038_s41698_024_00772_x crossref_primary_10_1007_s41365_022_01018_w crossref_primary_10_1038_s41598_020_65384_4 crossref_primary_10_3390_mti8090076 crossref_primary_10_1038_s41467_022_30512_3 crossref_primary_10_1371_journal_pdig_0000707 crossref_primary_10_1038_s41598_022_23882_7 crossref_primary_10_1177_10731911231167490 crossref_primary_10_3390_agronomy15040793 crossref_primary_10_1002_psp4_12884 crossref_primary_10_1002_psp4_12643 crossref_primary_10_1038_s41380_023_02334_2 crossref_primary_10_3390_agronomy11030532 crossref_primary_10_1016_j_susoc_2024_08_002 crossref_primary_10_1016_j_compbiomed_2025_110827 crossref_primary_10_1007_s12524_025_02272_2 crossref_primary_10_3390_electronics12040919 crossref_primary_10_1002_hbm_70277 crossref_primary_10_1371_journal_pone_0330373 crossref_primary_10_1177_20552076241239274 crossref_primary_10_1111_exsy_12811 crossref_primary_10_1007_s11273_025_10066_z crossref_primary_10_1044_2024_JSLHR_24_00157 crossref_primary_10_1111_ppa_13973 crossref_primary_10_3389_fmolb_2023_1099654 crossref_primary_10_1038_s41598_025_02801_6 crossref_primary_10_3390_pharmaceutics16020260 crossref_primary_10_3390_s22239176 crossref_primary_10_1007_s11517_024_03097_w crossref_primary_10_1038_s41598_023_37301_y crossref_primary_10_1038_s41746_023_00762_6 crossref_primary_10_1111_1462_2920_15945 crossref_primary_10_3390_app13021116 crossref_primary_10_3892_etm_2022_11234 crossref_primary_10_1093_bib_bbac040 crossref_primary_10_1109_TNSRE_2023_3336360 crossref_primary_10_1016_j_mcp_2024_101992 crossref_primary_10_3389_fonc_2021_604584 crossref_primary_10_1007_s10115_024_02302_4 crossref_primary_10_1016_j_enpol_2024_114407 crossref_primary_10_1002_mds_30300 crossref_primary_10_2196_51540 crossref_primary_10_1002_ima_22674 crossref_primary_10_3390_ijms25031568 crossref_primary_10_1080_07391102_2023_2248509 crossref_primary_10_1016_j_cej_2022_136013 crossref_primary_10_3390_jpm11100957 crossref_primary_10_1111_anzs_12378 crossref_primary_10_1007_s11356_025_35976_6 crossref_primary_10_7759_cureus_66688 crossref_primary_10_1016_j_conbuildmat_2024_137397 crossref_primary_10_3390_rs13163317 crossref_primary_10_1016_j_joule_2024_07_002 crossref_primary_10_7250_itms_2021_0007 crossref_primary_10_1097_MPG_0000000000003115 crossref_primary_10_1186_s13062_024_00543_5 crossref_primary_10_1192_j_eurpsy_2021_2248 crossref_primary_10_1007_s42488_025_00140_9 crossref_primary_10_5194_bg_19_2699_2022 crossref_primary_10_1038_s41598_024_59118_z crossref_primary_10_1016_j_stem_2025_03_012 crossref_primary_10_3389_fnagi_2025_1462951 crossref_primary_10_3390_bioengineering11101043 crossref_primary_10_1080_00295450_2025_2478332 crossref_primary_10_1177_10944281231155771 crossref_primary_10_1186_s12884_021_04373_5 crossref_primary_10_1038_s41598_022_13642_y crossref_primary_10_1038_s41746_021_00521_5 crossref_primary_10_1007_s43546_022_00209_2 crossref_primary_10_1109_ACCESS_2025_3586314 crossref_primary_10_1109_ACCESS_2022_3163308 crossref_primary_10_1109_ACCESS_2023_3316508 crossref_primary_10_1016_j_procir_2022_05_020 crossref_primary_10_1016_j_soildyn_2022_107214 crossref_primary_10_1093_gigascience_giaf091 crossref_primary_10_1186_s12891_023_06822_y crossref_primary_10_1002_acm2_14500 crossref_primary_10_1001_jamanetworkopen_2022_38783 crossref_primary_10_1371_journal_pone_0250842 crossref_primary_10_1016_j_jocn_2021_07_021 crossref_primary_10_1111_ffe_14109 crossref_primary_10_3389_fpsyg_2024_1326791 crossref_primary_10_1088_2631_7990_adba1e crossref_primary_10_1007_s00371_024_03719_2 crossref_primary_10_1016_j_nicl_2021_102790 crossref_primary_10_1016_j_ecoinf_2021_101270 crossref_primary_10_1038_s41598_025_94528_7 crossref_primary_10_1371_journal_pone_0256152 crossref_primary_10_1039_D4TB02876G crossref_primary_10_3389_fpubh_2025_1549210 crossref_primary_10_3390_biom12101529 crossref_primary_10_3389_fpsyt_2021_554811 crossref_primary_10_1371_journal_pone_0301276 crossref_primary_10_3389_fmicb_2023_1227300 crossref_primary_10_1038_s41598_021_93085_z crossref_primary_10_1080_00952990_2022_2116712 crossref_primary_10_1007_s00330_023_09421_6 crossref_primary_10_3390_ijms231911269 crossref_primary_10_1016_j_jpain_2021_07_011 crossref_primary_10_1007_s12564_022_09749_6 crossref_primary_10_1038_s41416_021_01550_3 crossref_primary_10_3390_microorganisms10081658 crossref_primary_10_1016_j_jprot_2023_104955 crossref_primary_10_1515_revneuro_2023_0050 crossref_primary_10_1007_s10706_024_02767_8 crossref_primary_10_1080_13803395_2022_2105821 crossref_primary_10_1161_CIRCIMAGING_125_018600 crossref_primary_10_3390_jfmk10030276 crossref_primary_10_1073_pnas_2207046120 crossref_primary_10_3390_rs17111873 crossref_primary_10_1016_j_psychres_2022_114489 crossref_primary_10_3390_ai3030043 crossref_primary_10_1038_s41598_022_20274_9 crossref_primary_10_1038_s41598_022_27298_1 crossref_primary_10_2196_69422 crossref_primary_10_1186_s40317_024_00387_w crossref_primary_10_1007_s12008_025_02309_3 crossref_primary_10_1016_j_wneu_2020_11_113 crossref_primary_10_3390_healthcare11030285 crossref_primary_10_1177_19322968251319800 crossref_primary_10_1136_bmjopen_2024_093562 crossref_primary_10_1371_journal_pone_0247404 crossref_primary_10_1007_s12273_025_1269_z crossref_primary_10_1016_j_engappai_2024_109922 crossref_primary_10_1093_bib_bbad322 crossref_primary_10_1159_000511671 crossref_primary_10_1016_j_parint_2025_103140 crossref_primary_10_1038_s41378_025_00874_x crossref_primary_10_3390_jpm12081314 crossref_primary_10_1002_hbm_70324 crossref_primary_10_1002_adfm_202214271 crossref_primary_10_1016_j_heliyon_2024_e41084 crossref_primary_10_1057_s41599_025_05234_8 crossref_primary_10_1016_j_csbj_2022_09_023 crossref_primary_10_1016_j_jpsychires_2021_01_019 crossref_primary_10_1002_pei3_10116 crossref_primary_10_1016_j_jag_2025_104537 crossref_primary_10_1088_1742_6596_1546_1_012080 crossref_primary_10_3390_rs14030803 crossref_primary_10_3390_jcm9082428 crossref_primary_10_1111_are_16140 crossref_primary_10_1038_s41598_023_45696_x crossref_primary_10_1038_s41598_021_89859_0 crossref_primary_10_1109_ACCESS_2023_3254134 crossref_primary_10_1007_s00439_022_02439_8 crossref_primary_10_5209_rgid_90048 crossref_primary_10_1016_j_apmr_2023_08_010 crossref_primary_10_1016_j_apmr_2023_08_011 crossref_primary_10_1111_1556_4029_15550 crossref_primary_10_1038_s41380_020_0825_2 crossref_primary_10_1080_24694452_2023_2166010 crossref_primary_10_1016_j_cmet_2022_03_002 crossref_primary_10_1093_noajnl_vdaf081 crossref_primary_10_1016_j_schres_2022_06_006 crossref_primary_10_1371_journal_pone_0293303 crossref_primary_10_1108_ET_05_2023_0169 crossref_primary_10_1007_s11136_022_03315_8 crossref_primary_10_3390_s22103700 crossref_primary_10_1073_pnas_2305143120 crossref_primary_10_1590_1678_4324_2025230860 crossref_primary_10_1016_j_cep_2025_110496 crossref_primary_10_1007_s10822_022_00476_z crossref_primary_10_1371_journal_pcbi_1012468 crossref_primary_10_1016_j_renene_2024_120968 crossref_primary_10_1016_j_jechem_2025_05_029 crossref_primary_10_1016_j_envpol_2024_123648 crossref_primary_10_3389_fpsyt_2020_541659 crossref_primary_10_1016_j_trd_2024_104273 crossref_primary_10_1186_s12877_024_05475_3 crossref_primary_10_3389_fmed_2023_1155426 crossref_primary_10_1002_cpt_3105 crossref_primary_10_1016_j_atmosres_2024_107576 crossref_primary_10_1016_j_jhydrol_2024_130628 crossref_primary_10_1016_j_jfca_2021_104137 crossref_primary_10_1016_j_imu_2021_100545 crossref_primary_10_1186_s12911_024_02728_4 crossref_primary_10_1038_s41598_025_94043_9 crossref_primary_10_3390_s21186088 crossref_primary_10_3390_agronomy14020349 crossref_primary_10_3389_fnins_2024_1330556 crossref_primary_10_1109_ACCESS_2024_3392624 crossref_primary_10_1016_j_scs_2025_106696 crossref_primary_10_1007_s10549_024_07360_4 crossref_primary_10_1080_08993408_2023_2245687 crossref_primary_10_1371_journal_pone_0329205 crossref_primary_10_1002_aepp_13475 crossref_primary_10_1155_je_6613167 crossref_primary_10_3390_antibiotics12081293 crossref_primary_10_1007_s10710_024_09501_6 crossref_primary_10_1177_20531680231211640 crossref_primary_10_1007_s00330_023_09628_7 crossref_primary_10_1016_j_exer_2025_110516 crossref_primary_10_1016_j_autcon_2024_105380 crossref_primary_10_3389_fcimb_2025_1542707 crossref_primary_10_7717_peerj_cs_511 crossref_primary_10_1007_s10462_023_10528_x crossref_primary_10_1007_s10479_025_06784_5 crossref_primary_10_1016_j_enggeo_2024_107605 crossref_primary_10_1371_journal_pone_0279435 crossref_primary_10_1016_j_iot_2025_101502 crossref_primary_10_1051_0004_6361_202243934 crossref_primary_10_3233_THC_231207 crossref_primary_10_1002_iub_2693 crossref_primary_10_3390_su152014868 crossref_primary_10_1016_j_bspc_2024_107030 crossref_primary_10_1109_JTEHM_2025_3548401 crossref_primary_10_1038_s41598_024_54233_3 crossref_primary_10_3390_s22155585 crossref_primary_10_1111_jcpe_13692 crossref_primary_10_1128_spectrum_01405_21 crossref_primary_10_1038_s41524_022_00810_x crossref_primary_10_1145_3708497 crossref_primary_10_3390_diagnostics12051085 crossref_primary_10_1038_s41598_025_04263_2 crossref_primary_10_1002_aepp_13446 crossref_primary_10_1109_ACCESS_2024_3482690 crossref_primary_10_1007_s00417_024_06432_x crossref_primary_10_1016_j_compenvurbsys_2024_102238 crossref_primary_10_3390_cells11192982 crossref_primary_10_1007_s12350_022_02994_7 crossref_primary_10_3390_cancers14071816 crossref_primary_10_1016_j_dcn_2021_100949 crossref_primary_10_3390_genes14040777 crossref_primary_10_3390_computers14090388 crossref_primary_10_1016_j_jwpe_2023_104014 crossref_primary_10_1080_17452007_2024_2436941 crossref_primary_10_3390_app12073673 crossref_primary_10_1128_msystems_00840_24 crossref_primary_10_1186_s43019_025_00289_y crossref_primary_10_1007_s11831_024_10196_2 crossref_primary_10_3390_cancers15041058 crossref_primary_10_1371_journal_pone_0269637 crossref_primary_10_3389_fcvm_2022_863642 crossref_primary_10_1016_j_artmed_2024_102962 crossref_primary_10_1038_s41598_024_59043_1 crossref_primary_10_1371_journal_pcbi_1012692 crossref_primary_10_1371_journal_pone_0308962 crossref_primary_10_1016_j_csbj_2025_05_016 crossref_primary_10_3389_fneur_2022_919777 crossref_primary_10_1145_3709363 crossref_primary_10_1016_j_jiph_2025_102970 crossref_primary_10_1016_j_eti_2025_104288 crossref_primary_10_1016_j_neucom_2023_126414 crossref_primary_10_3390_en18174742 crossref_primary_10_1016_j_surge_2023_06_001 crossref_primary_10_1016_j_compenvurbsys_2022_101801 crossref_primary_10_1016_j_apgeog_2024_103423 crossref_primary_10_1016_j_inffus_2025_103122 crossref_primary_10_1177_15330338221126869 crossref_primary_10_3390_s23062952 crossref_primary_10_3389_fped_2025_1616766 crossref_primary_10_1126_science_adf3708 crossref_primary_10_1186_s40537_025_01193_8 crossref_primary_10_1038_s41598_023_31797_0 crossref_primary_10_1021_acsomega_5c01602 crossref_primary_10_3389_fnhum_2023_1293173 crossref_primary_10_3846_ijspm_2022_17590 crossref_primary_10_1016_j_future_2025_107730 crossref_primary_10_1038_s41598_024_83975_3 crossref_primary_10_3390_math11081795 crossref_primary_10_1162_netn_a_00233 crossref_primary_10_1186_s40359_025_02828_4 crossref_primary_10_1080_13645706_2021_1901120 crossref_primary_10_3389_fpubh_2022_850619 crossref_primary_10_2196_67210 crossref_primary_10_1016_j_datak_2022_102105 crossref_primary_10_3390_wevj14070197 crossref_primary_10_1093_g3journal_jkac258 crossref_primary_10_3390_rs12132142 crossref_primary_10_1049_htl2_12084 crossref_primary_10_1002_wer_10893 crossref_primary_10_1007_s00247_025_06205_6 crossref_primary_10_1016_j_bbagrm_2024_195062 crossref_primary_10_3389_fmolb_2023_1154536 crossref_primary_10_2166_wpt_2024_157 crossref_primary_10_1016_j_health_2023_100185 crossref_primary_10_1016_j_gaitpost_2024_02_011 crossref_primary_10_1016_j_ces_2025_122259 crossref_primary_10_3390_agriculture14071077 crossref_primary_10_3390_metabo12040299 crossref_primary_10_1177_21582440221099294 crossref_primary_10_1016_j_tifs_2024_104550 crossref_primary_10_1038_s41598_022_05384_8 crossref_primary_10_1016_j_jclepro_2024_143602 crossref_primary_10_1371_journal_pone_0265254 crossref_primary_10_1371_journal_pone_0306987 crossref_primary_10_1186_s12933_022_01649_8 crossref_primary_10_1371_journal_pntd_0010879 crossref_primary_10_1161_STROKEAHA_120_030950 crossref_primary_10_1038_s41584_021_00708_w crossref_primary_10_3390_buildings15010140 crossref_primary_10_1007_s41064_023_00264_w crossref_primary_10_1177_0022034520979926 crossref_primary_10_1038_s41598_025_85777_7 crossref_primary_10_1007_s41348_023_00784_y crossref_primary_10_1007_s11943_023_00332_y crossref_primary_10_1007_s00234_021_02774_z crossref_primary_10_1109_TGRS_2025_3600898 crossref_primary_10_3389_fnbot_2021_605751 crossref_primary_10_1016_j_biopsych_2024_06_027 crossref_primary_10_3390_jintelligence11040075 crossref_primary_10_1016_j_spinee_2022_12_003 crossref_primary_10_1038_s41598_025_17057_3 crossref_primary_10_1016_j_bspc_2021_103102 crossref_primary_10_3389_fpsyt_2022_828773 crossref_primary_10_1007_s42114_024_01113_z crossref_primary_10_3390_pr11123325 crossref_primary_10_2139_ssrn_3788349 crossref_primary_10_1016_j_pscychresns_2023_111696 crossref_primary_10_1016_j_apmr_2021_02_029 crossref_primary_10_1007_s10994_024_06723_8 crossref_primary_10_3390_ijerph20010173 crossref_primary_10_7717_peerj_cs_2245 crossref_primary_10_1016_j_bios_2021_113485 crossref_primary_10_1016_j_cherd_2024_08_020 crossref_primary_10_3390_jcm13175081 crossref_primary_10_1016_j_trac_2023_117378 crossref_primary_10_1007_s11912_021_01054_6 crossref_primary_10_1109_MITP_2023_3262923 crossref_primary_10_1080_23737484_2022_2093801 crossref_primary_10_1016_j_rbmo_2024_103910 crossref_primary_10_1038_s41598_023_32714_1 crossref_primary_10_2196_52322 crossref_primary_10_1007_s12553_021_00555_5 crossref_primary_10_1007_s00477_024_02729_9 crossref_primary_10_3389_fnetp_2023_1256104 crossref_primary_10_1002_adma_202413695 crossref_primary_10_1016_j_phanu_2022_100326 crossref_primary_10_3390_agronomy15030654 crossref_primary_10_2217_nnm_2021_0076 crossref_primary_10_1038_s41598_022_23327_1 crossref_primary_10_3390_healthcare12171699 crossref_primary_10_1016_j_csbj_2022_04_016 crossref_primary_10_1038_s41598_024_64299_8 crossref_primary_10_1007_s12046_022_02015_w crossref_primary_10_1016_j_ejogrb_2024_04_020 crossref_primary_10_1038_s41598_021_90032_w crossref_primary_10_1109_ACCESS_2025_3546557 crossref_primary_10_1259_bjr_20220230 crossref_primary_10_1016_j_biortech_2021_125950 crossref_primary_10_1089_neu_2022_0201 crossref_primary_10_3389_fpubh_2025_1515094 crossref_primary_10_1016_j_chemolab_2022_104718 crossref_primary_10_1080_14767058_2021_1918670 crossref_primary_10_3389_fpubh_2023_1201054 crossref_primary_10_3390_aerospace8020044 crossref_primary_10_1162_neco_a_01664 crossref_primary_10_1002_eng2_12910 crossref_primary_10_4103_jmp_jmp_48_25 crossref_primary_10_3390_electronics13122231 crossref_primary_10_1016_j_geoai_2025_100030 crossref_primary_10_1155_2024_2341211 crossref_primary_10_3389_fcimb_2021_662431 crossref_primary_10_1520_SSMS20200030 crossref_primary_10_1016_j_ecoinf_2023_102233 crossref_primary_10_18359_rfcb_7396 crossref_primary_10_1227_neu_0000000000001855 crossref_primary_10_3389_fninf_2023_1310400 crossref_primary_10_1017_S0033291721003871 crossref_primary_10_3389_fspor_2025_1634656 crossref_primary_10_1002_adem_202201493 crossref_primary_10_1177_17455057241248121 crossref_primary_10_1002_admt_202301462 crossref_primary_10_3390_rs13132588 crossref_primary_10_2196_44986 crossref_primary_10_3390_s25123777 crossref_primary_10_1016_j_janxdis_2025_103003 crossref_primary_10_1002_admt_202401121 crossref_primary_10_1016_j_jfranklin_2023_09_046 crossref_primary_10_1097_AOG_0000000000004706 crossref_primary_10_3390_rs14081948 crossref_primary_10_1080_2326263X_2022_2114225 crossref_primary_10_1007_s10668_023_03657_4 crossref_primary_10_1016_j_catena_2025_108954 crossref_primary_10_1016_j_heliyon_2024_e26288 crossref_primary_10_1108_AFR_01_2024_0015 crossref_primary_10_1007_s00521_023_08901_6 crossref_primary_10_1007_s11135_024_02043_0 crossref_primary_10_1038_s41531_022_00427_3 crossref_primary_10_1038_s41598_021_89758_4 crossref_primary_10_1111_vru_13242 crossref_primary_10_1038_s41598_023_34139_2 crossref_primary_10_1038_s41598_024_53942_z crossref_primary_10_1002_mdr2_70017 crossref_primary_10_1016_j_scitotenv_2024_174973 crossref_primary_10_3390_app10124245 crossref_primary_10_2147_RMHP_S297838 crossref_primary_10_1002_jmri_28544 crossref_primary_10_1016_j_rineng_2025_105714 crossref_primary_10_1186_s12911_024_02754_2 crossref_primary_10_1016_j_clinbiochem_2022_07_002 crossref_primary_10_1038_s41398_024_03217_y crossref_primary_10_1016_j_jpsychires_2021_04_014 crossref_primary_10_1097_EJA_0000000000001811 crossref_primary_10_1186_s12859_023_05156_9 crossref_primary_10_1111_1750_3841_17421 crossref_primary_10_1016_j_biopsych_2021_09_011 crossref_primary_10_3390_rs15205021 crossref_primary_10_1111_jvim_16855 crossref_primary_10_1371_journal_pone_0312208 crossref_primary_10_1145_3596255 crossref_primary_10_1109_TLT_2024_3431473 crossref_primary_10_3390_app11136225 crossref_primary_10_1177_00368504211029777 crossref_primary_10_1038_s41598_022_12955_2 crossref_primary_10_3389_fneur_2020_603085 crossref_primary_10_1177_00131644211004708 crossref_primary_10_1007_s11263_022_01716_3 crossref_primary_10_3390_diagnostics12040872 crossref_primary_10_1016_j_nec_2022_02_012 crossref_primary_10_1016_j_rasd_2021_101840 crossref_primary_10_1016_j_apr_2025_102463 crossref_primary_10_3390_a17030106 crossref_primary_10_5585_2025_25871 crossref_primary_10_1007_s10404_023_02689_6 crossref_primary_10_1016_j_seizure_2023_11_022 crossref_primary_10_1007_s11682_021_00572_y crossref_primary_10_3389_fpsyg_2023_1135469 crossref_primary_10_1155_2022_9970363 crossref_primary_10_1007_s00330_025_11669_z crossref_primary_10_1016_j_str_2023_04_007 crossref_primary_10_1038_s41598_024_56633_x crossref_primary_10_1088_1361_648X_ad64a1 crossref_primary_10_1016_j_jad_2023_06_007 crossref_primary_10_1016_j_rineng_2025_105584 crossref_primary_10_1093_neuonc_noad221 crossref_primary_10_1186_s12868_023_00819_y crossref_primary_10_1088_1742_6596_1834_1_012004 crossref_primary_10_1186_s12920_022_01252_6 crossref_primary_10_1016_j_bspc_2021_102645 crossref_primary_10_1177_13623613221146439 crossref_primary_10_1007_s00122_024_04649_2 crossref_primary_10_1016_j_patcog_2025_112396 crossref_primary_10_1016_j_autcon_2022_104189 crossref_primary_10_3389_fonc_2022_1017435 crossref_primary_10_3390_electronics14152957 crossref_primary_10_1109_TITS_2021_3083957 crossref_primary_10_2196_28848 crossref_primary_10_3390_bioengineering9070273 crossref_primary_10_1111_ans_18250 crossref_primary_10_1111_jcpp_13681 crossref_primary_10_1371_journal_pone_0294166 crossref_primary_10_1016_j_jafrearsci_2022_104662 crossref_primary_10_1155_dth_1996661 crossref_primary_10_1186_s12984_024_01406_w crossref_primary_10_1007_s11676_023_01601_w crossref_primary_10_1007_s11307_023_01832_7 crossref_primary_10_1016_j_crad_2023_05_022 crossref_primary_10_3389_fneur_2021_725059 crossref_primary_10_3390_cancers14174291 crossref_primary_10_1016_j_impact_2021_100378 crossref_primary_10_3390_ijerph17124595 crossref_primary_10_3390_signals4020021 crossref_primary_10_1093_bib_bbac191 crossref_primary_10_1177_10711813241261288 crossref_primary_10_3390_eng6080183 crossref_primary_10_1016_j_jocn_2025_111360 crossref_primary_10_3389_fonc_2025_1577794 crossref_primary_10_1002_jcph_2176 crossref_primary_10_1029_2023GL103626 crossref_primary_10_1109_JBHI_2021_3100368 crossref_primary_10_1016_j_resconrec_2024_108090 crossref_primary_10_1063_5_0088462 crossref_primary_10_1016_j_cca_2025_120566 crossref_primary_10_1016_j_heliyon_2024_e27992 crossref_primary_10_1371_journal_pone_0249136 crossref_primary_10_1016_j_trac_2021_116459 crossref_primary_10_1007_s10608_024_10544_3 crossref_primary_10_3390_metabo12050458 crossref_primary_10_3390_s23094199 crossref_primary_10_1016_j_agwat_2025_109762 crossref_primary_10_1016_j_ebiom_2023_104462 crossref_primary_10_1016_j_jag_2023_103569 crossref_primary_10_1111_jcpp_13650 crossref_primary_10_1016_j_foreco_2025_122931 crossref_primary_10_14814_phy2_70447 crossref_primary_10_7717_peerj_15552 crossref_primary_10_1016_j_aei_2025_103896 crossref_primary_10_1007_s12517_023_11544_5 crossref_primary_10_1111_ijfs_16440 crossref_primary_10_3390_rs13173459 crossref_primary_10_2196_48265 crossref_primary_10_2196_49113 crossref_primary_10_2196_37141 crossref_primary_10_12688_f1000research_141458_2 crossref_primary_10_1038_s41386_025_02095_2 crossref_primary_10_12688_f1000research_141458_1 crossref_primary_10_3390_agronomy11122373 crossref_primary_10_3390_w15112004 crossref_primary_10_1016_j_anorl_2024_07_005 crossref_primary_10_3390_cancers17071249 crossref_primary_10_3103_S0027134922060042 crossref_primary_10_1016_j_compbiomed_2025_109705 crossref_primary_10_2196_24048 crossref_primary_10_2478_amns_2024_3085 crossref_primary_10_1186_s40168_022_01310_2 crossref_primary_10_3389_fimmu_2024_1345586 crossref_primary_10_3390_jrfm16040236 crossref_primary_10_1080_17435889_2024_2359355 crossref_primary_10_1038_s41598_025_12890_y crossref_primary_10_1016_j_carbon_2025_120387 crossref_primary_10_1044_2023_JSLHR_23_00273 crossref_primary_10_1016_j_clinph_2020_04_172 crossref_primary_10_1038_s41598_022_26550_y crossref_primary_10_3390_mi16030298 crossref_primary_10_1016_j_matt_2023_01_011 crossref_primary_10_3389_fnagi_2021_633752 crossref_primary_10_1016_j_yebeh_2023_109217 crossref_primary_10_1016_j_ijcchd_2022_100321 crossref_primary_10_1007_s12021_024_09671_9 crossref_primary_10_1016_j_atech_2025_101372 crossref_primary_10_1111_ejn_16261 crossref_primary_10_3389_fmars_2023_1117704 crossref_primary_10_1155_2024_5588127 crossref_primary_10_1080_10447318_2023_2221600 crossref_primary_10_1016_j_nbd_2021_105444 crossref_primary_10_1007_s10845_023_02290_2 crossref_primary_10_1111_aphw_12625 crossref_primary_10_1038_s43587_024_00657_5 crossref_primary_10_3390_jimaging10050109 crossref_primary_10_1109_JSTARS_2025_3568876 crossref_primary_10_1186_s12911_021_01588_6 crossref_primary_10_1080_14737167_2023_2279107 crossref_primary_10_3389_fpsyt_2024_1356843 crossref_primary_10_1016_j_cherd_2022_03_030 crossref_primary_10_1038_s41598_023_31517_8 crossref_primary_10_3389_fmolb_2024_1395721 crossref_primary_10_1111_ejn_15185 crossref_primary_10_1016_j_socec_2025_102414 crossref_primary_10_1108_WJE_11_2023_0473 crossref_primary_10_1111_cogs_13258 crossref_primary_10_3390_bs15030330 crossref_primary_10_3390_macromol3010007 |
| Cites_doi | 10.1016/j.neuroimage.2017.06.061 10.1016/j.ins.2014.05.042 10.1186/1758-2946-6-10 10.1016/S0169-7161(82)02042-2 10.1093/bioinformatics/btm344 10.1016/j.csda.2013.07.012 10.3389/fpsyt.2016.00177 10.1089/106652703321825928 10.1109/34.75512 10.1016/j.chemolab.2008.11.005 10.1016/j.neuroimage.2016.10.038 10.1186/1471-2105-7-91 10.1023/A:1012487302797 10.1007/s40489-019-00158-x 10.1186/1472-6947-12-8 10.1111/j.2517-6161.1974.tb00994.x 10.1016/j.aca.2012.11.007 10.1371/journal.pmed.1001779 10.1145/130385.130401 10.1007/s10803-014-2268-6 10.1016/j.jneumeth.2015.01.010 10.1016/0031-3203(71)90013-6 10.1093/bioinformatics/bti171 10.1016/j.neuroimage.2016.02.079 10.1038/nrg3920 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2019 Public Library of Science 2019 Vabalas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Vabalas et al 2019 Vabalas et al |
| Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Vabalas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Vabalas et al 2019 Vabalas et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pone.0224365 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Machine learning algorithm validation with a limited sample size |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2312795414 oai_doaj_org_article_df3153cdf6ba4ecc9e209347e26d9f38 PMC6837442 A605081727 31697686 10_1371_journal_pone_0224365 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United Kingdom--UK England |
| GeographicLocations_xml | – name: England – name: United Kingdom--UK |
| GrantInformation_xml | – fundername: ; grantid: EP/m507969/1 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM - 02 AAPBV ABPTK BBAFP KM |
| ID | FETCH-LOGICAL-c692t-43e3010c57c82bb6eee9c50c1e0112dda925747feeac8f8cd7fc1f4b7991be813 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 1070 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532694400025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Sun Sep 04 00:10:37 EDT 2022 Tue Oct 14 18:44:52 EDT 2025 Tue Nov 04 01:34:36 EST 2025 Wed Oct 01 13:45:15 EDT 2025 Tue Oct 07 07:56:34 EDT 2025 Sat Nov 29 13:05:07 EST 2025 Sat Nov 29 10:03:29 EST 2025 Wed Nov 26 10:19:32 EST 2025 Wed Nov 26 09:45:02 EST 2025 Thu May 22 21:20:59 EDT 2025 Thu Apr 03 06:56:31 EDT 2025 Sat Nov 29 02:05:36 EST 2025 Tue Nov 18 21:09:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-43e3010c57c82bb6eee9c50c1e0112dda925747feeac8f8cd7fc1f4b7991be813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-0659-2890 |
| OpenAccessLink | https://www.proquest.com/docview/2312795414?pq-origsite=%requestingapplication% |
| PMID | 31697686 |
| PQID | 2312795414 |
| PQPubID | 1436336 |
| PageCount | e0224365 |
| ParticipantIDs | plos_journals_2312795414 doaj_primary_oai_doaj_org_article_df3153cdf6ba4ecc9e209347e26d9f38 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6837442 proquest_miscellaneous_2313365077 proquest_journals_2312795414 gale_infotracmisc_A605081727 gale_infotracacademiconefile_A605081727 gale_incontextgauss_ISR_A605081727 gale_incontextgauss_IOV_A605081727 gale_healthsolutions_A605081727 pubmed_primary_31697686 crossref_primary_10_1371_journal_pone_0224365 crossref_citationtrail_10_1371_journal_pone_0224365 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-07 |
| PublicationDateYYYYMMDD | 2019-11-07 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2019 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | SJ Raudys (pone.0224365.ref001) 1991; 13 S Mukherjee (pone.0224365.ref024) 2003; 10 J Hua (pone.0224365.ref016) 2004; 21 D Dernoncourt (pone.0224365.ref022) 2014; 71 S Varma (pone.0224365.ref007) 2006; 7 C Sudlow (pone.0224365.ref002) 2015; 12 MR Arbabshirani (pone.0224365.ref003) 2016; 145 MW Libbrecht (pone.0224365.ref014) 2015; 16 C Beleites (pone.0224365.ref025) 2013; 760 D Bone (pone.0224365.ref028) 2015; 45 F Pedregosa (pone.0224365.ref018) 2011; 12 V Bolón-Canedo (pone.0224365.ref021) 2014; 282 CC Chang (pone.0224365.ref017) 2011; 2 Y Saeys (pone.0224365.ref015) 2007; 23 G Varoquaux (pone.0224365.ref004) 2018; 180 O Devos (pone.0224365.ref019) 2009; 96 ZM Hira (pone.0224365.ref020) 2015; 2015 L Kanal (pone.0224365.ref006) 1971; 3 I Guyon (pone.0224365.ref013) 2002; 46 RL Figueroa (pone.0224365.ref023) 2012; 12 AK Jain (pone.0224365.ref008) 1982; 2 D Krstajic (pone.0224365.ref011) 2014; 6 KK Hyde (pone.0224365.ref026) 2019; 6 G Varoquaux (pone.0224365.ref027) 2017; 145 GC Cawley (pone.0224365.ref009) 2010; 11 pone.0224365.ref012 P Kassraian-Fard (pone.0224365.ref029) 2016; 7 E Combrisson (pone.0224365.ref005) 2015; 250 M Stone (pone.0224365.ref010) 1974; 36 |
| References_xml | – volume: 180 start-page: 68 year: 2018 ident: pone.0224365.ref004 article-title: Cross-validation failure: Small sample sizes lead to large error bars publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.06.061 – volume: 12 start-page: 2825 year: 2011 ident: pone.0224365.ref018 article-title: Scikit-learn: Machine learning in Python publication-title: Journal of Machine Learning Research – volume: 282 start-page: 111 year: 2014 ident: pone.0224365.ref021 article-title: A review of microarray datasets and applied feature selection methods publication-title: Information Sciences doi: 10.1016/j.ins.2014.05.042 – volume: 6 start-page: 1 issue: 1 year: 2014 ident: pone.0224365.ref011 article-title: Cross-validation pitfalls when selecting and assessing regression and classification models publication-title: Journal of Cheminformatics doi: 10.1186/1758-2946-6-10 – volume: 2 start-page: 835 year: 1982 ident: pone.0224365.ref008 article-title: 39 Dimensionality and sample size considerations in pattern recognition practice publication-title: Handbook of Statistics doi: 10.1016/S0169-7161(82)02042-2 – volume: 23 start-page: 2507 issue: 19 year: 2007 ident: pone.0224365.ref015 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 11 start-page: 2079 year: 2010 ident: pone.0224365.ref009 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: Machine Learning Research – volume: 71 start-page: 681 year: 2014 ident: pone.0224365.ref022 article-title: Analysis of feature selection stability on high dimension and small sample data publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2013.07.012 – volume: 7 start-page: 177 year: 2016 ident: pone.0224365.ref029 article-title: Promises, pitfalls, and basic guidelines for applying machine learning classifiers to psychiatric imaging data, with autism as an example publication-title: Frontiers in Psychiatry doi: 10.3389/fpsyt.2016.00177 – volume: 2015 year: 2015 ident: pone.0224365.ref020 article-title: A review of feature selection and feature extraction methods applied on microarray data publication-title: Advances in Bioinformatics – volume: 10 start-page: 119 issue: 2 year: 2003 ident: pone.0224365.ref024 article-title: Estimating dataset size requirements for classifying DNA microarray data publication-title: Journal of Computational Biology doi: 10.1089/106652703321825928 – volume: 13 start-page: 252 issue: 3 year: 1991 ident: pone.0224365.ref001 article-title: Small sample size effects in statistical pattern recognition: recommendations for practitioners publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.75512 – volume: 96 start-page: 27 issue: 1 year: 2009 ident: pone.0224365.ref019 article-title: Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2008.11.005 – volume: 145 start-page: 166 year: 2017 ident: pone.0224365.ref027 article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.10.038 – volume: 7 start-page: 91 issue: 1 year: 2006 ident: pone.0224365.ref007 article-title: Bias in error estimation when using cross-validation for model selection publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-91 – volume: 46 start-page: 389 issue: 1-3 year: 2002 ident: pone.0224365.ref013 article-title: Gene selection for cancer classification using support vector machines publication-title: Machine Learning doi: 10.1023/A:1012487302797 – volume: 6 start-page: 128 issue: 2 year: 2019 ident: pone.0224365.ref026 article-title: Applications of Supervised Machine Learning in Autism Spectrum Disorder Research: a Review publication-title: Review Journal of Autism and Developmental Disorders doi: 10.1007/s40489-019-00158-x – volume: 12 start-page: 8 issue: 1 year: 2012 ident: pone.0224365.ref023 article-title: Predicting sample size required for classification performance publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/1472-6947-12-8 – volume: 36 start-page: 111 issue: 2 year: 1974 ident: pone.0224365.ref010 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: Journal of the Royal Statistical Society: Series B (Methodological) doi: 10.1111/j.2517-6161.1974.tb00994.x – volume: 760 start-page: 25 year: 2013 ident: pone.0224365.ref025 article-title: Sample size planning for classification models publication-title: Analytica Chimica Acta doi: 10.1016/j.aca.2012.11.007 – volume: 12 start-page: e1001779 issue: 3 year: 2015 ident: pone.0224365.ref002 article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS Medicine doi: 10.1371/journal.pmed.1001779 – ident: pone.0224365.ref012 doi: 10.1145/130385.130401 – volume: 45 start-page: 1121 issue: 5 year: 2015 ident: pone.0224365.ref028 article-title: Applying machine learning to facilitate autism diagnostics: pitfalls and promises publication-title: Journal of Autism and Developmental Disorders doi: 10.1007/s10803-014-2268-6 – volume: 250 start-page: 126 year: 2015 ident: pone.0224365.ref005 article-title: Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2015.01.010 – volume: 3 start-page: 225 issue: 3 year: 1971 ident: pone.0224365.ref006 article-title: On dimensionality and sample size in statistical pattern classification publication-title: Pattern Recognition doi: 10.1016/0031-3203(71)90013-6 – volume: 21 start-page: 1509 issue: 8 year: 2004 ident: pone.0224365.ref016 article-title: Optimal number of features as a function of sample size for various classification rules publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti171 – volume: 2 start-page: 27 issue: 3 year: 2011 ident: pone.0224365.ref017 article-title: LIBSVM: A library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) – volume: 145 start-page: 137 year: 2016 ident: pone.0224365.ref003 article-title: Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.02.079 – volume: 16 start-page: 321 issue: 6 year: 2015 ident: pone.0224365.ref014 article-title: Machine learning applications in genetics and genomics publication-title: Nature Reviews Genetics doi: 10.1038/nrg3920 |
| SSID | ssj0053866 |
| Score | 2.7282648 |
| Snippet | Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0224365 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Autism Bias Bioinformatics Biological markers Biology and Life Sciences Biomarkers Biomedical Research - statistics & numerical data Brain research Classification Computer and Information Sciences Computer simulation Data analysis Data collection Data Interpretation, Statistical Data mining Datasets Diagnostic imaging Estimates Humans Internet of Things Learning algorithms Machine Learning Medical imaging Medicine and Health Sciences Methods Neuroimaging Neurology Noise Normal distribution Parameters Pattern recognition Physical Sciences Research and Analysis Methods Sample Size Social Sciences Spectrum analysis Studies Technology Test procedures Tracking |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQxIELory6pYBBSMBh26y9a-_eaKtWIEFBvNSb5fUjXSnsRtmEA7-e8SOrLKrUHrjGs07yzYz9OfF8g9CrugBSaxUwN0ZlmhdSp2XuK7k4ra2WXCrv6Y_8_Ly8uKi-bLX6cnfCgjxwAO5QWwpJqbRltczh_SpD4BCec0OYriz1Zb7AejaHqbAGQxYzFgvlKM8Oo18OFl1rDtyuRd1msrUReb3-YVWeLOZdfxXl_Pfm5NZWdHYP3Y0cEh-Fz76Dbpn2PtqJWdrjN1FK-u0D9O6TvytpcGwOMcNyPuuWzeryF4YQa0JDJex-jMUSz0OxE-6lkwzGffPHPEQ_zk6_n7xPY8-EVLGKrNKcGkjZqSq4KkldM2NMpYqpygwkMtFaVpCjObcGFtzSlkpzqzKb1xx4Ym3KjD5CkxZQ2kWYk5pk0lGy0sK0WcX1NKu11AVhEnyRILoBUKgoKO76WsyF_5eMw8Ei4CEc7CLCnqB0eGoRBDWusT92vhlsnRy2fwGCRMQgEdcFSYKeO8-KUFs6JLU4gsMccCLgcAl66S2cJEbr7tzM5LrvxYfPP29g9O3ryOh1NLIdwKFkrHOA7-SktkaW-yNLSGw1Gt51cbhBpRdAxQmvXN92eHITm1cPvxiG3aTuHl1rurW3oQDqlMPsj0MoD8jSjAE3LVmC-CjIR9CPR9rm0iuSs5LyPCd7_8NXT9AdIKWVr_fk-2iyWq7NU3Rb_V41_fKZT_O_qsVZKA priority: 102 providerName: Directory of Open Access Journals – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZg4cCFUh5toIBBSMAhJbET27lRECuQSql4qbfI8WMbaUlWm90e-PWMHW8gVSvgGo8tZzyf_TmZB0LPqhxIrVXA3BiVcZZLHYvMR3JxWlktuVR-pQ_50ZE4OSmOf18Uz_3Bpzx9FXS6v2gbs-9OHMryq-gaoYw5F67p8eFm5wXsMhbC4y7rOTp-fJb-YS-eLOZtdxHRPO8v-ccBNN3636nfQjcD1cQHvW1soyumuY22A5g7_CJknH55B73-6F0qDQ41JGZYzmftsl6d_sBgiXVfdwm7b7ZY4nkfE4U76TIL467-ae6ib9N3X9--j0NphVixgqzijBpAdqJyrgSpKmaMKVSeqNQA3onWsgAoZ9wa2JeFFUpzq1KbVRzoZGVESu-hSQNvtYswJxVJpWNuwsKwacF1klZa6pwwKTMTIbrReKlC3nFX_mJe-p9pHO4fvT5Kp6YyqClC8dBr0efd-Iv8G7eYg6zLmu0fwHqUAYSlthQ2eKUtq2BiShWGJAXNuCFMF5aKCD12plD2IagD9ssDuPMBdQKqF6GnXsJlzmica85Mrruu_PDp-z8Iffk8EnoehGwL6lAyhEPAO7mMXCPJvZEk4F-Nmned4W600pXA2AkvXHl36Lkx5oubnwzNblDnbteYdu1lKCg14TD6Tm_7g2ZpyoDCChYhPkLFSPXjlqY-9YnLmaA8y8j9y2f8AN0ARlr4YE--hyar5do8RNfV2arulo882n8BlB5Umw priority: 102 providerName: Public Library of Science |
| Title | Machine learning algorithm validation with a limited sample size |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31697686 https://www.proquest.com/docview/2312795414 https://www.proquest.com/docview/2313365077 https://pubmed.ncbi.nlm.nih.gov/PMC6837442 https://doaj.org/article/df3153cdf6ba4ecc9e209347e26d9f38 http://dx.doi.org/10.1371/journal.pone.0224365 |
| Volume | 14 |
| WOSCitedRecordID | wos000532694400025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdYx4ELML5WGCUgJOCQLomTODnBOq1i2lqiDabCJXJsp6tUktK0HPjrec9xw4ImQOLyDvGLlbwv_-L4vUfIyywAUJsLQG4h5bYfcGlHvs7kYjTLJWdcaE2fsvE4mkzixGy4VeZY5SYm6kAtS4F75PuAQzwWY9Pqt4tvNnaNwr-rpoXGFtnGKgnomEnwZROJwZfD0KTLUebuG-30F2Wh-rh2UVxSrixHump_E5s7i3lZXQc8fz8_eWVBGt7531e5S24bKGod1LazQ26o4h7ZMc5eWa9NReo398m7kT5yqSzTY2Jq8fkUZlxdfrXAUmd1XyYL93Qtbs3rnCmr4lh52KpmP9QD8ml49PHwvW1aL9gijL2V7VMFnu-IgInIy7JQKRWLwBGugnjgScljcHWf5QridpRHQrJcuLmfMYCbmYpc-pB0ChDzLrGYl3kuR2QX5TCtGzPpuJnkMvBCzn3VJXSjgVSYuuTYHmOe6p9tDL5PanmkqLfU6K1L7OauRV2X4y_8A1Ruw4tVtfWFcjlNjZOmMqewAAiZhxk8mBCx8pyY-kx5oYxzGnXJMzSNtE5RbWJDegDfhACtAAp2yQvNgZU1Cjy6M-XrqkqPP1z8A9P5WYvplWHKSxCH4CZdAt4JK3a1OPdanBAfRGt4Fw15I5Uq_WV-cOfGQK8fft4M46R4HK9Q5VrzUBCqw2D2R7UvNJKlbggQNwq7hLW8pCX69kgxu9SFzcOIMt_3Hv_5sZ6QW4BaY50QyvZIZ7Vcq6fkpvi-mlXLHtliZxdIJ0zTCGh06PbI9uBonJz19KYL0GFyCvRk0Ac6ck6QskTT856OInBHcjxKPv8ENvNy7Q |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGQYIXYNxWGMwgEPCQrbHTOHlAMC7TqnUDwUB9M44vXaWSlKYFwY_iN3LsOGFBE_CyB17jEys-PpfPzrkgdD_rA6g1EpBbTEUQ9YUKkshlcjGaGSWYkG6nh-zgIBmN0jcr6EedC2PDKmub6Ay1KqS9I98CHEJYaptWP519DmzXKPt3tW6hUYnFnv72FY5s5ZPBS9jfB4TsvDp8sRv4rgKBjFOyCCKqQah7ss9kQrIs1lqnst-ToQZRJ0qJFKQ4YkaDSUpMIhUzMjRRxgBJZToJKcx7Bp0FO85sCBkbNQc8sB1x7NPzKAu3vDRszopcb1pfSa0LO-b-XJeAxhd0ZtOiPAno_h6vecwB7lz631h3GV30UBtvV7qxilZ0fgWtemNW4ke-4vbjq-jZvgsp1dj30BhjMR3DChZHnzBo4qTqO4XtnTUWeFrlhOFS2MrKuJx819fQ-1NZyXXUyWFb1xBmJCOhsMg1MTBtmDLVCzMlVJ_EQkS6i2i941z6uuu2_ceUu5-JDM5fFT-4lRPu5aSLguatWVV35C_0z60wNbS2arh7UMzH3BshrgwFByeViTP4MClTTXopjZgmsUoNTbpow4oir1JwG9vHt-HMC9ARoG4X3XMUtnJIbkOTxmJZlnzw-sM_EL172yJ66IlMAeyQwqeDwJpsRbIW5XqLEuyfbA2vWcWpuVLyX-IOb9YKcfLw3WbYTmrDDXNdLB0NBab2GMx-o9K9hrM0jAHCJ3EXsZZWtljfHsknR65we5xQFkXk5p8_awOd3z3cH_Lh4GDvFroACD11ya9sHXUW86W-jc7JL4tJOb_jrA9GH09bZ38Cvr7FKA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGQYgXYNxWGMwgEPCQtbGTOHlAMBgV1UapuGniJTi-dJVKUpoWBD-NX8ex44QFTcDLHniNT6z4-DsXO-eC0N0sBKdWC_DcIsq9IOTSiwObycVopiVnXNid3mejUXxwkIzX0I86F8aEVdY60SpqWQhzR94DP4SwxDSt7mkXFjHeHTyef_ZMBynzp7Vup1FBZE99-wrHt_LRcBf2-h4hg-dvn73wXIcBT0QJWXoBVQDwvgiZiEmWRUqpRIR94SuAPZGSJ4DogGkF6inWsZBMC18HGQOvKlOxT2HeU-g0gzOmOfiNww-1FQA9EkUuVY8yv-eQsT0vcrVt7CY15uyIKbQdAxq70JnPivI4p_f32M0jxnBw4X9m40V03rngeKeSmXW0pvJLaN0puRI_cJW4H15GT17aUFOFXW-NCeazCaxgefgJg4ROq35U2NxlY45nVa4YLrmpuIzL6Xd1Bb07kZVcRZ0ctngDYUYy4nPj0cYapvUTJvt-JrkMScR5oLqI1rufCleP3bQFmaX2JyODc1nFj9RgJnWY6SKveWte1SP5C_1TA6yG1lQTtw-KxSR1yimVmoLhE1JHGXyYEIki_YQGTJFIJprGXbRlYJlWqbmNTkx34CwMLiW4wF10x1KYiiK5AdWEr8oyHb56_w9Eb163iO47Il0AOwR3aSKwJlOprEW52aIEvShawxtGiGqulOkv6MObtXAcP3y7GTaTmjDEXBUrS0OBqX0Gs1-r5LDhLPVBCURx1EWsJaEt1rdH8umhLegexZQFAbn-58_aQmdBVNP94WjvBjoHjntic2LZJuosFyt1E50RX5bTcnHLKiKMPp60yP4EsJzOGw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithm+validation+with+a+limited+sample+size&rft.jtitle=PloS+one&rft.au=Vabalas%2C+Andrius&rft.au=Gowen%2C+Emma&rft.au=Poliakoff%2C+Ellen&rft.au=Casson%2C+Alexander+J&rft.date=2019-11-07&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=14&rft.issue=11&rft.spage=e0224365&rft_id=info:doi/10.1371%2Fjournal.pone.0224365&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |