Machine learning algorithm validation with a limited sample size

Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one Jg. 14; H. 11; S. e0224365
Hauptverfasser: Vabalas, Andrius, Gowen, Emma, Poliakoff, Ellen, Casson, Alexander J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 07.11.2019
Public Library of Science (PLoS)
Schlagworte:
ISSN:1932-6203, 1932-6203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used.
AbstractList Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used.
Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used.Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used.
Audience Academic
Author Gowen, Emma
Poliakoff, Ellen
Casson, Alexander J.
Vabalas, Andrius
AuthorAffiliation 1 Materials, Devices and Systems Division, School of Electrical and Electronic Engineering, The University of Manchester, Manchester, England, United Kingdom
Instituto Nacional de Medicina Genomica, MEXICO
2 School of Biological Sciences, The University of Manchester, Manchester, England, United Kingdom
AuthorAffiliation_xml – name: 1 Materials, Devices and Systems Division, School of Electrical and Electronic Engineering, The University of Manchester, Manchester, England, United Kingdom
– name: Instituto Nacional de Medicina Genomica, MEXICO
– name: 2 School of Biological Sciences, The University of Manchester, Manchester, England, United Kingdom
Author_xml – sequence: 1
  givenname: Andrius
  orcidid: 0000-0002-0659-2890
  surname: Vabalas
  fullname: Vabalas, Andrius
– sequence: 2
  givenname: Emma
  surname: Gowen
  fullname: Gowen, Emma
– sequence: 3
  givenname: Ellen
  surname: Poliakoff
  fullname: Poliakoff, Ellen
– sequence: 4
  givenname: Alexander J.
  surname: Casson
  fullname: Casson, Alexander J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31697686$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tu1DAQhiNURA_wBggiISG42MWHxE64QFQVh5WKKnG6tRxnkvXKsZfYaQtPj3c3rTZVhZAvYk2-_5_MZOY4ObDOQpI8xWiOKcdvVm7orTTzdQzPESEZZfmD5AiXlMwYQfRg736YHHu_QiinBWOPkkOKWclZwY6S91-kWmoLqQHZW23bVJrW9Tosu_RSGl3LoJ1Nr2IglanRnQ5Qp152awOp13_gcfKwkcbDk_F5kvz4-OH72efZ-cWnxdnp-UyxkoRZRoEijFTOVUGqigFAqXKkMCCMSV3LkuQ84w2AVEVTqJo3CjdZxcsSV1BgepI83_mujfNiLN4LQjHhZZ7hLBKLHVE7uRLrXney_y2c1GIbcH0rZB-0MiDqhuKcqrphlcxAqRIIKmnGgbC6bGgRvd6N2Yaqg1qBDb00E9PpG6uXonWXghWUZxmJBq9Gg979GsAH0WmvwBhpwQ3b76bxhyHOI_riDnp_dSPVyliAto2LedXGVJwylKMCc7Lxmt9DxVNDp1WclEbH-ETweiKITIDr0MrBe7H49vX_2YufU_blHrsEacLSOzNspslPwWf7nb5t8c2IRiDbAap33vfQ3CIYic0m3LRLbDZBjJsQZW_vyJQO22GOHdHm3-K_cvoOcw
CitedBy_id crossref_primary_10_3758_s13415_025_01268_2
crossref_primary_10_3389_fnins_2020_558434
crossref_primary_10_1007_s40996_024_01383_z
crossref_primary_10_1002_hrm_70012
crossref_primary_10_3390_su14074083
crossref_primary_10_1016_j_dche_2024_100214
crossref_primary_10_1002_mds_30002
crossref_primary_10_1016_j_jenvman_2022_115923
crossref_primary_10_3390_s20174987
crossref_primary_10_1002_jms_4702
crossref_primary_10_1016_j_fertnstert_2020_09_159
crossref_primary_10_1016_j_eja_2023_127076
crossref_primary_10_3390_s25010028
crossref_primary_10_1039_D3NR02322B
crossref_primary_10_1136_bmjopen_2025_100358
crossref_primary_10_3390_info15070393
crossref_primary_10_3390_s24144472
crossref_primary_10_1002_pld3_70092
crossref_primary_10_1364_AO_385208
crossref_primary_10_1177_14799731251364875
crossref_primary_10_1038_s41539_024_00237_7
crossref_primary_10_1111_gcbb_12821
crossref_primary_10_3390_toxics12080545
crossref_primary_10_3390_diagnostics13030508
crossref_primary_10_1007_s40846_024_00900_9
crossref_primary_10_3390_app13074241
crossref_primary_10_1002_jts_22868
crossref_primary_10_1016_j_clet_2025_100960
crossref_primary_10_1016_j_agrcom_2024_100060
crossref_primary_10_1080_07448481_2021_1947841
crossref_primary_10_1007_s11306_023_02067_x
crossref_primary_10_1038_s41598_020_80749_5
crossref_primary_10_1155_2024_9373931
crossref_primary_10_1016_j_engappai_2025_110090
crossref_primary_10_3389_fnagi_2023_1238065
crossref_primary_10_1108_AFR_08_2023_0105
crossref_primary_10_3389_fnut_2025_1584717
crossref_primary_10_1093_bib_bbac359
crossref_primary_10_1016_j_enbuild_2022_111870
crossref_primary_10_1111_cobi_14316
crossref_primary_10_1155_2022_2016006
crossref_primary_10_1007_s40614_020_00270_y
crossref_primary_10_1007_s00500_023_08583_1
crossref_primary_10_1016_j_compbiomed_2022_105959
crossref_primary_10_1183_23120541_01057_2024
crossref_primary_10_1016_j_ijmedinf_2021_104510
crossref_primary_10_2351_7_0000796
crossref_primary_10_1007_s00330_020_07176_y
crossref_primary_10_1186_s12859_024_05639_3
crossref_primary_10_1002_ajmg_b_33055
crossref_primary_10_1103_PhysRevPhysEducRes_21_010128
crossref_primary_10_1002_hbm_25679
crossref_primary_10_1007_s00027_022_00854_7
crossref_primary_10_3389_fpsyg_2024_1390199
crossref_primary_10_3390_foods14020169
crossref_primary_10_1007_s13042_024_02363_5
crossref_primary_10_3390_diagnostics15162065
crossref_primary_10_3389_fmed_2021_705071
crossref_primary_10_1111_iwj_14556
crossref_primary_10_1515_revneuro_2023_0117
crossref_primary_10_1145_3699755
crossref_primary_10_1016_j_cmpb_2024_108447
crossref_primary_10_3390_ani13223475
crossref_primary_10_1038_s41598_022_14835_1
crossref_primary_10_1007_s42864_022_00175_0
crossref_primary_10_1016_j_ijforecast_2021_10_008
crossref_primary_10_1016_j_jechem_2024_03_003
crossref_primary_10_1016_j_compag_2024_109215
crossref_primary_10_1016_j_pmcj_2023_101874
crossref_primary_10_3390_jintelligence10010012
crossref_primary_10_3389_fbioe_2023_1285945
crossref_primary_10_3390_s20154098
crossref_primary_10_3389_fvets_2022_802272
crossref_primary_10_1016_j_neuroscience_2024_08_017
crossref_primary_10_1080_17439760_2023_2254743
crossref_primary_10_1111_andr_12826
crossref_primary_10_3390_cancers15041121
crossref_primary_10_3390_app13074289
crossref_primary_10_1007_s11547_024_01878_9
crossref_primary_10_1016_j_ress_2023_109338
crossref_primary_10_1016_j_jad_2024_05_066
crossref_primary_10_1038_s41598_025_87645_w
crossref_primary_10_1007_s00330_024_10594_x
crossref_primary_10_1038_s41524_023_00967_z
crossref_primary_10_1108_JET_12_2021_0068
crossref_primary_10_2196_46464
crossref_primary_10_3390_metabo15080514
crossref_primary_10_1371_journal_pone_0284951
crossref_primary_10_1016_j_cclet_2024_110454
crossref_primary_10_1016_j_envc_2025_101262
crossref_primary_10_1016_j_neuroimage_2023_120205
crossref_primary_10_3390_math12071020
crossref_primary_10_1016_j_foodchem_2025_145059
crossref_primary_10_3390_a17110519
crossref_primary_10_3390_s22072603
crossref_primary_10_1186_s12967_023_03931_z
crossref_primary_10_1016_j_jpsychires_2019_12_001
crossref_primary_10_3389_fendo_2024_1379693
crossref_primary_10_1186_s12859_024_05759_w
crossref_primary_10_1007_s11739_022_03033_6
crossref_primary_10_1038_s41598_023_27426_5
crossref_primary_10_1038_s41598_025_88826_3
crossref_primary_10_1016_j_asoc_2024_111781
crossref_primary_10_1016_j_rse_2020_111839
crossref_primary_10_1016_j_bspc_2023_105525
crossref_primary_10_1016_j_jpsychires_2022_03_066
crossref_primary_10_3389_fpubh_2024_1373883
crossref_primary_10_1186_s12859_022_04782_z
crossref_primary_10_1016_j_seizure_2021_07_025
crossref_primary_10_1038_s44184_025_00140_y
crossref_primary_10_1016_j_datak_2022_102042
crossref_primary_10_1002_cpt_2511
crossref_primary_10_3390_cells10030576
crossref_primary_10_1038_s41598_020_61357_9
crossref_primary_10_3389_fchem_2024_1510029
crossref_primary_10_3390_molecules26061734
crossref_primary_10_3390_electronics12214432
crossref_primary_10_1007_s13369_021_06177_3
crossref_primary_10_2196_45991
crossref_primary_10_1523_JNEUROSCI_0529_21_2022
crossref_primary_10_1097_MD_0000000000034285
crossref_primary_10_1109_TSP_2022_3168490
crossref_primary_10_1038_s41598_025_01488_z
crossref_primary_10_3390_info14050295
crossref_primary_10_1111_1462_2920_15462
crossref_primary_10_1016_j_seizure_2021_06_009
crossref_primary_10_1038_s41598_023_35194_5
crossref_primary_10_1177_17455057221139664
crossref_primary_10_3390_ijerph20065059
crossref_primary_10_1080_10408363_2025_2488842
crossref_primary_10_1088_1741_2552_adbfbd
crossref_primary_10_1121_10_0002884
crossref_primary_10_1038_s41598_025_10907_0
crossref_primary_10_3389_fnins_2020_591662
crossref_primary_10_1007_s00366_023_01809_8
crossref_primary_10_1007_s11306_020_01685_z
crossref_primary_10_1038_s41467_022_32598_1
crossref_primary_10_1016_j_jrp_2023_104369
crossref_primary_10_1002_nml_21651
crossref_primary_10_1111_1759_7714_14694
crossref_primary_10_1080_03081060_2025_2520571
crossref_primary_10_1371_journal_pcbi_1012581
crossref_primary_10_3390_diagnostics14111081
crossref_primary_10_1007_s10653_024_02233_7
crossref_primary_10_1088_2632_2153_acac01
crossref_primary_10_1109_ACCESS_2023_3343874
crossref_primary_10_1111_jcpe_13797
crossref_primary_10_1017_S003329172400223X
crossref_primary_10_3390_a18080470
crossref_primary_10_1080_01431161_2023_2274320
crossref_primary_10_1016_j_jclepro_2023_136702
crossref_primary_10_1016_j_scitotenv_2023_166863
crossref_primary_10_1016_j_jlb_2025_100313
crossref_primary_10_3390_s23041748
crossref_primary_10_1007_s12145_025_01899_6
crossref_primary_10_3389_fnimg_2023_1090054
crossref_primary_10_1371_journal_pone_0245735
crossref_primary_10_1073_pnas_2308366120
crossref_primary_10_1007_s12065_021_00666_y
crossref_primary_10_1016_j_cortex_2024_08_009
crossref_primary_10_1371_journal_pcbi_1009108
crossref_primary_10_1016_j_crmeth_2021_100008
crossref_primary_10_1109_TAFFC_2024_3521327
crossref_primary_10_3390_math12121853
crossref_primary_10_1371_journal_pcbi_1011424
crossref_primary_10_1001_jamanetworkopen_2023_36094
crossref_primary_10_3390_brainsci10050319
crossref_primary_10_1007_s40846_022_00695_7
crossref_primary_10_1177_00037028211019130
crossref_primary_10_1109_ACCESS_2024_3362233
crossref_primary_10_3389_fnins_2021_768602
crossref_primary_10_1007_s11356_022_23392_z
crossref_primary_10_1038_s41598_022_06434_x
crossref_primary_10_1093_jas_skaf144
crossref_primary_10_1007_s00330_023_10394_9
crossref_primary_10_3390_bioengineering12060591
crossref_primary_10_1186_s13040_021_00245_y
crossref_primary_10_1080_02770903_2022_2043364
crossref_primary_10_1109_ACCESS_2023_3316019
crossref_primary_10_1038_s41531_024_00764_5
crossref_primary_10_1038_s41591_023_02574_3
crossref_primary_10_1007_s41870_022_00949_2
crossref_primary_10_1016_j_jhydrol_2023_130076
crossref_primary_10_1016_j_applanim_2021_105491
crossref_primary_10_1002_1878_0261_12920
crossref_primary_10_3390_ijerph19031177
crossref_primary_10_3390_agronomy14050938
crossref_primary_10_3390_aerospace11090747
crossref_primary_10_1007_s10515_023_00388_8
crossref_primary_10_3390_pr9040672
crossref_primary_10_1371_journal_pone_0326449
crossref_primary_10_1038_s41598_023_49552_w
crossref_primary_10_1371_journal_pone_0314466
crossref_primary_10_1109_ACCESS_2024_3506433
crossref_primary_10_1016_j_jhazmat_2024_136425
crossref_primary_10_1002_biot_202100212
crossref_primary_10_1016_j_jii_2025_100795
crossref_primary_10_1097_RTI_0000000000000808
crossref_primary_10_1371_journal_pone_0312046
crossref_primary_10_1016_j_compag_2022_107537
crossref_primary_10_1080_10888438_2022_2121655
crossref_primary_10_1128_aac_00591_22
crossref_primary_10_1016_j_chemosphere_2024_142223
crossref_primary_10_1186_s12864_025_11927_w
crossref_primary_10_1016_j_actpsy_2024_104629
crossref_primary_10_1208_s12248_024_00934_6
crossref_primary_10_1016_j_health_2025_100417
crossref_primary_10_1002_ail2_118
crossref_primary_10_1016_j_compag_2024_109070
crossref_primary_10_1007_s12161_021_02097_y
crossref_primary_10_1177_25152459251345696
crossref_primary_10_1016_j_jhazmat_2024_135564
crossref_primary_10_1371_journal_pntd_0010749
crossref_primary_10_1016_j_biotechadv_2024_108474
crossref_primary_10_20463_pan_2025_0013
crossref_primary_10_1158_1078_0432_CCR_23_3523
crossref_primary_10_1109_ACCESS_2022_3189018
crossref_primary_10_1016_j_addma_2022_102848
crossref_primary_10_1080_1354750X_2021_2016971
crossref_primary_10_1111_joop_12531
crossref_primary_10_1016_j_cageo_2023_105457
crossref_primary_10_1016_j_diabres_2025_112403
crossref_primary_10_1007_s13042_025_02718_6
crossref_primary_10_3389_fpsyt_2022_804440
crossref_primary_10_1016_j_stueduc_2024_101412
crossref_primary_10_3390_diagnostics15020216
crossref_primary_10_1186_s41824_020_00094_8
crossref_primary_10_1111_jmft_70026
crossref_primary_10_1109_TBME_2024_3365131
crossref_primary_10_1080_19490976_2021_1872323
crossref_primary_10_1016_j_patcog_2024_110424
crossref_primary_10_3390_biomedicines10071544
crossref_primary_10_1007_s40520_023_02552_2
crossref_primary_10_1016_j_ultras_2022_106854
crossref_primary_10_1007_s40192_023_00330_6
crossref_primary_10_1038_s41598_023_50601_7
crossref_primary_10_1016_j_engfracmech_2024_110676
crossref_primary_10_1016_j_tics_2024_09_007
crossref_primary_10_3233_JAD_215164
crossref_primary_10_3389_fnins_2023_1124329
crossref_primary_10_3390_s24175752
crossref_primary_10_1016_j_ufug_2022_127786
crossref_primary_10_3389_fpsyt_2023_1001085
crossref_primary_10_1038_s41467_025_60638_z
crossref_primary_10_1186_s40708_022_00163_7
crossref_primary_10_1155_da_5734107
crossref_primary_10_1038_s41598_022_17842_4
crossref_primary_10_1088_1741_2552_acad2b
crossref_primary_10_1016_j_ejrad_2020_108871
crossref_primary_10_1093_schbul_sbae204
crossref_primary_10_3389_fpsyg_2024_1410396
crossref_primary_10_3390_s24103210
crossref_primary_10_1177_07410883231185287
crossref_primary_10_3390_s21103419
crossref_primary_10_3389_fpsyt_2022_883294
crossref_primary_10_1016_j_seizure_2025_05_007
crossref_primary_10_1523_JNEUROSCI_0176_22_2022
crossref_primary_10_1080_10543406_2025_2511194
crossref_primary_10_3390_diagnostics11050739
crossref_primary_10_1088_1361_6560_acaba6
crossref_primary_10_1177_10870547221146256
crossref_primary_10_1007_s42113_024_00203_x
crossref_primary_10_1016_j_asoc_2023_110591
crossref_primary_10_1016_j_giq_2023_101899
crossref_primary_10_1109_LRA_2025_3600170
crossref_primary_10_1371_journal_pcbi_1011876
crossref_primary_10_1016_j_compbiomed_2023_107636
crossref_primary_10_3390_s24227193
crossref_primary_10_5604_01_3001_0015_9501
crossref_primary_10_1038_s41598_023_40245_y
crossref_primary_10_1158_1541_7786_MCR_23_0153
crossref_primary_10_3390_bioengineering10070783
crossref_primary_10_1016_j_compstruct_2025_118867
crossref_primary_10_3390_su132413752
crossref_primary_10_1109_TCE_2025_3548303
crossref_primary_10_1016_j_procs_2020_09_272
crossref_primary_10_1177_09544089241263455
crossref_primary_10_1007_s00466_025_02660_y
crossref_primary_10_1021_acs_analchem_4c06723
crossref_primary_10_3389_fbioe_2023_1205009
crossref_primary_10_2196_42206
crossref_primary_10_1007_s10661_024_12554_w
crossref_primary_10_1002_cpt_2960
crossref_primary_10_1111_epi_18406
crossref_primary_10_3390_rs14102334
crossref_primary_10_1007_s10803_023_06171_8
crossref_primary_10_1016_j_csbj_2020_10_011
crossref_primary_10_1038_s41467_020_19957_6
crossref_primary_10_1038_s41531_024_00647_9
crossref_primary_10_3390_data10060090
crossref_primary_10_2196_18331
crossref_primary_10_1016_j_ibmed_2025_100273
crossref_primary_10_1016_j_foodcont_2021_108353
crossref_primary_10_1038_s41598_025_08003_4
crossref_primary_10_1172_JCI171948
crossref_primary_10_1007_s10661_024_12794_w
crossref_primary_10_3390_cancers15082209
crossref_primary_10_3390_cancers15133286
crossref_primary_10_3390_vision4020025
crossref_primary_10_1007_s10163_021_01182_y
crossref_primary_10_1038_s41433_024_02933_5
crossref_primary_10_3390_jcm11144004
crossref_primary_10_3389_fneur_2025_1536463
crossref_primary_10_1016_j_cageo_2021_104737
crossref_primary_10_1111_ejn_16557
crossref_primary_10_1186_s12884_022_05025_y
crossref_primary_10_1016_j_bspc_2022_103716
crossref_primary_10_1088_2516_1091_ad525b
crossref_primary_10_2196_43511
crossref_primary_10_1016_j_rsase_2023_100962
crossref_primary_10_1016_j_csbj_2020_09_033
crossref_primary_10_1051_e3sconf_202131901099
crossref_primary_10_3390_diagnostics11060961
crossref_primary_10_1007_s10339_024_01189_x
crossref_primary_10_1016_j_jad_2024_09_066
crossref_primary_10_1007_s00330_025_11406_6
crossref_primary_10_1080_02770903_2022_2059763
crossref_primary_10_1088_1757_899X_1163_1_012027
crossref_primary_10_2196_23938
crossref_primary_10_1186_s40537_021_00445_7
crossref_primary_10_3390_nu15143267
crossref_primary_10_1002_hbm_26172
crossref_primary_10_3389_frai_2023_1154663
crossref_primary_10_1016_j_cmpb_2021_106288
crossref_primary_10_1007_s00521_020_04971_y
crossref_primary_10_1002_wcms_1479
crossref_primary_10_1016_j_tsep_2024_103024
crossref_primary_10_1111_pai_13919
crossref_primary_10_1016_j_jbusres_2020_09_028
crossref_primary_10_3390_jcm13051222
crossref_primary_10_1186_s40359_021_00574_x
crossref_primary_10_3390_ijms252312512
crossref_primary_10_1093_bib_bbac062
crossref_primary_10_1029_2023EF004106
crossref_primary_10_3389_fcvm_2023_1153814
crossref_primary_10_1007_s12145_024_01268_9
crossref_primary_10_1016_j_jag_2024_103768
crossref_primary_10_1109_JBHI_2025_3552320
crossref_primary_10_1007_s44163_025_00377_8
crossref_primary_10_3390_en15062053
crossref_primary_10_1016_j_bspc_2024_106975
crossref_primary_10_3390_s22010018
crossref_primary_10_3390_cancers14061591
crossref_primary_10_1371_journal_pone_0311810
crossref_primary_10_1080_10447318_2025_2546046
crossref_primary_10_3390_cancers14040895
crossref_primary_10_1016_j_compag_2024_109653
crossref_primary_10_1016_j_rsase_2024_101311
crossref_primary_10_3390_app15189908
crossref_primary_10_1016_j_jsames_2023_104583
crossref_primary_10_1093_bioadv_vbad048
crossref_primary_10_1080_14992027_2021_1884909
crossref_primary_10_1038_s41398_025_03566_2
crossref_primary_10_1088_1755_1315_1190_1_012012
crossref_primary_10_1016_j_foodres_2025_117419
crossref_primary_10_23876_j_krcp_25_046
crossref_primary_10_1007_s11739_020_02475_0
crossref_primary_10_1186_s12888_020_02728_4
crossref_primary_10_3390_cancers15030837
crossref_primary_10_1016_j_renene_2022_08_004
crossref_primary_10_1016_j_aforl_2025_01_001
crossref_primary_10_3389_fninf_2025_1557177
crossref_primary_10_1016_j_prosdent_2022_12_004
crossref_primary_10_1038_s42003_020_01384_4
crossref_primary_10_1016_j_bbi_2023_07_022
crossref_primary_10_1007_s10922_020_09566_5
crossref_primary_10_1038_s41390_020_01134_6
crossref_primary_10_1103_PhysRevPhysEducRes_20_010113
crossref_primary_10_3389_fspor_2024_1456998
crossref_primary_10_3390_healthcare10101997
crossref_primary_10_1080_13854046_2025_2545943
crossref_primary_10_1109_ACCESS_2021_3124628
crossref_primary_10_1080_14413523_2024_2442188
crossref_primary_10_3389_fgene_2022_860510
crossref_primary_10_1002_jcv2_12042
crossref_primary_10_1371_journal_pone_0299947
crossref_primary_10_1007_s00420_020_01648_w
crossref_primary_10_1002_acm2_12992
crossref_primary_10_1038_s41598_025_12026_2
crossref_primary_10_1016_j_jer_2023_100003
crossref_primary_10_1016_j_still_2024_106311
crossref_primary_10_1038_s41398_022_02162_y
crossref_primary_10_1038_s41598_021_82374_2
crossref_primary_10_1038_s41598_022_18650_6
crossref_primary_10_1061_JSENDH_STENG_13301
crossref_primary_10_1016_j_jmir_2024_101736
crossref_primary_10_3390_app15137022
crossref_primary_10_3390_computers13110293
crossref_primary_10_3390_genes14020248
crossref_primary_10_1016_j_nicl_2022_103090
crossref_primary_10_3389_fnut_2024_1411363
crossref_primary_10_3390_app12126174
crossref_primary_10_3390_aerospace10110963
crossref_primary_10_1007_s00500_023_08466_5
crossref_primary_10_1038_s41698_024_00772_x
crossref_primary_10_1007_s41365_022_01018_w
crossref_primary_10_1038_s41598_020_65384_4
crossref_primary_10_3390_mti8090076
crossref_primary_10_1038_s41467_022_30512_3
crossref_primary_10_1371_journal_pdig_0000707
crossref_primary_10_1038_s41598_022_23882_7
crossref_primary_10_1177_10731911231167490
crossref_primary_10_3390_agronomy15040793
crossref_primary_10_1002_psp4_12884
crossref_primary_10_1002_psp4_12643
crossref_primary_10_1038_s41380_023_02334_2
crossref_primary_10_3390_agronomy11030532
crossref_primary_10_1016_j_susoc_2024_08_002
crossref_primary_10_1016_j_compbiomed_2025_110827
crossref_primary_10_1007_s12524_025_02272_2
crossref_primary_10_3390_electronics12040919
crossref_primary_10_1002_hbm_70277
crossref_primary_10_1371_journal_pone_0330373
crossref_primary_10_1177_20552076241239274
crossref_primary_10_1111_exsy_12811
crossref_primary_10_1007_s11273_025_10066_z
crossref_primary_10_1044_2024_JSLHR_24_00157
crossref_primary_10_1111_ppa_13973
crossref_primary_10_3389_fmolb_2023_1099654
crossref_primary_10_1038_s41598_025_02801_6
crossref_primary_10_3390_pharmaceutics16020260
crossref_primary_10_3390_s22239176
crossref_primary_10_1007_s11517_024_03097_w
crossref_primary_10_1038_s41598_023_37301_y
crossref_primary_10_1038_s41746_023_00762_6
crossref_primary_10_1111_1462_2920_15945
crossref_primary_10_3390_app13021116
crossref_primary_10_3892_etm_2022_11234
crossref_primary_10_1093_bib_bbac040
crossref_primary_10_1109_TNSRE_2023_3336360
crossref_primary_10_1016_j_mcp_2024_101992
crossref_primary_10_3389_fonc_2021_604584
crossref_primary_10_1007_s10115_024_02302_4
crossref_primary_10_1016_j_enpol_2024_114407
crossref_primary_10_1002_mds_30300
crossref_primary_10_2196_51540
crossref_primary_10_1002_ima_22674
crossref_primary_10_3390_ijms25031568
crossref_primary_10_1080_07391102_2023_2248509
crossref_primary_10_1016_j_cej_2022_136013
crossref_primary_10_3390_jpm11100957
crossref_primary_10_1111_anzs_12378
crossref_primary_10_1007_s11356_025_35976_6
crossref_primary_10_7759_cureus_66688
crossref_primary_10_1016_j_conbuildmat_2024_137397
crossref_primary_10_3390_rs13163317
crossref_primary_10_1016_j_joule_2024_07_002
crossref_primary_10_7250_itms_2021_0007
crossref_primary_10_1097_MPG_0000000000003115
crossref_primary_10_1186_s13062_024_00543_5
crossref_primary_10_1192_j_eurpsy_2021_2248
crossref_primary_10_1007_s42488_025_00140_9
crossref_primary_10_5194_bg_19_2699_2022
crossref_primary_10_1038_s41598_024_59118_z
crossref_primary_10_1016_j_stem_2025_03_012
crossref_primary_10_3389_fnagi_2025_1462951
crossref_primary_10_3390_bioengineering11101043
crossref_primary_10_1080_00295450_2025_2478332
crossref_primary_10_1177_10944281231155771
crossref_primary_10_1186_s12884_021_04373_5
crossref_primary_10_1038_s41598_022_13642_y
crossref_primary_10_1038_s41746_021_00521_5
crossref_primary_10_1007_s43546_022_00209_2
crossref_primary_10_1109_ACCESS_2025_3586314
crossref_primary_10_1109_ACCESS_2022_3163308
crossref_primary_10_1109_ACCESS_2023_3316508
crossref_primary_10_1016_j_procir_2022_05_020
crossref_primary_10_1016_j_soildyn_2022_107214
crossref_primary_10_1093_gigascience_giaf091
crossref_primary_10_1186_s12891_023_06822_y
crossref_primary_10_1002_acm2_14500
crossref_primary_10_1001_jamanetworkopen_2022_38783
crossref_primary_10_1371_journal_pone_0250842
crossref_primary_10_1016_j_jocn_2021_07_021
crossref_primary_10_1111_ffe_14109
crossref_primary_10_3389_fpsyg_2024_1326791
crossref_primary_10_1088_2631_7990_adba1e
crossref_primary_10_1007_s00371_024_03719_2
crossref_primary_10_1016_j_nicl_2021_102790
crossref_primary_10_1016_j_ecoinf_2021_101270
crossref_primary_10_1038_s41598_025_94528_7
crossref_primary_10_1371_journal_pone_0256152
crossref_primary_10_1039_D4TB02876G
crossref_primary_10_3389_fpubh_2025_1549210
crossref_primary_10_3390_biom12101529
crossref_primary_10_3389_fpsyt_2021_554811
crossref_primary_10_1371_journal_pone_0301276
crossref_primary_10_3389_fmicb_2023_1227300
crossref_primary_10_1038_s41598_021_93085_z
crossref_primary_10_1080_00952990_2022_2116712
crossref_primary_10_1007_s00330_023_09421_6
crossref_primary_10_3390_ijms231911269
crossref_primary_10_1016_j_jpain_2021_07_011
crossref_primary_10_1007_s12564_022_09749_6
crossref_primary_10_1038_s41416_021_01550_3
crossref_primary_10_3390_microorganisms10081658
crossref_primary_10_1016_j_jprot_2023_104955
crossref_primary_10_1515_revneuro_2023_0050
crossref_primary_10_1007_s10706_024_02767_8
crossref_primary_10_1080_13803395_2022_2105821
crossref_primary_10_1161_CIRCIMAGING_125_018600
crossref_primary_10_3390_jfmk10030276
crossref_primary_10_1073_pnas_2207046120
crossref_primary_10_3390_rs17111873
crossref_primary_10_1016_j_psychres_2022_114489
crossref_primary_10_3390_ai3030043
crossref_primary_10_1038_s41598_022_20274_9
crossref_primary_10_1038_s41598_022_27298_1
crossref_primary_10_2196_69422
crossref_primary_10_1186_s40317_024_00387_w
crossref_primary_10_1007_s12008_025_02309_3
crossref_primary_10_1016_j_wneu_2020_11_113
crossref_primary_10_3390_healthcare11030285
crossref_primary_10_1177_19322968251319800
crossref_primary_10_1136_bmjopen_2024_093562
crossref_primary_10_1371_journal_pone_0247404
crossref_primary_10_1007_s12273_025_1269_z
crossref_primary_10_1016_j_engappai_2024_109922
crossref_primary_10_1093_bib_bbad322
crossref_primary_10_1159_000511671
crossref_primary_10_1016_j_parint_2025_103140
crossref_primary_10_1038_s41378_025_00874_x
crossref_primary_10_3390_jpm12081314
crossref_primary_10_1002_hbm_70324
crossref_primary_10_1002_adfm_202214271
crossref_primary_10_1016_j_heliyon_2024_e41084
crossref_primary_10_1057_s41599_025_05234_8
crossref_primary_10_1016_j_csbj_2022_09_023
crossref_primary_10_1016_j_jpsychires_2021_01_019
crossref_primary_10_1002_pei3_10116
crossref_primary_10_1016_j_jag_2025_104537
crossref_primary_10_1088_1742_6596_1546_1_012080
crossref_primary_10_3390_rs14030803
crossref_primary_10_3390_jcm9082428
crossref_primary_10_1111_are_16140
crossref_primary_10_1038_s41598_023_45696_x
crossref_primary_10_1038_s41598_021_89859_0
crossref_primary_10_1109_ACCESS_2023_3254134
crossref_primary_10_1007_s00439_022_02439_8
crossref_primary_10_5209_rgid_90048
crossref_primary_10_1016_j_apmr_2023_08_010
crossref_primary_10_1016_j_apmr_2023_08_011
crossref_primary_10_1111_1556_4029_15550
crossref_primary_10_1038_s41380_020_0825_2
crossref_primary_10_1080_24694452_2023_2166010
crossref_primary_10_1016_j_cmet_2022_03_002
crossref_primary_10_1093_noajnl_vdaf081
crossref_primary_10_1016_j_schres_2022_06_006
crossref_primary_10_1371_journal_pone_0293303
crossref_primary_10_1108_ET_05_2023_0169
crossref_primary_10_1007_s11136_022_03315_8
crossref_primary_10_3390_s22103700
crossref_primary_10_1073_pnas_2305143120
crossref_primary_10_1590_1678_4324_2025230860
crossref_primary_10_1016_j_cep_2025_110496
crossref_primary_10_1007_s10822_022_00476_z
crossref_primary_10_1371_journal_pcbi_1012468
crossref_primary_10_1016_j_renene_2024_120968
crossref_primary_10_1016_j_jechem_2025_05_029
crossref_primary_10_1016_j_envpol_2024_123648
crossref_primary_10_3389_fpsyt_2020_541659
crossref_primary_10_1016_j_trd_2024_104273
crossref_primary_10_1186_s12877_024_05475_3
crossref_primary_10_3389_fmed_2023_1155426
crossref_primary_10_1002_cpt_3105
crossref_primary_10_1016_j_atmosres_2024_107576
crossref_primary_10_1016_j_jhydrol_2024_130628
crossref_primary_10_1016_j_jfca_2021_104137
crossref_primary_10_1016_j_imu_2021_100545
crossref_primary_10_1186_s12911_024_02728_4
crossref_primary_10_1038_s41598_025_94043_9
crossref_primary_10_3390_s21186088
crossref_primary_10_3390_agronomy14020349
crossref_primary_10_3389_fnins_2024_1330556
crossref_primary_10_1109_ACCESS_2024_3392624
crossref_primary_10_1016_j_scs_2025_106696
crossref_primary_10_1007_s10549_024_07360_4
crossref_primary_10_1080_08993408_2023_2245687
crossref_primary_10_1371_journal_pone_0329205
crossref_primary_10_1002_aepp_13475
crossref_primary_10_1155_je_6613167
crossref_primary_10_3390_antibiotics12081293
crossref_primary_10_1007_s10710_024_09501_6
crossref_primary_10_1177_20531680231211640
crossref_primary_10_1007_s00330_023_09628_7
crossref_primary_10_1016_j_exer_2025_110516
crossref_primary_10_1016_j_autcon_2024_105380
crossref_primary_10_3389_fcimb_2025_1542707
crossref_primary_10_7717_peerj_cs_511
crossref_primary_10_1007_s10462_023_10528_x
crossref_primary_10_1007_s10479_025_06784_5
crossref_primary_10_1016_j_enggeo_2024_107605
crossref_primary_10_1371_journal_pone_0279435
crossref_primary_10_1016_j_iot_2025_101502
crossref_primary_10_1051_0004_6361_202243934
crossref_primary_10_3233_THC_231207
crossref_primary_10_1002_iub_2693
crossref_primary_10_3390_su152014868
crossref_primary_10_1016_j_bspc_2024_107030
crossref_primary_10_1109_JTEHM_2025_3548401
crossref_primary_10_1038_s41598_024_54233_3
crossref_primary_10_3390_s22155585
crossref_primary_10_1111_jcpe_13692
crossref_primary_10_1128_spectrum_01405_21
crossref_primary_10_1038_s41524_022_00810_x
crossref_primary_10_1145_3708497
crossref_primary_10_3390_diagnostics12051085
crossref_primary_10_1038_s41598_025_04263_2
crossref_primary_10_1002_aepp_13446
crossref_primary_10_1109_ACCESS_2024_3482690
crossref_primary_10_1007_s00417_024_06432_x
crossref_primary_10_1016_j_compenvurbsys_2024_102238
crossref_primary_10_3390_cells11192982
crossref_primary_10_1007_s12350_022_02994_7
crossref_primary_10_3390_cancers14071816
crossref_primary_10_1016_j_dcn_2021_100949
crossref_primary_10_3390_genes14040777
crossref_primary_10_3390_computers14090388
crossref_primary_10_1016_j_jwpe_2023_104014
crossref_primary_10_1080_17452007_2024_2436941
crossref_primary_10_3390_app12073673
crossref_primary_10_1128_msystems_00840_24
crossref_primary_10_1186_s43019_025_00289_y
crossref_primary_10_1007_s11831_024_10196_2
crossref_primary_10_3390_cancers15041058
crossref_primary_10_1371_journal_pone_0269637
crossref_primary_10_3389_fcvm_2022_863642
crossref_primary_10_1016_j_artmed_2024_102962
crossref_primary_10_1038_s41598_024_59043_1
crossref_primary_10_1371_journal_pcbi_1012692
crossref_primary_10_1371_journal_pone_0308962
crossref_primary_10_1016_j_csbj_2025_05_016
crossref_primary_10_3389_fneur_2022_919777
crossref_primary_10_1145_3709363
crossref_primary_10_1016_j_jiph_2025_102970
crossref_primary_10_1016_j_eti_2025_104288
crossref_primary_10_1016_j_neucom_2023_126414
crossref_primary_10_3390_en18174742
crossref_primary_10_1016_j_surge_2023_06_001
crossref_primary_10_1016_j_compenvurbsys_2022_101801
crossref_primary_10_1016_j_apgeog_2024_103423
crossref_primary_10_1016_j_inffus_2025_103122
crossref_primary_10_1177_15330338221126869
crossref_primary_10_3390_s23062952
crossref_primary_10_3389_fped_2025_1616766
crossref_primary_10_1126_science_adf3708
crossref_primary_10_1186_s40537_025_01193_8
crossref_primary_10_1038_s41598_023_31797_0
crossref_primary_10_1021_acsomega_5c01602
crossref_primary_10_3389_fnhum_2023_1293173
crossref_primary_10_3846_ijspm_2022_17590
crossref_primary_10_1016_j_future_2025_107730
crossref_primary_10_1038_s41598_024_83975_3
crossref_primary_10_3390_math11081795
crossref_primary_10_1162_netn_a_00233
crossref_primary_10_1186_s40359_025_02828_4
crossref_primary_10_1080_13645706_2021_1901120
crossref_primary_10_3389_fpubh_2022_850619
crossref_primary_10_2196_67210
crossref_primary_10_1016_j_datak_2022_102105
crossref_primary_10_3390_wevj14070197
crossref_primary_10_1093_g3journal_jkac258
crossref_primary_10_3390_rs12132142
crossref_primary_10_1049_htl2_12084
crossref_primary_10_1002_wer_10893
crossref_primary_10_1007_s00247_025_06205_6
crossref_primary_10_1016_j_bbagrm_2024_195062
crossref_primary_10_3389_fmolb_2023_1154536
crossref_primary_10_2166_wpt_2024_157
crossref_primary_10_1016_j_health_2023_100185
crossref_primary_10_1016_j_gaitpost_2024_02_011
crossref_primary_10_1016_j_ces_2025_122259
crossref_primary_10_3390_agriculture14071077
crossref_primary_10_3390_metabo12040299
crossref_primary_10_1177_21582440221099294
crossref_primary_10_1016_j_tifs_2024_104550
crossref_primary_10_1038_s41598_022_05384_8
crossref_primary_10_1016_j_jclepro_2024_143602
crossref_primary_10_1371_journal_pone_0265254
crossref_primary_10_1371_journal_pone_0306987
crossref_primary_10_1186_s12933_022_01649_8
crossref_primary_10_1371_journal_pntd_0010879
crossref_primary_10_1161_STROKEAHA_120_030950
crossref_primary_10_1038_s41584_021_00708_w
crossref_primary_10_3390_buildings15010140
crossref_primary_10_1007_s41064_023_00264_w
crossref_primary_10_1177_0022034520979926
crossref_primary_10_1038_s41598_025_85777_7
crossref_primary_10_1007_s41348_023_00784_y
crossref_primary_10_1007_s11943_023_00332_y
crossref_primary_10_1007_s00234_021_02774_z
crossref_primary_10_1109_TGRS_2025_3600898
crossref_primary_10_3389_fnbot_2021_605751
crossref_primary_10_1016_j_biopsych_2024_06_027
crossref_primary_10_3390_jintelligence11040075
crossref_primary_10_1016_j_spinee_2022_12_003
crossref_primary_10_1038_s41598_025_17057_3
crossref_primary_10_1016_j_bspc_2021_103102
crossref_primary_10_3389_fpsyt_2022_828773
crossref_primary_10_1007_s42114_024_01113_z
crossref_primary_10_3390_pr11123325
crossref_primary_10_2139_ssrn_3788349
crossref_primary_10_1016_j_pscychresns_2023_111696
crossref_primary_10_1016_j_apmr_2021_02_029
crossref_primary_10_1007_s10994_024_06723_8
crossref_primary_10_3390_ijerph20010173
crossref_primary_10_7717_peerj_cs_2245
crossref_primary_10_1016_j_bios_2021_113485
crossref_primary_10_1016_j_cherd_2024_08_020
crossref_primary_10_3390_jcm13175081
crossref_primary_10_1016_j_trac_2023_117378
crossref_primary_10_1007_s11912_021_01054_6
crossref_primary_10_1109_MITP_2023_3262923
crossref_primary_10_1080_23737484_2022_2093801
crossref_primary_10_1016_j_rbmo_2024_103910
crossref_primary_10_1038_s41598_023_32714_1
crossref_primary_10_2196_52322
crossref_primary_10_1007_s12553_021_00555_5
crossref_primary_10_1007_s00477_024_02729_9
crossref_primary_10_3389_fnetp_2023_1256104
crossref_primary_10_1002_adma_202413695
crossref_primary_10_1016_j_phanu_2022_100326
crossref_primary_10_3390_agronomy15030654
crossref_primary_10_2217_nnm_2021_0076
crossref_primary_10_1038_s41598_022_23327_1
crossref_primary_10_3390_healthcare12171699
crossref_primary_10_1016_j_csbj_2022_04_016
crossref_primary_10_1038_s41598_024_64299_8
crossref_primary_10_1007_s12046_022_02015_w
crossref_primary_10_1016_j_ejogrb_2024_04_020
crossref_primary_10_1038_s41598_021_90032_w
crossref_primary_10_1109_ACCESS_2025_3546557
crossref_primary_10_1259_bjr_20220230
crossref_primary_10_1016_j_biortech_2021_125950
crossref_primary_10_1089_neu_2022_0201
crossref_primary_10_3389_fpubh_2025_1515094
crossref_primary_10_1016_j_chemolab_2022_104718
crossref_primary_10_1080_14767058_2021_1918670
crossref_primary_10_3389_fpubh_2023_1201054
crossref_primary_10_3390_aerospace8020044
crossref_primary_10_1162_neco_a_01664
crossref_primary_10_1002_eng2_12910
crossref_primary_10_4103_jmp_jmp_48_25
crossref_primary_10_3390_electronics13122231
crossref_primary_10_1016_j_geoai_2025_100030
crossref_primary_10_1155_2024_2341211
crossref_primary_10_3389_fcimb_2021_662431
crossref_primary_10_1520_SSMS20200030
crossref_primary_10_1016_j_ecoinf_2023_102233
crossref_primary_10_18359_rfcb_7396
crossref_primary_10_1227_neu_0000000000001855
crossref_primary_10_3389_fninf_2023_1310400
crossref_primary_10_1017_S0033291721003871
crossref_primary_10_3389_fspor_2025_1634656
crossref_primary_10_1002_adem_202201493
crossref_primary_10_1177_17455057241248121
crossref_primary_10_1002_admt_202301462
crossref_primary_10_3390_rs13132588
crossref_primary_10_2196_44986
crossref_primary_10_3390_s25123777
crossref_primary_10_1016_j_janxdis_2025_103003
crossref_primary_10_1002_admt_202401121
crossref_primary_10_1016_j_jfranklin_2023_09_046
crossref_primary_10_1097_AOG_0000000000004706
crossref_primary_10_3390_rs14081948
crossref_primary_10_1080_2326263X_2022_2114225
crossref_primary_10_1007_s10668_023_03657_4
crossref_primary_10_1016_j_catena_2025_108954
crossref_primary_10_1016_j_heliyon_2024_e26288
crossref_primary_10_1108_AFR_01_2024_0015
crossref_primary_10_1007_s00521_023_08901_6
crossref_primary_10_1007_s11135_024_02043_0
crossref_primary_10_1038_s41531_022_00427_3
crossref_primary_10_1038_s41598_021_89758_4
crossref_primary_10_1111_vru_13242
crossref_primary_10_1038_s41598_023_34139_2
crossref_primary_10_1038_s41598_024_53942_z
crossref_primary_10_1002_mdr2_70017
crossref_primary_10_1016_j_scitotenv_2024_174973
crossref_primary_10_3390_app10124245
crossref_primary_10_2147_RMHP_S297838
crossref_primary_10_1002_jmri_28544
crossref_primary_10_1016_j_rineng_2025_105714
crossref_primary_10_1186_s12911_024_02754_2
crossref_primary_10_1016_j_clinbiochem_2022_07_002
crossref_primary_10_1038_s41398_024_03217_y
crossref_primary_10_1016_j_jpsychires_2021_04_014
crossref_primary_10_1097_EJA_0000000000001811
crossref_primary_10_1186_s12859_023_05156_9
crossref_primary_10_1111_1750_3841_17421
crossref_primary_10_1016_j_biopsych_2021_09_011
crossref_primary_10_3390_rs15205021
crossref_primary_10_1111_jvim_16855
crossref_primary_10_1371_journal_pone_0312208
crossref_primary_10_1145_3596255
crossref_primary_10_1109_TLT_2024_3431473
crossref_primary_10_3390_app11136225
crossref_primary_10_1177_00368504211029777
crossref_primary_10_1038_s41598_022_12955_2
crossref_primary_10_3389_fneur_2020_603085
crossref_primary_10_1177_00131644211004708
crossref_primary_10_1007_s11263_022_01716_3
crossref_primary_10_3390_diagnostics12040872
crossref_primary_10_1016_j_nec_2022_02_012
crossref_primary_10_1016_j_rasd_2021_101840
crossref_primary_10_1016_j_apr_2025_102463
crossref_primary_10_3390_a17030106
crossref_primary_10_5585_2025_25871
crossref_primary_10_1007_s10404_023_02689_6
crossref_primary_10_1016_j_seizure_2023_11_022
crossref_primary_10_1007_s11682_021_00572_y
crossref_primary_10_3389_fpsyg_2023_1135469
crossref_primary_10_1155_2022_9970363
crossref_primary_10_1007_s00330_025_11669_z
crossref_primary_10_1016_j_str_2023_04_007
crossref_primary_10_1038_s41598_024_56633_x
crossref_primary_10_1088_1361_648X_ad64a1
crossref_primary_10_1016_j_jad_2023_06_007
crossref_primary_10_1016_j_rineng_2025_105584
crossref_primary_10_1093_neuonc_noad221
crossref_primary_10_1186_s12868_023_00819_y
crossref_primary_10_1088_1742_6596_1834_1_012004
crossref_primary_10_1186_s12920_022_01252_6
crossref_primary_10_1016_j_bspc_2021_102645
crossref_primary_10_1177_13623613221146439
crossref_primary_10_1007_s00122_024_04649_2
crossref_primary_10_1016_j_patcog_2025_112396
crossref_primary_10_1016_j_autcon_2022_104189
crossref_primary_10_3389_fonc_2022_1017435
crossref_primary_10_3390_electronics14152957
crossref_primary_10_1109_TITS_2021_3083957
crossref_primary_10_2196_28848
crossref_primary_10_3390_bioengineering9070273
crossref_primary_10_1111_ans_18250
crossref_primary_10_1111_jcpp_13681
crossref_primary_10_1371_journal_pone_0294166
crossref_primary_10_1016_j_jafrearsci_2022_104662
crossref_primary_10_1155_dth_1996661
crossref_primary_10_1186_s12984_024_01406_w
crossref_primary_10_1007_s11676_023_01601_w
crossref_primary_10_1007_s11307_023_01832_7
crossref_primary_10_1016_j_crad_2023_05_022
crossref_primary_10_3389_fneur_2021_725059
crossref_primary_10_3390_cancers14174291
crossref_primary_10_1016_j_impact_2021_100378
crossref_primary_10_3390_ijerph17124595
crossref_primary_10_3390_signals4020021
crossref_primary_10_1093_bib_bbac191
crossref_primary_10_1177_10711813241261288
crossref_primary_10_3390_eng6080183
crossref_primary_10_1016_j_jocn_2025_111360
crossref_primary_10_3389_fonc_2025_1577794
crossref_primary_10_1002_jcph_2176
crossref_primary_10_1029_2023GL103626
crossref_primary_10_1109_JBHI_2021_3100368
crossref_primary_10_1016_j_resconrec_2024_108090
crossref_primary_10_1063_5_0088462
crossref_primary_10_1016_j_cca_2025_120566
crossref_primary_10_1016_j_heliyon_2024_e27992
crossref_primary_10_1371_journal_pone_0249136
crossref_primary_10_1016_j_trac_2021_116459
crossref_primary_10_1007_s10608_024_10544_3
crossref_primary_10_3390_metabo12050458
crossref_primary_10_3390_s23094199
crossref_primary_10_1016_j_agwat_2025_109762
crossref_primary_10_1016_j_ebiom_2023_104462
crossref_primary_10_1016_j_jag_2023_103569
crossref_primary_10_1111_jcpp_13650
crossref_primary_10_1016_j_foreco_2025_122931
crossref_primary_10_14814_phy2_70447
crossref_primary_10_7717_peerj_15552
crossref_primary_10_1016_j_aei_2025_103896
crossref_primary_10_1007_s12517_023_11544_5
crossref_primary_10_1111_ijfs_16440
crossref_primary_10_3390_rs13173459
crossref_primary_10_2196_48265
crossref_primary_10_2196_49113
crossref_primary_10_2196_37141
crossref_primary_10_12688_f1000research_141458_2
crossref_primary_10_1038_s41386_025_02095_2
crossref_primary_10_12688_f1000research_141458_1
crossref_primary_10_3390_agronomy11122373
crossref_primary_10_3390_w15112004
crossref_primary_10_1016_j_anorl_2024_07_005
crossref_primary_10_3390_cancers17071249
crossref_primary_10_3103_S0027134922060042
crossref_primary_10_1016_j_compbiomed_2025_109705
crossref_primary_10_2196_24048
crossref_primary_10_2478_amns_2024_3085
crossref_primary_10_1186_s40168_022_01310_2
crossref_primary_10_3389_fimmu_2024_1345586
crossref_primary_10_3390_jrfm16040236
crossref_primary_10_1080_17435889_2024_2359355
crossref_primary_10_1038_s41598_025_12890_y
crossref_primary_10_1016_j_carbon_2025_120387
crossref_primary_10_1044_2023_JSLHR_23_00273
crossref_primary_10_1016_j_clinph_2020_04_172
crossref_primary_10_1038_s41598_022_26550_y
crossref_primary_10_3390_mi16030298
crossref_primary_10_1016_j_matt_2023_01_011
crossref_primary_10_3389_fnagi_2021_633752
crossref_primary_10_1016_j_yebeh_2023_109217
crossref_primary_10_1016_j_ijcchd_2022_100321
crossref_primary_10_1007_s12021_024_09671_9
crossref_primary_10_1016_j_atech_2025_101372
crossref_primary_10_1111_ejn_16261
crossref_primary_10_3389_fmars_2023_1117704
crossref_primary_10_1155_2024_5588127
crossref_primary_10_1080_10447318_2023_2221600
crossref_primary_10_1016_j_nbd_2021_105444
crossref_primary_10_1007_s10845_023_02290_2
crossref_primary_10_1111_aphw_12625
crossref_primary_10_1038_s43587_024_00657_5
crossref_primary_10_3390_jimaging10050109
crossref_primary_10_1109_JSTARS_2025_3568876
crossref_primary_10_1186_s12911_021_01588_6
crossref_primary_10_1080_14737167_2023_2279107
crossref_primary_10_3389_fpsyt_2024_1356843
crossref_primary_10_1016_j_cherd_2022_03_030
crossref_primary_10_1038_s41598_023_31517_8
crossref_primary_10_3389_fmolb_2024_1395721
crossref_primary_10_1111_ejn_15185
crossref_primary_10_1016_j_socec_2025_102414
crossref_primary_10_1108_WJE_11_2023_0473
crossref_primary_10_1111_cogs_13258
crossref_primary_10_3390_bs15030330
crossref_primary_10_3390_macromol3010007
Cites_doi 10.1016/j.neuroimage.2017.06.061
10.1016/j.ins.2014.05.042
10.1186/1758-2946-6-10
10.1016/S0169-7161(82)02042-2
10.1093/bioinformatics/btm344
10.1016/j.csda.2013.07.012
10.3389/fpsyt.2016.00177
10.1089/106652703321825928
10.1109/34.75512
10.1016/j.chemolab.2008.11.005
10.1016/j.neuroimage.2016.10.038
10.1186/1471-2105-7-91
10.1023/A:1012487302797
10.1007/s40489-019-00158-x
10.1186/1472-6947-12-8
10.1111/j.2517-6161.1974.tb00994.x
10.1016/j.aca.2012.11.007
10.1371/journal.pmed.1001779
10.1145/130385.130401
10.1007/s10803-014-2268-6
10.1016/j.jneumeth.2015.01.010
10.1016/0031-3203(71)90013-6
10.1093/bioinformatics/bti171
10.1016/j.neuroimage.2016.02.079
10.1038/nrg3920
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Vabalas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Vabalas et al 2019 Vabalas et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Vabalas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Vabalas et al 2019 Vabalas et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0224365
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale in Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Download PDF from ProQuest Public Health
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
ProQuest Nursing and Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Download PDF from ProQuest Environmental Science
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database


MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Proquest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Machine learning algorithm validation with a limited sample size
EISSN 1932-6203
ExternalDocumentID 2312795414
oai_doaj_org_article_df3153cdf6ba4ecc9e209347e26d9f38
PMC6837442
A605081727
31697686
10_1371_journal_pone_0224365
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom--UK
England
GeographicLocations_xml – name: England
– name: United Kingdom--UK
GrantInformation_xml – fundername: ;
  grantid: EP/m507969/1
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
-
02
AAPBV
ABPTK
BBAFP
KM
ID FETCH-LOGICAL-c692t-43e3010c57c82bb6eee9c50c1e0112dda925747feeac8f8cd7fc1f4b7991be813
IEDL.DBID P5Z
ISICitedReferencesCount 1070
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532694400025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Sun Sep 04 00:10:37 EDT 2022
Tue Oct 14 18:44:52 EDT 2025
Tue Nov 04 01:34:36 EST 2025
Wed Oct 01 13:45:15 EDT 2025
Tue Oct 07 07:56:34 EDT 2025
Sat Nov 29 13:05:07 EST 2025
Sat Nov 29 10:03:29 EST 2025
Wed Nov 26 10:19:32 EST 2025
Wed Nov 26 09:45:02 EST 2025
Thu May 22 21:20:59 EDT 2025
Thu Apr 03 06:56:31 EDT 2025
Sat Nov 29 02:05:36 EST 2025
Tue Nov 18 21:09:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-43e3010c57c82bb6eee9c50c1e0112dda925747feeac8f8cd7fc1f4b7991be813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-0659-2890
OpenAccessLink https://www.proquest.com/docview/2312795414?pq-origsite=%requestingapplication%
PMID 31697686
PQID 2312795414
PQPubID 1436336
PageCount e0224365
ParticipantIDs plos_journals_2312795414
doaj_primary_oai_doaj_org_article_df3153cdf6ba4ecc9e209347e26d9f38
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6837442
proquest_miscellaneous_2313365077
proquest_journals_2312795414
gale_infotracmisc_A605081727
gale_infotracacademiconefile_A605081727
gale_incontextgauss_ISR_A605081727
gale_incontextgauss_IOV_A605081727
gale_healthsolutions_A605081727
pubmed_primary_31697686
crossref_primary_10_1371_journal_pone_0224365
crossref_citationtrail_10_1371_journal_pone_0224365
PublicationCentury 2000
PublicationDate 2019-11-07
PublicationDateYYYYMMDD 2019-11-07
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References SJ Raudys (pone.0224365.ref001) 1991; 13
S Mukherjee (pone.0224365.ref024) 2003; 10
J Hua (pone.0224365.ref016) 2004; 21
D Dernoncourt (pone.0224365.ref022) 2014; 71
S Varma (pone.0224365.ref007) 2006; 7
C Sudlow (pone.0224365.ref002) 2015; 12
MR Arbabshirani (pone.0224365.ref003) 2016; 145
MW Libbrecht (pone.0224365.ref014) 2015; 16
C Beleites (pone.0224365.ref025) 2013; 760
D Bone (pone.0224365.ref028) 2015; 45
F Pedregosa (pone.0224365.ref018) 2011; 12
V Bolón-Canedo (pone.0224365.ref021) 2014; 282
CC Chang (pone.0224365.ref017) 2011; 2
Y Saeys (pone.0224365.ref015) 2007; 23
G Varoquaux (pone.0224365.ref004) 2018; 180
O Devos (pone.0224365.ref019) 2009; 96
ZM Hira (pone.0224365.ref020) 2015; 2015
L Kanal (pone.0224365.ref006) 1971; 3
I Guyon (pone.0224365.ref013) 2002; 46
RL Figueroa (pone.0224365.ref023) 2012; 12
AK Jain (pone.0224365.ref008) 1982; 2
D Krstajic (pone.0224365.ref011) 2014; 6
KK Hyde (pone.0224365.ref026) 2019; 6
G Varoquaux (pone.0224365.ref027) 2017; 145
GC Cawley (pone.0224365.ref009) 2010; 11
pone.0224365.ref012
P Kassraian-Fard (pone.0224365.ref029) 2016; 7
E Combrisson (pone.0224365.ref005) 2015; 250
M Stone (pone.0224365.ref010) 1974; 36
References_xml – volume: 180
  start-page: 68
  year: 2018
  ident: pone.0224365.ref004
  article-title: Cross-validation failure: Small sample sizes lead to large error bars
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.06.061
– volume: 12
  start-page: 2825
  year: 2011
  ident: pone.0224365.ref018
  article-title: Scikit-learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– volume: 282
  start-page: 111
  year: 2014
  ident: pone.0224365.ref021
  article-title: A review of microarray datasets and applied feature selection methods
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.05.042
– volume: 6
  start-page: 1
  issue: 1
  year: 2014
  ident: pone.0224365.ref011
  article-title: Cross-validation pitfalls when selecting and assessing regression and classification models
  publication-title: Journal of Cheminformatics
  doi: 10.1186/1758-2946-6-10
– volume: 2
  start-page: 835
  year: 1982
  ident: pone.0224365.ref008
  article-title: 39 Dimensionality and sample size considerations in pattern recognition practice
  publication-title: Handbook of Statistics
  doi: 10.1016/S0169-7161(82)02042-2
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: pone.0224365.ref015
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 11
  start-page: 2079
  year: 2010
  ident: pone.0224365.ref009
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: Machine Learning Research
– volume: 71
  start-page: 681
  year: 2014
  ident: pone.0224365.ref022
  article-title: Analysis of feature selection stability on high dimension and small sample data
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2013.07.012
– volume: 7
  start-page: 177
  year: 2016
  ident: pone.0224365.ref029
  article-title: Promises, pitfalls, and basic guidelines for applying machine learning classifiers to psychiatric imaging data, with autism as an example
  publication-title: Frontiers in Psychiatry
  doi: 10.3389/fpsyt.2016.00177
– volume: 2015
  year: 2015
  ident: pone.0224365.ref020
  article-title: A review of feature selection and feature extraction methods applied on microarray data
  publication-title: Advances in Bioinformatics
– volume: 10
  start-page: 119
  issue: 2
  year: 2003
  ident: pone.0224365.ref024
  article-title: Estimating dataset size requirements for classifying DNA microarray data
  publication-title: Journal of Computational Biology
  doi: 10.1089/106652703321825928
– volume: 13
  start-page: 252
  issue: 3
  year: 1991
  ident: pone.0224365.ref001
  article-title: Small sample size effects in statistical pattern recognition: recommendations for practitioners
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.75512
– volume: 96
  start-page: 27
  issue: 1
  year: 2009
  ident: pone.0224365.ref019
  article-title: Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2008.11.005
– volume: 145
  start-page: 166
  year: 2017
  ident: pone.0224365.ref027
  article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.038
– volume: 7
  start-page: 91
  issue: 1
  year: 2006
  ident: pone.0224365.ref007
  article-title: Bias in error estimation when using cross-validation for model selection
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-91
– volume: 46
  start-page: 389
  issue: 1-3
  year: 2002
  ident: pone.0224365.ref013
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Machine Learning
  doi: 10.1023/A:1012487302797
– volume: 6
  start-page: 128
  issue: 2
  year: 2019
  ident: pone.0224365.ref026
  article-title: Applications of Supervised Machine Learning in Autism Spectrum Disorder Research: a Review
  publication-title: Review Journal of Autism and Developmental Disorders
  doi: 10.1007/s40489-019-00158-x
– volume: 12
  start-page: 8
  issue: 1
  year: 2012
  ident: pone.0224365.ref023
  article-title: Predicting sample size required for classification performance
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/1472-6947-12-8
– volume: 36
  start-page: 111
  issue: 2
  year: 1974
  ident: pone.0224365.ref010
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– volume: 760
  start-page: 25
  year: 2013
  ident: pone.0224365.ref025
  article-title: Sample size planning for classification models
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2012.11.007
– volume: 12
  start-page: e1001779
  issue: 3
  year: 2015
  ident: pone.0224365.ref002
  article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Medicine
  doi: 10.1371/journal.pmed.1001779
– ident: pone.0224365.ref012
  doi: 10.1145/130385.130401
– volume: 45
  start-page: 1121
  issue: 5
  year: 2015
  ident: pone.0224365.ref028
  article-title: Applying machine learning to facilitate autism diagnostics: pitfalls and promises
  publication-title: Journal of Autism and Developmental Disorders
  doi: 10.1007/s10803-014-2268-6
– volume: 250
  start-page: 126
  year: 2015
  ident: pone.0224365.ref005
  article-title: Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2015.01.010
– volume: 3
  start-page: 225
  issue: 3
  year: 1971
  ident: pone.0224365.ref006
  article-title: On dimensionality and sample size in statistical pattern classification
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(71)90013-6
– volume: 21
  start-page: 1509
  issue: 8
  year: 2004
  ident: pone.0224365.ref016
  article-title: Optimal number of features as a function of sample size for various classification rules
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti171
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: pone.0224365.ref017
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
– volume: 145
  start-page: 137
  year: 2016
  ident: pone.0224365.ref003
  article-title: Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.02.079
– volume: 16
  start-page: 321
  issue: 6
  year: 2015
  ident: pone.0224365.ref014
  article-title: Machine learning applications in genetics and genomics
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg3920
SSID ssj0053866
Score 2.7282648
Snippet Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0224365
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Autism
Bias
Bioinformatics
Biological markers
Biology and Life Sciences
Biomarkers
Biomedical Research - statistics & numerical data
Brain research
Classification
Computer and Information Sciences
Computer simulation
Data analysis
Data collection
Data Interpretation, Statistical
Data mining
Datasets
Diagnostic imaging
Estimates
Humans
Internet of Things
Learning algorithms
Machine Learning
Medical imaging
Medicine and Health Sciences
Methods
Neuroimaging
Neurology
Noise
Normal distribution
Parameters
Pattern recognition
Physical Sciences
Research and Analysis Methods
Sample Size
Social Sciences
Spectrum analysis
Studies
Technology
Test procedures
Tracking
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQxYELYnltYQGDkIBDdhvb8ePGgliBBAvisdqblTh2N1JJqqblwK9n_GjUoJWWA9d6krSfZ-zPzcw3CD2nQIIdg_i2pW9hVhOWSUfyjMLWoGxBGA9ZlWcfxempPD9XX3ZaffmcsCgPHIE7qh2FoDS141XJ4HnKEjiEM2EJr5WjocwXWM_2MBXXYIhizlOhHBX5UZqXw2XX2kO_a1G_mexsREGvf1iVJ8tF119GOf_OnNzZik5uoZuJQ-Lj-N330DXb3kZ7KUp7_DJJSb-6g15_CrmSFqfmEHNcLubdqllf_MTgYk1sqIT9n7G4xItY7IT70ksG4775be-iHyfvvr99n6WeCZnhiqwzRi2E7MwUwkhSVdxaq0wxM7mFQCZ1XSqIUSachQVXOmlq4UzuWCWAJ1ZW5vQemrSA0j7CriKFUZIYbiQrc1HROq98HarNfaVWMUV0C6A2SVDc97VY6PCWTMDBIuKhPew6wT5F2XDVMgpqXGH_xs_NYOvlsMMH4CQ6OYm-ykmm6ImfWR1rS4eg1sdwmANOBBxuip4FCy-J0fqcm3m56Xv94fPZPxh9-zoyepGMXAdwmDLVOcBv8lJbI8uDkSUEthkN73s_3KLSa6DiRCjftx2u3Prm5cNPh2F_U59H19puE2wogDoTcPf70ZUHZGnOgZtKPkVi5OQj6McjbXMRFMm5pIIx8uB_zNVDdANIqQr1nuIATdarjX2Erptf66ZfPQ5h_gdDG1e_
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLag8MALY9zWMcAgJOAho7EdX94YiAqkMSYu096sxLG7SCWpmpYHfj3HjhvItAl4rT9HyZfz2cfNuSD0jIIT7Bjo2-a-hVlJWCIdSRMKW4OyGWE8RFWeHIqjI3l6qo5_HxTPfcGnIn0VOd1fNLXd9zsO5dlVdI1Qzn0I1_T4cLPygnY5j-lxl80cbD-hSn-_Fo8W86a9yNE8Hy_5xwY03frfW7-FbkZXEx90trGNrtj6NtqOYm7xi1hx-uUd9PpjCKm0OPaQmOF8PmuW1ersOwZLrLq-S9j_Z4tzPO9yonCb-8rCuK1-2rvo2_Td17fvk9haITFckVXCqAVlT0wmjCRFwa21ymQTk1rQOynLXIGUmXAW1mXppCmFM6ljhQB3srAypffQqIan2kHYFSQzShLDjWR5KgpapoVPV7WpT-jKxohuGNcm1h337S_mOnxME3D-6PjQniYdaRqjpJ-16Opu_AX_xr_MHuurZocf4H3oKEJdOgoLvCkdL3IGtqssmSjKhCW8VI7KMXrsTUF3Kai99vUBnPnAdQJXb4yeBoSvnFH70JxZvm5b_eHTyT-AvnwegJ5HkGuADpPHdAh4Jl-Ra4DcGyBB_2YwvOMNd8NKq8FjJ0L59u4wc2PMFw8_6Yf9RX24XW2bdcBQIHUi4Or3O9vvmaUpBxdW8jESA1UMqB-O1NVZKFzOJRWMkd3L7_gBugEeqQrJnmIPjVbLtX2Irpsfq6pdPgpq_wU9e1My
  priority: 102
  providerName: Public Library of Science
Title Machine learning algorithm validation with a limited sample size
URI https://www.ncbi.nlm.nih.gov/pubmed/31697686
https://www.proquest.com/docview/2312795414
https://www.proquest.com/docview/2313365077
https://pubmed.ncbi.nlm.nih.gov/PMC6837442
https://doaj.org/article/df3153cdf6ba4ecc9e209347e26d9f38
http://dx.doi.org/10.1371/journal.pone.0224365
Volume 14
WOSCitedRecordID wos000532694400025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database (subscripiton)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Nb9Mw1GIdBy7A-FphlICQgEO6xk5i5wTrtIppa4k6qAqXKHGcrlJJStNy4NfznuOGBU2AxOUd6mered9x3gchLxkEwZkL-q1iHGGWUtcWGXVsBq4hUB51fZ1VOTnno5GYToPQXLiVJq1yaxO1oU4LiXfkhxCHUB7g0Oq3y282To3Cr6tmhMYO2cUuCaiYofdla4lBl33flMsx7hwa7nSXRa666LsYupQr7kh37a9tc2u5KMrrAs_f8yevOKTBnf99lLvktglFraNKdvbIDZXfI3tG2UvrtelI_eY-eTfUKZfKMjMmZla8mMGJ68uvFkjqvJrLZOGdrhVbi6pmyipj7DxslfMf6gH5NDj5ePzeNqMXbOkHdG27TIHm96THpaBJ4iulAun1pKPAHtA0jQNQdZdnCuy2yIRMeSadzE04hJuJEg57SFo5kHmfWFlCPRkIKn0p3NjhCUudBMtZlYMFX16bsC0HImn6kuN4jEWkP7ZxeD-p6BEh3yLDtzax613Lqi_HX_D7yNwaF7tq6x-K1SwyShqlGQMHINPMT2IXZDtQtBcwlyvqp0HGRJs8Q9GIqhLV2jZER_BOCKEVhIJt8kJjYGeNHFN3ZvGmLKPTD5N_QLoYN5BeGaSsAHLI2JRLwDNhx64G5kEDE-yDbCzvoyBvqVJGv8QPdm4F9Prl5_UyHorpeLkqNhqHAVF7HE5_VOlCTVnm-BDiCr9NeENLGqRvruTzS93Y3BeMuy59_Oe_9YTcgqg10AWh_IC01quNekpuyu_rebnqkB0-niCccg0FQHHsdMhu_2QUjjv60gXgIDwHeNbvAhz2zhDyUMOLjrYisCM8HYaffwJM0XGE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGQYIXYNwWGMwgEPCQrbFTO3lAMC7TqnUFjTH1zSSO01UqSWlaEPwofiPnJE5Y0AS87IHX-MSKj79zsXMuhDzk4ASnPsi3ibCFWcJ8N0iZ53IwDaHpMV-UUZVHAzkcBqNR-G6F_KhzYTCsstaJpaJOco135FvghzAZYtPq57PPLnaNwr-rdQuNChZ75ttXOLIVz_qvYX8fMbbz5vDVrmu7CrhahGzh-twAqLu6J3XA4lgYY0Ld62rPANRZkkQhoNiXqQGVFKSBTmSqvdSPJXhSsQk8DvOeI-dBj0sMIZOj5oAHukMIm57Hpbdl0bA5yzOzibaSowk7Yf7KLgGNLejMpnlxmqP7e7zmCQO4c-V_Y91Vctm62nS7ko1VsmKya2TVKrOCPrEVt59eJy_2y5BSQ20PjTGNpmNYweL4EwVJnFR9pyjeWdOITqucMFpEWFmZFpPv5gb5cCYruUk6GWzrGqFpzHo6DJgWOvAjT8Y88WJM1zUeJrT1HMLrHVfa1l3H9h9TVf5MlHD-qvihECfK4sQhbvPWrKo78hf6lwimhharhpcP8vlYWSWkkpSDgdNJKuLIB9kNDeuG3JeGiSRMeeCQDYSiqlJwG92ntuHMC64juLoOeVBSYOWQDEOTxtGyKFT_7dE_EL0_aBE9tkRpDuzQkU0HgTVhRbIW5XqLEvSfbg2voeDUXCnUL7jDm7VAnD58vxnGSTHcMDP5sqThwNSuhNlvVbLXcJZ7Alz4QDhEtqSyxfr2SDY5Lgu3i4BL32e3__xZG-Ti7uH-QA36w7075BJ46GGZ_CrXSWcxX5q75IL-spgU83ul9qHk41nL7E-w0sO_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLdGQYgLML5WGMwgEHDI2thJnBwQDEbFtFGqAdPEJSSO3VUqSWlaEPxp_HW85zhhQRNw2YFr_WLVz7_3lbwPQu5zcIK1B_KtEhxhljHPCTVzHQ6mIVI-8wKTVXmwJ4bD8PAwGq2QH3UtDKZV1jrRKOqskPiOvAd-CBMRDq3uaZsWMdoePJ19dnCCFH5prcdpVBDZVd--QvhWPtnZhrt-wNjg5bsXrxw7YcCRQcQWjscVALwvfSFDlqaBUiqSfl-6CmDPsiyJANGe0ArUU6hDmQktXe2lAryqVIUuh33PkLMCYkwM_Eb-h9oKgB4JAluqx4Xbs8jYnBW52kS7ydGcHTOFZmJAYxc6s2lRnuT0_p67ecwYDi79z2y8TC5aF5xuVTKzSlZUfoWsWiVX0ke2E_fjq-TZa5NqqqidrTGmyXQMJ1gcfaIgoZNqHhXFd9k0odOqVoyWCXZcpuXku7pG3p_KSa6TTg5XvEaoTpkvo5DJQIZe4oqUZ26KZbzKxUI3v0t4ffuxtP3YcSzINDYfGQXEZRU_YsRMbDHTJU7z1KzqR_IX-ucIrIYWu4mbH4r5OLbKKc40B8MnMx2kiQcyHSnWj7gnFAuySPOwSzYQlnFVmtvoxHgLYmFwKcEF7pJ7hgI7iuQIqnGyLMt4583BPxC93W8RPbREugB2yMSWicCZsFNZi3K9RQl6UbaW11CIaq6U8S_ow5O1cJy8fLdZxk0xDTFXxdLQcGBqX8DuNyo5bDjLXVACQRh0iWhJaIv17ZV8cmQaugchF57Hbv75b22Q8yCq8d7OcPcWuQCOe2RqYsU66SzmS3WbnJNfFpNyfscoIko-nrbI_gSKIcyy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithm+validation+with+a+limited+sample+size&rft.jtitle=PloS+one&rft.au=Vabalas%2C+Andrius&rft.au=Gowen%2C+Emma&rft.au=Poliakoff%2C+Ellen&rft.au=Casson%2C+Alexander+J&rft.date=2019-11-07&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=14&rft.issue=11&rft.spage=e0224365&rft_id=info:doi/10.1371%2Fjournal.pone.0224365&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon