RAPTOR up-regulation contributes to resistance of renal cancer cells to PI3K-mTOR inhibition
The outlook for patients with advanced renal cell cancer (RCC) has been improved by targeted agents including inhibitors of the PI3 kinase (PI3K)-AKT-mTOR axis, although treatment resistance is a major problem. Here, we aimed to understand how RCC cells acquire resistance to PI3K-mTOR inhibition. We...
Uloženo v:
| Vydáno v: | PloS one Ročník 13; číslo 2; s. e0191890 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
01.02.2018
Public Library of Science (PLoS) |
| Témata: | |
| ISSN: | 1932-6203, 1932-6203 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The outlook for patients with advanced renal cell cancer (RCC) has been improved by targeted agents including inhibitors of the PI3 kinase (PI3K)-AKT-mTOR axis, although treatment resistance is a major problem. Here, we aimed to understand how RCC cells acquire resistance to PI3K-mTOR inhibition. We used the RCC4 cell line to generate a model of in vitro resistance by continuous culture in PI3K-mTOR kinase inhibitor NVP-BEZ235 (BEZ235, Dactolisib). Resistant cells were cross-resistant to mTOR inhibitor AZD2014. Sensitivity was regained after 4 months drug withdrawal, and resistance was partially suppressed by HDAC inhibition, supporting an epigenetic mechanism. BEZ235-resistant cells up-regulated and/or activated numerous proteins including MET, ABL, Notch, IGF-1R, INSR and MEK/ERK. However, resistance was not reversed by inhibiting or depleting these pathways, suggesting that many induced changes were passengers not drivers of resistance. BEZ235 blocked phosphorylation of mTOR targets S6 and 4E-BP1 in parental cells, but 4E-BP1 remained phosphorylated in resistant cells, suggesting BEZ235-refractory mTORC1 activity. Consistent with this, resistant cells over-expressed mTORC1 component RAPTOR at the mRNA and protein level. Furthermore, BEZ235 resistance was suppressed by RAPTOR depletion, or allosteric mTORC1 inhibitor rapamycin. These data reveal that RAPTOR up-regulation contributes to PI3K-mTOR inhibitor resistance, and suggest that RAPTOR expression should be included in the pharmacodynamic assessment of mTOR kinase inhibitor trials. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Current address: The Cancer Centre, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, United Kingdom. Competing Interests: The authors have declared that no competing interests exist. |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0191890 |