Data-based analysis, modelling and forecasting of the COVID-19 outbreak

Since the first suspected case of coronavirus disease-2019 (COVID-19) on December 1st, 2019, in Wuhan, Hubei Province, China, a total of 40,235 confirmed cases and 909 deaths have been reported in China up to February 10, 2020, evoking fear locally and internationally. Here, based on the publicly av...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 15; číslo 3; s. e0230405
Hlavní autoři: Anastassopoulou, Cleo, Russo, Lucia, Tsakris, Athanasios, Siettos, Constantinos
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 31.03.2020
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Since the first suspected case of coronavirus disease-2019 (COVID-19) on December 1st, 2019, in Wuhan, Hubei Province, China, a total of 40,235 confirmed cases and 909 deaths have been reported in China up to February 10, 2020, evoking fear locally and internationally. Here, based on the publicly available epidemiological data for Hubei, China from January 11 to February 10, 2020, we provide estimates of the main epidemiological parameters. In particular, we provide an estimation of the case fatality and case recovery ratios, along with their 90% confidence intervals as the outbreak evolves. On the basis of a Susceptible-Infectious-Recovered-Dead (SIDR) model, we provide estimations of the basic reproduction number (R0), and the per day infection mortality and recovery rates. By calibrating the parameters of the SIRD model to the reported data, we also attempt to forecast the evolution of the outbreak at the epicenter three weeks ahead, i.e. until February 29. As the number of infected individuals, especially of those with asymptomatic or mild courses, is suspected to be much higher than the official numbers, which can be considered only as a subset of the actual numbers of infected and recovered cases in the total population, we have repeated the calculations under a second scenario that considers twenty times the number of confirmed infected cases and forty times the number of recovered, leaving the number of deaths unchanged. Based on the reported data, the expected value of R0 as computed considering the period from the 11th of January until the 18th of January, using the official counts of confirmed cases was found to be ∼4.6, while the one computed under the second scenario was found to be ∼3.2. Thus, based on the SIRD simulations, the estimated average value of R0 was found to be ∼2.6 based on confirmed cases and ∼2 based on the second scenario. Our forecasting flashes a note of caution for the presently unfolding outbreak in China. Based on the official counts for confirmed cases, the simulations suggest that the cumulative number of infected could reach 180,000 (with a lower bound of 45,000) by February 29. Regarding the number of deaths, simulations forecast that on the basis of the up to the 10th of February reported data, the death toll might exceed 2,700 (as a lower bound) by February 29. Our analysis further reveals a significant decline of the case fatality ratio from January 26 to which various factors may have contributed, such as the severe control measures taken in Hubei, China (e.g. quarantine and hospitalization of infected individuals), but mainly because of the fact that the actual cumulative numbers of infected and recovered cases in the population most likely are much higher than the reported ones. Thus, in a scenario where we have taken twenty times the confirmed number of infected and forty times the confirmed number of recovered cases, the case fatality ratio is around ∼0.15% in the total population. Importantly, based on this scenario, simulations suggest a slow down of the outbreak in Hubei at the end of February.
AbstractList Since the first suspected case of coronavirus disease-2019 (COVID-19) on December 1st, 2019, in Wuhan, Hubei Province, China, a total of 40,235 confirmed cases and 909 deaths have been reported in China up to February 10, 2020, evoking fear locally and internationally. Here, based on the publicly available epidemiological data for Hubei, China from January 11 to February 10, 2020, we provide estimates of the main epidemiological parameters. In particular, we provide an estimation of the case fatality and case recovery ratios, along with their 90% confidence intervals as the outbreak evolves. On the basis of a Susceptible-Infectious-Recovered-Dead (SIDR) model, we provide estimations of the basic reproduction number (R0), and the per day infection mortality and recovery rates. By calibrating the parameters of the SIRD model to the reported data, we also attempt to forecast the evolution of the outbreak at the epicenter three weeks ahead, i.e. until February 29. As the number of infected individuals, especially of those with asymptomatic or mild courses, is suspected to be much higher than the official numbers, which can be considered only as a subset of the actual numbers of infected and recovered cases in the total population, we have repeated the calculations under a second scenario that considers twenty times the number of confirmed infected cases and forty times the number of recovered, leaving the number of deaths unchanged. Based on the reported data, the expected value of R0 as computed considering the period from the 11th of January until the 18th of January, using the official counts of confirmed cases was found to be ∼4.6, while the one computed under the second scenario was found to be ∼3.2. Thus, based on the SIRD simulations, the estimated average value of R0 was found to be ∼2.6 based on confirmed cases and ∼2 based on the second scenario. Our forecasting flashes a note of caution for the presently unfolding outbreak in China. Based on the official counts for confirmed cases, the simulations suggest that the cumulative number of infected could reach 180,000 (with a lower bound of 45,000) by February 29. Regarding the number of deaths, simulations forecast that on the basis of the up to the 10th of February reported data, the death toll might exceed 2,700 (as a lower bound) by February 29. Our analysis further reveals a significant decline of the case fatality ratio from January 26 to which various factors may have contributed, such as the severe control measures taken in Hubei, China (e.g. quarantine and hospitalization of infected individuals), but mainly because of the fact that the actual cumulative numbers of infected and recovered cases in the population most likely are much higher than the reported ones. Thus, in a scenario where we have taken twenty times the confirmed number of infected and forty times the confirmed number of recovered cases, the case fatality ratio is around ∼0.15% in the total population. Importantly, based on this scenario, simulations suggest a slow down of the outbreak in Hubei at the end of February.
Since the first suspected case of coronavirus disease-2019 (COVID-19) on December 1st, 2019, in Wuhan, Hubei Province, China, a total of 40,235 confirmed cases and 909 deaths have been reported in China up to February 10, 2020, evoking fear locally and internationally. Here, based on the publicly available epidemiological data for Hubei, China from January 11 to February 10, 2020, we provide estimates of the main epidemiological parameters. In particular, we provide an estimation of the case fatality and case recovery ratios, along with their 90% confidence intervals as the outbreak evolves. On the basis of a Susceptible-Infectious-Recovered-Dead (SIDR) model, we provide estimations of the basic reproduction number (R.sub.0 ), and the per day infection mortality and recovery rates. By calibrating the parameters of the SIRD model to the reported data, we also attempt to forecast the evolution of the outbreak at the epicenter three weeks ahead, i.e. until February 29. As the number of infected individuals, especially of those with asymptomatic or mild courses, is suspected to be much higher than the official numbers, which can be considered only as a subset of the actual numbers of infected and recovered cases in the total population, we have repeated the calculations under a second scenario that considers twenty times the number of confirmed infected cases and forty times the number of recovered, leaving the number of deaths unchanged. Based on the reported data, the expected value of R.sub.0 as computed considering the period from the 11th of January until the 18th of January, using the official counts of confirmed cases was found to be ~4.6, while the one computed under the second scenario was found to be ~3.2. Thus, based on the SIRD simulations, the estimated average value of R.sub.0 was found to be ~2.6 based on confirmed cases and ~2 based on the second scenario. Our forecasting flashes a note of caution for the presently unfolding outbreak in China. Based on the official counts for confirmed cases, the simulations suggest that the cumulative number of infected could reach 180,000 (with a lower bound of 45,000) by February 29. Regarding the number of deaths, simulations forecast that on the basis of the up to the 10th of February reported data, the death toll might exceed 2,700 (as a lower bound) by February 29. Our analysis further reveals a significant decline of the case fatality ratio from January 26 to which various factors may have contributed, such as the severe control measures taken in Hubei, China (e.g. quarantine and hospitalization of infected individuals), but mainly because of the fact that the actual cumulative numbers of infected and recovered cases in the population most likely are much higher than the reported ones. Thus, in a scenario where we have taken twenty times the confirmed number of infected and forty times the confirmed number of recovered cases, the case fatality ratio is around ~0.15% in the total population. Importantly, based on this scenario, simulations suggest a slow down of the outbreak in Hubei at the end of February.
Since the first suspected case of coronavirus disease-2019 (COVID-19) on December 1st, 2019, in Wuhan, Hubei Province, China, a total of 40,235 confirmed cases and 909 deaths have been reported in China up to February 10, 2020, evoking fear locally and internationally. Here, based on the publicly available epidemiological data for Hubei, China from January 11 to February 10, 2020, we provide estimates of the main epidemiological parameters. In particular, we provide an estimation of the case fatality and case recovery ratios, along with their 90% confidence intervals as the outbreak evolves. On the basis of a Susceptible-Infectious-Recovered-Dead (SIDR) model, we provide estimations of the basic reproduction number (R0), and the per day infection mortality and recovery rates. By calibrating the parameters of the SIRD model to the reported data, we also attempt to forecast the evolution of the outbreak at the epicenter three weeks ahead, i.e. until February 29. As the number of infected individuals, especially of those with asymptomatic or mild courses, is suspected to be much higher than the official numbers, which can be considered only as a subset of the actual numbers of infected and recovered cases in the total population, we have repeated the calculations under a second scenario that considers twenty times the number of confirmed infected cases and forty times the number of recovered, leaving the number of deaths unchanged. Based on the reported data, the expected value of R0 as computed considering the period from the 11th of January until the 18th of January, using the official counts of confirmed cases was found to be ∼4.6, while the one computed under the second scenario was found to be ∼3.2. Thus, based on the SIRD simulations, the estimated average value of R0 was found to be ∼2.6 based on confirmed cases and ∼2 based on the second scenario. Our forecasting flashes a note of caution for the presently unfolding outbreak in China. Based on the official counts for confirmed cases, the simulations suggest that the cumulative number of infected could reach 180,000 (with a lower bound of 45,000) by February 29. Regarding the number of deaths, simulations forecast that on the basis of the up to the 10th of February reported data, the death toll might exceed 2,700 (as a lower bound) by February 29. Our analysis further reveals a significant decline of the case fatality ratio from January 26 to which various factors may have contributed, such as the severe control measures taken in Hubei, China (e.g. quarantine and hospitalization of infected individuals), but mainly because of the fact that the actual cumulative numbers of infected and recovered cases in the population most likely are much higher than the reported ones. Thus, in a scenario where we have taken twenty times the confirmed number of infected and forty times the confirmed number of recovered cases, the case fatality ratio is around ∼0.15% in the total population. Importantly, based on this scenario, simulations suggest a slow down of the outbreak in Hubei at the end of February.Since the first suspected case of coronavirus disease-2019 (COVID-19) on December 1st, 2019, in Wuhan, Hubei Province, China, a total of 40,235 confirmed cases and 909 deaths have been reported in China up to February 10, 2020, evoking fear locally and internationally. Here, based on the publicly available epidemiological data for Hubei, China from January 11 to February 10, 2020, we provide estimates of the main epidemiological parameters. In particular, we provide an estimation of the case fatality and case recovery ratios, along with their 90% confidence intervals as the outbreak evolves. On the basis of a Susceptible-Infectious-Recovered-Dead (SIDR) model, we provide estimations of the basic reproduction number (R0), and the per day infection mortality and recovery rates. By calibrating the parameters of the SIRD model to the reported data, we also attempt to forecast the evolution of the outbreak at the epicenter three weeks ahead, i.e. until February 29. As the number of infected individuals, especially of those with asymptomatic or mild courses, is suspected to be much higher than the official numbers, which can be considered only as a subset of the actual numbers of infected and recovered cases in the total population, we have repeated the calculations under a second scenario that considers twenty times the number of confirmed infected cases and forty times the number of recovered, leaving the number of deaths unchanged. Based on the reported data, the expected value of R0 as computed considering the period from the 11th of January until the 18th of January, using the official counts of confirmed cases was found to be ∼4.6, while the one computed under the second scenario was found to be ∼3.2. Thus, based on the SIRD simulations, the estimated average value of R0 was found to be ∼2.6 based on confirmed cases and ∼2 based on the second scenario. Our forecasting flashes a note of caution for the presently unfolding outbreak in China. Based on the official counts for confirmed cases, the simulations suggest that the cumulative number of infected could reach 180,000 (with a lower bound of 45,000) by February 29. Regarding the number of deaths, simulations forecast that on the basis of the up to the 10th of February reported data, the death toll might exceed 2,700 (as a lower bound) by February 29. Our analysis further reveals a significant decline of the case fatality ratio from January 26 to which various factors may have contributed, such as the severe control measures taken in Hubei, China (e.g. quarantine and hospitalization of infected individuals), but mainly because of the fact that the actual cumulative numbers of infected and recovered cases in the population most likely are much higher than the reported ones. Thus, in a scenario where we have taken twenty times the confirmed number of infected and forty times the confirmed number of recovered cases, the case fatality ratio is around ∼0.15% in the total population. Importantly, based on this scenario, simulations suggest a slow down of the outbreak in Hubei at the end of February.
Audience Academic
Author Siettos, Constantinos
Anastassopoulou, Cleo
Tsakris, Athanasios
Russo, Lucia
AuthorAffiliation 2 Consiglio Nazionale delle Ricerche, Science and Technology for Energy and Sustainable Mobility, Napoli, Italy
Center for Disease control and Prevention, UNITED STATES
3 Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università degli Studi di Napoli Federico II, Napoli, Italy
1 Department of Microbiology, Medical School, University of Athens, Athens, Greece
AuthorAffiliation_xml – name: 1 Department of Microbiology, Medical School, University of Athens, Athens, Greece
– name: Center for Disease control and Prevention, UNITED STATES
– name: 2 Consiglio Nazionale delle Ricerche, Science and Technology for Energy and Sustainable Mobility, Napoli, Italy
– name: 3 Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università degli Studi di Napoli Federico II, Napoli, Italy
Author_xml – sequence: 1
  givenname: Cleo
  surname: Anastassopoulou
  fullname: Anastassopoulou, Cleo
– sequence: 2
  givenname: Lucia
  surname: Russo
  fullname: Russo, Lucia
– sequence: 3
  givenname: Athanasios
  surname: Tsakris
  fullname: Tsakris, Athanasios
– sequence: 4
  givenname: Constantinos
  orcidid: 0000-0002-9568-3355
  surname: Siettos
  fullname: Siettos, Constantinos
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32231374$$D View this record in MEDLINE/PubMed
BookMark eNqNk2uL1DAUhousuBf9B6KFBVGwYy5t0vhBWGZ1HVgY8LJfw2mazmRsm7FJxf33pjsdmS6LSD-0PXneNzkvOafRUWtbHUXPMZphyvG7je27FurZNpRniFCUouxRdIIFJQkjiB4dfB9Hp85tEMpoztiT6JgSQoNJehJdXYKHpACnyxiC3a0z7m3c2FLXtWlXoVbGle20AueHf1vFfq3j-fJmcZlgEdveF52GH0-jxxXUTj8b32fR908fv80_J9fLq8X84jpRTBCf4ApDBkWlMo5BaCSE5gznTGFIM8CgVQEKBQIxVaBUVEyhsJriHJTIRErPopc7321tnRwzcJLQPOWCI0oCsdgRpYWN3Hamge5WWjDyrmC7lYTOG1VrKVimc1FxTSuRMgIFyQVlRDGl6XCm4PVh3K0vGl0q3foO6onpdKU1a7myvyTHKOepCAavR4PO_uy187IxToVsodW2vzt3RnjKyYCe30Mf7m6kVhAaMG1lw75qMJUXDAuUMc55oGYPUOEpdWNUuDCVCfWJ4M1EEBivf_sV9M7Jxdcv_88ub6bsqwN2raH2a2fr3hvbuin44jDpvxHvb2oA3u8A1VnnOl1JZTwMPqE1U0uM5DAW-9DkMBZyHIsgTu-J9_7_lP0BhgwOoQ
CitedBy_id crossref_primary_10_1109_TCSS_2021_3075955
crossref_primary_10_1155_2021_6647425
crossref_primary_10_1016_j_enfcli_2020_05_001
crossref_primary_10_1371_journal_pone_0241332
crossref_primary_10_1371_journal_pone_0328888
crossref_primary_10_1371_journal_pone_0267840
crossref_primary_10_1038_s41598_021_86873_0
crossref_primary_10_1080_09720510_2020_1840076
crossref_primary_10_1371_journal_pone_0273964
crossref_primary_10_1016_j_physd_2020_132809
crossref_primary_10_1038_s41598_020_76710_1
crossref_primary_10_1097_EDE_0000000000001773
crossref_primary_10_1016_j_plrev_2024_10_011
crossref_primary_10_3389_fpubh_2020_598547
crossref_primary_10_1007_s00366_023_01816_9
crossref_primary_10_1016_j_imu_2021_100691
crossref_primary_10_1038_s41598_021_91970_1
crossref_primary_10_1080_17477778_2020_1800422
crossref_primary_10_1016_j_eswa_2022_117977
crossref_primary_10_1016_j_asoc_2021_107155
crossref_primary_10_1038_s41564_022_01233_6
crossref_primary_10_4018_JDM_305731
crossref_primary_10_1103_PhysRevE_104_024412
crossref_primary_10_1007_s10100_021_00779_w
crossref_primary_10_1007_s40313_021_00757_2
crossref_primary_10_1016_j_jad_2021_05_034
crossref_primary_10_1002_wics_1645
crossref_primary_10_1097_MD_0000000000024749
crossref_primary_10_1371_journal_pone_0238280
crossref_primary_10_1371_journal_pone_0243189
crossref_primary_10_1007_s11071_021_06572_3
crossref_primary_10_1088_1478_3975_abd0dc
crossref_primary_10_1080_00167428_2021_1947139
crossref_primary_10_1002_hsr2_274
crossref_primary_10_1007_s11071_023_09077_3
crossref_primary_10_1098_rsos_220004
crossref_primary_10_1002_sta4_328
crossref_primary_10_1016_j_mbs_2025_109379
crossref_primary_10_1098_rsos_220489
crossref_primary_10_1080_16549716_2020_1760490
crossref_primary_10_1097_SLA_0000000000004400
crossref_primary_10_1016_j_mjafi_2021_05_005
crossref_primary_10_1093_imammb_dqae008
crossref_primary_10_6339_21_JDS1001
crossref_primary_10_1016_j_jeconom_2024_105787
crossref_primary_10_1080_23311916_2022_2047317
crossref_primary_10_1016_j_jeconom_2020_07_049
crossref_primary_10_1080_02664763_2021_1907839
crossref_primary_10_1109_TCSS_2022_3225639
crossref_primary_10_1109_ACCESS_2020_3019989
crossref_primary_10_1016_j_jbi_2021_103760
crossref_primary_10_1186_s13018_020_01976_0
crossref_primary_10_1371_journal_pone_0239235
crossref_primary_10_1038_s41598_021_04494_z
crossref_primary_10_1007_s11042_023_17330_5
crossref_primary_10_12688_f1000research_73969_1
crossref_primary_10_1016_j_cca_2020_07_007
crossref_primary_10_1007_s12648_021_02195_x
crossref_primary_10_1017_ice_2020_101
crossref_primary_10_1007_s13171_023_00312_y
crossref_primary_10_1155_2022_7731618
crossref_primary_10_1007_s11831_023_09997_8
crossref_primary_10_1007_s40484_020_0215_4
crossref_primary_10_1016_j_annepidem_2022_03_002
crossref_primary_10_1186_s12889_023_15092_1
crossref_primary_10_1017_S0950268822000590
crossref_primary_10_24136_oc_2021_018
crossref_primary_10_1088_1742_6596_2392_1_012002
crossref_primary_10_1002_pa_2257
crossref_primary_10_1016_j_asoc_2022_109750
crossref_primary_10_1016_j_chaos_2022_112306
crossref_primary_10_1371_journal_pone_0240578
crossref_primary_10_1155_2022_3816492
crossref_primary_10_1016_j_arcontrol_2020_09_003
crossref_primary_10_1080_03014460_2020_1839132
crossref_primary_10_3934_publichealth_2021048
crossref_primary_10_1080_20421338_2020_1817262
crossref_primary_10_1007_s00148_022_00916_y
crossref_primary_10_1016_j_chaos_2025_116284
crossref_primary_10_1007_s10441_025_09499_z
crossref_primary_10_1038_s43856_022_00139_y
crossref_primary_10_3389_fphy_2021_629320
crossref_primary_10_1109_TEM_2021_3076603
crossref_primary_10_1371_journal_pone_0239175
crossref_primary_10_1016_j_scitotenv_2020_138817
crossref_primary_10_1016_j_imu_2022_100929
crossref_primary_10_1007_s12061_024_09588_5
crossref_primary_10_1016_j_asoc_2020_106932
crossref_primary_10_1016_j_smhl_2021_100218
crossref_primary_10_1016_j_ehb_2022_101198
crossref_primary_10_1371_journal_pone_0275546
crossref_primary_10_1016_j_spasta_2025_100910
crossref_primary_10_3389_fpubh_2020_580815
crossref_primary_10_1007_s11071_022_07347_0
crossref_primary_10_1007_s11831_021_09634_2
crossref_primary_10_1016_j_socscimed_2020_113645
crossref_primary_10_1093_imammb_dqaf005
crossref_primary_10_1038_s41598_021_82932_8
crossref_primary_10_3389_fpubh_2022_922795
crossref_primary_10_1097_MD_0000000000028749
crossref_primary_10_1049_sfw2_12139
crossref_primary_10_1007_s00521_024_09449_9
crossref_primary_10_1016_j_jfranklin_2024_106994
crossref_primary_10_1097_MD_0000000000029718
crossref_primary_10_1007_s42979_025_03658_2
crossref_primary_10_1016_j_ribaf_2021_101491
crossref_primary_10_1080_09720502_2020_1848316
crossref_primary_10_1371_journal_pone_0239960
crossref_primary_10_1016_j_ajem_2020_08_034
crossref_primary_10_1007_s10389_020_01403_y
crossref_primary_10_1016_j_chaos_2021_111246
crossref_primary_10_3389_fpubh_2021_809987
crossref_primary_10_1007_s12553_021_00553_7
crossref_primary_10_1016_j_meegid_2021_104896
crossref_primary_10_1038_s41591_020_0883_7
crossref_primary_10_1109_ACCESS_2021_3068215
crossref_primary_10_7717_peerj_cs_564
crossref_primary_10_7717_peerj_10806
crossref_primary_10_1007_s11071_021_06536_7
crossref_primary_10_1097_MD_0000000000028619
crossref_primary_10_1016_j_chaos_2020_110088
crossref_primary_10_1177_0846537120928864
crossref_primary_10_1007_s13369_022_06819_0
crossref_primary_10_4081_jphr_2021_2130
crossref_primary_10_32628_IJSRST218546
crossref_primary_10_1371_journal_pone_0235112
crossref_primary_10_1007_s42979_021_00598_5
crossref_primary_10_1016_j_socscimed_2020_113549
crossref_primary_10_1038_s41598_020_77709_4
crossref_primary_10_1371_journal_pone_0237417
crossref_primary_10_1016_j_matpr_2021_07_266
crossref_primary_10_1371_journal_pone_0250029
crossref_primary_10_1007_s10182_021_00433_5
crossref_primary_10_1186_s12992_021_00707_2
crossref_primary_10_1080_09720502_2021_1959002
crossref_primary_10_7717_peerj_cs_1971
crossref_primary_10_1186_s42787_021_00122_x
crossref_primary_10_1016_j_chaos_2021_110922
crossref_primary_10_3389_fpubh_2021_623521
crossref_primary_10_3390_math11010136
crossref_primary_10_1186_s13662_020_03141_7
crossref_primary_10_1038_s41598_024_67161_z
crossref_primary_10_1016_j_mbs_2020_108514
crossref_primary_10_1080_17477778_2022_2062260
crossref_primary_10_1093_jrsssc_qlad083
crossref_primary_10_1371_journal_pone_0244177
crossref_primary_10_1007_s00530_021_00798_2
crossref_primary_10_3389_fpubh_2023_1142471
crossref_primary_10_1038_s41598_021_91114_5
crossref_primary_10_1371_journal_pone_0236310
crossref_primary_10_1186_s42787_021_00118_7
crossref_primary_10_1016_j_chaos_2020_110073
crossref_primary_10_1371_journal_pcbi_1008431
crossref_primary_10_1016_j_chaos_2021_111227
crossref_primary_10_1007_s10668_023_03185_1
crossref_primary_10_1007_s40808_020_01080_6
crossref_primary_10_1016_j_meegid_2020_104506
crossref_primary_10_1016_j_procs_2021_01_036
crossref_primary_10_1007_s11538_022_01076_6
crossref_primary_10_1016_j_landurbplan_2020_103955
crossref_primary_10_1371_journal_pone_0236386
crossref_primary_10_3389_frai_2023_1266560
crossref_primary_10_3389_fpubh_2024_1279572
crossref_primary_10_1109_ACCESS_2021_3051929
crossref_primary_10_1371_journal_pone_0303062
crossref_primary_10_1371_journal_pone_0253835
crossref_primary_10_1007_s12597_024_00834_5
crossref_primary_10_3389_fpubh_2022_877621
crossref_primary_10_7717_peerj_cs_746
crossref_primary_10_1016_j_physa_2021_125831
crossref_primary_10_1140_epjp_s13360_022_02525_w
crossref_primary_10_1371_journal_pone_0295242
crossref_primary_10_1016_j_tips_2020_09_005
crossref_primary_10_1007_s42979_021_00699_1
crossref_primary_10_1016_j_cie_2022_108003
crossref_primary_10_1016_j_matcom_2024_08_011
crossref_primary_10_1080_00015385_2021_1887586
crossref_primary_10_1155_2022_2138165
crossref_primary_10_1016_j_chaos_2020_110057
crossref_primary_10_1016_j_chaos_2020_110298
crossref_primary_10_1371_journal_pone_0241163
crossref_primary_10_1093_imammb_dqab017
crossref_primary_10_1093_imammb_dqab019
crossref_primary_10_1111_rssb_12453
crossref_primary_10_1007_s42600_020_00084_6
crossref_primary_10_1007_s42979_021_00810_6
crossref_primary_10_1016_j_asoc_2021_107561
crossref_primary_10_2196_24925
crossref_primary_10_1098_rsta_2024_0232
crossref_primary_10_24060_2076_3093_202010_3_233_240
crossref_primary_10_1007_s11116_021_10210_7
crossref_primary_10_1016_j_chaos_2020_110046
crossref_primary_10_1080_10485252_2021_1988084
crossref_primary_10_2147_CLEP_S366142
crossref_primary_10_1140_epjp_s13360_020_00526_1
crossref_primary_10_1371_journal_pone_0246285
crossref_primary_10_3389_fmed_2020_00321
crossref_primary_10_1371_journal_pone_0273469
crossref_primary_10_1007_s12553_021_00587_x
crossref_primary_10_1016_j_dsp_2022_103577
crossref_primary_10_1016_j_eswa_2020_114077
crossref_primary_10_1371_journal_pone_0287196
crossref_primary_10_1007_s10489_021_02379_2
crossref_primary_10_1007_s00521_020_05626_8
crossref_primary_10_1016_j_ejor_2021_12_037
crossref_primary_10_1017_S1358246122000248
crossref_primary_10_55195_jscai_1108528
crossref_primary_10_1371_journal_pone_0241949
crossref_primary_10_3390_pr9081267
crossref_primary_10_1371_journal_pone_0254397
crossref_primary_10_15302_J_QB_022_0301
crossref_primary_10_1038_s41467_020_20687_y
crossref_primary_10_1186_s12889_023_15160_6
crossref_primary_10_1209_0295_5075_131_58003
crossref_primary_10_1002_pa_2537
crossref_primary_10_1016_j_intimp_2021_108127
crossref_primary_10_1007_s10182_024_00507_0
crossref_primary_10_1080_02664763_2021_1970122
crossref_primary_10_1016_j_chaos_2020_110152
crossref_primary_10_1093_pcmedi_pbaa018
crossref_primary_10_1109_TCYB_2022_3164412
crossref_primary_10_1186_s12889_021_10605_2
crossref_primary_10_1186_s12913_022_08365_9
crossref_primary_10_1007_s41207_022_00307_5
crossref_primary_10_1016_j_chaos_2020_110157
crossref_primary_10_1155_2021_6927985
crossref_primary_10_1371_journal_pone_0238412
crossref_primary_10_1038_s41598_021_84055_6
crossref_primary_10_1177_0972150920988653
crossref_primary_10_1016_j_imu_2021_100618
crossref_primary_10_1038_s41598_020_74386_1
crossref_primary_10_2196_29957
crossref_primary_10_1016_j_jtbi_2022_111151
crossref_primary_10_1371_journal_pone_0256227
crossref_primary_10_1515_comp_2020_0221
crossref_primary_10_1007_s13538_025_01769_y
crossref_primary_10_1109_TASE_2021_3106782
crossref_primary_10_1007_s10479_025_06795_2
crossref_primary_10_1016_j_compbiomed_2021_105013
crossref_primary_10_3917_med_204_0099
crossref_primary_10_1007_s11071_020_05989_6
crossref_primary_10_3201_eid2611_201074
crossref_primary_10_15302_J_QB_022_0292
crossref_primary_10_1136_bmjopen_2020_043560
crossref_primary_10_1155_2021_7196492
crossref_primary_10_3389_fpubh_2023_1124998
crossref_primary_10_1016_j_arcontrol_2021_02_002
crossref_primary_10_1038_s41598_021_93388_1
crossref_primary_10_1016_j_compbiomed_2021_104657
crossref_primary_10_3389_fpubh_2021_727274
crossref_primary_10_1007_s42979_021_00764_9
crossref_primary_10_1016_j_amc_2023_128021
crossref_primary_10_1016_j_envres_2022_112690
crossref_primary_10_1371_journal_pone_0248161
crossref_primary_10_1016_j_genrep_2021_101064
crossref_primary_10_1016_j_meegid_2020_104668
crossref_primary_10_1038_s41598_023_48465_y
crossref_primary_10_2196_19822
crossref_primary_10_1016_j_compbiomed_2020_104011
crossref_primary_10_1016_j_dib_2020_106175
crossref_primary_10_1371_journal_pone_0252394
crossref_primary_10_1016_j_tra_2022_05_002
crossref_primary_10_3389_fpubh_2022_1033432
crossref_primary_10_1038_s41598_020_76490_8
crossref_primary_10_1016_j_mjafi_2020_04_010
crossref_primary_10_1287_mnsc_2022_02953
crossref_primary_10_1371_journal_pone_0257289
crossref_primary_10_1038_s41598_021_04029_6
crossref_primary_10_1186_s13362_021_00101_y
crossref_primary_10_1002_cjs_11723
crossref_primary_10_1038_s41598_025_86739_9
crossref_primary_10_1038_s41598_020_67459_8
crossref_primary_10_3145_epi_2020_jul_21
crossref_primary_10_1080_21681163_2022_2120829
crossref_primary_10_1007_s11071_021_06568_z
crossref_primary_10_1093_gigascience_giab009
crossref_primary_10_1140_epje_s10189_022_00225_y
crossref_primary_10_1080_00194506_2020_1855085
crossref_primary_10_1016_j_procs_2021_10_028
crossref_primary_10_1098_rsos_220329
crossref_primary_10_1371_journal_pone_0271577
crossref_primary_10_1371_journal_pone_0265477
crossref_primary_10_1016_j_meegid_2021_104817
crossref_primary_10_1186_s12879_022_07472_6
crossref_primary_10_1016_j_eswa_2020_113970
crossref_primary_10_1038_s41598_020_79039_x
crossref_primary_10_1088_1742_6596_2036_1_012029
crossref_primary_10_1080_24709360_2025_2505290
crossref_primary_10_1016_j_compbiomed_2021_104422
crossref_primary_10_1038_s41598_022_16496_6
crossref_primary_10_1080_0020739X_2023_2249901
crossref_primary_10_1016_j_physa_2020_125581
crossref_primary_10_1080_17477778_2021_1965501
crossref_primary_10_1007_s00779_020_01494_0
crossref_primary_10_1007_s10489_023_05011_7
crossref_primary_10_1002_cjs_11817
crossref_primary_10_1038_s41598_021_88281_w
crossref_primary_10_1080_01605682_2024_2442005
crossref_primary_10_1097_MD_0000000000028134
crossref_primary_10_3390_math8101793
crossref_primary_10_1002_sim_9925
crossref_primary_10_1371_journal_pcbi_1008837
crossref_primary_10_1016_j_physrep_2020_07_005
crossref_primary_10_1111_poms_13681
crossref_primary_10_1016_j_isatra_2021_01_028
crossref_primary_10_1007_s00466_020_01889_z
crossref_primary_10_1016_j_cmpb_2023_107443
crossref_primary_10_1038_s41598_021_89014_9
crossref_primary_10_3389_fams_2024_1365184
crossref_primary_10_1007_s42979_022_01225_7
crossref_primary_10_1137_20M1373335
crossref_primary_10_1080_02648725_2021_1966920
crossref_primary_10_3389_fphy_2022_936618
crossref_primary_10_1186_s12889_021_10676_1
crossref_primary_10_1016_j_chaos_2020_110007
crossref_primary_10_1371_journal_pone_0242957
crossref_primary_10_1007_s11356_020_11930_6
crossref_primary_10_1002_rmv_2111
crossref_primary_10_1016_j_envsci_2021_05_025
crossref_primary_10_1016_j_epidem_2021_100439
crossref_primary_10_6061_clinics_2020_e2084
crossref_primary_10_1002_rmv_2113
crossref_primary_10_1371_journal_pone_0261330
crossref_primary_10_3934_bdia_2020004
crossref_primary_10_1007_s41324_020_00375_1
crossref_primary_10_1111_1756_185X_14405
crossref_primary_10_2196_24192
crossref_primary_10_1590_s0103_73312020300317
crossref_primary_10_1109_ACCESS_2020_3024910
crossref_primary_10_1038_s41598_021_92634_w
crossref_primary_10_2196_22321
crossref_primary_10_1371_journal_pone_0240649
crossref_primary_10_1007_s40808_024_02046_8
crossref_primary_10_1016_j_apm_2023_05_027
crossref_primary_10_1016_j_asoc_2022_108973
crossref_primary_10_1016_j_chaos_2021_110655
crossref_primary_10_1109_JSTSP_2022_3140703
crossref_primary_10_1371_journal_pone_0258164
Cites_doi 10.4161/viru.24041
10.1093/aje/kwi230
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Anastassopoulou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Anastassopoulou et al 2020 Anastassopoulou et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Anastassopoulou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Anastassopoulou et al 2020 Anastassopoulou et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0230405
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (ProQuest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic

Agricultural Science Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Forecasting of the COVID-19 outbreak
EISSN 1932-6203
ExternalDocumentID 2384797032
oai_doaj_org_article_965e89f7e3f9462ab289362c6ce386c1
PMC7108749
A619056777
32231374
10_1371_journal_pone_0230405
Genre Journal Article
GeographicLocations China
Greece
Italy
GeographicLocations_xml – name: China
– name: Greece
– name: Italy
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
PUEGO
5PM
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c692t-1f1a5abfc571a9e099e76186c1a45a1aecbac05ab06cb049f6c086c418ac95943
IEDL.DBID DOA
ISICitedReferencesCount 481
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000535937400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Fri Nov 26 17:12:46 EST 2021
Fri Oct 03 12:51:13 EDT 2025
Tue Nov 04 01:38:05 EST 2025
Thu Oct 02 06:22:30 EDT 2025
Tue Oct 07 07:45:38 EDT 2025
Sat Nov 29 13:12:52 EST 2025
Sat Nov 29 10:11:11 EST 2025
Wed Nov 26 09:31:51 EST 2025
Wed Nov 26 09:44:52 EST 2025
Thu May 22 21:21:14 EDT 2025
Mon Jul 21 05:47:05 EDT 2025
Tue Nov 18 22:14:19 EST 2025
Sat Nov 29 04:00:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-1f1a5abfc571a9e099e76186c1a45a1aecbac05ab06cb049f6c086c418ac95943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-9568-3355
OpenAccessLink https://doaj.org/article/965e89f7e3f9462ab289362c6ce386c1
PMID 32231374
PQID 2384797032
PQPubID 1436336
PageCount e0230405
ParticipantIDs plos_journals_2384797032
doaj_primary_oai_doaj_org_article_965e89f7e3f9462ab289362c6ce386c1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7108749
proquest_miscellaneous_2385274729
proquest_journals_2384797032
gale_infotracmisc_A619056777
gale_infotracacademiconefile_A619056777
gale_incontextgauss_ISR_A619056777
gale_incontextgauss_IOV_A619056777
gale_healthsolutions_A619056777
pubmed_primary_32231374
crossref_citationtrail_10_1371_journal_pone_0230405
crossref_primary_10_1371_journal_pone_0230405
PublicationCentury 2000
PublicationDate 2020-03-31
PublicationDateYYYYMMDD 2020-03-31
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References P Zhou (pone.0230405.ref005) 2020
JT Wu (pone.0230405.ref012) 2020
CI Siettos (pone.0230405.ref013) 2013; 4
P Wu (pone.0230405.ref017) 2020; 25
nCoV CDC Response Team (pone.0230405.ref007) 2020
pone.0230405.ref018
C Hunag (pone.0230405.ref008) 2020
E Dong (pone.0230405.ref016) 2020
N Imai (pone.0230405.ref011) 2019
pone.0230405.ref021
N Chen (pone.0230405.ref006) 2020
pone.0230405.ref001
pone.0230405.ref002
S Zhao (pone.0230405.ref010) 2020
pone.0230405.ref003
pone.0230405.ref014
pone.0230405.ref015
R Lu (pone.0230405.ref004) 2020
AC Ghani (pone.0230405.ref019) 2005; 162
D Wang (pone.0230405.ref009) 2020
M Battegay (pone.0230405.ref022) 2020
pone.0230405.ref020
References_xml – ident: pone.0230405.ref003
– ident: pone.0230405.ref002
– ident: pone.0230405.ref001
– year: 2020
  ident: pone.0230405.ref008
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
– volume: 25
  issue: 3
  year: 2020
  ident: pone.0230405.ref017
  article-title: Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020
  publication-title: Eurosurveillance
– volume: 4
  start-page: 295
  issue: 4
  year: 2013
  ident: pone.0230405.ref013
  article-title: Mathematical modeling of infectious disease dynamics
  publication-title: Virulence
  doi: 10.4161/viru.24041
– ident: pone.0230405.ref021
– ident: pone.0230405.ref020
– year: 2020
  ident: pone.0230405.ref005
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– volume: 162
  start-page: 479
  issue: 5
  year: 2005
  ident: pone.0230405.ref019
  article-title: Methods for Estimating the Case Fatality Ratio for a Novel, Emerging Infectious Disease
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/kwi230
– year: 2020
  ident: pone.0230405.ref009
  article-title: Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China
  publication-title: JAMA
– year: 2020
  ident: pone.0230405.ref016
  article-title: An interactive web-based dashboard to track COVID-19 in real time
  publication-title: The Lancet Infectious Diseases
– ident: pone.0230405.ref015
– year: 2020
  ident: pone.0230405.ref010
  article-title: Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak
  publication-title: Int J Infect Dis
– year: 2020
  ident: pone.0230405.ref022
  article-title: 2019-novel Coronavirus (2019-nCoV): estimating the case fatality rate—a word of caution
  publication-title: Swiss Medical Weekly
– year: 2020
  ident: pone.0230405.ref007
  article-title: Initial Public Health Response and Interim Clinical Guidance for the 2019 Novel Coronavirus Outbreak—United States, December 31, 2019-February 4, 2020
  publication-title: MMWR Morb Mortal Wkly Rep
– year: 2020
  ident: pone.0230405.ref012
  article-title: Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study
  publication-title: The Lancet
– ident: pone.0230405.ref018
– year: 2020
  ident: pone.0230405.ref004
  article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding
  publication-title: The Lancet
– year: 2019
  ident: pone.0230405.ref011
  article-title: Report 3: Transmissibility of 2019-nCoV
  publication-title: Int J Infect Dis
– year: 2020
  ident: pone.0230405.ref006
  article-title: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study
  publication-title: The Lancet
– ident: pone.0230405.ref014
SSID ssj0053866
Score 2.723575
Snippet Since the first suspected case of coronavirus disease-2019 (COVID-19) on December 1st, 2019, in Wuhan, Hubei Province, China, a total of 40,235 confirmed cases...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0230405
SubjectTerms Analysis
Asymptomatic
Basic Reproduction Number
Betacoronavirus
Biology and Life Sciences
China
China - epidemiology
Computation
Computer simulation
Confidence intervals
Coronaviridae
Coronavirus Infections - mortality
Coronaviruses
COVID-19
Data Interpretation, Statistical
Disease Outbreaks
Epidemiologic Measurements
Epidemiology
Fatalities
Forecasting
Health aspects
Humans
Infection Control
Lower bounds
Mathematical models
Medicine and Health Sciences
Middle East respiratory syndrome
Models, Statistical
Mortality
Outbreaks
Pandemics
Parameter estimation
People and Places
Physical Sciences
Pneumonia, Viral - mortality
Quarantine
Recovery
Research and Analysis Methods
SARS-CoV-2
Viral diseases
SummonAdditionalLinks – databaseName: Biological Science Database (ProQuest)
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db5UwtNGrD76o82voVDQmamI3SgulT2ZuTpeYbfHjZm-klDIXF7heuP5-zykFh1nUxFd6IPR8n_Z8EPKMR1qxEsLUyiQlFTaLaKEKTeMKxKuQWWTcjKX5B3lwkB0fqyN_4Nb6tMpBJzpFXTYGz8i3wLQIqYA_49eL7xSnRuHtqh-hcZlcwS4J3KXuHQ2aGGQ5TX25HJdsy1Nnc9HUdhN9b4FD686ZI9e1f9TNs8VZ017keP6eP3nOIO3d-N-t3CTXvSsabve8s0Yu2foWWfPC3oYvfEfql7fJu13daYoGrwy172LyKnRDdLCaHZ6VITi_1ugWs6jDpgrBrwx3Duf7u5SpsFl1EHnrb3fIl723n3feUz-BgZpUxR1lFdOJLoCOkmllwZu0EhvsG6ZFopm2ptAmAogoNQXEGlVqIEQygmXaqEQJfpfMasD2OgmlKZSquMGbTcErrXmawUeEikqZWMYCwgdC5Ma3J8cpGWe5u3OTEKb0aMmRfLknX0Do-Naib8_xF_g3SOMRFptruwfN8iT3spqrNLGZqqTllRJprAv4ZbDzJjWW494D8hg5JO8rVUcVkW9DMAr-pJQyIE8dBDbYqDGD50Sv2jbfP5z_A9CnjxOg5x6oagAdRvuqCdgTNu6aQG5MIEFNmMnyOvLzgJU2_8WF8ObApxcvPxmX8aOYlVfbZuVgEjzViFVA7vUiMWIWDAUHMoiAyImwTFA_XalPv7r-5uD0ZlKo-3_-rQfkWoxnH64-dIPMuuXKPiRXzY_utF0-corgJ9mZZj4
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQwoELUF4NFDAICZBIG8eOHR9Ly0Klqq14rHqLHMemVatk1WT5_cxkvYFUrYBrPI7ssedlz3wm5DVPjGYVhKneZlUsXJ7EpS5NnHoQr1Llie3fWJrtq4OD_PhYH_0OFC_d4HPFtgJPN-dN7TbRYxYIWXoz5VJiCtf0aH-leUF2pQzlcdf1HJmfHqV_0MWT-XnTXuVoXs6X_MMATe_-79DvkTvB1aTby72xRm64-j5ZC8Lc0rcBcfrdA_Jp13QmRoNWURNQSt7T_pEcrFaHbxUF59ZZ02KWNG08Bb-R7hzO9nZjpmmz6CCyNmcPyffpx287n-PwwkJspU67mHlmMlPCOilmtANv0SkE0LfMiMww42xpbAIUibQlxBJeWgiBrGC5sTrTgj8ikxomt06osqXWnlu8uRTcG8NlDj8ROqlU5hiLCF8xvrABfhxfwTgv-js1BWHIki0FcqsI3IpIPPSaL-E3_kL_Add0oEXw7P4DLEsRZLHQMnO59spxr4VMTQlDBjtupXUc5x6RF7gjimUl6qACim0INsFfVEpF5FVPgQAaNWbo_DCLti32Dmf_QPT1y4joTSDyDbDDmlAVAXNCYK4R5caIEtSAHTWv4_5dcaUtwBcTSoNCT6Hnak9f3fxyaMafYtZd7ZpFT5PhqUWqI_J4KQIDZ8EQcFgGERE1Eo4R68ct9elJj18OTm2uhH5y_Yifktspnmv0tZ8bZNJdLNwzcsv-7E7bi-e90P8CqfRUdA
  priority: 102
  providerName: Public Library of Science
Title Data-based analysis, modelling and forecasting of the COVID-19 outbreak
URI https://www.ncbi.nlm.nih.gov/pubmed/32231374
https://www.proquest.com/docview/2384797032
https://www.proquest.com/docview/2385274729
https://pubmed.ncbi.nlm.nih.gov/PMC7108749
https://doaj.org/article/965e89f7e3f9462ab289362c6ce386c1
http://dx.doi.org/10.1371/journal.pone.0230405
Volume 15
WOSCitedRecordID wos000535937400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELeg8MALYnwtMEpASIBEujhfjh_XboVqWxd1UHW8RI7jwMSUVEvL38-d40YNmjQeeLmH-Bwld-fzXXL-HSHvfFdwmkOaWsgwdwIVu07GM-F4BSyvjMWu1D2W5idsOo0XC55stfrCmrAGHrgR3D6PQhXzgim_4EHkiQwyBHC6MpLKjyOpEx-IejbJVOODYRVHkTko5zO6b_QyWFalGmDUHWC7uq2NSOP1t165t7yq6ptCzr8rJ7e2ovEj8tDEkPZB8-w75I4qH5Mds0pr-4OBkv74hHw-FCvh4E6V28LAj3yydfcbPIYO13IbolYlRY3lz3ZV2BAQ2qOz-eTQodyu1itImcWvp-Tb-Ojr6ItjWic4MuLeyqEFFaHIQAGMCq4gDFQMkfElFUEoqFAyE9IFDjeSGSQJRSQht5EBjYXkIQ_8Z6RXgrB2ic1kxnnhS_wlGfiFEH4Uw00C7uYsVJRaxN_IMZUGVxzbW1yl-mcZg_yiEUuK0k-N9C3itLOWDa7GLfxDVFHLi6jY-gLYSmpsJb3NVizyGhWcNkdM27WdHkAWCYEgY8wibzUHImOUWHrzQ6zrOp2czf-B6XzWYXpvmIoKxCGFOe4A74SIWx3OvQ4nrG_ZGd5Fc9xIpU4hyAoYB0_twcyNid48_KYdxptiOV2pqrXmCfFzhMct8ryx6Fay4OF9UENgEdax9Y7ouyPl5U8NTA7RaswC_uJ_6OoleeDhpw19_HOP9FbXa_WK3Je_V5f1dZ_cZbM50gXTNAYaj2if3BseTZNZX3sDoOPkBOjxcAD01D1GyhJNz4Em4XeYkUxOk4s_ne1kTw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKggQXoLwaKDQgECA1bZyX4wNCpUvpqsu2Ku2qt-A4TqmokmWzC-JP8RuZcZzQoAq49MA1nlj2eB6fHzNDyFPfFZxmsE3NZZg5gYpdJ-WpcLwc1CtlsSt1jaXxkI1G8dER31sgP5pYGHxW2dhEbaizUuIZ-Tq4loBxkE_v9eSLg1Wj8Ha1KaFRi8WO-v4NtmzVq0Ef1veZ5229PdjcdkxVAUdG3Js5NKciFCmMjVHBFSAkxTBpvKQiCAUVSqZCukDhRjIF_JxHEmC_DGgsJA954EO_l8hlsOMUn5Cx_XFj-cF2RJEJz_MZXTfSsDYpC7WGWD_AInln3J-uEtD6gt7ktKzOA7q_v9c84wC3bvxvrLtJrhuobW_UurFIFlRxiywaY1bZL0zG7Ze3ybu-mAkHHXpmC5OlZdXWRYIwWh--ZTaAeyVFha_E7TK3ATfbm7vjQd-h3C7nsxTA9-c75PBCJnSX9ApY3SViM5lynvsSb24DPxfCj2LoJOBuxkJFqUX8ZuETadKvYxWQ00TfKTLYhtVsSVBcEiMuFnHavyZ1-pG_0L9BmWppMXm4_lBOjxNjixIehSrmOVN-zoPIEykMGXCMjKTyce4WWUGJTOpI3NYEJhuw2Qa8zBizyBNNgQlECnyhdCzmVZUMdsf_QPRhv0P03BDlJbBDChMVAnPCxGQdyuUOJZhB2WleQv1puFIlv6Qe_mz04vzmx20zdoqvDgtVzjVNiKc2HrfIvVoFW86CI_RhGQKLsI5ydljfbSlOPun87QDqYxbw-38e1gq5un3wfpgMB6OdB-Sah-c8OhZ2mfRm07l6SK7Ir7OTavpIGyGbfLxo1f0JvlXEhQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R1Nb9Mw1BoFIS7AgLHAYAGBAGlZk9iJ4wNCo6VQbeomPqrdguM4Y2JKStOC-Gv8Ot5LnLCgCbjswDV-sezn92m_D0IeUVcKLwU3NVNB6jAduU4iEun4GbBXwiNXVT2Wpnt8MokOD8XBCvnR5MJgWGUjEytBnRYK78j7oFoYF0Cffj8zYREHw9GL2RcHO0jhS2vTTqMmkV39_Ru4b-Xz8RDO-rHvj169H7xxTIcBR4XCXzhe5slAJrBO7kmhwVrSHAvIK0-yQHpSq0QqFyDcUCVgS2ehAhdAMS-SSgSCUZj3ArnIKVAxZqkP2vASkCNhaFL1KPf6hjK2Z0Wut9HuZ9gw75QqrDoGtHqhNzspyrOM3t9jN08pw9G1_xmN18lVY4LbOzXPrJIVnd8gq0bIlfZTU4n72U3yeigX0kFFn9rSVG_ZsqvmQZjFD99SG4x-rWSJ0eN2kdlgT9uD_el46HjCLpaLBIzyz7fIh3PZ0Brp5XDS68TmKhEiowpfdBnNpKRhBJMw4aY80J5nEdoQQaxMWXbsDnISV2-NHNyzGi0xkk5sSMciTvvXrC5L8hf4l0hfLSwWFa8-FPOj2MioWISBjkTGNc0EC32ZwJLBvlGh0hT3bpFNpM64ztBtRWO8A0442NGcc4s8rCCwsEiOtHUkl2UZj_en_wD07m0H6IkBygpAh5ImWwT2hAXLOpAbHUgQj6ozvI681GCljH9xAPzZ8MjZww_aYZwUoxFzXSwrmABvc3xhkds1O7aYBQVJ4RiYRXiHUTuo747kx5-quu5g7EeciTt_XtYmuQwcG--NJ7t3yRUfr3-qFNkN0lvMl_oeuaS-Lo7L-f1KHtnk43lz7k9Xa8zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-based+analysis%2C+modelling+and+forecasting+of+the+COVID-19+outbreak&rft.jtitle=PloS+one&rft.au=Arikainen%2C+Artur&rft.au=Anastassopoulou%2C+Cleo&rft.au=Russo%2C+Lucia&rft.au=Othumpangat%2C+Sreekumar&rft.date=2020-03-31&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=3&rft.spage=e0230405&rft_id=info:doi/10.1371%2Fjournal.pone.0230405&rft.externalDBID=n%2Fa&rft.externalDocID=A619056777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon