Improved digital chest tomosynthesis image quality by use of a projection-based dual-energy virtual monochromatic convolutional neural network with super resolution
We developed a novel dual-energy (DE) virtual monochromatic (VM) very-deep super-resolution (VDSR) method with an unsharp masking reconstruction algorithm (DE–VM–VDSR) that uses projection data to improve the nodule contrast and reduce ripple artifacts during chest digital tomosynthesis (DT). For es...
Uloženo v:
| Vydáno v: | PloS one Ročník 15; číslo 12; s. e0244745 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
31.12.2020
Public Library of Science (PLoS) |
| Témata: | |
| ISSN: | 1932-6203, 1932-6203 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We developed a novel dual-energy (DE) virtual monochromatic (VM) very-deep super-resolution (VDSR) method with an unsharp masking reconstruction algorithm (DE–VM–VDSR) that uses projection data to improve the nodule contrast and reduce ripple artifacts during chest digital tomosynthesis (DT). For estimating the residual errors from high-resolution and multiscale VM images from the projection space, the DE–VM–VDSR algorithm employs a training network (mini-batch stochastic gradient-descent algorithm with momentum) and a hybrid super-resolution (SR) image [simultaneous algebraic reconstruction technique (SART) total-variation (TV) first-iterative shrinkage–thresholding algorithm (FISTA); SART–TV–FISTA] that involves subjective reconstruction with bilateral filtering (BF) [DE–VM–VDSR with BF]. DE-DT imaging was accomplished by pulsed X-ray exposures rapidly switched between low (60 kV, 37 projection) and high (120 kV, 37 projection) tube-potential kVp by employing a 40° swing angle. This was followed by comparison of images obtained employing the conventional polychromatic filtered backprojection (FBP), SART, SART–TV–FISTA, and DE–VM–SART–TV–FISTA algorithms. The improvements in contrast, ripple artifacts, and resolution were compared using the signal-difference-to-noise ratio (SDNR), Gumbel distribution of the largest variations, radial modulation transfer function (radial MTF) for a chest phantom with simulated ground-glass opacity (GGO) nodules, and noise power spectrum (NPS) for uniform water phantom. The novel DE–VM–VDSR with BF improved the overall performance in terms of SDNR (DE–VM–VDSR with BF: 0.1603, without BF: 0.1517; FBP: 0.0521; SART: 0.0645; SART–TV–FISTA: 0.0984; and DE–VM–SART–TV–FISTA: 0.1004), obtained a Gumbel distribution that yielded good images showing the type of simulated GGO nodules used in the chest phantom, and reduced the ripple artifacts. The NPS of DE–VM–VDSR with BF showed the lowest noise characteristics in the high-frequency region (~0.8 cycles/mm). The DE–VM–VDSR without BF yielded an improved resolution relative to that of the conventional reconstruction algorithms for radial MTF analysis (0.2–0.3 cycles/mm). Finally, based on the overall image quality, DE–VM–VDSR with BF improved the contrast and reduced the high-frequency ripple artifacts and noise. |
|---|---|
| AbstractList | We developed a novel dual-energy (DE) virtual monochromatic (VM) very-deep super-resolution (VDSR) method with an unsharp masking reconstruction algorithm (DE–VM–VDSR) that uses projection data to improve the nodule contrast and reduce ripple artifacts during chest digital tomosynthesis (DT). For estimating the residual errors from high-resolution and multiscale VM images from the projection space, the DE–VM–VDSR algorithm employs a training network (mini-batch stochastic gradient-descent algorithm with momentum) and a hybrid super-resolution (SR) image [simultaneous algebraic reconstruction technique (SART) total-variation (TV) first-iterative shrinkage–thresholding algorithm (FISTA); SART–TV–FISTA] that involves subjective reconstruction with bilateral filtering (BF) [DE–VM–VDSR with BF]. DE-DT imaging was accomplished by pulsed X-ray exposures rapidly switched between low (60 kV, 37 projection) and high (120 kV, 37 projection) tube-potential kVp by employing a 40° swing angle. This was followed by comparison of images obtained employing the conventional polychromatic filtered backprojection (FBP), SART, SART–TV–FISTA, and DE–VM–SART–TV–FISTA algorithms. The improvements in contrast, ripple artifacts, and resolution were compared using the signal-difference-to-noise ratio (SDNR), Gumbel distribution of the largest variations, radial modulation transfer function (radial MTF) for a chest phantom with simulated ground-glass opacity (GGO) nodules, and noise power spectrum (NPS) for uniform water phantom. The novel DE–VM–VDSR with BF improved the overall performance in terms of SDNR (DE–VM–VDSR with BF: 0.1603, without BF: 0.1517; FBP: 0.0521; SART: 0.0645; SART–TV–FISTA: 0.0984; and DE–VM–SART–TV–FISTA: 0.1004), obtained a Gumbel distribution that yielded good images showing the type of simulated GGO nodules used in the chest phantom, and reduced the ripple artifacts. The NPS of DE–VM–VDSR with BF showed the lowest noise characteristics in the high-frequency region (~0.8 cycles/mm). The DE–VM–VDSR without BF yielded an improved resolution relative to that of the conventional reconstruction algorithms for radial MTF analysis (0.2–0.3 cycles/mm). Finally, based on the overall image quality, DE–VM–VDSR with BF improved the contrast and reduced the high-frequency ripple artifacts and noise. We developed a novel dual-energy (DE) virtual monochromatic (VM) very-deep super-resolution (VDSR) method with an unsharp masking reconstruction algorithm (DE-VM-VDSR) that uses projection data to improve the nodule contrast and reduce ripple artifacts during chest digital tomosynthesis (DT). For estimating the residual errors from high-resolution and multiscale VM images from the projection space, the DE-VM-VDSR algorithm employs a training network (mini-batch stochastic gradient-descent algorithm with momentum) and a hybrid super-resolution (SR) image [simultaneous algebraic reconstruction technique (SART) total-variation (TV) first-iterative shrinkage-thresholding algorithm (FISTA); SART-TV-FISTA] that involves subjective reconstruction with bilateral filtering (BF) [DE-VM-VDSR with BF]. DE-DT imaging was accomplished by pulsed X-ray exposures rapidly switched between low (60 kV, 37 projection) and high (120 kV, 37 projection) tube-potential kVp by employing a 40° swing angle. This was followed by comparison of images obtained employing the conventional polychromatic filtered backprojection (FBP), SART, SART-TV-FISTA, and DE-VM-SART-TV-FISTA algorithms. The improvements in contrast, ripple artifacts, and resolution were compared using the signal-difference-to-noise ratio (SDNR), Gumbel distribution of the largest variations, radial modulation transfer function (radial MTF) for a chest phantom with simulated ground-glass opacity (GGO) nodules, and noise power spectrum (NPS) for uniform water phantom. The novel DE-VM-VDSR with BF improved the overall performance in terms of SDNR (DE-VM-VDSR with BF: 0.1603, without BF: 0.1517; FBP: 0.0521; SART: 0.0645; SART-TV-FISTA: 0.0984; and DE-VM-SART-TV-FISTA: 0.1004), obtained a Gumbel distribution that yielded good images showing the type of simulated GGO nodules used in the chest phantom, and reduced the ripple artifacts. The NPS of DE-VM-VDSR with BF showed the lowest noise characteristics in the high-frequency region (~0.8 cycles/mm). The DE-VM-VDSR without BF yielded an improved resolution relative to that of the conventional reconstruction algorithms for radial MTF analysis (0.2-0.3 cycles/mm). Finally, based on the overall image quality, DE-VM-VDSR with BF improved the contrast and reduced the high-frequency ripple artifacts and noise.We developed a novel dual-energy (DE) virtual monochromatic (VM) very-deep super-resolution (VDSR) method with an unsharp masking reconstruction algorithm (DE-VM-VDSR) that uses projection data to improve the nodule contrast and reduce ripple artifacts during chest digital tomosynthesis (DT). For estimating the residual errors from high-resolution and multiscale VM images from the projection space, the DE-VM-VDSR algorithm employs a training network (mini-batch stochastic gradient-descent algorithm with momentum) and a hybrid super-resolution (SR) image [simultaneous algebraic reconstruction technique (SART) total-variation (TV) first-iterative shrinkage-thresholding algorithm (FISTA); SART-TV-FISTA] that involves subjective reconstruction with bilateral filtering (BF) [DE-VM-VDSR with BF]. DE-DT imaging was accomplished by pulsed X-ray exposures rapidly switched between low (60 kV, 37 projection) and high (120 kV, 37 projection) tube-potential kVp by employing a 40° swing angle. This was followed by comparison of images obtained employing the conventional polychromatic filtered backprojection (FBP), SART, SART-TV-FISTA, and DE-VM-SART-TV-FISTA algorithms. The improvements in contrast, ripple artifacts, and resolution were compared using the signal-difference-to-noise ratio (SDNR), Gumbel distribution of the largest variations, radial modulation transfer function (radial MTF) for a chest phantom with simulated ground-glass opacity (GGO) nodules, and noise power spectrum (NPS) for uniform water phantom. The novel DE-VM-VDSR with BF improved the overall performance in terms of SDNR (DE-VM-VDSR with BF: 0.1603, without BF: 0.1517; FBP: 0.0521; SART: 0.0645; SART-TV-FISTA: 0.0984; and DE-VM-SART-TV-FISTA: 0.1004), obtained a Gumbel distribution that yielded good images showing the type of simulated GGO nodules used in the chest phantom, and reduced the ripple artifacts. The NPS of DE-VM-VDSR with BF showed the lowest noise characteristics in the high-frequency region (~0.8 cycles/mm). The DE-VM-VDSR without BF yielded an improved resolution relative to that of the conventional reconstruction algorithms for radial MTF analysis (0.2-0.3 cycles/mm). Finally, based on the overall image quality, DE-VM-VDSR with BF improved the contrast and reduced the high-frequency ripple artifacts and noise. |
| Audience | Academic |
| Author | Gomi, Tsutomu Watanabe, Yusuke Hara, Hidetake Mizukami, Shinya |
| AuthorAffiliation | School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan Korea National University of Transportation, REPUBLIC OF KOREA |
| AuthorAffiliation_xml | – name: Korea National University of Transportation, REPUBLIC OF KOREA – name: School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan |
| Author_xml | – sequence: 1 givenname: Tsutomu orcidid: 0000-0002-2322-714X surname: Gomi fullname: Gomi, Tsutomu – sequence: 2 givenname: Hidetake surname: Hara fullname: Hara, Hidetake – sequence: 3 givenname: Yusuke surname: Watanabe fullname: Watanabe, Yusuke – sequence: 4 givenname: Shinya surname: Mizukami fullname: Mizukami, Shinya |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33382766$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk11r2zAUhs3oWD-2fzA2wWBsF8ksS7bsXgxK2UegUNjXrZDlY0eZbaWSnC7_Zz90J40zklLG8IUs6Xlf-bzyOY2OettDFD2n8ZQyQd8t7OB61U6XuDyNE84FTx9FJ7RgySRLYna0934cnXq_iOOU5Vn2JDpmjOWJyLKT6PesWzq7gopUpjFBtUTPwQcSbGf9ug84MZ6YTjVAbgbVmrAm5ZoMHoitiSIoXoAOxvaTUvmNDUIT6ME1a7IyLuCUdLa3eu5sp4LRRNt-Zdtho8G9HgZ3N4Rb636SWxPmxA9LcMSBH7Gn0eNatR6ejeNZ9P3jh2-XnydX159mlxdXE50VSZjQQgBXeaKwYlVnaZWBYiJJRJHmuhRZzRnVJXAeU0ipZgnPy0xXIq7zmBZQs7Po5dZ32Vovx4C9TDBanhWM5kjMtkRl1UIuHQbj1tIqI-8WrGukclhkCxJ0WmhByzTNGK9Ykus6ZniWpnUheK3R6_142lB2UGnoAyZxYHq405u5bOxKCiF4wVM0eDMaOHsz4K3JzngNbat6sMP2u9M4jjlD9NU99OHqRqpRWIDpa4vn6o2pvMi4oKlIWILU9AEKnwo6g5cLtcH1A8HbAwEyAX6FRg3ey9nXL__PXv84ZF_vsXNQbZjvfhl_CL7YT_pvxLs2QOB8C2hnvXdQS429sPHB0kwraSw3PbcLTW56To49h2J-T7zz_6fsD0sXNHo |
| CitedBy_id | crossref_primary_10_3390_diagnostics12102512 crossref_primary_10_1016_j_media_2021_102125 crossref_primary_10_1155_2021_4768673 crossref_primary_10_1016_j_nima_2022_166404 crossref_primary_10_4103_jmp_jmp_54_22 |
| Cites_doi | 10.1109/TIT.2006.871582 10.1148/radiology.147.3.6342037 10.1118/1.4903283 10.1148/radiology.145.2.7134457 10.1109/MSP.2007.914731 10.1118/1.595958 10.1109/TMI.2017.2708987 10.1137/080716542 10.1016/j.cmpb.2020.105615 10.1002/mp.12843 10.1118/1.1561285 10.1088/0031-9155/53/17/021 10.1148/radiology.179.2.2014294 10.1371/journal.pone.0150985 10.1088/0031-9155/61/24/8425 10.1148/98.2.249 10.1016/j.acra.2013.08.006 10.1002/mp.12933 10.1109/JSTSP.2007.910281 10.1137/S0097539792240406 10.1007/s10278-017-0033-z 10.1148/radiol.2492071956 10.1056/NEJMoa1113205 10.1118/1.4725171 10.3322/caac.21492 10.1109/TIP.2009.2028250 10.1118/1.2207127 10.1118/1.3097632 10.1088/0031-9155/21/5/002 10.1088/1361-6560/aacdd4 10.3390/s19143234 10.1002/cpa.20042 10.1177/016173468400600107 10.1109/CVPR.2016.182 10.1148/radiology.160.2.3726105 10.1148/radiology.161.3.3786710 10.1148/107.3.669 10.1088/0031-9155/48/19/R01 10.1109/CVPR.2016.207 10.1109/ICCVW.2015.17 10.1016/j.acra.2010.09.021 10.1148/rg.302095097 10.1109/TIP.2017.2662206 10.1118/1.4928603 10.1148/radiology.148.3.6308709 10.1148/radiology.217.1.r00oc33251 10.1118/1.3056554 10.1016/j.compmedimag.2019.101647 10.1109/TMI.2017.2715284 10.1016/j.ejmp.2018.07.011 10.1148/radiographics.11.5.1947318 10.1259/bjr.20160555 10.1148/radiology.135.1.7360972 10.1016/j.compbiomed.2018.10.011 10.1148/radiol.2019181960 10.1148/rg.2016150081 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 Public Library of Science 2020 Gomi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Gomi et al 2020 Gomi et al |
| Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Gomi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Gomi et al 2020 Gomi et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pone.0244745 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Development of a dual-energy virtual monochromatic very-deep super-resolution reconstruction algorithm for DT |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2474469318 oai_doaj_org_article_ec59c71b55634d328cf0370fc1f974fc PMC7774945 A647157232 33382766 10_1371_journal_pone_0244745 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Japan |
| GeographicLocations_xml | – name: Japan |
| GrantInformation_xml | – fundername: ; grantid: 2020-1006 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 ESTFP PUEGO 5PM - 02 AAPBV ABPTK ADACO BBAFP KM |
| ID | FETCH-LOGICAL-c692t-197e4a82a203af65d6ea37227958cb76f431cbe4401e51c3248b6cd70f8019ef3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000605651900074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Fri Nov 26 17:12:25 EST 2021 Fri Oct 03 12:45:19 EDT 2025 Tue Nov 04 01:40:00 EST 2025 Mon Sep 08 12:17:11 EDT 2025 Sat Nov 29 14:41:21 EST 2025 Sat Nov 29 13:19:44 EST 2025 Sat Nov 29 09:51:31 EST 2025 Wed Nov 26 10:20:13 EST 2025 Wed Nov 26 09:57:41 EST 2025 Thu May 22 21:22:06 EDT 2025 Wed Feb 19 02:29:15 EST 2025 Sat Nov 29 01:48:43 EST 2025 Tue Nov 18 22:39:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-197e4a82a203af65d6ea37227958cb76f431cbe4401e51c3248b6cd70f8019ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-2322-714X |
| OpenAccessLink | https://doaj.org/article/ec59c71b55634d328cf0370fc1f974fc |
| PMID | 33382766 |
| PQID | 2474469318 |
| PQPubID | 1436336 |
| PageCount | e0244745 |
| ParticipantIDs | plos_journals_2474469318 doaj_primary_oai_doaj_org_article_ec59c71b55634d328cf0370fc1f974fc pubmedcentral_primary_oai_pubmedcentral_nih_gov_7774945 proquest_miscellaneous_2474500043 proquest_journals_2474469318 gale_infotracmisc_A647157232 gale_infotracacademiconefile_A647157232 gale_incontextgauss_ISR_A647157232 gale_incontextgauss_IOV_A647157232 gale_healthsolutions_A647157232 pubmed_primary_33382766 crossref_citationtrail_10_1371_journal_pone_0244745 crossref_primary_10_1371_journal_pone_0244745 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-31 |
| PublicationDateYYYYMMDD | 2020-12-31 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2020 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | S Hamidian (pone.0244745.ref040) 2017 A Halder (pone.0244745.ref041) 2020 MAT Figueiredo (pone.0244745.ref062) 2007; 1 O Ozan (pone.0244745.ref056) 2016; 2016 pone.0244745.ref044 DL Donoho (pone.0244745.ref050) 2006; 52 EJ Chae (pone.0244745.ref019) 2008; 249 BK Natarajan (pone.0244745.ref060) 1995; 24 EJ Candes (pone.0244745.ref061) 2008; 25 J Choe (pone.0244745.ref043) 2019; 292 S Xu (pone.0244745.ref025) 2015; 42 S Sone (pone.0244745.ref012) 1991; 11 CE Cann (pone.0244745.ref021) 1982; 145 A Beck (pone.0244745.ref030) 2009; 18 T Gomi (pone.0244745.ref015) 2013; 20 pone.0244745.ref049 T Gomi (pone.0244745.ref046) 2018; 53 K Zhang (pone.0244745.ref031) 2017; 26 EY Sidky (pone.0244745.ref051) 2008; 53 W Zhao (pone.0244745.ref020) 2018; 45 SS Siegelman (pone.0244745.ref004) 1986; 160 G Ma (pone.0244745.ref017) 2016; 11 pone.0244745.ref034 A Otrakji (pone.0244745.ref018) 2016; 36 K Umehara (pone.0244745.ref036) 2018; 31 WA Kalender (pone.0244745.ref023) 1986; 13 K Murata (pone.0244745.ref008) 1986; 161 H Chen (pone.0244745.ref032) 2017; 36 X Liu (pone.0244745.ref066) 2009; 36 M Gerlinger (pone.0244745.ref006) 2012; 366 Z Wang (pone.0244745.ref037) 2020 T Gomi (pone.0244745.ref014) 2011; 18 Y Du (pone.0244745.ref064) 2016; 61 Y Lu (pone.0244745.ref026) 2015; 42 H Zhang (pone.0244745.ref055) 2019; 19 RA Kruger (pone.0244745.ref011) 1983; 147 E Samei (pone.0244745.ref054) 2003; 30 K Imai (pone.0244745.ref052) 2009; 36 T Wu (pone.0244745.ref065) 2006; 33 K Miyata (pone.0244745.ref028) 2017; 90 DI Eun (pone.0244745.ref038) 2020; 196 A Krizhevsky (pone.0244745.ref048) 2012 J Park (pone.0244745.ref035) 2018; 63 D Lee (pone.0244745.ref042) 2018 DF Yankelevitz (pone.0244745.ref001) 2000; 217 ER Miller (pone.0244745.ref009) 1971; 98 J Winter (pone.0244745.ref045) 1980; 135 S Richard (pone.0244745.ref053) 2012; 39 F Bray (pone.0244745.ref005) 2018; 68 D Chao (pone.0244745.ref057) 2016; 2016 JR Muhm (pone.0244745.ref003) 1983; 148 JT Dobbins (pone.0244745.ref013) 2003; 48 I Daubechies (pone.0244745.ref063) 2004; 57 AH Andersen (pone.0244745.ref024) 1984; 6 CV Zwirewich (pone.0244745.ref007) 1991; 179 A Beck (pone.0244745.ref029) 2009; 2 Y Gu (pone.0244745.ref039) 2018; 103 S Choi (pone.0244745.ref027) 2018; 45 CH Pham (pone.0244745.ref059) 2019; 77 RE Alvarez (pone.0244745.ref022) 1976; 21 JM Wolterink (pone.0244745.ref033) 2017; 36 FP Stitik (pone.0244745.ref002) 1978; 16 M Berger (pone.0244745.ref047) 1987 pone.0244745.ref058 NA Baily (pone.0244745.ref010) 1973; 107 H Machida (pone.0244745.ref016) 2010; 30 |
| References_xml | – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: pone.0244745.ref050 article-title: Compressed sensing publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2006.871582 – volume: 2016 start-page: 246 year: 2016 ident: pone.0244745.ref056 article-title: Multi-input Cardiac Image Super-Resolution Using Convolutional Neural Networks publication-title: Medical Image Computing and Computer-Assisted Intervention—MICCAI – ident: pone.0244745.ref049 – start-page: 1097 year: 2012 ident: pone.0244745.ref048 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems – year: 2020 ident: pone.0244745.ref041 article-title: Lung Nodule Detection from Feature Engineering to Deep Learning in Thoracic CT Images: a Comprehensive Review publication-title: J Digit Imaging – start-page: 1 year: 1987 ident: pone.0244745.ref047 article-title: Photon cross sections on a personal computer publication-title: Gent Radiat Res – volume: 147 start-page: 863 issue: 3 year: 1983 ident: pone.0244745.ref011 article-title: Dynamic tomographic digital subtraction angiography using temporal filtration publication-title: Radiology doi: 10.1148/radiology.147.3.6342037 – volume: 42 start-page: 182 issue: 1 year: 2015 ident: pone.0244745.ref026 article-title: Multiscale bilateral filtering for improving image quality in digital breast tomosynthesis publication-title: Med Phys doi: 10.1118/1.4903283 – volume: 145 start-page: 493 issue: 2 year: 1982 ident: pone.0244745.ref021 article-title: Quantification of calcium in solitary pulmonary nodules using single- and dual-energy CT publication-title: Radiology doi: 10.1148/radiology.145.2.7134457 – volume: 25 start-page: 21 issue: 2 year: 2008 ident: pone.0244745.ref061 article-title: An Introduction To Compressive Sampling publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2007.914731 – volume: 13 start-page: 334 issue: 3 year: 1986 ident: pone.0244745.ref023 article-title: Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies publication-title: Med Phys doi: 10.1118/1.595958 – volume: 36 start-page: 2536 issue: 12 year: 2017 ident: pone.0244745.ref033 article-title: Generative Adversarial Networks for Noise Reduction in Low-Dose CT publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2708987 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: pone.0244745.ref029 article-title: A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems publication-title: SIAM Journal on Imaging Sciences doi: 10.1137/080716542 – volume: 196 start-page: 105615 year: 2020 ident: pone.0244745.ref038 article-title: CT kernel conversions using convolutional neural net for super-resolution with simplified squeeze-and-excitation blocks and progressive learning among smooth and sharp kernels publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105615 – volume: 45 start-page: 1871 issue: 5 year: 2018 ident: pone.0244745.ref027 article-title: Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction publication-title: Med Phys doi: 10.1002/mp.12843 – volume: 16 start-page: 347 issue: 3 year: 1978 ident: pone.0244745.ref002 article-title: Radiographic screening in the early detection of lung cancer publication-title: Radiol Clin North Am – volume: 30 start-page: 608 issue: 4 year: 2003 ident: pone.0244745.ref054 article-title: An experimental comparison of detector performance for direct and indirect digital radiography systems publication-title: Med Phys doi: 10.1118/1.1561285 – volume: 53 start-page: 4777 issue: 17 year: 2008 ident: pone.0244745.ref051 article-title: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization publication-title: Phys Med Biol doi: 10.1088/0031-9155/53/17/021 – volume: 179 start-page: 469 issue: 2 year: 1991 ident: pone.0244745.ref007 article-title: Solitary pulmonary nodule: high-resolution CT and radiologic-pathologic correlation publication-title: Radiology doi: 10.1148/radiology.179.2.2014294 – volume: 11 start-page: e0150985 issue: 3 year: 2016 ident: pone.0244745.ref017 article-title: Improving Image Quality of Bronchial Arteries with Virtual Monochromatic Spectral CT Images publication-title: PLoS One doi: 10.1371/journal.pone.0150985 – volume: 61 start-page: 8425 issue: 24 year: 2016 ident: pone.0244745.ref064 article-title: Evaluation of hybrid SART + OS + TV iterative reconstruction algorithm for optical-CT gel dosimeter imaging publication-title: Phys Med Biol doi: 10.1088/0031-9155/61/24/8425 – start-page: 10134 year: 2017 ident: pone.0244745.ref040 article-title: 3D Convolutional Neural Network for Automatic Detection of Lung Nodules in Chest CT publication-title: Proc SPIE Int Soc Opt Eng – volume: 98 start-page: 249 issue: 2 year: 1971 ident: pone.0244745.ref009 article-title: An infinite number of laminagrams from a finite number of radiographs publication-title: Radiology doi: 10.1148/98.2.249 – volume: 20 start-page: 1357 issue: 11 year: 2013 ident: pone.0244745.ref015 article-title: Comparison of chest dual-energy subtraction digital tomosynthesis and dual-energy subtraction radiography for detection of pulmonary nodules: initial evaluations in human clinical cases publication-title: Acad Radiol doi: 10.1016/j.acra.2013.08.006 – volume: 45 start-page: 2964 issue: 7 year: 2018 ident: pone.0244745.ref020 article-title: A unified material decomposition framework for quantitative dual- and triple-energy CT imaging publication-title: Med Phys doi: 10.1002/mp.12933 – year: 2018 ident: pone.0244745.ref042 article-title: Restoration of Full Data from Sparse Data in Low-Dose Chest Digital Tomosynthesis Using Deep Convolutional Neural Networks publication-title: J Digit Imaging – volume: 1 start-page: 586 issue: 4 year: 2007 ident: pone.0244745.ref062 article-title: Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems publication-title: IEEE Journal of Selected Topics in Signal Processing doi: 10.1109/JSTSP.2007.910281 – volume: 24 start-page: 227 issue: 2 year: 1995 ident: pone.0244745.ref060 article-title: Sparse Approximate Solutions to Linear Systems publication-title: SIAM Journal on Computing doi: 10.1137/S0097539792240406 – volume: 31 start-page: 441 issue: 4 year: 2018 ident: pone.0244745.ref036 article-title: Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT publication-title: J Digit Imaging doi: 10.1007/s10278-017-0033-z – volume: 249 start-page: 671 issue: 2 year: 2008 ident: pone.0244745.ref019 article-title: Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience publication-title: Radiology doi: 10.1148/radiol.2492071956 – volume: 366 start-page: 883 issue: 10 year: 2012 ident: pone.0244745.ref006 article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing publication-title: N Engl J Med doi: 10.1056/NEJMoa1113205 – volume: 39 start-page: 4115 issue: 7 year: 2012 ident: pone.0244745.ref053 article-title: Towards task-based assessment of CT performance: system and object MTF across different reconstruction algorithms publication-title: Med Phys doi: 10.1118/1.4725171 – volume: 68 start-page: 394 issue: 6 year: 2018 ident: pone.0244745.ref005 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin doi: 10.3322/caac.21492 – volume: 18 start-page: 2419 issue: 11 year: 2009 ident: pone.0244745.ref030 article-title: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2009.2028250 – volume: 33 start-page: 2461 issue: 7 year: 2006 ident: pone.0244745.ref065 article-title: Voting strategy for artifact reduction in digital breast tomosynthesis publication-title: Med Phys doi: 10.1118/1.2207127 – volume: 36 start-page: 1602 issue: 5 year: 2009 ident: pone.0244745.ref066 article-title: Quantitative imaging of element composition and mass fraction using dual-energy CT: three-material decomposition publication-title: Med Phys doi: 10.1118/1.3097632 – volume: 21 start-page: 733 issue: 5 year: 1976 ident: pone.0244745.ref022 article-title: Energy-selective reconstructions in X-ray computerized tomography publication-title: Phys Med Biol doi: 10.1088/0031-9155/21/5/002 – volume: 63 start-page: 145011 issue: 14 year: 2018 ident: pone.0244745.ref035 article-title: Computed tomography super-resolution using deep convolutional neural network publication-title: Phys Med Biol doi: 10.1088/1361-6560/aacdd4 – volume: 19 issue: 14 year: 2019 ident: pone.0244745.ref055 article-title: A Comparable Study of CNN-Based Single Image Super-Resolution for Space-Based Imaging Sensors publication-title: Sensors (Basel) doi: 10.3390/s19143234 – volume: 57 start-page: 1413 issue: 11 year: 2004 ident: pone.0244745.ref063 article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint publication-title: Communications on Pure and Applied Mathematics doi: 10.1002/cpa.20042 – volume: 6 start-page: 81 issue: 1 year: 1984 ident: pone.0244745.ref024 article-title: Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm publication-title: Ultrason Imaging doi: 10.1177/016173468400600107 – ident: pone.0244745.ref044 doi: 10.1109/CVPR.2016.182 – volume: 160 start-page: 307 issue: 2 year: 1986 ident: pone.0244745.ref004 article-title: Solitary pulmonary nodules: CT assessment publication-title: Radiology doi: 10.1148/radiology.160.2.3726105 – volume: 161 start-page: 641 issue: 3 year: 1986 ident: pone.0244745.ref008 article-title: Centrilobular lesions of the lung: demonstration by high-resolution CT and pathologic correlation publication-title: Radiology doi: 10.1148/radiology.161.3.3786710 – volume: 107 start-page: 669 issue: 3 year: 1973 ident: pone.0244745.ref010 publication-title: Electrofluoroplanigraphy. Radiology doi: 10.1148/107.3.669 – volume: 48 start-page: R65 issue: 19 year: 2003 ident: pone.0244745.ref013 article-title: Digital x-ray tomosynthesis: current state of the art and clinical potential publication-title: Phys Med Biol doi: 10.1088/0031-9155/48/19/R01 – ident: pone.0244745.ref058 doi: 10.1109/CVPR.2016.207 – ident: pone.0244745.ref034 doi: 10.1109/ICCVW.2015.17 – volume: 18 start-page: 191 issue: 2 year: 2011 ident: pone.0244745.ref014 article-title: Comparison of chest dual-energy subtraction digital tomosynthesis imaging and dual-energy subtraction radiography to detect simulated pulmonary nodules with and without calcifications a phantom study publication-title: Acad Radiol doi: 10.1016/j.acra.2010.09.021 – volume: 30 start-page: 549 issue: 2 year: 2010 ident: pone.0244745.ref016 article-title: Optimizing parameters for flat-panel detector digital tomosynthesis publication-title: Radiographics doi: 10.1148/rg.302095097 – volume: 26 start-page: 3142 issue: 7 year: 2017 ident: pone.0244745.ref031 article-title: Beyond a gauaaian denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2662206 – volume: 42 start-page: 5377 issue: 9 year: 2015 ident: pone.0244745.ref025 article-title: Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis publication-title: Med Phys doi: 10.1118/1.4928603 – volume: 148 start-page: 609 issue: 3 year: 1983 ident: pone.0244745.ref003 article-title: Lung cancer detected during a screening program using four-month chest radiographs publication-title: Radiology doi: 10.1148/radiology.148.3.6308709 – volume: 217 start-page: 251 issue: 1 year: 2000 ident: pone.0244745.ref001 article-title: Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation publication-title: Radiology doi: 10.1148/radiology.217.1.r00oc33251 – volume: 36 start-page: 492 issue: 2 year: 2009 ident: pone.0244745.ref052 article-title: Statistical characteristics of streak artifacts on CT images: relationship between streak artifacts and mA s values publication-title: Med Phys doi: 10.1118/1.3056554 – volume: 77 start-page: 101647 year: 2019 ident: pone.0244745.ref059 article-title: Multiscale brain MRI super-resolution using deep 3D convolutional networks publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2019.101647 – volume: 36 start-page: 2524 issue: 12 year: 2017 ident: pone.0244745.ref032 article-title: Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2715284 – volume: 53 start-page: 4 year: 2018 ident: pone.0244745.ref046 article-title: Development of a novel algorithm for metal artifact reduction in digital tomosynthesis using projection-based dual-energy material decomposition for arthroplasty: A phantom study publication-title: Phys Med doi: 10.1016/j.ejmp.2018.07.011 – volume: 2016 start-page: 391 year: 2016 ident: pone.0244745.ref057 article-title: Accelerating the Super-Resolution Convolutional Neural Network publication-title: Computer Vision–ECCV – volume: 11 start-page: 807 issue: 5 year: 1991 ident: pone.0244745.ref012 article-title: Development of a high-resolution digital tomosynthesis system and its clinical application publication-title: Radiographics doi: 10.1148/radiographics.11.5.1947318 – volume: 90 start-page: 20160555 issue: 1071 year: 2017 ident: pone.0244745.ref028 article-title: A phantom study for ground-glass nodule detectability using chest digital tomosynthesis with iterative reconstruction algorithm by ten observers: association with radiation dose and nodular characteristics publication-title: Br J Radiol doi: 10.1259/bjr.20160555 – volume: 135 start-page: 234 issue: 1 year: 1980 ident: pone.0244745.ref045 article-title: Edge enhancement of computed tomograms by digital unsharp masking publication-title: Radiology doi: 10.1148/radiology.135.1.7360972 – volume: 103 start-page: 220 year: 2018 ident: pone.0244745.ref039 article-title: Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.10.011 – year: 2020 ident: pone.0244745.ref037 article-title: Deep Learning for Image Super-resolution: A Survey publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 292 start-page: 365 issue: 2 year: 2019 ident: pone.0244745.ref043 article-title: Deep Learning-based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses publication-title: Radiology doi: 10.1148/radiol.2019181960 – volume: 36 start-page: 38 issue: 1 year: 2016 ident: pone.0244745.ref018 article-title: Dual-Energy CT: Spectrum of Thoracic Abnormalities publication-title: Radiographics doi: 10.1148/rg.2016150081 |
| SSID | ssj0053866 |
| Score | 2.3869717 |
| Snippet | We developed a novel dual-energy (DE) virtual monochromatic (VM) very-deep super-resolution (VDSR) method with an unsharp masking reconstruction algorithm... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0244745 |
| SubjectTerms | Algorithms Aluminum Artificial neural networks Biology and Life Sciences Chest Computer simulation Decomposition Deep learning Digital imaging Engineering and Technology Health sciences Humans Image contrast Image processing Image Processing, Computer-Assisted - methods Image quality Image reconstruction Image resolution Lung cancer Lung Neoplasms - diagnostic imaging Medicine and Health Sciences Modulation transfer function Neural networks Neural Networks, Computer Nodules Noise Opacity Optical communication Phantoms, Imaging Physical Sciences Projection Radiography Radiography, Thoracic - methods Research and Analysis Methods Ripples Stochasticity Tomography, X-Ray Computed - methods |
| SummonAdditionalLinks | – databaseName: Materials Science Database dbid: KB. link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg4cAFKK8GChiEBByy3cSJHZ9Qi6jgUhAv9RYljrON1MZLvFup_4cfyozjBIIqQOK00XpixfbMeB72N4Q8i2Sp0zKKQomeTpLqGJ54HJZVVbCslosyVa7YhDg8zI6O5AcfcLP-WOWgE52irozCGPlunAjwXCSw4KvVtxCrRmF21ZfQuEyuRDHY-piU3Z8PmhhkmXN_XY6JaNevznxlWj2HvQl6TCfbkUPtH3XzbHVi7EWG5-_nJ3_ZkA5u_O9QbpLr3hSlez3vbJFLur1FtrywW_rCI1K_vE2-96EHXdGqWWKVEerKbNG1OTX2vAUb0jaWNqegm2h_S_Oclud0YzU1NS2oD_cAC4S4a0I3QBRqd-2QnjUd3mGh8FVGHXfGYchSPA3vpQLaEHXT_bgz6xSDx9RuVrqjnR6E5w75cvDm8-u3oS_vECou43UYSaGTIouLeMGKmqcV1wUTiGiYZqoUvAbbRpU6AQ9Qp5ECyy8ruarEooZdVeqa3SWzFpZym1AEcecZ2IJ1gng5VVZhuhZTmJWKEi0DwoZVzpXHPscSHCe5S-gJ8IH6Oc-RN3LPGwEJx7dWPfbHX-j3kYFGWkTudn-Ybpl7RZBrlUolohKB2ZKKxZmqFwzGpKIaXLtaBeQxsl_eX4Md9U--x8GMSAUYwAF56igQvaPF40HLYmNt_u79138g-vRxQvTcE9UGpkMV_koGjAlRwSaUOxNK0EFq0ryNwjLMis1_sji8OQjBxc1PxmbsFI_8tdpseprUZaoDcq-Xt3FmGWNZLDgPiJhI4mTqpy1tc-zA0wX4OzJJ7__5sx6QazEGVhyi5w6ZrbuNfkiuqrN1Y7tHTsv8AD_0iv4 priority: 102 providerName: ProQuest – databaseName: Public Library of Science (PLoS) Open Access Journals dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZg4cAFKK8GChiEBBxSNnFsx8eCWIGESsVLvUWJ47SR2mQVbyrt_-GHMuN4A6laAadE8ThKxp6X7fmGkBeRKgwvoihUGOkk3MRwJ-KwKMucpZWaF1y7YhNyfz89PFQHvwPFczv4TEZvPE93l21jdsGiJDLhV8m1mAmBFQsWB582mhdkVwifHndZz4n5cSj9oy6eLU9ae5Gjef685B8GaHHrfz_9NrnpXU26N8yNLXLFNHfIlhdmS195xOnXd8nPYWnBlLSsj7CKCHVltOiqPW3tugEf0daW1qege-iQhbmmxZr21tC2ojn1yzkwxCFaRXgNEIXGpRXSs7rDHBUK873Vx13rMGIpnnb3sx7aEFXTXdyZdIqLw9T2S9PRzmyE4x75vnj_7d2H0JdvCLVQ8SqMlDRJnsZ5PGd5JXgpTM4kIhbyVBdSVOC76MIkEOEZHmnw7NJC6FLOK7CaylTsPpk1wLltQhGkXaTg61UJ4uGUaYnbsbhFWeooMSogbDOqmfbY5lhi4yRzG3YSYpyB5xkOReaHIiDh2Gs5YHv8hf4tTpiRFpG53QMY88wLemY0V1pGBQKvJSWLU13NGfyTjioI3SodkKc43bIhzXXUL9meADeBS3BwA_LcUSA6R4PHf47y3trs4-cf_0D09cuE6KUnqlpgh859ygX8E6J-TSh3JpSgY_SkeRuFY8MVm8XAj0QoMAjQcyMwFzc_G5vxpXikrzFtP9BwtxMdkAeDfI2cZYylsRQiIHIieRPWT1ua-tiBo0uIZ1TCH17-xY_IjRgXTRxa5w6ZrbrePCbX9dmqtt0Tp1F-ATCveW0 priority: 102 providerName: Public Library of Science |
| Title | Improved digital chest tomosynthesis image quality by use of a projection-based dual-energy virtual monochromatic convolutional neural network with super resolution |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33382766 https://www.proquest.com/docview/2474469318 https://www.proquest.com/docview/2474500043 https://pubmed.ncbi.nlm.nih.gov/PMC7774945 https://doaj.org/article/ec59c71b55634d328cf0370fc1f974fc http://dx.doi.org/10.1371/journal.pone.0244745 |
| Volume | 15 |
| WOSCitedRecordID | wos000605651900074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELeg8MALYnwtMIpBSMBDunza8eM6rWIaK1EHU-ElShxni7QlVdNO6v_DH8qd41YNmjQeeLlW9TlK785354_7mZAPrshUmLmuLXCmE4TKg2_Ms7M8T_2oEE4WSn3ZBB-Po-lUxFtXfeGZsBYeuBXcvpKhkNzNEMgqyH0vkoXjc6eQbgGpcCHR-zpcrCdTrQ-GUcyYKZTzubtv9DKY1ZUaQFQKOJYvbQUijde_8cq92VXd3JZy_n1ycisUjZ6QxyaHpAftu--Qe6p6SnbMKG3oJwMl_fkZ-d2uGaic5uUFXg9C9f1YdFFf182qguSvKRtaXoNToW155YpmK7psFK0LmlKzTgO6szHcwWOAyVa6XpDelHMsPqFgyLW8nNca_JXiMXZjztCGcJn6Qx82p7jqS5vlTM0pTPMN23PyY3T0_fCLbe5lsCUT3sJ2BVdBGnmp5_hpwcKcqdTnCEUYRjLjrICkRGYqgKmbCl0JKVuUMZmD0iAcClX4L0ivAk3sEoro6yyCJK4IEOgmj3LcZ8W9x1y6gRIW8ddKSqQBLce7M64SvRPHYfLSyjxB1SZGtRaxN71mLWjHHfxD1P-GFyG39Q9giIkxxOQuQ7TIW7SepK1f3TiO5IBB_A85ZK4Wea85EHajwnM9F-myaZLjb-f_wHQ26TB9NExFDeKQqamlgP-EcF4dzr0OJzgP2WneRVtfS6VJPJBHwAR4eui5tv_bm99tmvGheFavUvWy5Qn1FrNFXrbDZSNZ3_cjjzNmEd4ZSB3Rd1uq8lKjnnOYqIggfPU_dPWaPPJw3UQDdu6R3mK-VG_IQ3mzKJt5n9znk3OkU65pBDQ6dPvkwfBoHE_62tUAHcVfgZ4MB0BPnROkPNb0DGgc_oIe8fFp_PMPbcKJzw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKggQXoLwaKNQgEHBIu4mTODkgVB5Vq20XRAvqLSSOs43UJku8W7T_hzO_kRnHCQRVwKUHTrtaT6JkdubzjO35hpDHTpRKP3UcO8JMx_OlC98C106zLGFhHg1TX-hmE3w8Dg8Po_dL5HtbC4PHKltM1ECdVQLXyDdcj0PmEoEJvpx-sbFrFO6uti00GrMYycVXSNnUi5038P8-cd2ttwevt23TVcAWQeTObCfi0ktCN3GHLMkDPwtkwjgS6fmhSHmQw5QqUulB4iF9R0DAEaaByPgwBzCPZM7gvhfIRRhn2CpibzhqkR-wIwhMeR7jzoaxhvVpVcp1mAvhDfze9Ke7BHRzwWB6XKmzAt3fz2v-MgFuXfvfVHedXDWhNt1sfGOZLMnyBlk2YKboM8O4_fwm-dYsrciMZsUEu6hQ3UaMzqqTSi1KiJFVoWhxAthLmyrUBU0XdK4krXKaULOcBSZuY1QAtwEhW-qySnpa1FijQ0ELlTiqK82RS_G0v_F6GENWUf2hz-RTXBynaj6VNa1lCw63yMdz0dZtMijBdFYIRZL6IIRYN_eQDygLM9yOxi3aTDiejCzCWquKheF2xxYjx7HesOSQ4zU6j9EWY2OLFrG7q6YNt8lf5F-hwXayyEyuf6jqSWyALpbCjwR3UiSe8zLmhiIfMngn4eSQuubCImto7nFT5tvha7wZQJjkcwjwLfJISyA7SYnHnybJXKl4592nfxDa_9ATemqE8grUIRJTcgLvhKxnPcnVniRgrOgNr6BztlpR8U-Xgitbpzt7-GE3jDfFI42lrOaNjK934i1yp_HvTrOMsdDlQWAR3vP8nur7I2VxpMnhOeRzkeff_fNjrZHL2wd7u_Huznh0j1xxcRFJs5euksGsnsv75JI4nRWqfqARjpLP540LPwBm6OaU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKghAXoLwaKNQgEHBId_OykwNChbJiVbRUvNRbSBx7G6lNlmS3aP8Pv4Jfx4zjBIIq4NIDp12tJ1Y8O_48Y3u-IeShE6UySB3HjjDS8QPpwjfm2mmWJV6oolEaCF1sgk-n4cFBtL9Gvre5MHitssVEDdRZKXCPfOj6HCKXCExwqMy1iP3d8fP5FxsrSOFJa1tOozGRPbn6CuFb_WyyC__1I9cdv_rw8rVtKgzYgkXuwnYiLv0kdBN35CWKBRmTiceRVC8IRcqZguVVpNKHIEQGjgDnI0yZyPhIAbBHUnnQ7zlynvts5Otrg_vtKgA4wphJ1fO4MzSWsT0vC7kN6yKMJugthbpiQLcuDOZHZX2a0_v73c1fFsPxlf9ZjVfJZeOC051mzqyTNVlcI-sG5Gr6xDBxP71OvjVbLjKjWT7D6ipUlxeji_K4rFcF-M51XtP8GDCZNtmpK5qu6LKWtFQ0oWabC0zfRm8BugEhW-p0S3qSV5i7Q0ELpTisSs2dSzELwKABtCHbqP7Qd_UpbprTejmXFa1kCxo3yMcz0dZNMijAjDYIRfJ6FoIPrHzkCcrCDI-p8eg2E44vI4t4rYXFwnC-Y-mRo1gfZHKI_Rqdx2iXsbFLi9jdU_OG8-Qv8i_QeDtZZCzXP5TVLDYAGEsRRII7KRLS-ZnnhkKNPBiTcBSEtEpYZAtNP27SfzvcjXcYuE8BB8ffIg-0BLKWFGi4s2RZ1_Hk7ad_EHr_rif02AipEtQhEpOKAmNCNrSe5GZPErBX9Jo3cKK2Wqnjn9MLnmwn4OnN97tm7BSvOhayXDYygT6ht8itZq53mvU8L3Q5YxbhPRToqb7fUuSHmjSeQ5wX-cHtP7_WFrkIcBC_mUz37pBLLu4taVLTTTJYVEt5l1wQJ4u8ru5psKPk81nDwg-Yg-90 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+digital+chest+tomosynthesis+image+quality+by+use+of+a+projection-based+dual-energy+virtual+monochromatic+convolutional+neural+network+with+super+resolution&rft.jtitle=PloS+one&rft.au=Gomi%2C+Tsutomu&rft.au=Hara%2C+Hidetake&rft.au=Watanabe%2C+Yusuke&rft.au=Mizukami%2C+Shinya&rft.date=2020-12-31&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=12&rft.spage=e0244745&rft_id=info:doi/10.1371%2Fjournal.pone.0244745&rft.externalDBID=ISR&rft.externalDocID=A647157232 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |