Improved digital chest tomosynthesis image quality by use of a projection-based dual-energy virtual monochromatic convolutional neural network with super resolution

We developed a novel dual-energy (DE) virtual monochromatic (VM) very-deep super-resolution (VDSR) method with an unsharp masking reconstruction algorithm (DE–VM–VDSR) that uses projection data to improve the nodule contrast and reduce ripple artifacts during chest digital tomosynthesis (DT). For es...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 15; číslo 12; s. e0244745
Hlavní autoři: Gomi, Tsutomu, Hara, Hidetake, Watanabe, Yusuke, Mizukami, Shinya
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 31.12.2020
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We developed a novel dual-energy (DE) virtual monochromatic (VM) very-deep super-resolution (VDSR) method with an unsharp masking reconstruction algorithm (DE–VM–VDSR) that uses projection data to improve the nodule contrast and reduce ripple artifacts during chest digital tomosynthesis (DT). For estimating the residual errors from high-resolution and multiscale VM images from the projection space, the DE–VM–VDSR algorithm employs a training network (mini-batch stochastic gradient-descent algorithm with momentum) and a hybrid super-resolution (SR) image [simultaneous algebraic reconstruction technique (SART) total-variation (TV) first-iterative shrinkage–thresholding algorithm (FISTA); SART–TV–FISTA] that involves subjective reconstruction with bilateral filtering (BF) [DE–VM–VDSR with BF]. DE-DT imaging was accomplished by pulsed X-ray exposures rapidly switched between low (60 kV, 37 projection) and high (120 kV, 37 projection) tube-potential kVp by employing a 40° swing angle. This was followed by comparison of images obtained employing the conventional polychromatic filtered backprojection (FBP), SART, SART–TV–FISTA, and DE–VM–SART–TV–FISTA algorithms. The improvements in contrast, ripple artifacts, and resolution were compared using the signal-difference-to-noise ratio (SDNR), Gumbel distribution of the largest variations, radial modulation transfer function (radial MTF) for a chest phantom with simulated ground-glass opacity (GGO) nodules, and noise power spectrum (NPS) for uniform water phantom. The novel DE–VM–VDSR with BF improved the overall performance in terms of SDNR (DE–VM–VDSR with BF: 0.1603, without BF: 0.1517; FBP: 0.0521; SART: 0.0645; SART–TV–FISTA: 0.0984; and DE–VM–SART–TV–FISTA: 0.1004), obtained a Gumbel distribution that yielded good images showing the type of simulated GGO nodules used in the chest phantom, and reduced the ripple artifacts. The NPS of DE–VM–VDSR with BF showed the lowest noise characteristics in the high-frequency region (~0.8 cycles/mm). The DE–VM–VDSR without BF yielded an improved resolution relative to that of the conventional reconstruction algorithms for radial MTF analysis (0.2–0.3 cycles/mm). Finally, based on the overall image quality, DE–VM–VDSR with BF improved the contrast and reduced the high-frequency ripple artifacts and noise.
AbstractList We developed a novel dual-energy (DE) virtual monochromatic (VM) very-deep super-resolution (VDSR) method with an unsharp masking reconstruction algorithm (DE–VM–VDSR) that uses projection data to improve the nodule contrast and reduce ripple artifacts during chest digital tomosynthesis (DT). For estimating the residual errors from high-resolution and multiscale VM images from the projection space, the DE–VM–VDSR algorithm employs a training network (mini-batch stochastic gradient-descent algorithm with momentum) and a hybrid super-resolution (SR) image [simultaneous algebraic reconstruction technique (SART) total-variation (TV) first-iterative shrinkage–thresholding algorithm (FISTA); SART–TV–FISTA] that involves subjective reconstruction with bilateral filtering (BF) [DE–VM–VDSR with BF]. DE-DT imaging was accomplished by pulsed X-ray exposures rapidly switched between low (60 kV, 37 projection) and high (120 kV, 37 projection) tube-potential kVp by employing a 40° swing angle. This was followed by comparison of images obtained employing the conventional polychromatic filtered backprojection (FBP), SART, SART–TV–FISTA, and DE–VM–SART–TV–FISTA algorithms. The improvements in contrast, ripple artifacts, and resolution were compared using the signal-difference-to-noise ratio (SDNR), Gumbel distribution of the largest variations, radial modulation transfer function (radial MTF) for a chest phantom with simulated ground-glass opacity (GGO) nodules, and noise power spectrum (NPS) for uniform water phantom. The novel DE–VM–VDSR with BF improved the overall performance in terms of SDNR (DE–VM–VDSR with BF: 0.1603, without BF: 0.1517; FBP: 0.0521; SART: 0.0645; SART–TV–FISTA: 0.0984; and DE–VM–SART–TV–FISTA: 0.1004), obtained a Gumbel distribution that yielded good images showing the type of simulated GGO nodules used in the chest phantom, and reduced the ripple artifacts. The NPS of DE–VM–VDSR with BF showed the lowest noise characteristics in the high-frequency region (~0.8 cycles/mm). The DE–VM–VDSR without BF yielded an improved resolution relative to that of the conventional reconstruction algorithms for radial MTF analysis (0.2–0.3 cycles/mm). Finally, based on the overall image quality, DE–VM–VDSR with BF improved the contrast and reduced the high-frequency ripple artifacts and noise.
We developed a novel dual-energy (DE) virtual monochromatic (VM) very-deep super-resolution (VDSR) method with an unsharp masking reconstruction algorithm (DE-VM-VDSR) that uses projection data to improve the nodule contrast and reduce ripple artifacts during chest digital tomosynthesis (DT). For estimating the residual errors from high-resolution and multiscale VM images from the projection space, the DE-VM-VDSR algorithm employs a training network (mini-batch stochastic gradient-descent algorithm with momentum) and a hybrid super-resolution (SR) image [simultaneous algebraic reconstruction technique (SART) total-variation (TV) first-iterative shrinkage-thresholding algorithm (FISTA); SART-TV-FISTA] that involves subjective reconstruction with bilateral filtering (BF) [DE-VM-VDSR with BF]. DE-DT imaging was accomplished by pulsed X-ray exposures rapidly switched between low (60 kV, 37 projection) and high (120 kV, 37 projection) tube-potential kVp by employing a 40° swing angle. This was followed by comparison of images obtained employing the conventional polychromatic filtered backprojection (FBP), SART, SART-TV-FISTA, and DE-VM-SART-TV-FISTA algorithms. The improvements in contrast, ripple artifacts, and resolution were compared using the signal-difference-to-noise ratio (SDNR), Gumbel distribution of the largest variations, radial modulation transfer function (radial MTF) for a chest phantom with simulated ground-glass opacity (GGO) nodules, and noise power spectrum (NPS) for uniform water phantom. The novel DE-VM-VDSR with BF improved the overall performance in terms of SDNR (DE-VM-VDSR with BF: 0.1603, without BF: 0.1517; FBP: 0.0521; SART: 0.0645; SART-TV-FISTA: 0.0984; and DE-VM-SART-TV-FISTA: 0.1004), obtained a Gumbel distribution that yielded good images showing the type of simulated GGO nodules used in the chest phantom, and reduced the ripple artifacts. The NPS of DE-VM-VDSR with BF showed the lowest noise characteristics in the high-frequency region (~0.8 cycles/mm). The DE-VM-VDSR without BF yielded an improved resolution relative to that of the conventional reconstruction algorithms for radial MTF analysis (0.2-0.3 cycles/mm). Finally, based on the overall image quality, DE-VM-VDSR with BF improved the contrast and reduced the high-frequency ripple artifacts and noise.We developed a novel dual-energy (DE) virtual monochromatic (VM) very-deep super-resolution (VDSR) method with an unsharp masking reconstruction algorithm (DE-VM-VDSR) that uses projection data to improve the nodule contrast and reduce ripple artifacts during chest digital tomosynthesis (DT). For estimating the residual errors from high-resolution and multiscale VM images from the projection space, the DE-VM-VDSR algorithm employs a training network (mini-batch stochastic gradient-descent algorithm with momentum) and a hybrid super-resolution (SR) image [simultaneous algebraic reconstruction technique (SART) total-variation (TV) first-iterative shrinkage-thresholding algorithm (FISTA); SART-TV-FISTA] that involves subjective reconstruction with bilateral filtering (BF) [DE-VM-VDSR with BF]. DE-DT imaging was accomplished by pulsed X-ray exposures rapidly switched between low (60 kV, 37 projection) and high (120 kV, 37 projection) tube-potential kVp by employing a 40° swing angle. This was followed by comparison of images obtained employing the conventional polychromatic filtered backprojection (FBP), SART, SART-TV-FISTA, and DE-VM-SART-TV-FISTA algorithms. The improvements in contrast, ripple artifacts, and resolution were compared using the signal-difference-to-noise ratio (SDNR), Gumbel distribution of the largest variations, radial modulation transfer function (radial MTF) for a chest phantom with simulated ground-glass opacity (GGO) nodules, and noise power spectrum (NPS) for uniform water phantom. The novel DE-VM-VDSR with BF improved the overall performance in terms of SDNR (DE-VM-VDSR with BF: 0.1603, without BF: 0.1517; FBP: 0.0521; SART: 0.0645; SART-TV-FISTA: 0.0984; and DE-VM-SART-TV-FISTA: 0.1004), obtained a Gumbel distribution that yielded good images showing the type of simulated GGO nodules used in the chest phantom, and reduced the ripple artifacts. The NPS of DE-VM-VDSR with BF showed the lowest noise characteristics in the high-frequency region (~0.8 cycles/mm). The DE-VM-VDSR without BF yielded an improved resolution relative to that of the conventional reconstruction algorithms for radial MTF analysis (0.2-0.3 cycles/mm). Finally, based on the overall image quality, DE-VM-VDSR with BF improved the contrast and reduced the high-frequency ripple artifacts and noise.
Audience Academic
Author Gomi, Tsutomu
Watanabe, Yusuke
Hara, Hidetake
Mizukami, Shinya
AuthorAffiliation School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
Korea National University of Transportation, REPUBLIC OF KOREA
AuthorAffiliation_xml – name: Korea National University of Transportation, REPUBLIC OF KOREA
– name: School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
Author_xml – sequence: 1
  givenname: Tsutomu
  orcidid: 0000-0002-2322-714X
  surname: Gomi
  fullname: Gomi, Tsutomu
– sequence: 2
  givenname: Hidetake
  surname: Hara
  fullname: Hara, Hidetake
– sequence: 3
  givenname: Yusuke
  surname: Watanabe
  fullname: Watanabe, Yusuke
– sequence: 4
  givenname: Shinya
  surname: Mizukami
  fullname: Mizukami, Shinya
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33382766$$D View this record in MEDLINE/PubMed
BookMark eNqNk11r2zAUhs3oWD-2fzA2wWBsF8ksS7bsXgxK2UegUNjXrZDlY0eZbaWSnC7_Zz90J40zklLG8IUs6Xlf-bzyOY2OettDFD2n8ZQyQd8t7OB61U6XuDyNE84FTx9FJ7RgySRLYna0934cnXq_iOOU5Vn2JDpmjOWJyLKT6PesWzq7gopUpjFBtUTPwQcSbGf9ug84MZ6YTjVAbgbVmrAm5ZoMHoitiSIoXoAOxvaTUvmNDUIT6ME1a7IyLuCUdLa3eu5sp4LRRNt-Zdtho8G9HgZ3N4Rb636SWxPmxA9LcMSBH7Gn0eNatR6ejeNZ9P3jh2-XnydX159mlxdXE50VSZjQQgBXeaKwYlVnaZWBYiJJRJHmuhRZzRnVJXAeU0ipZgnPy0xXIq7zmBZQs7Po5dZ32Vovx4C9TDBanhWM5kjMtkRl1UIuHQbj1tIqI-8WrGukclhkCxJ0WmhByzTNGK9Ykus6ZniWpnUheK3R6_142lB2UGnoAyZxYHq405u5bOxKCiF4wVM0eDMaOHsz4K3JzngNbat6sMP2u9M4jjlD9NU99OHqRqpRWIDpa4vn6o2pvMi4oKlIWILU9AEKnwo6g5cLtcH1A8HbAwEyAX6FRg3ey9nXL__PXv84ZF_vsXNQbZjvfhl_CL7YT_pvxLs2QOB8C2hnvXdQS429sPHB0kwraSw3PbcLTW56To49h2J-T7zz_6fsD0sXNHo
CitedBy_id crossref_primary_10_3390_diagnostics12102512
crossref_primary_10_1016_j_media_2021_102125
crossref_primary_10_1155_2021_4768673
crossref_primary_10_1016_j_nima_2022_166404
crossref_primary_10_4103_jmp_jmp_54_22
Cites_doi 10.1109/TIT.2006.871582
10.1148/radiology.147.3.6342037
10.1118/1.4903283
10.1148/radiology.145.2.7134457
10.1109/MSP.2007.914731
10.1118/1.595958
10.1109/TMI.2017.2708987
10.1137/080716542
10.1016/j.cmpb.2020.105615
10.1002/mp.12843
10.1118/1.1561285
10.1088/0031-9155/53/17/021
10.1148/radiology.179.2.2014294
10.1371/journal.pone.0150985
10.1088/0031-9155/61/24/8425
10.1148/98.2.249
10.1016/j.acra.2013.08.006
10.1002/mp.12933
10.1109/JSTSP.2007.910281
10.1137/S0097539792240406
10.1007/s10278-017-0033-z
10.1148/radiol.2492071956
10.1056/NEJMoa1113205
10.1118/1.4725171
10.3322/caac.21492
10.1109/TIP.2009.2028250
10.1118/1.2207127
10.1118/1.3097632
10.1088/0031-9155/21/5/002
10.1088/1361-6560/aacdd4
10.3390/s19143234
10.1002/cpa.20042
10.1177/016173468400600107
10.1109/CVPR.2016.182
10.1148/radiology.160.2.3726105
10.1148/radiology.161.3.3786710
10.1148/107.3.669
10.1088/0031-9155/48/19/R01
10.1109/CVPR.2016.207
10.1109/ICCVW.2015.17
10.1016/j.acra.2010.09.021
10.1148/rg.302095097
10.1109/TIP.2017.2662206
10.1118/1.4928603
10.1148/radiology.148.3.6308709
10.1148/radiology.217.1.r00oc33251
10.1118/1.3056554
10.1016/j.compmedimag.2019.101647
10.1109/TMI.2017.2715284
10.1016/j.ejmp.2018.07.011
10.1148/radiographics.11.5.1947318
10.1259/bjr.20160555
10.1148/radiology.135.1.7360972
10.1016/j.compbiomed.2018.10.011
10.1148/radiol.2019181960
10.1148/rg.2016150081
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Gomi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Gomi et al 2020 Gomi et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Gomi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Gomi et al 2020 Gomi et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0244745
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database


MEDLINE
MEDLINE - Academic
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Development of a dual-energy virtual monochromatic very-deep super-resolution reconstruction algorithm for DT
EISSN 1932-6203
ExternalDocumentID 2474469318
oai_doaj_org_article_ec59c71b55634d328cf0370fc1f974fc
PMC7774945
A647157232
33382766
10_1371_journal_pone_0244745
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: ;
  grantid: 2020-1006
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
ESTFP
PUEGO
5PM
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c692t-197e4a82a203af65d6ea37227958cb76f431cbe4401e51c3248b6cd70f8019ef3
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000605651900074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Fri Nov 26 17:12:25 EST 2021
Fri Oct 03 12:45:19 EDT 2025
Tue Nov 04 01:40:00 EST 2025
Mon Sep 08 12:17:11 EDT 2025
Sat Nov 29 14:41:21 EST 2025
Sat Nov 29 13:19:44 EST 2025
Sat Nov 29 09:51:31 EST 2025
Wed Nov 26 10:20:13 EST 2025
Wed Nov 26 09:57:41 EST 2025
Thu May 22 21:22:06 EDT 2025
Wed Feb 19 02:29:15 EST 2025
Sat Nov 29 01:48:43 EST 2025
Tue Nov 18 22:39:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-197e4a82a203af65d6ea37227958cb76f431cbe4401e51c3248b6cd70f8019ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-2322-714X
OpenAccessLink https://doaj.org/article/ec59c71b55634d328cf0370fc1f974fc
PMID 33382766
PQID 2474469318
PQPubID 1436336
PageCount e0244745
ParticipantIDs plos_journals_2474469318
doaj_primary_oai_doaj_org_article_ec59c71b55634d328cf0370fc1f974fc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7774945
proquest_miscellaneous_2474500043
proquest_journals_2474469318
gale_infotracmisc_A647157232
gale_infotracacademiconefile_A647157232
gale_incontextgauss_ISR_A647157232
gale_incontextgauss_IOV_A647157232
gale_healthsolutions_A647157232
pubmed_primary_33382766
crossref_citationtrail_10_1371_journal_pone_0244745
crossref_primary_10_1371_journal_pone_0244745
PublicationCentury 2000
PublicationDate 2020-12-31
PublicationDateYYYYMMDD 2020-12-31
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References S Hamidian (pone.0244745.ref040) 2017
A Halder (pone.0244745.ref041) 2020
MAT Figueiredo (pone.0244745.ref062) 2007; 1
O Ozan (pone.0244745.ref056) 2016; 2016
pone.0244745.ref044
DL Donoho (pone.0244745.ref050) 2006; 52
EJ Chae (pone.0244745.ref019) 2008; 249
BK Natarajan (pone.0244745.ref060) 1995; 24
EJ Candes (pone.0244745.ref061) 2008; 25
J Choe (pone.0244745.ref043) 2019; 292
S Xu (pone.0244745.ref025) 2015; 42
S Sone (pone.0244745.ref012) 1991; 11
CE Cann (pone.0244745.ref021) 1982; 145
A Beck (pone.0244745.ref030) 2009; 18
T Gomi (pone.0244745.ref015) 2013; 20
pone.0244745.ref049
T Gomi (pone.0244745.ref046) 2018; 53
K Zhang (pone.0244745.ref031) 2017; 26
EY Sidky (pone.0244745.ref051) 2008; 53
W Zhao (pone.0244745.ref020) 2018; 45
SS Siegelman (pone.0244745.ref004) 1986; 160
G Ma (pone.0244745.ref017) 2016; 11
pone.0244745.ref034
A Otrakji (pone.0244745.ref018) 2016; 36
K Umehara (pone.0244745.ref036) 2018; 31
WA Kalender (pone.0244745.ref023) 1986; 13
K Murata (pone.0244745.ref008) 1986; 161
H Chen (pone.0244745.ref032) 2017; 36
X Liu (pone.0244745.ref066) 2009; 36
M Gerlinger (pone.0244745.ref006) 2012; 366
Z Wang (pone.0244745.ref037) 2020
T Gomi (pone.0244745.ref014) 2011; 18
Y Du (pone.0244745.ref064) 2016; 61
Y Lu (pone.0244745.ref026) 2015; 42
H Zhang (pone.0244745.ref055) 2019; 19
RA Kruger (pone.0244745.ref011) 1983; 147
E Samei (pone.0244745.ref054) 2003; 30
K Imai (pone.0244745.ref052) 2009; 36
T Wu (pone.0244745.ref065) 2006; 33
K Miyata (pone.0244745.ref028) 2017; 90
DI Eun (pone.0244745.ref038) 2020; 196
A Krizhevsky (pone.0244745.ref048) 2012
J Park (pone.0244745.ref035) 2018; 63
D Lee (pone.0244745.ref042) 2018
DF Yankelevitz (pone.0244745.ref001) 2000; 217
ER Miller (pone.0244745.ref009) 1971; 98
J Winter (pone.0244745.ref045) 1980; 135
S Richard (pone.0244745.ref053) 2012; 39
F Bray (pone.0244745.ref005) 2018; 68
D Chao (pone.0244745.ref057) 2016; 2016
JR Muhm (pone.0244745.ref003) 1983; 148
JT Dobbins (pone.0244745.ref013) 2003; 48
I Daubechies (pone.0244745.ref063) 2004; 57
AH Andersen (pone.0244745.ref024) 1984; 6
CV Zwirewich (pone.0244745.ref007) 1991; 179
A Beck (pone.0244745.ref029) 2009; 2
Y Gu (pone.0244745.ref039) 2018; 103
S Choi (pone.0244745.ref027) 2018; 45
CH Pham (pone.0244745.ref059) 2019; 77
RE Alvarez (pone.0244745.ref022) 1976; 21
JM Wolterink (pone.0244745.ref033) 2017; 36
FP Stitik (pone.0244745.ref002) 1978; 16
M Berger (pone.0244745.ref047) 1987
pone.0244745.ref058
NA Baily (pone.0244745.ref010) 1973; 107
H Machida (pone.0244745.ref016) 2010; 30
References_xml – volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: pone.0244745.ref050
  article-title: Compressed sensing
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2006.871582
– volume: 2016
  start-page: 246
  year: 2016
  ident: pone.0244745.ref056
  article-title: Multi-input Cardiac Image Super-Resolution Using Convolutional Neural Networks
  publication-title: Medical Image Computing and Computer-Assisted Intervention—MICCAI
– ident: pone.0244745.ref049
– start-page: 1097
  year: 2012
  ident: pone.0244745.ref048
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– year: 2020
  ident: pone.0244745.ref041
  article-title: Lung Nodule Detection from Feature Engineering to Deep Learning in Thoracic CT Images: a Comprehensive Review
  publication-title: J Digit Imaging
– start-page: 1
  year: 1987
  ident: pone.0244745.ref047
  article-title: Photon cross sections on a personal computer
  publication-title: Gent Radiat Res
– volume: 147
  start-page: 863
  issue: 3
  year: 1983
  ident: pone.0244745.ref011
  article-title: Dynamic tomographic digital subtraction angiography using temporal filtration
  publication-title: Radiology
  doi: 10.1148/radiology.147.3.6342037
– volume: 42
  start-page: 182
  issue: 1
  year: 2015
  ident: pone.0244745.ref026
  article-title: Multiscale bilateral filtering for improving image quality in digital breast tomosynthesis
  publication-title: Med Phys
  doi: 10.1118/1.4903283
– volume: 145
  start-page: 493
  issue: 2
  year: 1982
  ident: pone.0244745.ref021
  article-title: Quantification of calcium in solitary pulmonary nodules using single- and dual-energy CT
  publication-title: Radiology
  doi: 10.1148/radiology.145.2.7134457
– volume: 25
  start-page: 21
  issue: 2
  year: 2008
  ident: pone.0244745.ref061
  article-title: An Introduction To Compressive Sampling
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2007.914731
– volume: 13
  start-page: 334
  issue: 3
  year: 1986
  ident: pone.0244745.ref023
  article-title: Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies
  publication-title: Med Phys
  doi: 10.1118/1.595958
– volume: 36
  start-page: 2536
  issue: 12
  year: 2017
  ident: pone.0244745.ref033
  article-title: Generative Adversarial Networks for Noise Reduction in Low-Dose CT
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2708987
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: pone.0244745.ref029
  article-title: A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
  publication-title: SIAM Journal on Imaging Sciences
  doi: 10.1137/080716542
– volume: 196
  start-page: 105615
  year: 2020
  ident: pone.0244745.ref038
  article-title: CT kernel conversions using convolutional neural net for super-resolution with simplified squeeze-and-excitation blocks and progressive learning among smooth and sharp kernels
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105615
– volume: 45
  start-page: 1871
  issue: 5
  year: 2018
  ident: pone.0244745.ref027
  article-title: Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction
  publication-title: Med Phys
  doi: 10.1002/mp.12843
– volume: 16
  start-page: 347
  issue: 3
  year: 1978
  ident: pone.0244745.ref002
  article-title: Radiographic screening in the early detection of lung cancer
  publication-title: Radiol Clin North Am
– volume: 30
  start-page: 608
  issue: 4
  year: 2003
  ident: pone.0244745.ref054
  article-title: An experimental comparison of detector performance for direct and indirect digital radiography systems
  publication-title: Med Phys
  doi: 10.1118/1.1561285
– volume: 53
  start-page: 4777
  issue: 17
  year: 2008
  ident: pone.0244745.ref051
  article-title: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/53/17/021
– volume: 179
  start-page: 469
  issue: 2
  year: 1991
  ident: pone.0244745.ref007
  article-title: Solitary pulmonary nodule: high-resolution CT and radiologic-pathologic correlation
  publication-title: Radiology
  doi: 10.1148/radiology.179.2.2014294
– volume: 11
  start-page: e0150985
  issue: 3
  year: 2016
  ident: pone.0244745.ref017
  article-title: Improving Image Quality of Bronchial Arteries with Virtual Monochromatic Spectral CT Images
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0150985
– volume: 61
  start-page: 8425
  issue: 24
  year: 2016
  ident: pone.0244745.ref064
  article-title: Evaluation of hybrid SART + OS + TV iterative reconstruction algorithm for optical-CT gel dosimeter imaging
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/61/24/8425
– start-page: 10134
  year: 2017
  ident: pone.0244745.ref040
  article-title: 3D Convolutional Neural Network for Automatic Detection of Lung Nodules in Chest CT
  publication-title: Proc SPIE Int Soc Opt Eng
– volume: 98
  start-page: 249
  issue: 2
  year: 1971
  ident: pone.0244745.ref009
  article-title: An infinite number of laminagrams from a finite number of radiographs
  publication-title: Radiology
  doi: 10.1148/98.2.249
– volume: 20
  start-page: 1357
  issue: 11
  year: 2013
  ident: pone.0244745.ref015
  article-title: Comparison of chest dual-energy subtraction digital tomosynthesis and dual-energy subtraction radiography for detection of pulmonary nodules: initial evaluations in human clinical cases
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2013.08.006
– volume: 45
  start-page: 2964
  issue: 7
  year: 2018
  ident: pone.0244745.ref020
  article-title: A unified material decomposition framework for quantitative dual- and triple-energy CT imaging
  publication-title: Med Phys
  doi: 10.1002/mp.12933
– year: 2018
  ident: pone.0244745.ref042
  article-title: Restoration of Full Data from Sparse Data in Low-Dose Chest Digital Tomosynthesis Using Deep Convolutional Neural Networks
  publication-title: J Digit Imaging
– volume: 1
  start-page: 586
  issue: 4
  year: 2007
  ident: pone.0244745.ref062
  article-title: Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems
  publication-title: IEEE Journal of Selected Topics in Signal Processing
  doi: 10.1109/JSTSP.2007.910281
– volume: 24
  start-page: 227
  issue: 2
  year: 1995
  ident: pone.0244745.ref060
  article-title: Sparse Approximate Solutions to Linear Systems
  publication-title: SIAM Journal on Computing
  doi: 10.1137/S0097539792240406
– volume: 31
  start-page: 441
  issue: 4
  year: 2018
  ident: pone.0244745.ref036
  article-title: Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-017-0033-z
– volume: 249
  start-page: 671
  issue: 2
  year: 2008
  ident: pone.0244745.ref019
  article-title: Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience
  publication-title: Radiology
  doi: 10.1148/radiol.2492071956
– volume: 366
  start-page: 883
  issue: 10
  year: 2012
  ident: pone.0244745.ref006
  article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1113205
– volume: 39
  start-page: 4115
  issue: 7
  year: 2012
  ident: pone.0244745.ref053
  article-title: Towards task-based assessment of CT performance: system and object MTF across different reconstruction algorithms
  publication-title: Med Phys
  doi: 10.1118/1.4725171
– volume: 68
  start-page: 394
  issue: 6
  year: 2018
  ident: pone.0244745.ref005
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21492
– volume: 18
  start-page: 2419
  issue: 11
  year: 2009
  ident: pone.0244745.ref030
  article-title: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2009.2028250
– volume: 33
  start-page: 2461
  issue: 7
  year: 2006
  ident: pone.0244745.ref065
  article-title: Voting strategy for artifact reduction in digital breast tomosynthesis
  publication-title: Med Phys
  doi: 10.1118/1.2207127
– volume: 36
  start-page: 1602
  issue: 5
  year: 2009
  ident: pone.0244745.ref066
  article-title: Quantitative imaging of element composition and mass fraction using dual-energy CT: three-material decomposition
  publication-title: Med Phys
  doi: 10.1118/1.3097632
– volume: 21
  start-page: 733
  issue: 5
  year: 1976
  ident: pone.0244745.ref022
  article-title: Energy-selective reconstructions in X-ray computerized tomography
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/21/5/002
– volume: 63
  start-page: 145011
  issue: 14
  year: 2018
  ident: pone.0244745.ref035
  article-title: Computed tomography super-resolution using deep convolutional neural network
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aacdd4
– volume: 19
  issue: 14
  year: 2019
  ident: pone.0244745.ref055
  article-title: A Comparable Study of CNN-Based Single Image Super-Resolution for Space-Based Imaging Sensors
  publication-title: Sensors (Basel)
  doi: 10.3390/s19143234
– volume: 57
  start-page: 1413
  issue: 11
  year: 2004
  ident: pone.0244745.ref063
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Communications on Pure and Applied Mathematics
  doi: 10.1002/cpa.20042
– volume: 6
  start-page: 81
  issue: 1
  year: 1984
  ident: pone.0244745.ref024
  article-title: Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm
  publication-title: Ultrason Imaging
  doi: 10.1177/016173468400600107
– ident: pone.0244745.ref044
  doi: 10.1109/CVPR.2016.182
– volume: 160
  start-page: 307
  issue: 2
  year: 1986
  ident: pone.0244745.ref004
  article-title: Solitary pulmonary nodules: CT assessment
  publication-title: Radiology
  doi: 10.1148/radiology.160.2.3726105
– volume: 161
  start-page: 641
  issue: 3
  year: 1986
  ident: pone.0244745.ref008
  article-title: Centrilobular lesions of the lung: demonstration by high-resolution CT and pathologic correlation
  publication-title: Radiology
  doi: 10.1148/radiology.161.3.3786710
– volume: 107
  start-page: 669
  issue: 3
  year: 1973
  ident: pone.0244745.ref010
  publication-title: Electrofluoroplanigraphy. Radiology
  doi: 10.1148/107.3.669
– volume: 48
  start-page: R65
  issue: 19
  year: 2003
  ident: pone.0244745.ref013
  article-title: Digital x-ray tomosynthesis: current state of the art and clinical potential
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/48/19/R01
– ident: pone.0244745.ref058
  doi: 10.1109/CVPR.2016.207
– ident: pone.0244745.ref034
  doi: 10.1109/ICCVW.2015.17
– volume: 18
  start-page: 191
  issue: 2
  year: 2011
  ident: pone.0244745.ref014
  article-title: Comparison of chest dual-energy subtraction digital tomosynthesis imaging and dual-energy subtraction radiography to detect simulated pulmonary nodules with and without calcifications a phantom study
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2010.09.021
– volume: 30
  start-page: 549
  issue: 2
  year: 2010
  ident: pone.0244745.ref016
  article-title: Optimizing parameters for flat-panel detector digital tomosynthesis
  publication-title: Radiographics
  doi: 10.1148/rg.302095097
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  ident: pone.0244745.ref031
  article-title: Beyond a gauaaian denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2662206
– volume: 42
  start-page: 5377
  issue: 9
  year: 2015
  ident: pone.0244745.ref025
  article-title: Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis
  publication-title: Med Phys
  doi: 10.1118/1.4928603
– volume: 148
  start-page: 609
  issue: 3
  year: 1983
  ident: pone.0244745.ref003
  article-title: Lung cancer detected during a screening program using four-month chest radiographs
  publication-title: Radiology
  doi: 10.1148/radiology.148.3.6308709
– volume: 217
  start-page: 251
  issue: 1
  year: 2000
  ident: pone.0244745.ref001
  article-title: Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation
  publication-title: Radiology
  doi: 10.1148/radiology.217.1.r00oc33251
– volume: 36
  start-page: 492
  issue: 2
  year: 2009
  ident: pone.0244745.ref052
  article-title: Statistical characteristics of streak artifacts on CT images: relationship between streak artifacts and mA s values
  publication-title: Med Phys
  doi: 10.1118/1.3056554
– volume: 77
  start-page: 101647
  year: 2019
  ident: pone.0244745.ref059
  article-title: Multiscale brain MRI super-resolution using deep 3D convolutional networks
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2019.101647
– volume: 36
  start-page: 2524
  issue: 12
  year: 2017
  ident: pone.0244745.ref032
  article-title: Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2715284
– volume: 53
  start-page: 4
  year: 2018
  ident: pone.0244745.ref046
  article-title: Development of a novel algorithm for metal artifact reduction in digital tomosynthesis using projection-based dual-energy material decomposition for arthroplasty: A phantom study
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2018.07.011
– volume: 2016
  start-page: 391
  year: 2016
  ident: pone.0244745.ref057
  article-title: Accelerating the Super-Resolution Convolutional Neural Network
  publication-title: Computer Vision–ECCV
– volume: 11
  start-page: 807
  issue: 5
  year: 1991
  ident: pone.0244745.ref012
  article-title: Development of a high-resolution digital tomosynthesis system and its clinical application
  publication-title: Radiographics
  doi: 10.1148/radiographics.11.5.1947318
– volume: 90
  start-page: 20160555
  issue: 1071
  year: 2017
  ident: pone.0244745.ref028
  article-title: A phantom study for ground-glass nodule detectability using chest digital tomosynthesis with iterative reconstruction algorithm by ten observers: association with radiation dose and nodular characteristics
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20160555
– volume: 135
  start-page: 234
  issue: 1
  year: 1980
  ident: pone.0244745.ref045
  article-title: Edge enhancement of computed tomograms by digital unsharp masking
  publication-title: Radiology
  doi: 10.1148/radiology.135.1.7360972
– volume: 103
  start-page: 220
  year: 2018
  ident: pone.0244745.ref039
  article-title: Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.10.011
– year: 2020
  ident: pone.0244745.ref037
  article-title: Deep Learning for Image Super-resolution: A Survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 292
  start-page: 365
  issue: 2
  year: 2019
  ident: pone.0244745.ref043
  article-title: Deep Learning-based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses
  publication-title: Radiology
  doi: 10.1148/radiol.2019181960
– volume: 36
  start-page: 38
  issue: 1
  year: 2016
  ident: pone.0244745.ref018
  article-title: Dual-Energy CT: Spectrum of Thoracic Abnormalities
  publication-title: Radiographics
  doi: 10.1148/rg.2016150081
SSID ssj0053866
Score 2.3869717
Snippet We developed a novel dual-energy (DE) virtual monochromatic (VM) very-deep super-resolution (VDSR) method with an unsharp masking reconstruction algorithm...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0244745
SubjectTerms Algorithms
Aluminum
Artificial neural networks
Biology and Life Sciences
Chest
Computer simulation
Decomposition
Deep learning
Digital imaging
Engineering and Technology
Health sciences
Humans
Image contrast
Image processing
Image Processing, Computer-Assisted - methods
Image quality
Image reconstruction
Image resolution
Lung cancer
Lung Neoplasms - diagnostic imaging
Medicine and Health Sciences
Modulation transfer function
Neural networks
Neural Networks, Computer
Nodules
Noise
Opacity
Optical communication
Phantoms, Imaging
Physical Sciences
Projection
Radiography
Radiography, Thoracic - methods
Research and Analysis Methods
Ripples
Stochasticity
Tomography, X-Ray Computed - methods
SummonAdditionalLinks – databaseName: Materials Science Database
  dbid: KB.
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg4cAFKK8GChiEBByy3cSJHZ9Qi6jgUhAv9RYljrON1MZLvFup_4cfyozjBIIqQOK00XpixfbMeB72N4Q8i2Sp0zKKQomeTpLqGJ54HJZVVbCslosyVa7YhDg8zI6O5AcfcLP-WOWgE52irozCGPlunAjwXCSw4KvVtxCrRmF21ZfQuEyuRDHY-piU3Z8PmhhkmXN_XY6JaNevznxlWj2HvQl6TCfbkUPtH3XzbHVi7EWG5-_nJ3_ZkA5u_O9QbpLr3hSlez3vbJFLur1FtrywW_rCI1K_vE2-96EHXdGqWWKVEerKbNG1OTX2vAUb0jaWNqegm2h_S_Oclud0YzU1NS2oD_cAC4S4a0I3QBRqd-2QnjUd3mGh8FVGHXfGYchSPA3vpQLaEHXT_bgz6xSDx9RuVrqjnR6E5w75cvDm8-u3oS_vECou43UYSaGTIouLeMGKmqcV1wUTiGiYZqoUvAbbRpU6AQ9Qp5ECyy8ruarEooZdVeqa3SWzFpZym1AEcecZ2IJ1gng5VVZhuhZTmJWKEi0DwoZVzpXHPscSHCe5S-gJ8IH6Oc-RN3LPGwEJx7dWPfbHX-j3kYFGWkTudn-Ybpl7RZBrlUolohKB2ZKKxZmqFwzGpKIaXLtaBeQxsl_eX4Md9U--x8GMSAUYwAF56igQvaPF40HLYmNt_u79138g-vRxQvTcE9UGpkMV_koGjAlRwSaUOxNK0EFq0ryNwjLMis1_sji8OQjBxc1PxmbsFI_8tdpseprUZaoDcq-Xt3FmGWNZLDgPiJhI4mTqpy1tc-zA0wX4OzJJ7__5sx6QazEGVhyi5w6ZrbuNfkiuqrN1Y7tHTsv8AD_0iv4
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science (PLoS) Open Access Journals
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZg4cAFKK8GChiEBBxSNnFsx8eCWIGESsVLvUWJ47SR2mQVbyrt_-GHMuN4A6laAadE8ThKxp6X7fmGkBeRKgwvoihUGOkk3MRwJ-KwKMucpZWaF1y7YhNyfz89PFQHvwPFczv4TEZvPE93l21jdsGiJDLhV8m1mAmBFQsWB582mhdkVwifHndZz4n5cSj9oy6eLU9ae5Gjef685B8GaHHrfz_9NrnpXU26N8yNLXLFNHfIlhdmS195xOnXd8nPYWnBlLSsj7CKCHVltOiqPW3tugEf0daW1qege-iQhbmmxZr21tC2ojn1yzkwxCFaRXgNEIXGpRXSs7rDHBUK873Vx13rMGIpnnb3sx7aEFXTXdyZdIqLw9T2S9PRzmyE4x75vnj_7d2H0JdvCLVQ8SqMlDRJnsZ5PGd5JXgpTM4kIhbyVBdSVOC76MIkEOEZHmnw7NJC6FLOK7CaylTsPpk1wLltQhGkXaTg61UJ4uGUaYnbsbhFWeooMSogbDOqmfbY5lhi4yRzG3YSYpyB5xkOReaHIiDh2Gs5YHv8hf4tTpiRFpG53QMY88wLemY0V1pGBQKvJSWLU13NGfyTjioI3SodkKc43bIhzXXUL9meADeBS3BwA_LcUSA6R4PHf47y3trs4-cf_0D09cuE6KUnqlpgh859ygX8E6J-TSh3JpSgY_SkeRuFY8MVm8XAj0QoMAjQcyMwFzc_G5vxpXikrzFtP9BwtxMdkAeDfI2cZYylsRQiIHIieRPWT1ua-tiBo0uIZ1TCH17-xY_IjRgXTRxa5w6ZrbrePCbX9dmqtt0Tp1F-ATCveW0
  priority: 102
  providerName: Public Library of Science
Title Improved digital chest tomosynthesis image quality by use of a projection-based dual-energy virtual monochromatic convolutional neural network with super resolution
URI https://www.ncbi.nlm.nih.gov/pubmed/33382766
https://www.proquest.com/docview/2474469318
https://www.proquest.com/docview/2474500043
https://pubmed.ncbi.nlm.nih.gov/PMC7774945
https://doaj.org/article/ec59c71b55634d328cf0370fc1f974fc
http://dx.doi.org/10.1371/journal.pone.0244745
Volume 15
WOSCitedRecordID wos000605651900074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELeg8MALYnwtMIpBSMBDunza8eM6rWIaK1EHU-ElShxni7QlVdNO6v_DH8qd41YNmjQeeLlW9TlK785354_7mZAPrshUmLmuLXCmE4TKg2_Ms7M8T_2oEE4WSn3ZBB-Po-lUxFtXfeGZsBYeuBXcvpKhkNzNEMgqyH0vkoXjc6eQbgGpcCHR-zpcrCdTrQ-GUcyYKZTzubtv9DKY1ZUaQFQKOJYvbQUijde_8cq92VXd3JZy_n1ycisUjZ6QxyaHpAftu--Qe6p6SnbMKG3oJwMl_fkZ-d2uGaic5uUFXg9C9f1YdFFf182qguSvKRtaXoNToW155YpmK7psFK0LmlKzTgO6szHcwWOAyVa6XpDelHMsPqFgyLW8nNca_JXiMXZjztCGcJn6Qx82p7jqS5vlTM0pTPMN23PyY3T0_fCLbe5lsCUT3sJ2BVdBGnmp5_hpwcKcqdTnCEUYRjLjrICkRGYqgKmbCl0JKVuUMZmD0iAcClX4L0ivAk3sEoro6yyCJK4IEOgmj3LcZ8W9x1y6gRIW8ddKSqQBLce7M64SvRPHYfLSyjxB1SZGtRaxN71mLWjHHfxD1P-GFyG39Q9giIkxxOQuQ7TIW7SepK1f3TiO5IBB_A85ZK4Wea85EHajwnM9F-myaZLjb-f_wHQ26TB9NExFDeKQqamlgP-EcF4dzr0OJzgP2WneRVtfS6VJPJBHwAR4eui5tv_bm99tmvGheFavUvWy5Qn1FrNFXrbDZSNZ3_cjjzNmEd4ZSB3Rd1uq8lKjnnOYqIggfPU_dPWaPPJw3UQDdu6R3mK-VG_IQ3mzKJt5n9znk3OkU65pBDQ6dPvkwfBoHE_62tUAHcVfgZ4MB0BPnROkPNb0DGgc_oIe8fFp_PMPbcKJzw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKggQXoLwaKNQgEHBIu4mTODkgVB5Vq20XRAvqLSSOs43UJku8W7T_hzO_kRnHCQRVwKUHTrtaT6JkdubzjO35hpDHTpRKP3UcO8JMx_OlC98C106zLGFhHg1TX-hmE3w8Dg8Po_dL5HtbC4PHKltM1ECdVQLXyDdcj0PmEoEJvpx-sbFrFO6uti00GrMYycVXSNnUi5038P8-cd2ttwevt23TVcAWQeTObCfi0ktCN3GHLMkDPwtkwjgS6fmhSHmQw5QqUulB4iF9R0DAEaaByPgwBzCPZM7gvhfIRRhn2CpibzhqkR-wIwhMeR7jzoaxhvVpVcp1mAvhDfze9Ke7BHRzwWB6XKmzAt3fz2v-MgFuXfvfVHedXDWhNt1sfGOZLMnyBlk2YKboM8O4_fwm-dYsrciMZsUEu6hQ3UaMzqqTSi1KiJFVoWhxAthLmyrUBU0XdK4krXKaULOcBSZuY1QAtwEhW-qySnpa1FijQ0ELlTiqK82RS_G0v_F6GENWUf2hz-RTXBynaj6VNa1lCw63yMdz0dZtMijBdFYIRZL6IIRYN_eQDygLM9yOxi3aTDiejCzCWquKheF2xxYjx7HesOSQ4zU6j9EWY2OLFrG7q6YNt8lf5F-hwXayyEyuf6jqSWyALpbCjwR3UiSe8zLmhiIfMngn4eSQuubCImto7nFT5tvha7wZQJjkcwjwLfJISyA7SYnHnybJXKl4592nfxDa_9ATemqE8grUIRJTcgLvhKxnPcnVniRgrOgNr6BztlpR8U-Xgitbpzt7-GE3jDfFI42lrOaNjK934i1yp_HvTrOMsdDlQWAR3vP8nur7I2VxpMnhOeRzkeff_fNjrZHL2wd7u_Huznh0j1xxcRFJs5euksGsnsv75JI4nRWqfqARjpLP540LPwBm6OaU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKghAXoLwaKNQgEHBId_OykwNChbJiVbRUvNRbSBx7G6lNlmS3aP8Pv4Jfx4zjBIIq4NIDp12tJ1Y8O_48Y3u-IeShE6UySB3HjjDS8QPpwjfm2mmWJV6oolEaCF1sgk-n4cFBtL9Gvre5MHitssVEDdRZKXCPfOj6HCKXCExwqMy1iP3d8fP5FxsrSOFJa1tOozGRPbn6CuFb_WyyC__1I9cdv_rw8rVtKgzYgkXuwnYiLv0kdBN35CWKBRmTiceRVC8IRcqZguVVpNKHIEQGjgDnI0yZyPhIAbBHUnnQ7zlynvts5Otrg_vtKgA4wphJ1fO4MzSWsT0vC7kN6yKMJugthbpiQLcuDOZHZX2a0_v73c1fFsPxlf9ZjVfJZeOC051mzqyTNVlcI-sG5Gr6xDBxP71OvjVbLjKjWT7D6ipUlxeji_K4rFcF-M51XtP8GDCZNtmpK5qu6LKWtFQ0oWabC0zfRm8BugEhW-p0S3qSV5i7Q0ELpTisSs2dSzELwKABtCHbqP7Qd_UpbprTejmXFa1kCxo3yMcz0dZNMijAjDYIRfJ6FoIPrHzkCcrCDI-p8eg2E44vI4t4rYXFwnC-Y-mRo1gfZHKI_Rqdx2iXsbFLi9jdU_OG8-Qv8i_QeDtZZCzXP5TVLDYAGEsRRII7KRLS-ZnnhkKNPBiTcBSEtEpYZAtNP27SfzvcjXcYuE8BB8ffIg-0BLKWFGi4s2RZ1_Hk7ad_EHr_rif02AipEtQhEpOKAmNCNrSe5GZPErBX9Jo3cKK2Wqnjn9MLnmwn4OnN97tm7BSvOhayXDYygT6ht8itZq53mvU8L3Q5YxbhPRToqb7fUuSHmjSeQ5wX-cHtP7_WFrkIcBC_mUz37pBLLu4taVLTTTJYVEt5l1wQJ4u8ru5psKPk81nDwg-Yg-90
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+digital+chest+tomosynthesis+image+quality+by+use+of+a+projection-based+dual-energy+virtual+monochromatic+convolutional+neural+network+with+super+resolution&rft.jtitle=PloS+one&rft.au=Gomi%2C+Tsutomu&rft.au=Hara%2C+Hidetake&rft.au=Watanabe%2C+Yusuke&rft.au=Mizukami%2C+Shinya&rft.date=2020-12-31&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=12&rft.spage=e0244745&rft_id=info:doi/10.1371%2Fjournal.pone.0244745&rft.externalDBID=ISR&rft.externalDocID=A647157232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon