Are Growth Forms Consistent Predictors of Leaf Litter Quality and Decomposability across Peatlands along a Latitudinal Gradient?

1 Plant growth forms are widely used to predict the effects of environmental changes, such as climate warming and increased nitrogen deposition, on plant communities, and the consequences of species shifts for carbon and nutrient cycling. We investigated whether the relationship between growth forms...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of ecology Vol. 93; no. 4; pp. 817 - 828
Main Authors: Dorrepaal, Ellen, Johannes H. C. Cornelissen, Aerts, Rien, Wallén, Bo, Richard S. P. van Logtestijn
Format: Journal Article
Language:English
Published: Oxford, UK British Ecological Society 01.08.2005
Blackwell Science Ltd
Blackwell Science
Blackwell Publishing Ltd
Subjects:
ISSN:0022-0477, 1365-2745, 1365-2745
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract 1 Plant growth forms are widely used to predict the effects of environmental changes, such as climate warming and increased nitrogen deposition, on plant communities, and the consequences of species shifts for carbon and nutrient cycling. We investigated whether the relationship between growth forms and patterns in litter quality and decomposition are independent of environmental conditions and whether growth forms are as good as litter chemistry at predicting decomposability. 2 We used a natural, latitudinal gradient in NW Europe as a spatial analogue for future increases in temperature and nitrogen availability. Our screening of 70 species typical of Sphagnum-dominated peatlands showed that leaf litters of Sphagnum mosses, evergreen and deciduous shrubs, graminoids and forbs differed significantly in litter chemistry and that the ranking of the growth forms was independent of the region for all litter chemistry variables. Differences among growth forms were usually larger than differences related to the environmental gradient. 3 After 8 and 20 months incubation in outdoor, Sphagnum-based decomposition beds, growth forms generally differed in decomposability, but these patterns varied with latitude. Sphagnum litters decomposed slower than other litters in all regions, again explaining its high representation in organic deposits of peatlands. Forb litters generally decomposed fastest, while the differences among the other growth forms were small, particularly at higher latitudes. 4 Multiple regression analyses showed that growth forms were better at predicting leaf litter decomposition than chemical variables in warm-temperate peatlands with a high N-load, but less so in the subarctic, low-N region. 5 Our results indicate that environmental changes may be less important in determining ecosystem leaf litter chemistry directly than are their indirect effects through changes in the relative abundance of growth forms. However, climatic and nutritional constraints in high-latitude peatlands promote convergence towards nutrient-efficient plant traits, resulting in similar decomposition rates of vascular growth forms despite differences in litter chemistry. The usefulness of the growth-form concept in predicting plant community controls on ecosystem functioning is therefore somewhat limited.
AbstractList Plant growth forms are widely used to predict the effects of environmental changes, such as climate warming and increased nitrogen deposition, on plant communities, and the consequences of species shifts for carbon and nutrient cycling. We investigated whether the relationship between growth forms and patterns in litter quality and decomposition are independent of environmental conditions and whether growth forms are as good as litter chemistry at predicting decomposability. We used a natural, latitudinal gradient in NW Europe as a spatial analogue for future increases in temperature and nitrogen availability. Our screening of 70 species typical of Sphagnum-dominated peatlands showed that leaf litters of Sphagnum mosses, evergreen and deciduous shrubs, graminoids and forbs differed significantly in litter chemistry and that the ranking of the growth forms was independent of the region for all litter chemistry variables. Differences among growth forms were usually larger than differences related to the environmental gradient. After 8 and 20 months incubation in outdoor, Sphagnum-based decomposition beds, growth forms generally differed in decomposability, but these patterns varied with latitude. Sphagnum litters decomposed slower than other litters in all regions, again explaining its high representation in organic deposits of peatlands. Forb litters generally decomposed fastest, while the differences among the other growth forms were small, particularly at higher latitudes. Multiple regression analyses showed that growth forms were better at predicting leaf litter decomposition than chemical variables in warm-temperate peatlands with a high N-load, but less so in the subarctic, low-N region. Our results indicate that environmental changes may be less important in determining ecosystem leaf litter chemistry directly than are their indirect effects through changes in the relative abundance of growth forms. However, climatic and nutritional constraints in high-latitude peatlands promote convergence towards nutrient-efficient plant traits, resulting in similar decomposition rates of vascular growth forms despite differences in litter chemistry. The usefulness of the growth-form concept in predicting plant community controls on ecosystem functioning is therefore somewhat limited.
Plant growth forms are widely used to predict the effects of environmental changes, such as climate warming and increased nitrogen deposition, on plant communities, and the consequences of species shifts for carbon and nutrient cycling. Here, Dorrepaal investigate whether the relationship between growth forms and patterns in litter quality and decomposition are independent of environmental conditions and whether growth forms are as good as litter chemistry at predicting decomposability.
* 1 Plant growth forms are widely used to predict the effects of environmental changes, such as climate warming and increased nitrogen deposition, on plant communities, and the consequences of species shifts for carbon and nutrient cycling. We investigated whether the relationship between growth forms and patterns in litter quality and decomposition are independent of environmental conditions and whether growth forms are as good as litter chemistry at predicting decomposability. * 2 We used a natural, latitudinal gradient in NW Europe as a spatial analogue for future increases in temperature and nitrogen availability. Our screening of 70 species typical of Sphagnum-dominated peatlands showed that leaf litters of Sphagnum mosses, evergreen and deciduous shrubs, graminoids and forbs differed significantly in litter chemistry and that the ranking of the growth forms was independent of the region for all litter chemistry variables. Differences among growth forms were usually larger than differences related to the environmental gradient. * 3 After 8 and 20 months incubation in outdoor, Sphagnum-based decomposition beds, growth forms generally differed in decomposability, but these patterns varied with latitude. Sphagnum litters decomposed slower than other litters in all regions, again explaining its high representation in organic deposits of peatlands. Forb litters generally decomposed fastest, while the differences among the other growth forms were small, particularly at higher latitudes. * 4 Multiple regression analyses showed that growth forms were better at predicting leaf litter decomposition than chemical variables in warm-temperate peatlands with a high N-load, but less so in the subarctic, low-N region. * 5 Our results indicate that environmental changes may be less important in determining ecosystem leaf litter chemistry directly than are their indirect effects through changes in the relative abundance of growth forms. However, climatic and nutritional constraints in high-latitude peatlands promote convergence towards nutrient-efficient plant traits, resulting in similar decomposition rates of vascular growth forms despite differences in litter chemistry. The usefulness of the growth-form concept in predicting plant community controls on ecosystem functioning is therefore somewhat limited.
1 Plant growth forms are widely used to predict the effects of environmental changes, such as climate warming and increased nitrogen deposition, on plant communities, and the consequences of species shifts for carbon and nutrient cycling. We investigated whether the relationship between growth forms and patterns in litter quality and decomposition are independent of environmental conditions and whether growth forms are as good as litter chemistry at predicting decomposability. 2 We used a natural, latitudinal gradient in NW Europe as a spatial analogue for future increases in temperature and nitrogen availability. Our screening of 70 species typical of Sphagnum-dominated peatlands showed that leaf litters of Sphagnum mosses, evergreen and deciduous shrubs, graminoids and forbs differed significantly in litter chemistry and that the ranking of the growth forms was independent of the region for all litter chemistry variables. Differences among growth forms were usually larger than differences related to the environmental gradient. 3 After 8 and 20 months incubation in outdoor, Sphagnum-based decomposition beds, growth forms generally differed in decomposability, but these patterns varied with latitude. Sphagnum litters decomposed slower than other litters in all regions, again explaining its high representation in organic deposits of peatlands. Forb litters generally decomposed fastest, while the differences among the other growth forms were small, particularly at higher latitudes. 4 Multiple regression analyses showed that growth forms were better at predicting leaf litter decomposition than chemical variables in warm-temperate peatlands with a high N-load, but less so in the subarctic, low-N region. 5 Our results indicate that environmental changes may be less important in determining ecosystem leaf litter chemistry directly than are their indirect effects through changes in the relative abundance of growth forms. However, climatic and nutritional constraints in high-latitude peatlands promote convergence towards nutrient-efficient plant traits, resulting in similar decomposition rates of vascular growth forms despite differences in litter chemistry. The usefulness of the growth-form concept in predicting plant community controls on ecosystem functioning is therefore somewhat limited.
The relationships between plant growth forms and litter quality and decomposition were studied as a function of environmental conditions. The extent to which growth forms can predict decomposability was also examined. A natural latitudinal gradient was used as a spatial analogue for anticipated temperature and nitrogen increases. A survey of 70 peatland plant species determined a different litter chemistry for mosses, evergreen and deciduous shrubs, gramminoids, and forbs, and growth forms were independent for all litter chemistry variables. After 8-20 months of incubation, the growth forms varied in decomposability as a function of latitude. The growth forms were better predictors of leaf litter decomposition than chemical variables for warm peatlands, but not for subarctic, low-nitrogen regions.
Summary 1 Plant growth forms are widely used to predict the effects of environmental changes, such as climate warming and increased nitrogen deposition, on plant communities, and the consequences of species shifts for carbon and nutrient cycling. We investigated whether the relationship between growth forms and patterns in litter quality and decomposition are independent of environmental conditions and whether growth forms are as good as litter chemistry at predicting decomposability. 2 We used a natural, latitudinal gradient in NW Europe as a spatial analogue for future increases in temperature and nitrogen availability. Our screening of 70 species typical of Sphagnum‐dominated peatlands showed that leaf litters of Sphagnum mosses, evergreen and deciduous shrubs, graminoids and forbs differed significantly in litter chemistry and that the ranking of the growth forms was independent of the region for all litter chemistry variables. Differences among growth forms were usually larger than differences related to the environmental gradient. 3 After 8 and 20 months incubation in outdoor, Sphagnum‐based decomposition beds, growth forms generally differed in decomposability, but these patterns varied with latitude. Sphagnum litters decomposed slower than other litters in all regions, again explaining its high representation in organic deposits of peatlands. Forb litters generally decomposed fastest, while the differences among the other growth forms were small, particularly at higher latitudes. 4 Multiple regression analyses showed that growth forms were better at predicting leaf litter decomposition than chemical variables in warm‐temperate peatlands with a high N‐load, but less so in the subarctic, low‐N region. 5 Our results indicate that environmental changes may be less important in determining ecosystem leaf litter chemistry directly than are their indirect effects through changes in the relative abundance of growth forms. However, climatic and nutritional constraints in high‐latitude peatlands promote convergence towards nutrient‐efficient plant traits, resulting in similar decomposition rates of vascular growth forms despite differences in litter chemistry. The usefulness of the growth‐form concept in predicting plant community controls on ecosystem functioning is therefore somewhat limited.
Author Aerts, Rien
Richard S. P. van Logtestijn
Dorrepaal, Ellen
Johannes H. C. Cornelissen
Wallén, Bo
Author_xml – sequence: 1
  givenname: Ellen
  surname: Dorrepaal
  fullname: Dorrepaal, Ellen
– sequence: 2
  fullname: Johannes H. C. Cornelissen
– sequence: 3
  givenname: Rien
  surname: Aerts
  fullname: Aerts, Rien
– sequence: 4
  givenname: Bo
  surname: Wallén
  fullname: Wallén, Bo
– sequence: 5
  fullname: Richard S. P. van Logtestijn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16937949$$DView record in Pascal Francis
BookMark eNqNUk1vEzEUXKEi0Rb-AQcLCcQlwR-76_UBUBXaAopEEdyfHPstdbRZB9urNDd-Ot5slUMPFB9sy5554zees-Kk9z0WBWF0zvJ4t54zUVczLstqzimt5pRRXs7vnhSnx4uT4pRSzme0lPJZcRbjmlJay4qeFn8uApLr4Hfpllz5sIlk4fvoYsI-kZuA1pnkQyS-JUvUeXIpYSDfB925tCe6t-QTGr_Z-qhXbjozwcdIblCnLt9Hojvf_yKaLHVyabCu112W1NZljY_Pi6et7iK-uF_Pix9Xlz8Xn2fLb9dfFhfLmakVL2e4YlIZao3gtrZVSbFteGN52QhWMaGsMcZy01QtKmvz2iCy0si2xJWl4rzQU9W4w-2wgm1wGx324LWDrQ9JdxAwog7mFroBIkJGdc7kF2c7wKxMU0qtgTNmoBQtB8VoA63ltqVYy1XTZo23k8Y2-N8DxgQbFw122QT0QwTW1I0QKn9Ihr75N1RWdZ37fhxYykpyNVZ89QC49kPITkfgtFGMK8Ey6PU9SEejuzbo3rh4NIPVSkhVqoz7MOEOPxmwBePSwYoUtOuAURizB2sYIwZjxGDMHhyyB3e5QPOgwFHjcer7ibpzHe7_mwdfLxfjLvNfTvx1zME98kWlcmdU_AXCGP7k
CODEN JECOAB
CitedBy_id crossref_primary_10_1016_j_catena_2011_02_008
crossref_primary_10_1016_j_soilbio_2017_01_008
crossref_primary_10_1111_j_1469_8137_2010_03228_x
crossref_primary_10_1007_s00374_009_0406_7
crossref_primary_10_1007_s11104_006_9050_2
crossref_primary_10_1007_s13157_019_01256_6
crossref_primary_10_1111_j_1365_2486_2007_01346_x
crossref_primary_10_1016_j_apsoil_2024_105641
crossref_primary_10_1016_j_scitotenv_2022_155352
crossref_primary_10_1111_ele_70026
crossref_primary_10_1007_s00442_009_1362_5
crossref_primary_10_1111_j_1365_2745_2009_01538_x
crossref_primary_10_2980_21__3_4__3690
crossref_primary_10_1016_j_scitotenv_2007_02_016
crossref_primary_10_1016_j_soilbio_2024_109345
crossref_primary_10_1111_gcb_13032
crossref_primary_10_1111_gcb_15970
crossref_primary_10_1111_j_1365_2745_2006_01142_x
crossref_primary_10_1111_nph_18954
crossref_primary_10_1016_j_scitotenv_2020_138106
crossref_primary_10_1111_j_1469_8137_2012_04256_x
crossref_primary_10_1007_s10021_009_9301_1
crossref_primary_10_1111_geb_13152
crossref_primary_10_1007_s00300_012_1206_3
crossref_primary_10_1007_s00374_013_0892_5
crossref_primary_10_1007_s12224_023_09427_4
crossref_primary_10_4141_cjss_2014_062
crossref_primary_10_1016_j_apsoil_2025_106443
crossref_primary_10_1007_s10021_012_9624_1
crossref_primary_10_1038_s41586_018_0563_7
crossref_primary_10_1007_s11104_017_3239_4
crossref_primary_10_1007_s11104_010_0512_1
crossref_primary_10_1016_j_rse_2015_01_029
crossref_primary_10_1111_j_1365_2486_2008_01699_x
crossref_primary_10_1111_j_1600_0706_2008_17129_x
crossref_primary_10_1139_as_2023_0049
crossref_primary_10_1111_j_1365_2486_2008_01638_x
crossref_primary_10_1007_s10533_016_0224_6
crossref_primary_10_1007_s10533_013_9915_4
crossref_primary_10_1007_s11104_018_3579_8
crossref_primary_10_3389_fenvs_2019_00147
crossref_primary_10_1111_gcb_12175
crossref_primary_10_1007_s11104_019_03958_6
crossref_primary_10_1007_s12224_015_9203_2
crossref_primary_10_1007_s11258_010_9786_x
crossref_primary_10_1016_j_ecolind_2019_105644
crossref_primary_10_1016_j_catena_2021_105801
crossref_primary_10_3390_land12071300
crossref_primary_10_1007_s11104_010_0506_z
crossref_primary_10_1111_gcb_13213
crossref_primary_10_1016_j_atmosenv_2013_04_056
crossref_primary_10_1007_s11104_016_3077_9
crossref_primary_10_1016_j_soilbio_2022_108758
crossref_primary_10_1007_s11104_021_04893_1
crossref_primary_10_1016_j_scitotenv_2021_151293
crossref_primary_10_1080_15324982_2017_1300613
crossref_primary_10_3389_fmicb_2022_920382
crossref_primary_10_1002_ecy_3825
crossref_primary_10_1029_2021JG006486
crossref_primary_10_1111_oik_09119
crossref_primary_10_1007_s11258_020_01037_w
crossref_primary_10_1073_pnas_0606629104
crossref_primary_10_1080_00032719_2013_853181
crossref_primary_10_1080_01490451_2014_999293
crossref_primary_10_1111_j_1365_2427_2006_01649_x
crossref_primary_10_1016_j_scitotenv_2022_157849
crossref_primary_10_1111_gcb_15229
crossref_primary_10_1007_s10021_010_9349_y
crossref_primary_10_1016_j_jaridenv_2011_04_009
crossref_primary_10_1007_s11258_017_0752_8
crossref_primary_10_1007_s11258_024_01440_7
crossref_primary_10_5194_bg_8_2741_2011
crossref_primary_10_1016_j_soilbio_2006_07_014
crossref_primary_10_1111_j_1654_1103_2009_01088_x
crossref_primary_10_1016_j_soilbio_2010_11_035
crossref_primary_10_1016_j_soilbio_2007_08_011
crossref_primary_10_1007_s11104_016_3099_3
crossref_primary_10_1016_j_geoderma_2024_117009
crossref_primary_10_1111_mec_16125
crossref_primary_10_1371_journal_pone_0216698
crossref_primary_10_1007_s11104_020_04536_x
crossref_primary_10_1007_s11676_019_00981_2
crossref_primary_10_1038_ismej_2008_58
crossref_primary_10_1111_j_1365_2745_2007_01294_x
crossref_primary_10_1111_oik_07635
crossref_primary_10_1007_s11104_022_05785_8
crossref_primary_10_1007_s11104_010_0333_2
crossref_primary_10_1016_j_scitotenv_2018_01_162
crossref_primary_10_1111_geb_12783
crossref_primary_10_1890_07_1601_1
crossref_primary_10_1007_s00442_012_2330_z
crossref_primary_10_1111_j_1365_2486_2011_02503_x
crossref_primary_10_1111_j_1442_9993_2007_01759_x
crossref_primary_10_1029_2017JG004227
crossref_primary_10_1007_s10533_024_01176_6
crossref_primary_10_3389_fenvs_2019_00182
crossref_primary_10_1111_j_1365_2486_2009_01987_x
crossref_primary_10_1007_s11104_017_3252_7
crossref_primary_10_1007_s00442_024_05616_w
crossref_primary_10_1016_j_ecolind_2022_109731
crossref_primary_10_1016_j_geoderma_2019_113890
crossref_primary_10_1016_j_soilbio_2015_04_002
crossref_primary_10_1016_j_scitotenv_2022_154294
crossref_primary_10_1111_j_1469_8137_2010_03531_x
crossref_primary_10_1007_s00442_009_1454_2
crossref_primary_10_1111_j_1461_0248_2007_01051_x
crossref_primary_10_1002_ecy_2442
crossref_primary_10_1016_j_catena_2012_03_009
crossref_primary_10_1657_1938_4246_42_1_1
crossref_primary_10_1007_s40710_024_00679_6
crossref_primary_10_1134_S2079086415010077
crossref_primary_10_3390_f6072371
crossref_primary_10_34220_issn_2222_7962_2025_1_3
crossref_primary_10_1002_ece3_71758
crossref_primary_10_1016_j_flora_2025_152797
crossref_primary_10_1007_s00442_006_0575_0
crossref_primary_10_1007_s11258_009_9574_7
crossref_primary_10_1016_j_rse_2019_111217
crossref_primary_10_1890_05_1823
crossref_primary_10_1002_eco_1893
crossref_primary_10_1007_s11104_015_2713_0
crossref_primary_10_1002_ecs2_1779
crossref_primary_10_1111_gcb_13934
crossref_primary_10_1016_S1872_2032_08_60058_X
crossref_primary_10_1016_j_wasman_2024_11_012
crossref_primary_10_1007_s40974_016_0034_7
crossref_primary_10_1111_j_1365_2486_2008_01801_x
crossref_primary_10_1007_s11104_010_0447_6
crossref_primary_10_1111_j_0030_1299_2008_16518_x
crossref_primary_10_1139_cjb_2013_0319
crossref_primary_10_1007_s11104_020_04507_2
crossref_primary_10_1007_s00442_006_0580_3
crossref_primary_10_1007_s11104_023_05993_w
crossref_primary_10_1002_ldr_4842
crossref_primary_10_1111_1365_2745_12075
crossref_primary_10_3389_feart_2021_631368
crossref_primary_10_1002_ecs2_2198
crossref_primary_10_1007_s00244_022_00928_5
crossref_primary_10_1007_s11104_007_9285_6
crossref_primary_10_1016_j_soilbio_2006_03_006
crossref_primary_10_1111_oik_07257
crossref_primary_10_1002_jgrg_20089
crossref_primary_10_3389_fmicb_2024_1422529
crossref_primary_10_1007_s13157_020_01377_3
crossref_primary_10_1111_j_1365_2745_2012_01961_x
crossref_primary_10_1016_j_aquabot_2018_03_004
crossref_primary_10_1111_nph_18601
crossref_primary_10_1007_s11104_017_3353_3
crossref_primary_10_1016_j_scitotenv_2017_03_136
crossref_primary_10_1007_s10533_017_0345_6
crossref_primary_10_1002_jpln_202100206
crossref_primary_10_1007_s11769_015_0746_1
crossref_primary_10_1007_s00442_010_1754_6
crossref_primary_10_1007_s10533_024_01129_z
crossref_primary_10_1007_s11104_022_05346_z
crossref_primary_10_1111_j_1365_2486_2007_01468_x
crossref_primary_10_1111_j_1365_2664_2009_01714_x
crossref_primary_10_1139_X10_072
crossref_primary_10_1371_journal_pone_0280187
crossref_primary_10_1016_j_polar_2023_100924
crossref_primary_10_1016_j_scitotenv_2020_144793
crossref_primary_10_1016_j_pedobi_2013_04_001
crossref_primary_10_1111_nph_13311
crossref_primary_10_1111_gcb_13242
crossref_primary_10_1126_science_1197479
crossref_primary_10_1016_j_geoderma_2025_117418
crossref_primary_10_3389_fenvs_2021_680430
crossref_primary_10_1111_ejss_12922
Cites_doi 10.1890/02-0712
10.2307/2261070
10.1046/j.1365-2486.2001.00433.x
10.1023/A:1019681606112
10.2307/3546886
10.1139/b97-872
10.2307/1939337
10.1007/s004420100646
10.2307/3236278
10.1890/02-0426
10.1890/0012-9658(1999)080[2170:PMCONC]2.0.CO;2
10.1111/j.1365-2486.2003.00719.x
10.1046/j.1365-2486.2003.00571.x
10.1890/0012-9658(2000)081[3464:ROBAFP]2.0.CO;2
10.1046/j.1365-2486.2003.00605.x
10.1890/0012-9658(1999)080[1828:RIMAPT]2.0.CO;2
10.2307/1941811
10.2307/3547057
10.2307/2257633
10.2307/2259155
10.1007/s004420100691
10.1890/0012-9658(1997)078[0244:NAPMCO]2.0.CO;2
10.1016/S0003-2670(00)88444-5
10.1046/j.0269-8463.2001.00596.x
10.1525/9780520407114
10.1016/S0065-2504(08)60016-1
10.1016/B978-0-12-168250-7.50008-0
10.2307/1938918
10.1046/j.1469-8137.1999.00430.x
10.2307/2963492
10.1023/A:1014981715532
10.1890/0012-9658(2001)082[0955:SFAPLD]2.0.CO;2
10.1046/j.1365-2745.1998.00261.x
10.1046/j.1365-2745.2003.00828.x
10.1111/j.1365-2486.2003.00718.x
10.1016/0038-0717(94)00183-2
10.2307/2261479
10.2307/3546567
10.1890/1051-0761(1997)007[0444:RONLET]2.0.CO;2
10.1046/j.1469-8137.2001.00149.x
10.2307/3545996
10.1016/B978-012083490-7/50003-7
10.1890/1051-0761(2001)011[1206:COLDIA]2.0.CO;2
10.2307/1936780
10.1890/0012-9615(1999)069[0491:ROTPTE]2.0.CO;2
ContentType Journal Article
Copyright Copyright 2005 British Ecological Society
2005 INIST-CNRS
Copyright Blackwell Publishing Aug 2005
Copyright_xml – notice: Copyright 2005 British Ecological Society
– notice: 2005 INIST-CNRS
– notice: Copyright Blackwell Publishing Aug 2005
CorporateAuthor Lunds universitet
Naturvetenskapliga fakulteten
Faculty of Science
Lund University
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Lund University
– name: Faculty of Science
– name: Lunds universitet
DBID AAYXX
CITATION
IQODW
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
ADTPV
AOWAS
D95
DOI 10.1111/j.1365-2745.2005.01024.x
DatabaseName CrossRef
Pascal-Francis
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
DatabaseTitleList Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Aquatic Science & Fisheries Abstracts (ASFA) Professional

Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Botany
EISSN 1365-2745
EndPage 828
ExternalDocumentID oai_portal_research_lu_se_publications_cbc847aa_211c_43f2_9108_fd2df0e67b8f
877265101
16937949
10_1111_j_1365_2745_2005_01024_x
JEC1024
3599490
Genre article
Feature
GeographicLocations ANE, Europe
GeographicLocations_xml – name: ANE, Europe
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
29K
2AX
2WC
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHIC
ACHJO
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFXHP
AFZJQ
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CUYZI
D-E
D-F
D-I
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAU
EBS
ECGQY
EJD
F00
F01
F04
F5P
FVMVE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XIH
Y6R
YF5
YQT
YZZ
ZCA
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
42X
8WZ
A6W
ABUFD
AGHNM
HF~
HGD
WHG
YXE
AAYXX
CITATION
O8X
IQODW
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c6924-eb179c0dc32d6d540ef828d248315139dcccd2c85fe9ddc858ee14c7f4ebd03
IEDL.DBID DRFUL
ISICitedReferencesCount 199
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000230337900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-0477
1365-2745
IngestDate Thu Nov 06 12:49:28 EST 2025
Tue Oct 07 09:19:26 EDT 2025
Mon Oct 06 17:25:44 EDT 2025
Tue Oct 07 09:25:50 EDT 2025
Mon Nov 10 02:58:28 EST 2025
Mon Jul 21 09:16:45 EDT 2025
Tue Nov 18 22:38:28 EST 2025
Sat Nov 29 01:45:47 EST 2025
Tue Nov 11 03:13:26 EST 2025
Thu Jul 03 21:12:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords high latitude
Litter
Growth
Latitudinal gradient
leaf litter
nitrogen deposition
litter chemistry
Plant leaf
decomposition
plant functional types
Peat bog
Sphagnum
peatlands
environmental gradient
climate change
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6924-eb179c0dc32d6d540ef828d248315139dcccd2c85fe9ddc858ee14c7f4ebd03
Notes Van der Meijden (1996
subarctic and cool‐temperate regions
Bouman & Van der Pluijm (2002
Van der Meijden
.
Sphagnum
(warm‐temperate region); for
mosses nomenclature follows
Mossberg
1983
1992
and
et al
For vascular plants nomenclature follows
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2745.2005.01024.x
PQID 208912931
PQPubID 23462
PageCount 12
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_cbc847aa_211c_43f2_9108_fd2df0e67b8f
proquest_miscellaneous_1868339274
proquest_miscellaneous_17566692
proquest_miscellaneous_14757294
proquest_journals_208912931
pascalfrancis_primary_16937949
crossref_citationtrail_10_1111_j_1365_2745_2005_01024_x
crossref_primary_10_1111_j_1365_2745_2005_01024_x
wiley_primary_10_1111_j_1365_2745_2005_01024_x_JEC1024
jstor_primary_3599490
PublicationCentury 2000
PublicationDate August 2005
PublicationDateYYYYMMDD 2005-08-01
PublicationDate_xml – month: 08
  year: 2005
  text: August 2005
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle The Journal of ecology
PublicationYear 2005
Publisher British Ecological Society
Blackwell Science Ltd
Blackwell Science
Blackwell Publishing Ltd
Publisher_xml – name: British Ecological Society
– name: Blackwell Science Ltd
– name: Blackwell Science
– name: Blackwell Publishing Ltd
References 2002; 16
1995; 74
1992; 80
1965; 53
1991; 1
1991; 72
2000; 218
1999; 69
1995; 76
1999; 143
1997
1996
1998; 81
1999; 86
1994
1992
2002
1999; 80
1998; 86
2001; 126
2003; 10
1979
2001; 128
1993; 5
1999
2001; 82
2001; 151
2003; 91
2001; 7
2001
1978; 66
2002; 242
1995; 27
1997; 75
1982; 63
1997; 79
2000; 30
1997; 78
2003; 9
1962; 27
2000; 81
1996; 84
1983
2001; 11
2003; 84
1996; 7
1996; 66
e_1_2_6_32_1
McCarthy J.J. (e_1_2_6_33_1) 2001
Bouman A.C. (e_1_2_6_11_1) 2002
Van der Meijden R. (e_1_2_6_53_1) 1983
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
Waterman P.G. (e_1_2_6_57_1) 1994
e_1_2_6_59_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Mossberg B. (e_1_2_6_35_1) 1992
Van der Meijden R. (e_1_2_6_52_1) 1996
Johnson L.C. (e_1_2_6_27_1) 1993; 5
e_1_2_6_9_1
e_1_2_6_5_1
Houghton J.T. (e_1_2_6_26_1) 2001
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
SMHI (e_1_2_6_49_1) 2002
e_1_2_6_47_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
Zar J.H. (e_1_2_6_61_1) 1999
KNMI (e_1_2_6_30_1) 2002
Gitay H. (e_1_2_6_21_1) 1997
RIVM (e_1_2_6_44_1) 2002
e_1_2_6_14_1
Swift M.J. (e_1_2_6_50_1) 1979
e_1_2_6_12_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_40_1
Palm C.A. (e_1_2_6_38_1) 1997
e_1_2_6_8_1
e_1_2_6_4_1
Tuomenvirta H. (e_1_2_6_51_1) 2001
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_46_1
References_xml – start-page: 39
  year: 1997
  end-page: 72
– volume: 86
  start-page: 315
  year: 1998
  end-page: 327
  article-title: Responses of a subarctic dwarf shrub heath community to simulated environmental change
  publication-title: Journal of Ecology
– volume: 69
  start-page: 491
  year: 1999
  end-page: 511
  article-title: Responses of tundra plants to experimental warming: meta‐analysis of the international tundra experiment
  publication-title: Ecological Monographs
– start-page: 3
  year: 1997
  end-page: 19
– volume: 80
  start-page: 1828
  year: 1999
  end-page: 1843
  article-title: Responses in microbes and plants to changed temperature, nutrient, and light regimes in the arctic
  publication-title: Ecology
– year: 2001
– volume: 1
  start-page: 182
  year: 1991
  end-page: 195
  article-title: Northern peatlands: role in the carbon cycle and probable responses to climatic warming
  publication-title: Ecological Applications
– volume: 16
  start-page: 4
  year: 2002
  end-page: 17
  article-title: Climate change in the Arctic: using plant functional types in a meta‐analysis of field experiments
  publication-title: Functional Ecology
– volume: 10
  start-page: 93
  year: 2003
  end-page: 104
  article-title: Summer warming and increased winter snow cover affect growth, structure and production in a sub‐arctic bog
  publication-title: Global Change Biology
– volume: 80
  start-page: 2170
  year: 1999
  end-page: 2181
  article-title: Plant‐mediated controls on nutrient cycling in temperate fens and bogs
  publication-title: Ecology
– year: 1979
– volume: 53
  start-page: 747
  year: 1965
  end-page: 758
  article-title: Experiments on breakdown of in two bogs
  publication-title: Journal of Ecology
– year: 1994
– volume: 151
  start-page: 227
  year: 2001
  end-page: 236
  article-title: Environmental control and intersite variations of phenolics in in tundra ecosystems
  publication-title: New Phytologist
– volume: 79
  start-page: 439
  year: 1997
  end-page: 449
  article-title: Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship
  publication-title: Oikos
– volume: 84
  start-page: 573
  year: 1996
  end-page: 582
  article-title: An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types
  publication-title: Journal of Ecology
– volume: 11
  start-page: 1206
  year: 2001
  end-page: 1223
  article-title: Control of litter decomposition in a subalpine meadow‐sagebrush steppe ecotone under climate change
  publication-title: Ecological Applications
– volume: 91
  start-page: 1060
  year: 2003
  end-page: 1070
  article-title: Nitrogen and phosphorus resorption efficiency and proficiency in six sub‐arctic bog species after 4 years of nitrogen fertilization
  publication-title: Journal of Ecology
– volume: 80
  start-page: 131
  year: 1992
  end-page: 140
  article-title: Growth‐limiting nutrients in ‐dominated bogs subject to low and high atmospheric nitrogen supply
  publication-title: Journal of Ecology
– volume: 74
  start-page: 503
  year: 1995
  end-page: 512
  article-title: Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi‐desert and a subarctic dwarf shrub heath
  publication-title: Oikos
– volume: 27
  start-page: 271
  year: 1995
  end-page: 275
  article-title: Decomposition of and litter in fens: effect of litter quality and inhibition by living tissue homogenates
  publication-title: Soil Biology and Biochemistry
– volume: 143
  start-page: 191
  year: 1999
  end-page: 200
  article-title: Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents
  publication-title: New Phytologist
– volume: 128
  start-page: 94
  year: 2001
  end-page: 98
  article-title: Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition
  publication-title: Oecologia
– volume: 7
  start-page: 347
  year: 1996
  end-page: 358
  article-title: Plant functional types as predictors of transient responses of arctic vegetation to global change
  publication-title: Journal of Vegetation Science
– volume: 78
  start-page: 244
  year: 1997
  end-page: 260
  article-title: Nutritional and plant‐mediated controls on leaf litter decomposition of species
  publication-title: Ecology
– year: 1983
– volume: 218
  start-page: 21
  year: 2000
  end-page: 30
  article-title: Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina
  publication-title: Plant and Soil
– volume: 30
  start-page: 1
  year: 2000
  end-page: 67
  article-title: The mineral nutrition of wild plants revisited: a re‐evaluation of processes and patterns
  publication-title: Advances in Ecological Research
– volume: 126
  start-page: 543
  year: 2001
  end-page: 562
  article-title: A meta‐analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming
  publication-title: Oecologia
– volume: 75
  start-page: 1601
  year: 1997
  end-page: 1613
  article-title: C nuclear magnetic resonance spectroscopy with cross‐polarization and magic‐angle spinning investigation of the proximate‐analysis fractions used to assess litter quality in decomposition studies
  publication-title: Canadian Journal of Botany
– volume: 84
  start-page: 3198
  year: 2003
  end-page: 3208
  article-title: Plant community mediated vs. nutritional controls on litter decomposition rates in grasslands
  publication-title: Ecology
– year: 1996
– volume: 242
  start-page: 65
  year: 2002
  end-page: 81
  article-title: Controls on decomposition and soil nitrogen availability at high latitudes
  publication-title: Plant and Soil
– volume: 5
  start-page: 249
  year: 1993
  end-page: 296
  article-title: Decay and its regulation in peatlands
  publication-title: Advances in Bryology
– volume: 81
  start-page: 368
  year: 1998
  end-page: 388
  article-title: Carbon accumulation in peatland
  publication-title: Oikos
– year: 1992
– volume: 7
  start-page: 591
  year: 2001
  end-page: 598
  article-title: Raised atmospheric CO levels and increased N deposition cause shifts in plant species composition and production in bogs
  publication-title: Global Change Biology
– volume: 10
  start-page: 105
  year: 2003
  end-page: 123
  article-title: Long‐term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences in ecosystem and plant type responses to global change
  publication-title: Global Change Biology
– volume: 76
  start-page: 694
  year: 1995
  end-page: 711
  article-title: Responses of arctic tundra to experimental and observed changes in climate
  publication-title: Ecology
– start-page: 11
  year: 1992
  end-page: 34
– volume: 66
  start-page: 503
  year: 1996
  end-page: 522
  article-title: Temperature and plant species control over litter decomposition in Alaskan tundra
  publication-title: Ecological Monographs
– year: 2002
– volume: 9
  start-page: 575
  year: 2003
  end-page: 584
  article-title: Climatic effects on litter decomposition from arctic tundra to tropical rainforest
  publication-title: Global Change Biology
– volume: 66
  start-page: 631
  year: 1978
  end-page: 650
  article-title: An investigation of the biotic factors determining the rates of plant decomposition on blanket bog
  publication-title: Journal of Ecology
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Analytical Chimica Acta
– volume: 9
  start-page: 141
  year: 2003
  end-page: 151
  article-title: Potential effects of warming and drying on peatland plant community composition
  publication-title: Global Change Biology
– volume: 84
  start-page: 3209
  year: 2003
  end-page: 3221
  article-title: Decomposition of sub‐arctic plants with differing nitrogen economies: a functional role for hemiparasites
  publication-title: Ecology
– start-page: 379
  year: 1997
  end-page: 392
– volume: 128
  start-page: 557
  year: 2001
  end-page: 565
  article-title: Production and microtopography of bog bryophytes: response to warming and water‐table manipulations
  publication-title: Oecologia
– volume: 72
  start-page: 242
  year: 1991
  end-page: 253
  article-title: Effects of temperature and substrate quality on element mineralization in six arctic soils
  publication-title: Ecology
– volume: 81
  start-page: 3464
  year: 2000
  end-page: 3478
  article-title: Response of bog and fen plant communities to warming and water‐table manipulations
  publication-title: Ecology
– volume: 86
  start-page: 27
  year: 1999
  end-page: 44
  article-title: A protein competition model of phenolic allocation
  publication-title: Oikos
– volume: 63
  start-page: 621
  year: 1982
  end-page: 626
  article-title: Nitrogen and lignin control of hardwood leaf litter decomposition dynamics
  publication-title: Ecology
– volume: 82
  start-page: 955
  year: 2001
  end-page: 964
  article-title: Soil fauna and plant litter decomposition in tropical and subalpine forests
  publication-title: Ecology
– year: 1999
– volume-title: Nordklim Data Set 1.0 – Description and Illustrations
  year: 2001
  ident: e_1_2_6_51_1
– volume-title: Analysis of Phenolic Plant Metabolites
  year: 1994
  ident: e_1_2_6_57_1
– ident: e_1_2_6_5_1
  doi: 10.1890/02-0712
– volume-title: Biostatistical Analysis
  year: 1999
  ident: e_1_2_6_61_1
– ident: e_1_2_6_7_1
  doi: 10.2307/2261070
– ident: e_1_2_6_10_1
  doi: 10.1046/j.1365-2486.2001.00433.x
– ident: e_1_2_6_45_1
  doi: 10.1023/A:1019681606112
– ident: e_1_2_6_2_1
  doi: 10.2307/3546886
– volume-title: Klimaatatlas van Nederland: De normaalperiode 1971–2000.
  year: 2002
  ident: e_1_2_6_30_1
– ident: e_1_2_6_42_1
  doi: 10.1139/b97-872
– ident: e_1_2_6_13_1
  doi: 10.2307/1939337
– ident: e_1_2_6_8_1
  doi: 10.1007/s004420100646
– ident: e_1_2_6_12_1
  doi: 10.2307/3236278
– start-page: 3
  volume-title: Plant Functional Types: their Relevance to Ecosystem Properties and Global Change
  year: 1997
  ident: e_1_2_6_21_1
– volume-title: Luchtkwaliteit, Jaaroverzicht 2001.
  year: 2002
  ident: e_1_2_6_44_1
– volume-title: Heukels’ Flora van Nederland
  year: 1996
  ident: e_1_2_6_52_1
– volume-title: Den Nordiska Floran
  year: 1992
  ident: e_1_2_6_35_1
– volume-title: Heukels/Van der Meijden – Flora van Nederland
  year: 1983
  ident: e_1_2_6_53_1
– ident: e_1_2_6_43_1
  doi: 10.1890/02-0426
– ident: e_1_2_6_6_1
  doi: 10.1890/0012-9658(1999)080[2170:PMCONC]2.0.CO;2
– ident: e_1_2_6_55_1
  doi: 10.1111/j.1365-2486.2003.00719.x
– volume-title: Climate Change 2001: Impacts, Adaptation, and Vulnerability – Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change.
  year: 2001
  ident: e_1_2_6_33_1
– ident: e_1_2_6_58_1
  doi: 10.1046/j.1365-2486.2003.00571.x
– ident: e_1_2_6_60_1
  doi: 10.1890/0012-9658(2000)081[3464:ROBAFP]2.0.CO;2
– ident: e_1_2_6_31_1
  doi: 10.1046/j.1365-2486.2003.00605.x
– ident: e_1_2_6_28_1
  doi: 10.1890/0012-9658(1999)080[1828:RIMAPT]2.0.CO;2
– ident: e_1_2_6_23_1
  doi: 10.2307/1941811
– ident: e_1_2_6_15_1
  doi: 10.2307/3547057
– ident: e_1_2_6_14_1
  doi: 10.2307/2257633
– ident: e_1_2_6_18_1
  doi: 10.2307/2259155
– ident: e_1_2_6_59_1
  doi: 10.1007/s004420100691
– volume-title: Väder och Vatten
  year: 2002
  ident: e_1_2_6_49_1
– ident: e_1_2_6_4_1
  doi: 10.1890/0012-9658(1997)078[0244:NAPMCO]2.0.CO;2
– ident: e_1_2_6_36_1
  doi: 10.1016/S0003-2670(00)88444-5
– ident: e_1_2_6_19_1
  doi: 10.1046/j.0269-8463.2001.00596.x
– volume-title: Decomposition in Terrestrial Ecosystems
  year: 1979
  ident: e_1_2_6_50_1
  doi: 10.1525/9780520407114
– ident: e_1_2_6_3_1
  doi: 10.1016/S0065-2504(08)60016-1
– volume-title: Climate Change 2001: the Scientific Basis – Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change.
  year: 2001
  ident: e_1_2_6_26_1
– ident: e_1_2_6_32_1
  doi: 10.1016/B978-0-12-168250-7.50008-0
– ident: e_1_2_6_37_1
  doi: 10.2307/1938918
– ident: e_1_2_6_17_1
  doi: 10.1046/j.1469-8137.1999.00430.x
– ident: e_1_2_6_25_1
  doi: 10.2307/2963492
– ident: e_1_2_6_39_1
  doi: 10.1023/A:1014981715532
– ident: e_1_2_6_22_1
  doi: 10.1890/0012-9658(2001)082[0955:SFAPLD]2.0.CO;2
– ident: e_1_2_6_41_1
  doi: 10.1046/j.1365-2745.1998.00261.x
– ident: e_1_2_6_54_1
  doi: 10.1046/j.1365-2745.2003.00828.x
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1365-2486.2003.00718.x
– ident: e_1_2_6_56_1
  doi: 10.1016/0038-0717(94)00183-2
– ident: e_1_2_6_16_1
  doi: 10.2307/2261479
– ident: e_1_2_6_29_1
  doi: 10.2307/3546567
– ident: e_1_2_6_47_1
  doi: 10.1890/1051-0761(1997)007[0444:RONLET]2.0.CO;2
– ident: e_1_2_6_24_1
  doi: 10.1046/j.1469-8137.2001.00149.x
– ident: e_1_2_6_46_1
  doi: 10.2307/3545996
– volume-title: De Nederlandse veenmossen: flora en verspreidingsatlas van de Nederlandse Sphagnopsida.
  year: 2002
  ident: e_1_2_6_11_1
– start-page: 379
  volume-title: Driven by Nature: Plant Litter Quality and Decomposition
  year: 1997
  ident: e_1_2_6_38_1
– ident: e_1_2_6_40_1
  doi: 10.1016/B978-012083490-7/50003-7
– ident: e_1_2_6_48_1
  doi: 10.1890/1051-0761(2001)011[1206:COLDIA]2.0.CO;2
– ident: e_1_2_6_34_1
  doi: 10.2307/1936780
– ident: e_1_2_6_9_1
  doi: 10.1890/0012-9615(1999)069[0491:ROTPTE]2.0.CO;2
– volume: 5
  start-page: 249
  year: 1993
  ident: e_1_2_6_27_1
  article-title: Decay and its regulation in Sphagnum peatlands
  publication-title: Advances in Bryology
SSID ssj0006750
Score 2.2838285
Snippet 1 Plant growth forms are widely used to predict the effects of environmental changes, such as climate warming and increased nitrogen deposition, on plant...
Summary 1 Plant growth forms are widely used to predict the effects of environmental changes, such as climate warming and increased nitrogen deposition, on...
Plant growth forms are widely used to predict the effects of environmental changes, such as climate warming and increased nitrogen deposition, on plant...
The relationships between plant growth forms and litter quality and decomposition were studied as a function of environmental conditions. The extent to which...
* 1 Plant growth forms are widely used to predict the effects of environmental changes, such as climate warming and increased nitrogen deposition, on plant...
SourceID swepub
proquest
pascalfrancis
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 817
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Biologi
Biological and medical sciences
Biological Sciences
Chemical decomposition
Climate change
Decomposition
Ecology (including Biodiversity Conservation)
Ekologi
Environmental changes
Environmental conditions
Environmental effects
environmental gradient
Fundamental and applied biological sciences. Psychology
General aspects
Global warming
high latitude
Leaf litter
Leaves
Lignin
Litter
litter chemistry
Natural Sciences
Naturvetenskap
Nitrogen
nitrogen deposition
Nutrient cycles
Peatlands
Plant biochemistry
Plant communities
Plant ecology
plant functional types
Plant growth
Plant litter
Plants
Species
Sphagnum
Subarctic regions
Temperate regions
Title Are Growth Forms Consistent Predictors of Leaf Litter Quality and Decomposability across Peatlands along a Latitudinal Gradient?
URI https://www.jstor.org/stable/3599490
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2745.2005.01024.x
https://www.proquest.com/docview/208912931
https://www.proquest.com/docview/14757294
https://www.proquest.com/docview/17566692
https://www.proquest.com/docview/1868339274
Volume 93
WOSCitedRecordID wos000230337900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1365-2745
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0006750
  issn: 0022-0477
  databaseCode: WIN
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2745
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006750
  issn: 0022-0477
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB5B2kq8cJQi3EJYJF6NfKzt9RMqJRGgKkIcouJltd6jrRTZUZyg5o2fzuyuY2oJUIV4cSxnD2cyO_PN7hwALyjVqqzSPKwyoUKKOiisYoNWiknsoVpshHKBwqfFbMbOzsoPnf-TjYXx-SH6DTe7Mpy8tgtcVO1wkft4Kpp1WyOoK-lLxJM7OE2ajWDnzcfpl9NeLiM0jra5wyNaFEO_nt-ONVBW3l_ROk-KFulnfOGLITL12UaHQNdpqum9__kb78PdDq-SY89gD-CWrvdhz1ew3OzD7usG0SXe7E1c-uvNQ_hxvNTkHK371QWxiLgl0jrhIjfVK7JY2oMhW-GHNIbMtcDLpQ0oIj66c0NErYjS1tO98dl_7TNHHrJAveFCk4mYN_U5EcTF4ayVreyFUzrvtdWrA_g0nXw-eRt2dR5CmaP5F6K6KEoZKZkmKlcIIbVBO1AllKWIR9JSSSlVIpn1i1MKP5nWMZWFobpSUfoIRnVT68dADFqXSiiUWYxRpVhVpbHEa5VEKpZREkCx_Tu57FKg20occ37NFEKCc0twW6Az447g_CqAuO-58GlAbtDnwHFM3yHNypKWUQDjAQf9GjBHrIgtAjjashTvJEqLI7PSYrM4gGf9tygK7PmOqHWzbtGKKzK0lehfWhSI3pHmATz_UwuWsxQxc4GjfPPc3L-fzUTujULeZaK64PM1bzVfXNti5rKSCHmE4EkcS05Tk3DEpIwblSgT6byomAkgd3x_Y2Ly95MTe3f4rx2P4I7Luut8N5_AaLVc66ewK7-vLtvluJMVY7j99d3sJ46aa2A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQ2AQvfIwhwmAzEq9B-XAT5wmNqdMGpUJiEhMvVuKzt0lVUjUtom_86dzZaVgkQBPiJbVS20mv57vf2ffB2GshDBRVmoXVqIRQoA4Kq9iilWITOlSLbQkuUHiST6fy4qL41JUDolgYnx-i33CjleHkNS1w2pAernIfUCVG3d4IKkvxBgHlXYG4g-o4fDmb9mIZkXG0SR0eiTwfuvX8dqaBrvLuiuQ7WbZIPuvrXgyBqU82OsS5TlGdPPyvP_ERe9DhVX7kGewxu2PqXbbjK1iud9n2uwbRJTZ2xi799foJ-3G0MPwSrfvlFSdE3HJNTrjITfWSzxd0MEQVfnhj-cyUeLmmgCLuozvXvKyBgyFP98Zn_6V7jj58jnrDhSbzctbUl7zkLg5nBVTZCx_pvNeWb_fY55Px-fFp2NV5CHWG5l-I6iIvdAQ6TSADhJDGoh0IiZAp4pG0AK01JFqSXxwAfkpjYqFzK0wFUfqUbdVNbZ4xbtG6hBJQZkkpAGRVpbHGa5VEEOsoCVi--T-V7lKgUyWOmbphCiHBFRGcCnSOlCO4-h6wuB8592lAbjFmz7FMPyAdFYUoooAdDFjo14QZYkXsEbD9DU-pTqK0OLMsCJvFATvsv0VRQOc7ZW2aVYtWXD5CW0n8pUeO6B1pHrBXf-ohM5kiZs5xlq-enfv3o0zk3ihUXSaqKzVbqdao-Y0tZqUrjZCnLFUSx1qJ1CYKMalUFhKwkcnyStqAZY7xb01M9X58TK3n_zrwkN07Pf84UZOz6Yd9dt9l4HV-nC_Y1nKxMi_Ztv62vG4XB05s_ATqRm0T
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQtyFeGIxNhI3NSLwG5cNNnCc0tlZ8VNXEhzTxYjk-e5tUJVXTIvrGn87ZTsMiAZoQL6mV2k56Pd_9zr4PQl4ypqEo0ywshxJChjooLGODVopJ7KFabCS4QOFJPp3yy8vioi0HZGNhfH6IbsPNrgwnr-0C13Mw_VXuA6rYsN0bQWXJXiGg3GK2psyAbJ1_HH-ZdIIZsXG0SR4esTzvO_b8dq6etvIOi9Z7UjZIQOMrX_ShqU832ke6TlWNd__rj3xEHraIlZ56FntM7ulqj-z4GpbrPbL9pkZ8iY2dkUuAvX5CfpwuNL1C-355TS0mbqiybrjIT9WSzhf2aMjW-KG1oTMt8XJjQ4qoj-9cU1kBBW193Wuf_9fec_Shc9QcLjiZylldXVFJXSTOCmxtL3yk819bvt4nn8ajz2dvw7bSQ6gyNABDVBh5oSJQaQIZIIjUBi1BSBhPEZGkBSilIFHcesYB4CfXOmYqN0yXEKUHZFDVlX5KqEH7EiSg1OKcAfCyTGOF1zKJIFZREpB8838K1SZBt7U4ZuKWMYQEF5bgtkTnUDiCi-8BibuRc58I5A5j9h3LdAPSYVGwIgrIcY-Ffk2YIVrEHgE53PCUaGVKgzPzwqKzOCAn3bcoDOwJj6x0vWrQjsuHaC2xv_TIEb8jzQPy4k89eMZTRM05zvLVs3P3fjYXuTcLRZuL6lrMVqLRYn5rk1moUiHokVIkcawES00iEJVyYSABE-ksL7kJSOYY_87EFO9HZ7b17F8HnpD7F-djMXk3_XBIHrgUvM6R84gMlouVfk621bflTbM4buXGT5Gobbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Are+growth+forms+consistent+predictors+of+leaf+litter+quality+and+decomposability+across+peatlands+along+a+latitudinal+gradient%3F&rft.jtitle=The+Journal+of+ecology&rft.au=Dorrepaal%2C+Ellen&rft.au=Cornelissen%2C+Johannes+H+C&rft.au=Aerts%2C+Rien&rft.au=Wall%C3%A9n%2C+Bo&rft.date=2005-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=93&rft.issue=4&rft.spage=817&rft_id=info:doi/10.1111%2Fj.1365-2745.2005.01024.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=877265101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon