Stain Normalization using Sparse AutoEncoders (StaNoSA): Application to digital pathology
•Digital histopathology slides have many sources of variance.•These variances can cause algorithms to perform erratically.•Stain Normalization using Sparse AutoEncoders (StaNoSA) in introduced.•It standardizes color distributions of a test image to a single template image.•Validated using three expe...
Uloženo v:
| Vydáno v: | Computerized medical imaging and graphics Ročník 57; s. 50 - 61 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Ltd
01.04.2017
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0895-6111, 1879-0771, 1879-0771 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | •Digital histopathology slides have many sources of variance.•These variances can cause algorithms to perform erratically.•Stain Normalization using Sparse AutoEncoders (StaNoSA) in introduced.•It standardizes color distributions of a test image to a single template image.•Validated using three experiments with five other color standardization approaches.
Digital histopathology slides have many sources of variance, and while pathologists typically do not struggle with them, computer aided diagnostic algorithms can perform erratically. This manuscript presents Stain Normalization using Sparse AutoEncoders (StaNoSA) for use in standardizing the color distributions of a test image to that of a single template image. We show how sparse autoencoders can be leveraged to partition images into tissue sub-types, so that color standardization for each can be performed independently. StaNoSA was validated on three experiments and compared against five other color standardization approaches and shown to have either comparable or superior results. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| ISSN: | 0895-6111 1879-0771 1879-0771 |
| DOI: | 10.1016/j.compmedimag.2016.05.003 |