Stain Normalization using Sparse AutoEncoders (StaNoSA): Application to digital pathology

•Digital histopathology slides have many sources of variance.•These variances can cause algorithms to perform erratically.•Stain Normalization using Sparse AutoEncoders (StaNoSA) in introduced.•It standardizes color distributions of a test image to a single template image.•Validated using three expe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computerized medical imaging and graphics Ročník 57; s. 50 - 61
Hlavní autoři: Janowczyk, Andrew, Basavanhally, Ajay, Madabhushi, Anant
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.04.2017
Elsevier Science Ltd
Témata:
ISSN:0895-6111, 1879-0771, 1879-0771
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Digital histopathology slides have many sources of variance.•These variances can cause algorithms to perform erratically.•Stain Normalization using Sparse AutoEncoders (StaNoSA) in introduced.•It standardizes color distributions of a test image to a single template image.•Validated using three experiments with five other color standardization approaches. Digital histopathology slides have many sources of variance, and while pathologists typically do not struggle with them, computer aided diagnostic algorithms can perform erratically. This manuscript presents Stain Normalization using Sparse AutoEncoders (StaNoSA) for use in standardizing the color distributions of a test image to that of a single template image. We show how sparse autoencoders can be leveraged to partition images into tissue sub-types, so that color standardization for each can be performed independently. StaNoSA was validated on three experiments and compared against five other color standardization approaches and shown to have either comparable or superior results.
AbstractList Digital histopathology slides have many sources of variance, and while pathologists typically do not struggle with them, computer aided diagnostic algorithms can perform erratically. This manuscript presents Stain Normalization using Sparse AutoEncoders (StaNoSA) for use in standardizing the color distributions of a test image to that of a single template image. We show how sparse autoencoders can be leveraged to partition images into tissue sub-types, so that color standardization for each can be performed independently. StaNoSA was validated on three experiments and compared against five other color standardization approaches and shown to have either comparable or superior results.
•Digital histopathology slides have many sources of variance.•These variances can cause algorithms to perform erratically.•Stain Normalization using Sparse AutoEncoders (StaNoSA) in introduced.•It standardizes color distributions of a test image to a single template image.•Validated using three experiments with five other color standardization approaches. Digital histopathology slides have many sources of variance, and while pathologists typically do not struggle with them, computer aided diagnostic algorithms can perform erratically. This manuscript presents Stain Normalization using Sparse AutoEncoders (StaNoSA) for use in standardizing the color distributions of a test image to that of a single template image. We show how sparse autoencoders can be leveraged to partition images into tissue sub-types, so that color standardization for each can be performed independently. StaNoSA was validated on three experiments and compared against five other color standardization approaches and shown to have either comparable or superior results.
Digital histopathology slides have many sources of variance, and while pathologists typically do not struggle with them, computer aided diagnostic algorithms can perform erratically. This manuscript presents Stain Normalization using Sparse AutoEncoders (StaNoSA) for use in standardizing the color distributions of a test image to that of a single template image. We show how sparse autoencoders can be leveraged to partition images into tissue sub-types, so that color standardization for each can be performed independently. StaNoSA was validated on three experiments and compared against five other color standardization approaches and shown to have either comparable or superior results.Digital histopathology slides have many sources of variance, and while pathologists typically do not struggle with them, computer aided diagnostic algorithms can perform erratically. This manuscript presents Stain Normalization using Sparse AutoEncoders (StaNoSA) for use in standardizing the color distributions of a test image to that of a single template image. We show how sparse autoencoders can be leveraged to partition images into tissue sub-types, so that color standardization for each can be performed independently. StaNoSA was validated on three experiments and compared against five other color standardization approaches and shown to have either comparable or superior results.
Highlights•Digital histopathology slides have many sources of variance. •These variances can cause algorithms to perform erratically. •Stain Normalization using Sparse AutoEncoders (StaNoSA) in introduced. •It standardizes color distributions of a test image to a single template image. •Validated using three experiments with five other color standardization approaches.
Author Madabhushi, Anant
Janowczyk, Andrew
Basavanhally, Ajay
AuthorAffiliation 1 Case Western Reserve University, Cleveland, Ohio
2 Inspirata, Inc., Tampa, Florida
AuthorAffiliation_xml – name: 1 Case Western Reserve University, Cleveland, Ohio
– name: 2 Inspirata, Inc., Tampa, Florida
Author_xml – sequence: 1
  givenname: Andrew
  surname: Janowczyk
  fullname: Janowczyk, Andrew
  email: andrew.janowczyk@case.edu
  organization: Case Western Reserve University, Cleveland, OH, United States
– sequence: 2
  givenname: Ajay
  surname: Basavanhally
  fullname: Basavanhally, Ajay
  organization: Inspirata, Inc., Tampa, FL, United States
– sequence: 3
  givenname: Anant
  surname: Madabhushi
  fullname: Madabhushi, Anant
  organization: Case Western Reserve University, Cleveland, OH, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27373749$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9vEzEQxS1URNPCV0CLuJRDgmf_2LscilZRW5CqcggcOFmOdzZ1cOytvVspfHq8SolKJKTIB0v2m5_H780ZObHOIiHvgM6AAvu4nim36TbY6I1czdJ4NKPFjNLsBZlAyasp5RxOyISWVTFlAHBKzkJYU0pTyuEVOU15FldeTcjPRS-1Te6c30ijf8teO5sMQdtVsuikD5jUQ--urHIN-pBcRPmdW9QfPiV11xmtdgW9Sxq90r00SSf7e2fcavuavGylCfjmaT8nP66vvs-_TG-_3Xyd17dTxSraTzmWBQCTLchcLjNsUWGRFbxhyHnTtCovZcMkViVgKnmb86XKAFmZxitAmZ2Tyx23G5bREoW299KIzkdz_FY4qcW_N1bfi5V7FPHZFIoqAi6eAN49DBh6sdFBoTHSohuCgDJlHFjBeJS-P5Cu3eBt_J5IM17kZbR4VL193tG-lb-uR0G1EyjvQvDY7iVAxZiwWItnCYsxYUELEROOtZ8PalX0fUwhfk6bowjzHQFjKo8avQhKo1VR6lH1onH6KMrlAUUZbeNAmF-4xbD3BURIBRWLcRbHUQSWUZrTPALq_wOObOIPInD3PQ
CitedBy_id crossref_primary_10_1016_j_dsp_2021_103196
crossref_primary_10_1007_s11042_019_08262_0
crossref_primary_10_1016_j_artmed_2018_10_004
crossref_primary_10_3390_diagnostics15101271
crossref_primary_10_1016_j_bspc_2020_102402
crossref_primary_10_1016_j_compeleceng_2022_108304
crossref_primary_10_1016_j_ajpath_2021_05_023
crossref_primary_10_1016_j_knosys_2019_104874
crossref_primary_10_1016_j_media_2019_101544
crossref_primary_10_1038_s41598_021_81352_y
crossref_primary_10_3748_wjg_v27_i21_2818
crossref_primary_10_1016_j_micron_2018_07_005
crossref_primary_10_1016_j_compbiomed_2023_106594
crossref_primary_10_1016_j_media_2017_07_005
crossref_primary_10_1038_s41591_024_02885_z
crossref_primary_10_1016_j_media_2023_102891
crossref_primary_10_1016_j_compmedimag_2017_04_001
crossref_primary_10_1016_j_media_2018_03_006
crossref_primary_10_1109_ACCESS_2023_3274877
crossref_primary_10_1016_j_compbiomed_2019_103344
crossref_primary_10_1109_TMI_2019_2927182
crossref_primary_10_1093_ajcp_aqab085
crossref_primary_10_1016_j_media_2022_102640
crossref_primary_10_1186_s13000_024_01452_x
crossref_primary_10_3390_cancers13040617
crossref_primary_10_1016_j_euo_2023_11_009
crossref_primary_10_1109_TIP_2019_2946442
crossref_primary_10_2196_23436
crossref_primary_10_3390_s23177318
crossref_primary_10_1155_2023_4919371
crossref_primary_10_1016_j_cmpb_2023_107528
crossref_primary_10_3389_fmed_2019_00193
crossref_primary_10_3390_diagnostics12123088
crossref_primary_10_1109_ACCESS_2025_3554342
crossref_primary_10_3389_fbioe_2019_00102
crossref_primary_10_1007_s11684_020_0782_9
crossref_primary_10_3390_cells14060413
crossref_primary_10_1016_j_media_2024_103444
crossref_primary_10_1016_j_inffus_2023_101997
crossref_primary_10_1007_s13246_022_01139_x
crossref_primary_10_1007_s11831_023_09899_9
crossref_primary_10_1038_s41379_021_00859_x
crossref_primary_10_1038_s41598_018_33026_5
crossref_primary_10_1016_j_cmpb_2020_105815
crossref_primary_10_1016_j_media_2020_101813
crossref_primary_10_1016_j_dsp_2023_104318
crossref_primary_10_3233_JIFS_213212
crossref_primary_10_3389_fbioe_2019_00198
crossref_primary_10_1016_j_imu_2021_100582
crossref_primary_10_1016_j_compmedimag_2022_102048
crossref_primary_10_1109_ACCESS_2020_2993887
crossref_primary_10_1038_s41377_023_01104_7
crossref_primary_10_1186_s13058_019_1165_5
crossref_primary_10_1038_s41598_019_50143_x
crossref_primary_10_1177_0300985819848504
crossref_primary_10_3390_diagnostics12061493
crossref_primary_10_3390_app10186427
crossref_primary_10_3390_cancers14051199
crossref_primary_10_1002_cjp2_229
crossref_primary_10_1016_j_cmpb_2024_108200
crossref_primary_10_1371_journal_pone_0283568
crossref_primary_10_3390_cancers12113337
crossref_primary_10_1002_cyto_a_23701
crossref_primary_10_3892_ol_2018_9761
crossref_primary_10_1016_j_bbe_2019_01_005
crossref_primary_10_1007_s11042_023_16313_w
crossref_primary_10_1016_j_artmed_2022_102420
crossref_primary_10_1016_j_compmedimag_2021_101901
crossref_primary_10_1038_s41598_022_23166_0
crossref_primary_10_1109_JPROC_2019_2950506
crossref_primary_10_1016_j_ajpath_2022_12_011
crossref_primary_10_3390_diagnostics13193115
crossref_primary_10_1109_ACCESS_2022_3176091
crossref_primary_10_1007_s12596_018_0508_4
crossref_primary_10_1109_TMI_2022_3221724
crossref_primary_10_1016_j_compbiomed_2020_104129
crossref_primary_10_4103_jpi_jpi_103_20
crossref_primary_10_1016_j_compbiomed_2022_105219
crossref_primary_10_3389_fonc_2020_593211
crossref_primary_10_1016_j_bspc_2023_104978
crossref_primary_10_3390_app12083718
crossref_primary_10_1007_s10916_021_01786_9
crossref_primary_10_1016_j_jpi_2024_100396
crossref_primary_10_1017_S2633903X23000144
crossref_primary_10_1155_2022_8415705
crossref_primary_10_1109_ACCESS_2021_3051188
crossref_primary_10_1109_TMI_2017_2781228
crossref_primary_10_1016_j_modpat_2023_100285
crossref_primary_10_1007_s00521_023_08659_x
crossref_primary_10_1016_j_cmpb_2019_01_008
crossref_primary_10_1016_j_csbj_2021_06_025
crossref_primary_10_1155_2022_6364102
crossref_primary_10_1007_s10462_025_11207_9
crossref_primary_10_3390_diagnostics15081032
crossref_primary_10_1002_gcc_23177
crossref_primary_10_1017_S2633903X23000053
crossref_primary_10_1016_j_jpi_2022_100126
crossref_primary_10_1038_s41568_021_00408_3
crossref_primary_10_1016_j_jpi_2022_100127
crossref_primary_10_1016_j_patrec_2021_01_002
crossref_primary_10_1038_s41591_021_01343_4
crossref_primary_10_1111_jmi_13049
crossref_primary_10_1038_s41571_019_0252_y
crossref_primary_10_1007_s10044_025_01540_8
crossref_primary_10_1007_s42979_021_00784_5
crossref_primary_10_1109_ACCESS_2019_2894791
crossref_primary_10_1007_s10586_022_03951_2
crossref_primary_10_1016_j_compbiomed_2022_106335
crossref_primary_10_1371_journal_pone_0287704
crossref_primary_10_1016_j_engappai_2024_108136
crossref_primary_10_1007_s10278_024_01041_w
crossref_primary_10_1038_s44303_024_00018_2
crossref_primary_10_1093_etojnl_vgae038
crossref_primary_10_1016_j_compbiomed_2024_108130
crossref_primary_10_3389_fmed_2023_1173616
crossref_primary_10_3389_fphar_2019_01303
crossref_primary_10_1017_cts_2020_531
crossref_primary_10_4103_jpi_jpi_36_21
crossref_primary_10_1161_CIRCULATIONAHA_121_058459
crossref_primary_10_1007_s11831_020_09470_w
crossref_primary_10_3390_cancers12102934
crossref_primary_10_1016_j_media_2022_102580
crossref_primary_10_1016_j_media_2018_09_005
crossref_primary_10_1109_TNNLS_2017_2766168
crossref_primary_10_1155_2021_9917545
crossref_primary_10_1016_j_inffus_2024_102536
Cites_doi 10.1109/TMI.2015.2458702
10.1109/TBME.2014.2303294
10.2307/1932409
10.1561/2200000006
10.1109/RBME.2013.2295804
10.4103/2153-3539.77175
10.1109/TBME.2010.2041232
10.1109/38.946629
10.1109/TBME.2014.2303852
10.1109/RBME.2009.2034865
10.1109/TMI.2012.2190089
10.1117/12.2007173
10.1002/(SICI)1096-9896(199705)182:1<68::AID-PATH811>3.0.CO;2-N
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Elsevier Ltd
Copyright © 2016 Elsevier Ltd. All rights reserved.
Copyright Elsevier Science Ltd. Apr 2017
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2016 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Science Ltd. Apr 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1016/j.compmedimag.2016.05.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE

Nursing & Allied Health Premium
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0771
EndPage 61
ExternalDocumentID PMC5112159
27373749
10_1016_j_compmedimag_2016_05_003
S0895611116300404
1_s2_0_S0895611116300404
Genre Validation Studies
Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R21 CA179327
– fundername: NCI NIH HHS
  grantid: U24 CA199374
– fundername: NCI NIH HHS
  grantid: R21 CA195152
– fundername: NIDDK NIH HHS
  grantid: R01 DK098503
– fundername: NCI NIH HHS
  grantid: R01 CA202752
– fundername: NCI NIH HHS
  grantid: R21 CA167811
– fundername: NIDDK NIH HHS
  grantid: T32 DK007470
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEI
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LX9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
WUQ
Z5R
ZGI
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c690t-7e85116af1a4ab3efece5357d6e77ddfc48ad6ae981e2a7f47bc31e682fc41ea3
ISICitedReferencesCount 149
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401389800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0895-6111
1879-0771
IngestDate Tue Sep 30 16:42:14 EDT 2025
Sat Sep 27 20:13:43 EDT 2025
Tue Oct 07 06:53:48 EDT 2025
Thu Apr 03 07:08:45 EDT 2025
Tue Nov 18 22:16:36 EST 2025
Sat Nov 29 07:15:17 EST 2025
Fri Feb 23 02:19:33 EST 2024
Tue Feb 25 19:59:06 EST 2025
Tue Oct 14 19:38:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Digital histopathology
Deep learning
Stain Normalization
Image processing
Language English
License Copyright © 2016 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c690t-7e85116af1a4ab3efece5357d6e77ddfc48ad6ae981e2a7f47bc31e682fc41ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5112159
PMID 27373749
PQID 2375480007
PQPubID 2047475
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5112159
proquest_miscellaneous_1826716567
proquest_journals_2375480007
pubmed_primary_27373749
crossref_primary_10_1016_j_compmedimag_2016_05_003
crossref_citationtrail_10_1016_j_compmedimag_2016_05_003
elsevier_sciencedirect_doi_10_1016_j_compmedimag_2016_05_003
elsevier_clinicalkeyesjournals_1_s2_0_S0895611116300404
elsevier_clinicalkey_doi_10_1016_j_compmedimag_2016_05_003
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computerized medical imaging and graphics
PublicationTitleAlternate Comput Med Imaging Graph
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Hamilton, Bartels, Thompson, Anderson, Montironi, Sloan (bib0085) 1997; 82
Dice (bib0155) 1945; 26
Fatakdawala, Xu, Basavanhally, Bhanot, Ganesan, Feldman (bib0060) 2010; 57
Khan, Rajpoot, Treanor, Magee (bib0040) 2014; 61
Veta, Pluim, van Diest, Viergever (bib0010) 2014; 61
Basavanhally, Madabhushi (bib0115) 2013; 8676
Khan, El-Daly, Rajpoot (bib0020) 2012
Ruifrok, Johnston (bib0080) 2001; 23
Reinhard, Adhikhmin, Gooch, Shirley (bib0100) 2001; 21
Vincent, Larochelle, Bengio, Manzagol (bib0075) 2008
Tian, Gao, Cui, Chen, Liu (bib0070) 2014
Irshad, Veillard, Roux, Racoceanu (bib0050) 2014; 7
Sahirzeeshan, Madabhushi (bib0055) 2012; 31
Turian, Warde-Farley, Bengio (bib0150) 2010
Jain (bib0045) 1989
Gurcan, Boucheron, Can, Madabhushi, Rajpoot, Yener (bib0005) 2009; 2
Hipp, Cheng, Toner, Tompkins, Balis (bib0025) 2011; 2
Magee, Treanor, Crellin, Shires, Mohee, Quirke (bib0105) 2009
Goodfellow IJ, Warde-Farley D, Lamblin P, Dumoulin V, Mirza M, Pascanu R, et al., 2013. Pylearn2: a machine learning research library, arXiv preprint arXiv:1308.4214.
Ruiz, Sertel, Ujaldon, Catalyurek, Saltz, Gurcan (bib0095) 2007
Bengio, Lamblin, Popovici, Larochelle (bib0120) 2007; 19
Bengio (bib0125) 2009; 2
Zhang (bib0130) 2004
Rabinovich, Agarwal, Laris, Price, Belongie (bib0110) 2004; 16
Xu, Xiang, Liu, Gilmore, Wu, Tang (bib0065) 2016; 35
Wang, Chang, Wu, Tsai, Sun (bib0035) 2007; 2007
Kong, Sertel, Shimada, Boyer, Saltz, Gurcan (bib0030) 2007
Coates, Lee, Ng (bib0135) 2011
Macenko, Niethammer, Marron, Borland, Woosley, Guan (bib0140) 2009
Qureshi, Sertel, Rajpoot, Wilson, Gurcan (bib0090) 2008; 11
Monaco, Hipp, Lucas, Smith, Balis, Madabhushi (bib0015) 2012; 15
Irshad (10.1016/j.compmedimag.2016.05.003_bib0050) 2014; 7
Kong (10.1016/j.compmedimag.2016.05.003_bib0030) 2007
10.1016/j.compmedimag.2016.05.003_bib0145
Sahirzeeshan (10.1016/j.compmedimag.2016.05.003_bib0055) 2012; 31
Vincent (10.1016/j.compmedimag.2016.05.003_bib0075) 2008
Rabinovich (10.1016/j.compmedimag.2016.05.003_bib0110) 2004; 16
Jain (10.1016/j.compmedimag.2016.05.003_bib0045) 1989
Xu (10.1016/j.compmedimag.2016.05.003_bib0065) 2016; 35
Dice (10.1016/j.compmedimag.2016.05.003_bib0155) 1945; 26
Ruiz (10.1016/j.compmedimag.2016.05.003_bib0095) 2007
Macenko (10.1016/j.compmedimag.2016.05.003_bib0140) 2009
Hipp (10.1016/j.compmedimag.2016.05.003_bib0025) 2011; 2
Tian (10.1016/j.compmedimag.2016.05.003_bib0070) 2014
Bengio (10.1016/j.compmedimag.2016.05.003_bib0120) 2007; 19
Magee (10.1016/j.compmedimag.2016.05.003_bib0105) 2009
Wang (10.1016/j.compmedimag.2016.05.003_bib0035) 2007; 2007
Basavanhally (10.1016/j.compmedimag.2016.05.003_bib0115) 2013; 8676
Gurcan (10.1016/j.compmedimag.2016.05.003_bib0005) 2009; 2
Hamilton (10.1016/j.compmedimag.2016.05.003_bib0085) 1997; 82
Ruifrok (10.1016/j.compmedimag.2016.05.003_bib0080) 2001; 23
Monaco (10.1016/j.compmedimag.2016.05.003_bib0015) 2012; 15
Khan (10.1016/j.compmedimag.2016.05.003_bib0040) 2014; 61
Reinhard (10.1016/j.compmedimag.2016.05.003_bib0100) 2001; 21
Fatakdawala (10.1016/j.compmedimag.2016.05.003_bib0060) 2010; 57
Khan (10.1016/j.compmedimag.2016.05.003_bib0020) 2012
Bengio (10.1016/j.compmedimag.2016.05.003_bib0125) 2009; 2
Zhang (10.1016/j.compmedimag.2016.05.003_bib0130) 2004
Veta (10.1016/j.compmedimag.2016.05.003_bib0010) 2014; 61
Coates (10.1016/j.compmedimag.2016.05.003_bib0135) 2011
Qureshi (10.1016/j.compmedimag.2016.05.003_bib0090) 2008; 11
Turian (10.1016/j.compmedimag.2016.05.003_bib0150) 2010
References_xml – start-page: 215
  year: 2011
  end-page: 223
  ident: bib0135
  article-title: An analysis of single-layer networks in unsupervised feature learning
  publication-title: Proceedings of the fourteenth international conference on artificial intelligence and statistics, Vol. 15 of JMLR workshop and conference proceedings
– start-page: 1293
  year: 2014
  end-page: 1299
  ident: bib0070
  article-title: Learning deep representations for graph clustering
  publication-title: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27–31, 2014
– volume: 7
  start-page: 97
  year: 2014
  end-page: 114
  ident: bib0050
  article-title: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review – current status and future potential
  publication-title: IEEE Rev Biomed Eng
– volume: 16
  start-page: 667
  year: 2004
  end-page: 674
  ident: bib0110
  article-title: Unsupervised color decomposition of histologically stained tissue samples
  publication-title: Advances in neural information processing systems
– volume: 2007
  start-page: 6577
  year: 2007
  end-page: 6580
  ident: bib0035
  article-title: A color-based approach for automated segmentation in tumor tissue classification
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– start-page: 525
  year: 2007
  end-page: 528
  ident: bib0030
  article-title: Computer-aided grading of neuroblastic differentiation: multi-resolution and multi-classifier approach
  publication-title: ICIP (5)
– volume: 82
  start-page: 68
  year: 1997
  end-page: 75
  ident: bib0085
  article-title: Automated location of dysplastic fields in colorectal histology using image texture analysis
  publication-title: J Pathol
– year: 2010
  ident: bib0150
  article-title: Theano: a CPU and GPU math expression compiler
  publication-title: Proceedings of the Python for Scientific Computing Conference (SciPy)
– start-page: 17
  year: 2012
  end-page: 23
  ident: bib0020
  article-title: Ranpec: random projections with ensemble clustering for segmentation of tumor areas in breast histology images
  publication-title: Medical image understanding and analysis (MIUA)
– volume: 21
  start-page: 34
  year: 2001
  end-page: 41
  ident: bib0100
  article-title: Color transfer between images
  publication-title: IEEE Comput Graph Appl
– volume: 61
  start-page: 1729
  year: 2014
  end-page: 1738
  ident: bib0040
  article-title: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution.
  publication-title: IEEE Trans Biomed Eng
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: bib0155
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 2
  start-page: 13
  year: 2011
  ident: bib0025
  article-title: Spatially invariant vector quantization: a pattern matching algorithm for multiple classes of image subject matter including pathology
  publication-title: J Pathol Inform
– start-page: 100
  year: 2009
  end-page: 111
  ident: bib0105
  article-title: Colour normalisation in digital histopathology images
  publication-title: Proc. optical tissue image analysis in microscopy, histopathology and endoscopy (MICCAI Workshop)
– reference: Goodfellow IJ, Warde-Farley D, Lamblin P, Dumoulin V, Mirza M, Pascanu R, et al., 2013. Pylearn2: a machine learning research library, arXiv preprint arXiv:1308.4214.
– year: 1989
  ident: bib0045
  article-title: Fundamentals of digital image processing
– volume: 57
  start-page: 1676
  year: 2010
  end-page: 1689
  ident: bib0060
  article-title: Expectation-maximization driven geodesic active contour with overlap resolution (EMAGACOR): application to lymphocyte segmentation on breast cancer histopathology
  publication-title: IEEE Trans Biomed Eng
– volume: 8676
  year: 2013
  ident: bib0115
  article-title: Em-based segmentation-driven color standardization of digitized histopathology
  publication-title: Proc SPIE
– volume: 31
  start-page: 1448
  year: 2012
  end-page: 1460
  ident: bib0055
  article-title: An integrated region-, boundary, shape-based active contour for multiple object overlap resolution in histological imagery
  publication-title: IEEE Trans Med Imag
– volume: 23
  start-page: 291
  year: 2001
  end-page: 299
  ident: bib0080
  article-title: Quantification of histochemical staining by color deconvolution
  publication-title: Anal Quant Cytol Histol
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bib0125
  article-title: Learning deep architectures for AI
  publication-title: Found Trends Mach Learn
– start-page: 1107
  year: 2009
  end-page: 1110
  ident: bib0140
  article-title: A method for normalizing histology slides for quantitative analysis
  publication-title: IEEE international symposium on biomedical imaging: from nano to Macro, 2009. ISBI’09, vol. 9
– volume: 35
  start-page: 119
  year: 2016
  end-page: 130
  ident: bib0065
  article-title: Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans Med Imaging
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: bib0075
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– start-page: 78
  year: 2007
  end-page: 88
  ident: bib0095
  article-title: Pathological image analysis using the GPU: Stroma classification for neuroblastoma
  publication-title: IEEE international conference on bioinformatics and biomedicine, 2007, BIBM 2007
– volume: 2
  start-page: 147
  year: 2009
  end-page: 171
  ident: bib0005
  article-title: Histopathological image analysis: a review
  publication-title: IEEE Rev Biomed Eng
– volume: 15
  start-page: 365
  year: 2012
  end-page: 372
  ident: bib0015
  article-title: Image segmentation with implicit color standardization using spatially constrained expectation maximization: detection of nuclei
  publication-title: Med Image Comput Comput Assist Interv
– volume: 19
  start-page: 153
  year: 2007
  ident: bib0120
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv Neural Inf Process Syst
– volume: 11
  start-page: 196
  year: 2008
  end-page: 204
  ident: bib0090
  article-title: Adaptive discriminant wavelet packet transform and local binary patterns for meningioma subtype classification
  publication-title: Med Image Comput Comput Assist Interv
– start-page: 919
  year: 2004
  end-page: 926
  ident: bib0130
  article-title: Solving large scale linear prediction problems using stochastic gradient descent algorithms
  publication-title: ICML 2004: Proceedings of the 21st international conference on machine learning
– volume: 61
  start-page: 1400
  year: 2014
  end-page: 1411
  ident: bib0010
  article-title: Breast cancer histopathology image analysis: a review
  publication-title: IEEE Trans Biomed Eng
– volume: 11
  start-page: 196
  issue: Pt 2
  year: 2008
  ident: 10.1016/j.compmedimag.2016.05.003_bib0090
  article-title: Adaptive discriminant wavelet packet transform and local binary patterns for meningioma subtype classification
  publication-title: Med Image Comput Comput Assist Interv
– start-page: 78
  year: 2007
  ident: 10.1016/j.compmedimag.2016.05.003_bib0095
  article-title: Pathological image analysis using the GPU: Stroma classification for neuroblastoma
– volume: 35
  start-page: 119
  issue: 1
  year: 2016
  ident: 10.1016/j.compmedimag.2016.05.003_bib0065
  article-title: Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2458702
– volume: 61
  start-page: 1729
  issue: 6
  year: 2014
  ident: 10.1016/j.compmedimag.2016.05.003_bib0040
  article-title: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution.
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2303294
– year: 1989
  ident: 10.1016/j.compmedimag.2016.05.003_bib0045
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  ident: 10.1016/j.compmedimag.2016.05.003_bib0155
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.compmedimag.2016.05.003_bib0125
  article-title: Learning deep architectures for AI
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000006
– volume: 7
  start-page: 97
  year: 2014
  ident: 10.1016/j.compmedimag.2016.05.003_bib0050
  article-title: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review – current status and future potential
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2013.2295804
– start-page: 1107
  year: 2009
  ident: 10.1016/j.compmedimag.2016.05.003_bib0140
  article-title: A method for normalizing histology slides for quantitative analysis
– start-page: 215
  year: 2011
  ident: 10.1016/j.compmedimag.2016.05.003_bib0135
  article-title: An analysis of single-layer networks in unsupervised feature learning
– start-page: 919
  year: 2004
  ident: 10.1016/j.compmedimag.2016.05.003_bib0130
  article-title: Solving large scale linear prediction problems using stochastic gradient descent algorithms
– start-page: 100
  year: 2009
  ident: 10.1016/j.compmedimag.2016.05.003_bib0105
  article-title: Colour normalisation in digital histopathology images
– year: 2010
  ident: 10.1016/j.compmedimag.2016.05.003_bib0150
  article-title: Theano: a CPU and GPU math expression compiler
– volume: 2
  start-page: 13
  year: 2011
  ident: 10.1016/j.compmedimag.2016.05.003_bib0025
  article-title: Spatially invariant vector quantization: a pattern matching algorithm for multiple classes of image subject matter including pathology
  publication-title: J Pathol Inform
  doi: 10.4103/2153-3539.77175
– volume: 2007
  start-page: 6577
  year: 2007
  ident: 10.1016/j.compmedimag.2016.05.003_bib0035
  article-title: A color-based approach for automated segmentation in tumor tissue classification
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 57
  start-page: 1676
  issue: 7
  year: 2010
  ident: 10.1016/j.compmedimag.2016.05.003_bib0060
  article-title: Expectation-maximization driven geodesic active contour with overlap resolution (EMAGACOR): application to lymphocyte segmentation on breast cancer histopathology
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2041232
– volume: 21
  start-page: 34
  issue: 5
  year: 2001
  ident: 10.1016/j.compmedimag.2016.05.003_bib0100
  article-title: Color transfer between images
  publication-title: IEEE Comput Graph Appl
  doi: 10.1109/38.946629
– start-page: 17
  year: 2012
  ident: 10.1016/j.compmedimag.2016.05.003_bib0020
  article-title: Ranpec: random projections with ensemble clustering for segmentation of tumor areas in breast histology images
– ident: 10.1016/j.compmedimag.2016.05.003_bib0145
– volume: 16
  start-page: 667
  year: 2004
  ident: 10.1016/j.compmedimag.2016.05.003_bib0110
  article-title: Unsupervised color decomposition of histologically stained tissue samples
– start-page: 525
  year: 2007
  ident: 10.1016/j.compmedimag.2016.05.003_bib0030
  article-title: Computer-aided grading of neuroblastic differentiation: multi-resolution and multi-classifier approach
– volume: 61
  start-page: 1400
  issue: 5
  year: 2014
  ident: 10.1016/j.compmedimag.2016.05.003_bib0010
  article-title: Breast cancer histopathology image analysis: a review
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2303852
– volume: 15
  start-page: 365
  issue: Pt 1
  year: 2012
  ident: 10.1016/j.compmedimag.2016.05.003_bib0015
  article-title: Image segmentation with implicit color standardization using spatially constrained expectation maximization: detection of nuclei
  publication-title: Med Image Comput Comput Assist Interv
– volume: 2
  start-page: 147
  year: 2009
  ident: 10.1016/j.compmedimag.2016.05.003_bib0005
  article-title: Histopathological image analysis: a review
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2009.2034865
– start-page: 1096
  year: 2008
  ident: 10.1016/j.compmedimag.2016.05.003_bib0075
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 23
  start-page: 291
  issue: 4
  year: 2001
  ident: 10.1016/j.compmedimag.2016.05.003_bib0080
  article-title: Quantification of histochemical staining by color deconvolution
  publication-title: Anal Quant Cytol Histol
– volume: 31
  start-page: 1448
  year: 2012
  ident: 10.1016/j.compmedimag.2016.05.003_bib0055
  article-title: An integrated region-, boundary, shape-based active contour for multiple object overlap resolution in histological imagery
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2012.2190089
– volume: 8676
  year: 2013
  ident: 10.1016/j.compmedimag.2016.05.003_bib0115
  article-title: Em-based segmentation-driven color standardization of digitized histopathology
  publication-title: Proc SPIE
  doi: 10.1117/12.2007173
– volume: 82
  start-page: 68
  issue: 1
  year: 1997
  ident: 10.1016/j.compmedimag.2016.05.003_bib0085
  article-title: Automated location of dysplastic fields in colorectal histology using image texture analysis
  publication-title: J Pathol
  doi: 10.1002/(SICI)1096-9896(199705)182:1<68::AID-PATH811>3.0.CO;2-N
– volume: 19
  start-page: 153
  year: 2007
  ident: 10.1016/j.compmedimag.2016.05.003_bib0120
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv Neural Inf Process Syst
– start-page: 1293
  year: 2014
  ident: 10.1016/j.compmedimag.2016.05.003_bib0070
  article-title: Learning deep representations for graph clustering
SSID ssj0002071
Score 2.5520248
Snippet •Digital histopathology slides have many sources of variance.•These variances can cause algorithms to perform erratically.•Stain Normalization using Sparse...
Highlights•Digital histopathology slides have many sources of variance. •These variances can cause algorithms to perform erratically. •Stain Normalization...
Digital histopathology slides have many sources of variance, and while pathologists typically do not struggle with them, computer aided diagnostic algorithms...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 50
SubjectTerms Algorithms
Biopsy - methods
Breast - diagnostic imaging
Color
Deep learning
Diagnosis, Computer-Assisted - methods
Diagnostic systems
Digital histopathology
Histological Techniques
Histopathology
Humans
Image processing
Image Processing, Computer-Assisted - methods
Internal Medicine
Machine Learning
Other
Pathology, Clinical - methods
Stain Normalization
Staining and Labeling - methods
Standardization
Title Stain Normalization using Sparse AutoEncoders (StaNoSA): Application to digital pathology
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0895611116300404
https://www.clinicalkey.es/playcontent/1-s2.0-S0895611116300404
https://dx.doi.org/10.1016/j.compmedimag.2016.05.003
https://www.ncbi.nlm.nih.gov/pubmed/27373749
https://www.proquest.com/docview/2375480007
https://www.proquest.com/docview/1826716567
https://pubmed.ncbi.nlm.nih.gov/PMC5112159
Volume 57
WOSCitedRecordID wos000401389800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002071
  issn: 0895-6111
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdpO8pexr6XrSsubLBRAo6_JJe9hJGxFRYG6SB7MrKsNMkSO8RO1-Wv350kO066QPawBEywLDv2_Xy6O51-R8gbgAiMpDFv8Rheco-Dw8oCN25Rn9tcJDEX_lAVm6C9HhsMwm-NxqpcC3MzpWnKbm_D-X8VNewDYePS2X8Qd3VS2AG_QeiwBbHDdi_B99HZx_mYGZ-aRZbnSxUR6M_Bi5XnnWWRdVNcy75QIVfo0Mv6nbdOqKKE6xlttEuT8TWWFUH-1dE6Al9SG5iSEOMVmK0zM-UznunCRxiRV3TYtXz6S55mv8Tq98-tXEoVSs05WPVY20XJvTPhtQTlhMejZa4KECOPiknWMdEKGAHXSS5Sa1hGcdWUrrtSqmDNUW10qCaivaPadZRhgpKZ4x3BzWBmXqCIVxVPQlGT7nymxAvGGXw1KeoWr3bZdECOHOqHoBGPOl-6g8tqHHfA-jomZ-uMwB1XRj5pc65dxs1d52U7B7dm1Fw9JA-MN2J1NIoekYZMH5Pjrybf4gn5ocBkbYDJUmCyNJisOpisdwZK7y-sGoysIrMMjKwKRk_J90_dq4-fW6YYR0sEoV20qETbPODDNvd47MqhFNJ3fZoEktIkGQqP8STgMmRt6XA69Ggs3LYMmANNbcndZ-QwzVL5glieyx03FgypgMCe5KEQYCLxIE4EWK80bhJWPsVIGKZ6LJgyjcqUxElUk0WEsohsH2lum8Spus41Xcs-nS5KUUXlemQYQSNA3j6d6d86y9yohDxqR7kT2VHfZriIHD6K5c72muRD1dOYu9qM3ffCJyWqoupaDla0Zmj4N8lZ1QwjBk4D8lRmS_g_zAkokm7BMc81CKtnVQIZ7moDntUByEa_2ZKOR4qVHj038I1e7jznK3J_rRFOyGGxWMrX5J64Kcb54pQc0AE7Ne_gH9YkASA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stain+Normalization+using+Sparse+AutoEncoders+%28StaNoSA%29%3A+Application+to+digital+pathology&rft.jtitle=Computerized+medical+imaging+and+graphics&rft.au=Janowczyk%2C+Andrew&rft.au=Basavanhally%2C+Ajay&rft.au=Madabhushi%2C+Anant&rft.date=2017-04-01&rft.eissn=1879-0771&rft.volume=57&rft.spage=50&rft_id=info:doi/10.1016%2Fj.compmedimag.2016.05.003&rft_id=info%3Apmid%2F27373749&rft.externalDocID=27373749
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08956111%2FS0895611117X00025%2Fcov150h.gif