Stain Normalization using Sparse AutoEncoders (StaNoSA): Application to digital pathology
•Digital histopathology slides have many sources of variance.•These variances can cause algorithms to perform erratically.•Stain Normalization using Sparse AutoEncoders (StaNoSA) in introduced.•It standardizes color distributions of a test image to a single template image.•Validated using three expe...
Uloženo v:
| Vydáno v: | Computerized medical imaging and graphics Ročník 57; s. 50 - 61 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Ltd
01.04.2017
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0895-6111, 1879-0771, 1879-0771 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Digital histopathology slides have many sources of variance.•These variances can cause algorithms to perform erratically.•Stain Normalization using Sparse AutoEncoders (StaNoSA) in introduced.•It standardizes color distributions of a test image to a single template image.•Validated using three experiments with five other color standardization approaches.
Digital histopathology slides have many sources of variance, and while pathologists typically do not struggle with them, computer aided diagnostic algorithms can perform erratically. This manuscript presents Stain Normalization using Sparse AutoEncoders (StaNoSA) for use in standardizing the color distributions of a test image to that of a single template image. We show how sparse autoencoders can be leveraged to partition images into tissue sub-types, so that color standardization for each can be performed independently. StaNoSA was validated on three experiments and compared against five other color standardization approaches and shown to have either comparable or superior results. |
|---|---|
| AbstractList | Digital histopathology slides have many sources of variance, and while pathologists typically do not struggle with them, computer aided diagnostic algorithms can perform erratically. This manuscript presents Stain Normalization using Sparse AutoEncoders (StaNoSA) for use in standardizing the color distributions of a test image to that of a single template image. We show how sparse autoencoders can be leveraged to partition images into tissue sub-types, so that color standardization for each can be performed independently. StaNoSA was validated on three experiments and compared against five other color standardization approaches and shown to have either comparable or superior results. •Digital histopathology slides have many sources of variance.•These variances can cause algorithms to perform erratically.•Stain Normalization using Sparse AutoEncoders (StaNoSA) in introduced.•It standardizes color distributions of a test image to a single template image.•Validated using three experiments with five other color standardization approaches. Digital histopathology slides have many sources of variance, and while pathologists typically do not struggle with them, computer aided diagnostic algorithms can perform erratically. This manuscript presents Stain Normalization using Sparse AutoEncoders (StaNoSA) for use in standardizing the color distributions of a test image to that of a single template image. We show how sparse autoencoders can be leveraged to partition images into tissue sub-types, so that color standardization for each can be performed independently. StaNoSA was validated on three experiments and compared against five other color standardization approaches and shown to have either comparable or superior results. Digital histopathology slides have many sources of variance, and while pathologists typically do not struggle with them, computer aided diagnostic algorithms can perform erratically. This manuscript presents Stain Normalization using Sparse AutoEncoders (StaNoSA) for use in standardizing the color distributions of a test image to that of a single template image. We show how sparse autoencoders can be leveraged to partition images into tissue sub-types, so that color standardization for each can be performed independently. StaNoSA was validated on three experiments and compared against five other color standardization approaches and shown to have either comparable or superior results.Digital histopathology slides have many sources of variance, and while pathologists typically do not struggle with them, computer aided diagnostic algorithms can perform erratically. This manuscript presents Stain Normalization using Sparse AutoEncoders (StaNoSA) for use in standardizing the color distributions of a test image to that of a single template image. We show how sparse autoencoders can be leveraged to partition images into tissue sub-types, so that color standardization for each can be performed independently. StaNoSA was validated on three experiments and compared against five other color standardization approaches and shown to have either comparable or superior results. Highlights•Digital histopathology slides have many sources of variance. •These variances can cause algorithms to perform erratically. •Stain Normalization using Sparse AutoEncoders (StaNoSA) in introduced. •It standardizes color distributions of a test image to a single template image. •Validated using three experiments with five other color standardization approaches. |
| Author | Madabhushi, Anant Janowczyk, Andrew Basavanhally, Ajay |
| AuthorAffiliation | 1 Case Western Reserve University, Cleveland, Ohio 2 Inspirata, Inc., Tampa, Florida |
| AuthorAffiliation_xml | – name: 1 Case Western Reserve University, Cleveland, Ohio – name: 2 Inspirata, Inc., Tampa, Florida |
| Author_xml | – sequence: 1 givenname: Andrew surname: Janowczyk fullname: Janowczyk, Andrew email: andrew.janowczyk@case.edu organization: Case Western Reserve University, Cleveland, OH, United States – sequence: 2 givenname: Ajay surname: Basavanhally fullname: Basavanhally, Ajay organization: Inspirata, Inc., Tampa, FL, United States – sequence: 3 givenname: Anant surname: Madabhushi fullname: Madabhushi, Anant organization: Case Western Reserve University, Cleveland, OH, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27373749$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk9vEzEQxS1URNPCV0CLuJRDgmf_2LscilZRW5CqcggcOFmOdzZ1cOytvVspfHq8SolKJKTIB0v2m5_H780ZObHOIiHvgM6AAvu4nim36TbY6I1czdJ4NKPFjNLsBZlAyasp5RxOyISWVTFlAHBKzkJYU0pTyuEVOU15FldeTcjPRS-1Te6c30ijf8teO5sMQdtVsuikD5jUQ--urHIN-pBcRPmdW9QfPiV11xmtdgW9Sxq90r00SSf7e2fcavuavGylCfjmaT8nP66vvs-_TG-_3Xyd17dTxSraTzmWBQCTLchcLjNsUWGRFbxhyHnTtCovZcMkViVgKnmb86XKAFmZxitAmZ2Tyx23G5bREoW299KIzkdz_FY4qcW_N1bfi5V7FPHZFIoqAi6eAN49DBh6sdFBoTHSohuCgDJlHFjBeJS-P5Cu3eBt_J5IM17kZbR4VL193tG-lb-uR0G1EyjvQvDY7iVAxZiwWItnCYsxYUELEROOtZ8PalX0fUwhfk6bowjzHQFjKo8avQhKo1VR6lH1onH6KMrlAUUZbeNAmF-4xbD3BURIBRWLcRbHUQSWUZrTPALq_wOObOIPInD3PQ |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2021_103196 crossref_primary_10_1007_s11042_019_08262_0 crossref_primary_10_1016_j_artmed_2018_10_004 crossref_primary_10_3390_diagnostics15101271 crossref_primary_10_1016_j_bspc_2020_102402 crossref_primary_10_1016_j_compeleceng_2022_108304 crossref_primary_10_1016_j_ajpath_2021_05_023 crossref_primary_10_1016_j_knosys_2019_104874 crossref_primary_10_1016_j_media_2019_101544 crossref_primary_10_1038_s41598_021_81352_y crossref_primary_10_3748_wjg_v27_i21_2818 crossref_primary_10_1016_j_micron_2018_07_005 crossref_primary_10_1016_j_compbiomed_2023_106594 crossref_primary_10_1016_j_media_2017_07_005 crossref_primary_10_1038_s41591_024_02885_z crossref_primary_10_1016_j_media_2023_102891 crossref_primary_10_1016_j_compmedimag_2017_04_001 crossref_primary_10_1016_j_media_2018_03_006 crossref_primary_10_1109_ACCESS_2023_3274877 crossref_primary_10_1016_j_compbiomed_2019_103344 crossref_primary_10_1109_TMI_2019_2927182 crossref_primary_10_1093_ajcp_aqab085 crossref_primary_10_1016_j_media_2022_102640 crossref_primary_10_1186_s13000_024_01452_x crossref_primary_10_3390_cancers13040617 crossref_primary_10_1016_j_euo_2023_11_009 crossref_primary_10_1109_TIP_2019_2946442 crossref_primary_10_2196_23436 crossref_primary_10_3390_s23177318 crossref_primary_10_1155_2023_4919371 crossref_primary_10_1016_j_cmpb_2023_107528 crossref_primary_10_3389_fmed_2019_00193 crossref_primary_10_3390_diagnostics12123088 crossref_primary_10_1109_ACCESS_2025_3554342 crossref_primary_10_3389_fbioe_2019_00102 crossref_primary_10_1007_s11684_020_0782_9 crossref_primary_10_3390_cells14060413 crossref_primary_10_1016_j_media_2024_103444 crossref_primary_10_1016_j_inffus_2023_101997 crossref_primary_10_1007_s13246_022_01139_x crossref_primary_10_1007_s11831_023_09899_9 crossref_primary_10_1038_s41379_021_00859_x crossref_primary_10_1038_s41598_018_33026_5 crossref_primary_10_1016_j_cmpb_2020_105815 crossref_primary_10_1016_j_media_2020_101813 crossref_primary_10_1016_j_dsp_2023_104318 crossref_primary_10_3233_JIFS_213212 crossref_primary_10_3389_fbioe_2019_00198 crossref_primary_10_1016_j_imu_2021_100582 crossref_primary_10_1016_j_compmedimag_2022_102048 crossref_primary_10_1109_ACCESS_2020_2993887 crossref_primary_10_1038_s41377_023_01104_7 crossref_primary_10_1186_s13058_019_1165_5 crossref_primary_10_1038_s41598_019_50143_x crossref_primary_10_1177_0300985819848504 crossref_primary_10_3390_diagnostics12061493 crossref_primary_10_3390_app10186427 crossref_primary_10_3390_cancers14051199 crossref_primary_10_1002_cjp2_229 crossref_primary_10_1016_j_cmpb_2024_108200 crossref_primary_10_1371_journal_pone_0283568 crossref_primary_10_3390_cancers12113337 crossref_primary_10_1002_cyto_a_23701 crossref_primary_10_3892_ol_2018_9761 crossref_primary_10_1016_j_bbe_2019_01_005 crossref_primary_10_1007_s11042_023_16313_w crossref_primary_10_1016_j_artmed_2022_102420 crossref_primary_10_1016_j_compmedimag_2021_101901 crossref_primary_10_1038_s41598_022_23166_0 crossref_primary_10_1109_JPROC_2019_2950506 crossref_primary_10_1016_j_ajpath_2022_12_011 crossref_primary_10_3390_diagnostics13193115 crossref_primary_10_1109_ACCESS_2022_3176091 crossref_primary_10_1007_s12596_018_0508_4 crossref_primary_10_1109_TMI_2022_3221724 crossref_primary_10_1016_j_compbiomed_2020_104129 crossref_primary_10_4103_jpi_jpi_103_20 crossref_primary_10_1016_j_compbiomed_2022_105219 crossref_primary_10_3389_fonc_2020_593211 crossref_primary_10_1016_j_bspc_2023_104978 crossref_primary_10_3390_app12083718 crossref_primary_10_1007_s10916_021_01786_9 crossref_primary_10_1016_j_jpi_2024_100396 crossref_primary_10_1017_S2633903X23000144 crossref_primary_10_1155_2022_8415705 crossref_primary_10_1109_ACCESS_2021_3051188 crossref_primary_10_1109_TMI_2017_2781228 crossref_primary_10_1016_j_modpat_2023_100285 crossref_primary_10_1007_s00521_023_08659_x crossref_primary_10_1016_j_cmpb_2019_01_008 crossref_primary_10_1016_j_csbj_2021_06_025 crossref_primary_10_1155_2022_6364102 crossref_primary_10_1007_s10462_025_11207_9 crossref_primary_10_3390_diagnostics15081032 crossref_primary_10_1002_gcc_23177 crossref_primary_10_1017_S2633903X23000053 crossref_primary_10_1016_j_jpi_2022_100126 crossref_primary_10_1038_s41568_021_00408_3 crossref_primary_10_1016_j_jpi_2022_100127 crossref_primary_10_1016_j_patrec_2021_01_002 crossref_primary_10_1038_s41591_021_01343_4 crossref_primary_10_1111_jmi_13049 crossref_primary_10_1038_s41571_019_0252_y crossref_primary_10_1007_s10044_025_01540_8 crossref_primary_10_1007_s42979_021_00784_5 crossref_primary_10_1109_ACCESS_2019_2894791 crossref_primary_10_1007_s10586_022_03951_2 crossref_primary_10_1016_j_compbiomed_2022_106335 crossref_primary_10_1371_journal_pone_0287704 crossref_primary_10_1016_j_engappai_2024_108136 crossref_primary_10_1007_s10278_024_01041_w crossref_primary_10_1038_s44303_024_00018_2 crossref_primary_10_1093_etojnl_vgae038 crossref_primary_10_1016_j_compbiomed_2024_108130 crossref_primary_10_3389_fmed_2023_1173616 crossref_primary_10_3389_fphar_2019_01303 crossref_primary_10_1017_cts_2020_531 crossref_primary_10_4103_jpi_jpi_36_21 crossref_primary_10_1161_CIRCULATIONAHA_121_058459 crossref_primary_10_1007_s11831_020_09470_w crossref_primary_10_3390_cancers12102934 crossref_primary_10_1016_j_media_2022_102580 crossref_primary_10_1016_j_media_2018_09_005 crossref_primary_10_1109_TNNLS_2017_2766168 crossref_primary_10_1155_2021_9917545 crossref_primary_10_1016_j_inffus_2024_102536 |
| Cites_doi | 10.1109/TMI.2015.2458702 10.1109/TBME.2014.2303294 10.2307/1932409 10.1561/2200000006 10.1109/RBME.2013.2295804 10.4103/2153-3539.77175 10.1109/TBME.2010.2041232 10.1109/38.946629 10.1109/TBME.2014.2303852 10.1109/RBME.2009.2034865 10.1109/TMI.2012.2190089 10.1117/12.2007173 10.1002/(SICI)1096-9896(199705)182:1<68::AID-PATH811>3.0.CO;2-N |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. Copyright Elsevier Science Ltd. Apr 2017 |
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Science Ltd. Apr 2017 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D NAPCQ P64 7X8 5PM |
| DOI | 10.1016/j.compmedimag.2016.05.003 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Nursing & Allied Health Premium MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0771 |
| EndPage | 61 |
| ExternalDocumentID | PMC5112159 27373749 10_1016_j_compmedimag_2016_05_003 S0895611116300404 1_s2_0_S0895611116300404 |
| Genre | Validation Studies Journal Article |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R21 CA179327 – fundername: NCI NIH HHS grantid: U24 CA199374 – fundername: NCI NIH HHS grantid: R21 CA195152 – fundername: NIDDK NIH HHS grantid: R01 DK098503 – fundername: NCI NIH HHS grantid: R01 CA202752 – fundername: NCI NIH HHS grantid: R21 CA167811 – fundername: NIDDK NIH HHS grantid: T32 DK007470 |
| GroupedDBID | --- --K --M .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEI HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LX9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K WUQ Z5R ZGI ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU LCYCR 9DU AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D NAPCQ P64 7X8 5PM |
| ID | FETCH-LOGICAL-c690t-7e85116af1a4ab3efece5357d6e77ddfc48ad6ae981e2a7f47bc31e682fc41ea3 |
| ISICitedReferencesCount | 149 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401389800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0895-6111 1879-0771 |
| IngestDate | Tue Sep 30 16:42:14 EDT 2025 Sat Sep 27 20:13:43 EDT 2025 Tue Oct 07 06:53:48 EDT 2025 Thu Apr 03 07:08:45 EDT 2025 Tue Nov 18 22:16:36 EST 2025 Sat Nov 29 07:15:17 EST 2025 Fri Feb 23 02:19:33 EST 2024 Tue Feb 25 19:59:06 EST 2025 Tue Oct 14 19:38:02 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Digital histopathology Deep learning Stain Normalization Image processing |
| Language | English |
| License | Copyright © 2016 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c690t-7e85116af1a4ab3efece5357d6e77ddfc48ad6ae981e2a7f47bc31e682fc41ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5112159 |
| PMID | 27373749 |
| PQID | 2375480007 |
| PQPubID | 2047475 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5112159 proquest_miscellaneous_1826716567 proquest_journals_2375480007 pubmed_primary_27373749 crossref_primary_10_1016_j_compmedimag_2016_05_003 crossref_citationtrail_10_1016_j_compmedimag_2016_05_003 elsevier_sciencedirect_doi_10_1016_j_compmedimag_2016_05_003 elsevier_clinicalkeyesjournals_1_s2_0_S0895611116300404 elsevier_clinicalkey_doi_10_1016_j_compmedimag_2016_05_003 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-01 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | Computerized medical imaging and graphics |
| PublicationTitleAlternate | Comput Med Imaging Graph |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Hamilton, Bartels, Thompson, Anderson, Montironi, Sloan (bib0085) 1997; 82 Dice (bib0155) 1945; 26 Fatakdawala, Xu, Basavanhally, Bhanot, Ganesan, Feldman (bib0060) 2010; 57 Khan, Rajpoot, Treanor, Magee (bib0040) 2014; 61 Veta, Pluim, van Diest, Viergever (bib0010) 2014; 61 Basavanhally, Madabhushi (bib0115) 2013; 8676 Khan, El-Daly, Rajpoot (bib0020) 2012 Ruifrok, Johnston (bib0080) 2001; 23 Reinhard, Adhikhmin, Gooch, Shirley (bib0100) 2001; 21 Vincent, Larochelle, Bengio, Manzagol (bib0075) 2008 Tian, Gao, Cui, Chen, Liu (bib0070) 2014 Irshad, Veillard, Roux, Racoceanu (bib0050) 2014; 7 Sahirzeeshan, Madabhushi (bib0055) 2012; 31 Turian, Warde-Farley, Bengio (bib0150) 2010 Jain (bib0045) 1989 Gurcan, Boucheron, Can, Madabhushi, Rajpoot, Yener (bib0005) 2009; 2 Hipp, Cheng, Toner, Tompkins, Balis (bib0025) 2011; 2 Magee, Treanor, Crellin, Shires, Mohee, Quirke (bib0105) 2009 Goodfellow IJ, Warde-Farley D, Lamblin P, Dumoulin V, Mirza M, Pascanu R, et al., 2013. Pylearn2: a machine learning research library, arXiv preprint arXiv:1308.4214. Ruiz, Sertel, Ujaldon, Catalyurek, Saltz, Gurcan (bib0095) 2007 Bengio, Lamblin, Popovici, Larochelle (bib0120) 2007; 19 Bengio (bib0125) 2009; 2 Zhang (bib0130) 2004 Rabinovich, Agarwal, Laris, Price, Belongie (bib0110) 2004; 16 Xu, Xiang, Liu, Gilmore, Wu, Tang (bib0065) 2016; 35 Wang, Chang, Wu, Tsai, Sun (bib0035) 2007; 2007 Kong, Sertel, Shimada, Boyer, Saltz, Gurcan (bib0030) 2007 Coates, Lee, Ng (bib0135) 2011 Macenko, Niethammer, Marron, Borland, Woosley, Guan (bib0140) 2009 Qureshi, Sertel, Rajpoot, Wilson, Gurcan (bib0090) 2008; 11 Monaco, Hipp, Lucas, Smith, Balis, Madabhushi (bib0015) 2012; 15 Irshad (10.1016/j.compmedimag.2016.05.003_bib0050) 2014; 7 Kong (10.1016/j.compmedimag.2016.05.003_bib0030) 2007 10.1016/j.compmedimag.2016.05.003_bib0145 Sahirzeeshan (10.1016/j.compmedimag.2016.05.003_bib0055) 2012; 31 Vincent (10.1016/j.compmedimag.2016.05.003_bib0075) 2008 Rabinovich (10.1016/j.compmedimag.2016.05.003_bib0110) 2004; 16 Jain (10.1016/j.compmedimag.2016.05.003_bib0045) 1989 Xu (10.1016/j.compmedimag.2016.05.003_bib0065) 2016; 35 Dice (10.1016/j.compmedimag.2016.05.003_bib0155) 1945; 26 Ruiz (10.1016/j.compmedimag.2016.05.003_bib0095) 2007 Macenko (10.1016/j.compmedimag.2016.05.003_bib0140) 2009 Hipp (10.1016/j.compmedimag.2016.05.003_bib0025) 2011; 2 Tian (10.1016/j.compmedimag.2016.05.003_bib0070) 2014 Bengio (10.1016/j.compmedimag.2016.05.003_bib0120) 2007; 19 Magee (10.1016/j.compmedimag.2016.05.003_bib0105) 2009 Wang (10.1016/j.compmedimag.2016.05.003_bib0035) 2007; 2007 Basavanhally (10.1016/j.compmedimag.2016.05.003_bib0115) 2013; 8676 Gurcan (10.1016/j.compmedimag.2016.05.003_bib0005) 2009; 2 Hamilton (10.1016/j.compmedimag.2016.05.003_bib0085) 1997; 82 Ruifrok (10.1016/j.compmedimag.2016.05.003_bib0080) 2001; 23 Monaco (10.1016/j.compmedimag.2016.05.003_bib0015) 2012; 15 Khan (10.1016/j.compmedimag.2016.05.003_bib0040) 2014; 61 Reinhard (10.1016/j.compmedimag.2016.05.003_bib0100) 2001; 21 Fatakdawala (10.1016/j.compmedimag.2016.05.003_bib0060) 2010; 57 Khan (10.1016/j.compmedimag.2016.05.003_bib0020) 2012 Bengio (10.1016/j.compmedimag.2016.05.003_bib0125) 2009; 2 Zhang (10.1016/j.compmedimag.2016.05.003_bib0130) 2004 Veta (10.1016/j.compmedimag.2016.05.003_bib0010) 2014; 61 Coates (10.1016/j.compmedimag.2016.05.003_bib0135) 2011 Qureshi (10.1016/j.compmedimag.2016.05.003_bib0090) 2008; 11 Turian (10.1016/j.compmedimag.2016.05.003_bib0150) 2010 |
| References_xml | – start-page: 215 year: 2011 end-page: 223 ident: bib0135 article-title: An analysis of single-layer networks in unsupervised feature learning publication-title: Proceedings of the fourteenth international conference on artificial intelligence and statistics, Vol. 15 of JMLR workshop and conference proceedings – start-page: 1293 year: 2014 end-page: 1299 ident: bib0070 article-title: Learning deep representations for graph clustering publication-title: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27–31, 2014 – volume: 7 start-page: 97 year: 2014 end-page: 114 ident: bib0050 article-title: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review – current status and future potential publication-title: IEEE Rev Biomed Eng – volume: 16 start-page: 667 year: 2004 end-page: 674 ident: bib0110 article-title: Unsupervised color decomposition of histologically stained tissue samples publication-title: Advances in neural information processing systems – volume: 2007 start-page: 6577 year: 2007 end-page: 6580 ident: bib0035 article-title: A color-based approach for automated segmentation in tumor tissue classification publication-title: Conf Proc IEEE Eng Med Biol Soc – start-page: 525 year: 2007 end-page: 528 ident: bib0030 article-title: Computer-aided grading of neuroblastic differentiation: multi-resolution and multi-classifier approach publication-title: ICIP (5) – volume: 82 start-page: 68 year: 1997 end-page: 75 ident: bib0085 article-title: Automated location of dysplastic fields in colorectal histology using image texture analysis publication-title: J Pathol – year: 2010 ident: bib0150 article-title: Theano: a CPU and GPU math expression compiler publication-title: Proceedings of the Python for Scientific Computing Conference (SciPy) – start-page: 17 year: 2012 end-page: 23 ident: bib0020 article-title: Ranpec: random projections with ensemble clustering for segmentation of tumor areas in breast histology images publication-title: Medical image understanding and analysis (MIUA) – volume: 21 start-page: 34 year: 2001 end-page: 41 ident: bib0100 article-title: Color transfer between images publication-title: IEEE Comput Graph Appl – volume: 61 start-page: 1729 year: 2014 end-page: 1738 ident: bib0040 article-title: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. publication-title: IEEE Trans Biomed Eng – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: bib0155 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 2 start-page: 13 year: 2011 ident: bib0025 article-title: Spatially invariant vector quantization: a pattern matching algorithm for multiple classes of image subject matter including pathology publication-title: J Pathol Inform – start-page: 100 year: 2009 end-page: 111 ident: bib0105 article-title: Colour normalisation in digital histopathology images publication-title: Proc. optical tissue image analysis in microscopy, histopathology and endoscopy (MICCAI Workshop) – reference: Goodfellow IJ, Warde-Farley D, Lamblin P, Dumoulin V, Mirza M, Pascanu R, et al., 2013. Pylearn2: a machine learning research library, arXiv preprint arXiv:1308.4214. – year: 1989 ident: bib0045 article-title: Fundamentals of digital image processing – volume: 57 start-page: 1676 year: 2010 end-page: 1689 ident: bib0060 article-title: Expectation-maximization driven geodesic active contour with overlap resolution (EMAGACOR): application to lymphocyte segmentation on breast cancer histopathology publication-title: IEEE Trans Biomed Eng – volume: 8676 year: 2013 ident: bib0115 article-title: Em-based segmentation-driven color standardization of digitized histopathology publication-title: Proc SPIE – volume: 31 start-page: 1448 year: 2012 end-page: 1460 ident: bib0055 article-title: An integrated region-, boundary, shape-based active contour for multiple object overlap resolution in histological imagery publication-title: IEEE Trans Med Imag – volume: 23 start-page: 291 year: 2001 end-page: 299 ident: bib0080 article-title: Quantification of histochemical staining by color deconvolution publication-title: Anal Quant Cytol Histol – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: bib0125 article-title: Learning deep architectures for AI publication-title: Found Trends Mach Learn – start-page: 1107 year: 2009 end-page: 1110 ident: bib0140 article-title: A method for normalizing histology slides for quantitative analysis publication-title: IEEE international symposium on biomedical imaging: from nano to Macro, 2009. ISBI’09, vol. 9 – volume: 35 start-page: 119 year: 2016 end-page: 130 ident: bib0065 article-title: Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images publication-title: IEEE Trans Med Imaging – start-page: 1096 year: 2008 end-page: 1103 ident: bib0075 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proceedings of the 25th International Conference on Machine Learning – start-page: 78 year: 2007 end-page: 88 ident: bib0095 article-title: Pathological image analysis using the GPU: Stroma classification for neuroblastoma publication-title: IEEE international conference on bioinformatics and biomedicine, 2007, BIBM 2007 – volume: 2 start-page: 147 year: 2009 end-page: 171 ident: bib0005 article-title: Histopathological image analysis: a review publication-title: IEEE Rev Biomed Eng – volume: 15 start-page: 365 year: 2012 end-page: 372 ident: bib0015 article-title: Image segmentation with implicit color standardization using spatially constrained expectation maximization: detection of nuclei publication-title: Med Image Comput Comput Assist Interv – volume: 19 start-page: 153 year: 2007 ident: bib0120 article-title: Greedy layer-wise training of deep networks publication-title: Adv Neural Inf Process Syst – volume: 11 start-page: 196 year: 2008 end-page: 204 ident: bib0090 article-title: Adaptive discriminant wavelet packet transform and local binary patterns for meningioma subtype classification publication-title: Med Image Comput Comput Assist Interv – start-page: 919 year: 2004 end-page: 926 ident: bib0130 article-title: Solving large scale linear prediction problems using stochastic gradient descent algorithms publication-title: ICML 2004: Proceedings of the 21st international conference on machine learning – volume: 61 start-page: 1400 year: 2014 end-page: 1411 ident: bib0010 article-title: Breast cancer histopathology image analysis: a review publication-title: IEEE Trans Biomed Eng – volume: 11 start-page: 196 issue: Pt 2 year: 2008 ident: 10.1016/j.compmedimag.2016.05.003_bib0090 article-title: Adaptive discriminant wavelet packet transform and local binary patterns for meningioma subtype classification publication-title: Med Image Comput Comput Assist Interv – start-page: 78 year: 2007 ident: 10.1016/j.compmedimag.2016.05.003_bib0095 article-title: Pathological image analysis using the GPU: Stroma classification for neuroblastoma – volume: 35 start-page: 119 issue: 1 year: 2016 ident: 10.1016/j.compmedimag.2016.05.003_bib0065 article-title: Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2458702 – volume: 61 start-page: 1729 issue: 6 year: 2014 ident: 10.1016/j.compmedimag.2016.05.003_bib0040 article-title: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2303294 – year: 1989 ident: 10.1016/j.compmedimag.2016.05.003_bib0045 – volume: 26 start-page: 297 issue: 3 year: 1945 ident: 10.1016/j.compmedimag.2016.05.003_bib0155 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.compmedimag.2016.05.003_bib0125 article-title: Learning deep architectures for AI publication-title: Found Trends Mach Learn doi: 10.1561/2200000006 – volume: 7 start-page: 97 year: 2014 ident: 10.1016/j.compmedimag.2016.05.003_bib0050 article-title: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review – current status and future potential publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2013.2295804 – start-page: 1107 year: 2009 ident: 10.1016/j.compmedimag.2016.05.003_bib0140 article-title: A method for normalizing histology slides for quantitative analysis – start-page: 215 year: 2011 ident: 10.1016/j.compmedimag.2016.05.003_bib0135 article-title: An analysis of single-layer networks in unsupervised feature learning – start-page: 919 year: 2004 ident: 10.1016/j.compmedimag.2016.05.003_bib0130 article-title: Solving large scale linear prediction problems using stochastic gradient descent algorithms – start-page: 100 year: 2009 ident: 10.1016/j.compmedimag.2016.05.003_bib0105 article-title: Colour normalisation in digital histopathology images – year: 2010 ident: 10.1016/j.compmedimag.2016.05.003_bib0150 article-title: Theano: a CPU and GPU math expression compiler – volume: 2 start-page: 13 year: 2011 ident: 10.1016/j.compmedimag.2016.05.003_bib0025 article-title: Spatially invariant vector quantization: a pattern matching algorithm for multiple classes of image subject matter including pathology publication-title: J Pathol Inform doi: 10.4103/2153-3539.77175 – volume: 2007 start-page: 6577 year: 2007 ident: 10.1016/j.compmedimag.2016.05.003_bib0035 article-title: A color-based approach for automated segmentation in tumor tissue classification publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 57 start-page: 1676 issue: 7 year: 2010 ident: 10.1016/j.compmedimag.2016.05.003_bib0060 article-title: Expectation-maximization driven geodesic active contour with overlap resolution (EMAGACOR): application to lymphocyte segmentation on breast cancer histopathology publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2041232 – volume: 21 start-page: 34 issue: 5 year: 2001 ident: 10.1016/j.compmedimag.2016.05.003_bib0100 article-title: Color transfer between images publication-title: IEEE Comput Graph Appl doi: 10.1109/38.946629 – start-page: 17 year: 2012 ident: 10.1016/j.compmedimag.2016.05.003_bib0020 article-title: Ranpec: random projections with ensemble clustering for segmentation of tumor areas in breast histology images – ident: 10.1016/j.compmedimag.2016.05.003_bib0145 – volume: 16 start-page: 667 year: 2004 ident: 10.1016/j.compmedimag.2016.05.003_bib0110 article-title: Unsupervised color decomposition of histologically stained tissue samples – start-page: 525 year: 2007 ident: 10.1016/j.compmedimag.2016.05.003_bib0030 article-title: Computer-aided grading of neuroblastic differentiation: multi-resolution and multi-classifier approach – volume: 61 start-page: 1400 issue: 5 year: 2014 ident: 10.1016/j.compmedimag.2016.05.003_bib0010 article-title: Breast cancer histopathology image analysis: a review publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2303852 – volume: 15 start-page: 365 issue: Pt 1 year: 2012 ident: 10.1016/j.compmedimag.2016.05.003_bib0015 article-title: Image segmentation with implicit color standardization using spatially constrained expectation maximization: detection of nuclei publication-title: Med Image Comput Comput Assist Interv – volume: 2 start-page: 147 year: 2009 ident: 10.1016/j.compmedimag.2016.05.003_bib0005 article-title: Histopathological image analysis: a review publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2009.2034865 – start-page: 1096 year: 2008 ident: 10.1016/j.compmedimag.2016.05.003_bib0075 article-title: Extracting and composing robust features with denoising autoencoders – volume: 23 start-page: 291 issue: 4 year: 2001 ident: 10.1016/j.compmedimag.2016.05.003_bib0080 article-title: Quantification of histochemical staining by color deconvolution publication-title: Anal Quant Cytol Histol – volume: 31 start-page: 1448 year: 2012 ident: 10.1016/j.compmedimag.2016.05.003_bib0055 article-title: An integrated region-, boundary, shape-based active contour for multiple object overlap resolution in histological imagery publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2012.2190089 – volume: 8676 year: 2013 ident: 10.1016/j.compmedimag.2016.05.003_bib0115 article-title: Em-based segmentation-driven color standardization of digitized histopathology publication-title: Proc SPIE doi: 10.1117/12.2007173 – volume: 82 start-page: 68 issue: 1 year: 1997 ident: 10.1016/j.compmedimag.2016.05.003_bib0085 article-title: Automated location of dysplastic fields in colorectal histology using image texture analysis publication-title: J Pathol doi: 10.1002/(SICI)1096-9896(199705)182:1<68::AID-PATH811>3.0.CO;2-N – volume: 19 start-page: 153 year: 2007 ident: 10.1016/j.compmedimag.2016.05.003_bib0120 article-title: Greedy layer-wise training of deep networks publication-title: Adv Neural Inf Process Syst – start-page: 1293 year: 2014 ident: 10.1016/j.compmedimag.2016.05.003_bib0070 article-title: Learning deep representations for graph clustering |
| SSID | ssj0002071 |
| Score | 2.5520248 |
| Snippet | •Digital histopathology slides have many sources of variance.•These variances can cause algorithms to perform erratically.•Stain Normalization using Sparse... Highlights•Digital histopathology slides have many sources of variance. •These variances can cause algorithms to perform erratically. •Stain Normalization... Digital histopathology slides have many sources of variance, and while pathologists typically do not struggle with them, computer aided diagnostic algorithms... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 50 |
| SubjectTerms | Algorithms Biopsy - methods Breast - diagnostic imaging Color Deep learning Diagnosis, Computer-Assisted - methods Diagnostic systems Digital histopathology Histological Techniques Histopathology Humans Image processing Image Processing, Computer-Assisted - methods Internal Medicine Machine Learning Other Pathology, Clinical - methods Stain Normalization Staining and Labeling - methods Standardization |
| Title | Stain Normalization using Sparse AutoEncoders (StaNoSA): Application to digital pathology |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0895611116300404 https://www.clinicalkey.es/playcontent/1-s2.0-S0895611116300404 https://dx.doi.org/10.1016/j.compmedimag.2016.05.003 https://www.ncbi.nlm.nih.gov/pubmed/27373749 https://www.proquest.com/docview/2375480007 https://www.proquest.com/docview/1826716567 https://pubmed.ncbi.nlm.nih.gov/PMC5112159 |
| Volume | 57 |
| WOSCitedRecordID | wos000401389800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1879-0771 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002071 issn: 0895-6111 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdpO8pexr6XrSsubLBRAo6_JJe9hJGxFRYG6SB7MrKsNMkSO8RO1-Wv350kO066QPawBEywLDv2_Xy6O51-R8gbgAiMpDFv8Rheco-Dw8oCN25Rn9tcJDEX_lAVm6C9HhsMwm-NxqpcC3MzpWnKbm_D-X8VNewDYePS2X8Qd3VS2AG_QeiwBbHDdi_B99HZx_mYGZ-aRZbnSxUR6M_Bi5XnnWWRdVNcy75QIVfo0Mv6nbdOqKKE6xlttEuT8TWWFUH-1dE6Al9SG5iSEOMVmK0zM-UznunCRxiRV3TYtXz6S55mv8Tq98-tXEoVSs05WPVY20XJvTPhtQTlhMejZa4KECOPiknWMdEKGAHXSS5Sa1hGcdWUrrtSqmDNUW10qCaivaPadZRhgpKZ4x3BzWBmXqCIVxVPQlGT7nymxAvGGXw1KeoWr3bZdECOHOqHoBGPOl-6g8tqHHfA-jomZ-uMwB1XRj5pc65dxs1d52U7B7dm1Fw9JA-MN2J1NIoekYZMH5Pjrybf4gn5ocBkbYDJUmCyNJisOpisdwZK7y-sGoysIrMMjKwKRk_J90_dq4-fW6YYR0sEoV20qETbPODDNvd47MqhFNJ3fZoEktIkGQqP8STgMmRt6XA69Ggs3LYMmANNbcndZ-QwzVL5glieyx03FgypgMCe5KEQYCLxIE4EWK80bhJWPsVIGKZ6LJgyjcqUxElUk0WEsohsH2lum8Spus41Xcs-nS5KUUXlemQYQSNA3j6d6d86y9yohDxqR7kT2VHfZriIHD6K5c72muRD1dOYu9qM3ffCJyWqoupaDla0Zmj4N8lZ1QwjBk4D8lRmS_g_zAkokm7BMc81CKtnVQIZ7moDntUByEa_2ZKOR4qVHj038I1e7jznK3J_rRFOyGGxWMrX5J64Kcb54pQc0AE7Ne_gH9YkASA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stain+Normalization+using+Sparse+AutoEncoders+%28StaNoSA%29%3A+Application+to+digital+pathology&rft.jtitle=Computerized+medical+imaging+and+graphics&rft.au=Janowczyk%2C+Andrew&rft.au=Basavanhally%2C+Ajay&rft.au=Madabhushi%2C+Anant&rft.date=2017-04-01&rft.eissn=1879-0771&rft.volume=57&rft.spage=50&rft_id=info:doi/10.1016%2Fj.compmedimag.2016.05.003&rft_id=info%3Apmid%2F27373749&rft.externalDocID=27373749 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08956111%2FS0895611117X00025%2Fcov150h.gif |