Advanced image encryption algorithm integrating chaotic image encryption and convolutional neural networks

With the rapid growth of information technology, safeguarding the security of images has become a crucial area of study. This study introduces a method that combines chaotic image encryption with convolutional neural networks (CNNs) to enhance both security and efficiency. To create strong image enc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:I-Manager's Journal on Electronics Engineering Ročník 15; číslo 2; s. 16
Hlavní autoři: Nuthakki, Ramesh Babu, Vaka, Naga Venkata Sainadh, Nagam, Gollaji, Gundabatthula, Shalem Raju, Nakka, Saishankar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Nagercoil iManager Publications 01.03.2025
Témata:
ISSN:2229-7286, 2249-0760
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the rapid growth of information technology, safeguarding the security of images has become a crucial area of study. This study introduces a method that combines chaotic image encryption with convolutional neural networks (CNNs) to enhance both security and efficiency. To create strong image encryption, the approach combines the sophisticated feature extraction capabilities of a CNN model with the randomness and nonlinear mapping of chaotic sequences. The basic principles of CNN and chaotic image encryption are outlined. A Convolutional Neural Network (CNN), a deep learning model characterized by weight sharing and a local perceptual field, effectively reconstructs high-level image features. Meanwhile, chaotic image encryption leverages nonlinear transformations and chaotic sequence generation are used to jumble pixel values, ensuring secure encryption. These procedures consist of feature extraction, pixel value mapping, key management, and chaotic sequence production. To accomplish high-strength encryption, CNN is used to extract high-level picture properties and perform difference actions among the chaotic patterns and image pixel values. Lastly, the approach is tested experimentally by contrasting it with more conventional chaotic picture encryption techniques. The experimental findings show that the picture encryption technique offers advantages in computational efficiency and the speed of encryption and decryption, along with significant enhancements in encryption quality and security.
AbstractList With the rapid growth of information technology, safeguarding the security of images has become a crucial area of study. This study introduces a method that combines chaotic image encryption with convolutional neural networks (CNNs) to enhance both security and efficiency. To create strong image encryption, the approach combines the sophisticated feature extraction capabilities of a CNN model with the randomness and nonlinear mapping of chaotic sequences. The basic principles of CNN and chaotic image encryption are outlined. A Convolutional Neural Network (CNN), a deep learning model characterized by weight sharing and a local perceptual field, effectively reconstructs high-level image features. Meanwhile, chaotic image encryption leverages nonlinear transformations and chaotic sequence generation are used to jumble pixel values, ensuring secure encryption. These procedures consist of feature extraction, pixel value mapping, key management, and chaotic sequence production. To accomplish high-strength encryption, CNN is used to extract high-level picture properties and perform difference actions among the chaotic patterns and image pixel values. Lastly, the approach is tested experimentally by contrasting it with more conventional chaotic picture encryption techniques. The experimental findings show that the picture encryption technique offers advantages in computational efficiency and the speed of encryption and decryption, along with significant enhancements in encryption quality and security.
Author Nakka, Saishankar
Nuthakki, Ramesh Babu
Nagam, Gollaji
Vaka, Naga Venkata Sainadh
Gundabatthula, Shalem Raju
Author_xml – sequence: 1
  givenname: Ramesh Babu
  surname: Nuthakki
  fullname: Nuthakki, Ramesh Babu
– sequence: 2
  givenname: Naga Venkata Sainadh
  surname: Vaka
  fullname: Vaka, Naga Venkata Sainadh
– sequence: 3
  givenname: Gollaji
  surname: Nagam
  fullname: Nagam, Gollaji
– sequence: 4
  givenname: Shalem Raju
  surname: Gundabatthula
  fullname: Gundabatthula, Shalem Raju
– sequence: 5
  givenname: Saishankar
  surname: Nakka
  fullname: Nakka, Saishankar
BookMark eNptkElPwzAQhS1UJErpnaMlzgneEx-rik2qxKV3y3hJE1K72ElR_z1p4chl3oz0zejNuwWzEIMD4B6jkghB2WPneldiXpKS4IqyKzAnhMkCVQLNzj2RRUVqcQOWOXcIISIlqRmdg25ljzoYZ2G7142DLph0OgxtDFD3TUztsNvDNgyuSXpoQwPNTsehNf_gwUITwzH243nWPQxuTBcZvmP6zHfg2us-u-WfLsD2-Wm7fi027y9v69WmMEKigkmqsfcUC46Z5xZ5M5XKcl0T582HlY4Jz1ntMGao5pYIg5zWkjNMraZ0AR5-zx5S_BpdHlQXxzT5yYoSihiT095EoV_KpJhzcl4d0vRSOimM1CVTdc5UYa6IumRKfwDUBG63
Cites_doi 10.1007/978-3-031-33545-7_23
10.1109/CVPR.2019.01215
10.1016/j.cosrev.2022.100530
10.1063/1.1386397
10.1016/j.ins.2022.05.032
10.5120/11507-7224
10.1007/978-3-540-74735-2_4
10.1016/j.is.2014.07.006
10.1109/CSAE.2012.6272786
10.1109/ICBAIE56435.2022.9985881
10.1109/TII.2022.3194590
10.1109/TCSVT.2018.2876399
10.3389/fphy.2023.1162887
10.1007/s11071-015-2364-y
10.1016/j.preteyeres.2020.100900
10.1063/1.166278
10.1016/j.asoc.2015.09.055
10.1017/jfm.2019.828
10.1016/j.diin.2009.06.016
10.1002/sec.1748
10.1109/GLOBECOM48099.2022.10001662
10.1016/j.asoc.2019.105943
10.1016/j.chaos.2021.111318
10.1109/TCOMM.2023.3241326
10.1142/S0218127419501153
10.1075/cilt.331
10.1016/j.ijleo.2022.169133
10.1038/s41598-022-13214-0
10.1038/s41598-023-28509-z
10.1021/acssensors.1c02201
10.1016/S1353-4858(10)70006-4
10.1007/s11042-017-4534-z
10.1142/S021812740401151X
10.1109/ACCESS.2022.3157823
10.1006/jcph.1993.1059
10.1088/1742-6596/1542/1/012024
10.1109/ACCESS.2022.3192026
10.3390/e21100958
10.1016/j.sigpro.2009.08.010
10.1080/10447318.2022.2153320
10.1007/s11042-021-10750-1
10.1097/00001756-200112040-00043
10.1016/j.scs.2018.02.014
10.1016/j.amc.2022.127738
ContentType Journal Article
Copyright Copyright © 2025 i-manager publications. All rights reserved.
Copyright_xml – notice: Copyright © 2025 i-manager publications. All rights reserved.
DBID AAYXX
CITATION
04Q
04S
04W
7SP
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
HCIFZ
L6V
L7M
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.26634/jele.15.2.21734
DatabaseName CrossRef
India Database
India Database: Business
India Database: Science & Technology
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central (NC Live)
Technology Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
ProQuest Indian Journals
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Indian Journals: Business
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
Indian Journals: Science & Technology
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Technology Collection
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2249-0760
ExternalDocumentID 10_26634_jele_15_2_21734
GroupedDBID .4S
04Q
04S
04W
8FE
8FG
AAYXX
ABJCF
ABUWG
ACIWK
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
EOJEC
HCIFZ
L6V
M7S
OBODZ
P62
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
S0W
TUS
7SP
8FD
DWQXO
F28
FR3
L7M
PKEHL
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c690-493a1ff316514f5d0fc5d07d5a82efcbd9e46f548e114085d26c0eaa95413da33
IEDL.DBID 04Q
ISSN 2229-7286
IngestDate Fri Jul 18 08:10:58 EDT 2025
Sat Nov 29 08:01:41 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c690-493a1ff316514f5d0fc5d07d5a82efcbd9e46f548e114085d26c0eaa95413da33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3230449140
PQPubID 2030624
ParticipantIDs proquest_journals_3230449140
crossref_primary_10_26634_jele_15_2_21734
PublicationCentury 2000
PublicationDate 20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 20250301
  day: 01
PublicationDecade 2020
PublicationPlace Nagercoil
PublicationPlace_xml – name: Nagercoil
PublicationTitle I-Manager's Journal on Electronics Engineering
PublicationYear 2025
Publisher iManager Publications
Publisher_xml – name: iManager Publications
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref16
  doi: 10.1007/978-3-031-33545-7_23
– ident: ref18
  doi: 10.1109/CVPR.2019.01215
– ident: ref34
  doi: 10.1016/j.cosrev.2022.100530
– ident: ref32
  doi: 10.1063/1.1386397
– ident: ref31
  doi: 10.1016/j.ins.2022.05.032
– ident: ref28
  doi: 10.5120/11507-7224
– ident: ref5
  doi: 10.1007/978-3-540-74735-2_4
– ident: ref9
  doi: 10.1016/j.is.2014.07.006
– ident: ref40
  doi: 10.1109/CSAE.2012.6272786
– ident: ref36
  doi: 10.1109/ICBAIE56435.2022.9985881
– ident: ref37
  doi: 10.1109/TII.2022.3194590
– ident: ref42
  doi: 10.1109/TCSVT.2018.2876399
– ident: ref38
  doi: 10.3389/fphy.2023.1162887
– ident: ref13
  doi: 10.1007/s11071-015-2364-y
– ident: ref17
  doi: 10.1016/j.preteyeres.2020.100900
– ident: ref24
  doi: 10.1063/1.166278
– ident: ref1
  doi: 10.1016/j.asoc.2015.09.055
– ident: ref11
  doi: 10.1017/jfm.2019.828
– ident: ref8
  doi: 10.1016/j.diin.2009.06.016
– ident: ref21
  doi: 10.1002/sec.1748
– ident: ref44
  doi: 10.1109/GLOBECOM48099.2022.10001662
– ident: ref12
  doi: 10.1016/j.asoc.2019.105943
– ident: ref19
  doi: 10.1016/j.chaos.2021.111318
– ident: ref43
  doi: 10.1109/TCOMM.2023.3241326
– ident: ref3
  doi: 10.1142/S0218127419501153
– ident: ref29
  doi: 10.1075/cilt.331
– ident: ref30
  doi: 10.1016/j.ijleo.2022.169133
– ident: ref23
  doi: 10.1038/s41598-022-13214-0
– ident: ref26
  doi: 10.1038/s41598-023-28509-z
– ident: ref33
  doi: 10.1021/acssensors.1c02201
– ident: ref10
  doi: 10.1016/S1353-4858(10)70006-4
– ident: ref35
  doi: 10.1007/s11042-017-4534-z
– ident: ref20
  doi: 10.1142/S021812740401151X
– ident: ref41
  doi: 10.1109/ACCESS.2022.3157823
– ident: ref25
  doi: 10.1006/jcph.1993.1059
– ident: ref27
  doi: 10.1088/1742-6596/1542/1/012024
– ident: ref39
  doi: 10.1109/ACCESS.2022.3192026
– ident: ref6
  doi: 10.3390/e21100958
– ident: ref2
  doi: 10.1016/j.sigpro.2009.08.010
– ident: ref22
  doi: 10.1080/10447318.2022.2153320
– ident: ref14
  doi: 10.1007/s11042-021-10750-1
– ident: ref7
  doi: 10.1097/00001756-200112040-00043
– ident: ref4
  doi: 10.1016/j.scs.2018.02.014
– ident: ref15
  doi: 10.1016/j.amc.2022.127738
SSID ssj0002992843
Score 2.2843719
Snippet With the rapid growth of information technology, safeguarding the security of images has become a crucial area of study. This study introduces a method that...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 16
SubjectTerms Artificial neural networks
Encryption
Feature extraction
Machine learning
Mapping
Neural networks
Pixels
Security
Title Advanced image encryption algorithm integrating chaotic image encryption and convolutional neural networks
URI https://www.proquest.com/docview/3230449140
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2249-0760
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002992843
  issn: 2229-7286
  databaseCode: P5Z
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2249-0760
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002992843
  issn: 2229-7286
  databaseCode: M7S
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: India Database
  customDbUrl:
  eissn: 2249-0760
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002992843
  issn: 2229-7286
  databaseCode: 04Q
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/indianjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2249-0760
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002992843
  issn: 2229-7286
  databaseCode: BENPR
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8UPHjxI2pEkezgxUNhW7t1OxkkELkQVA7Ey7L1QySyIUMS_3tfS9EQEy9eukOXbnltf7_3lfcQugYKEUAzIWaZTzD1UobjWFEcRVQGggWKs3WzCTYYRONxPLQOt9KmVW4w0QC1KLj2kbeI9l7SGOyB2_k71l2jdHTVttDYRVXNU_piuvTh28cCUAvoq4PMums1Zn5kI5XASoS2pgDsTS9o-k3QywndZqZtYDZs0zv8738eoQOrZzrt9cE4RjsyP0HTto34O_0Z4IjTzfni02CG0357gVWWk5nTtwUkgNOcziQtYIHfr6e5cDpFvrIHF76kq3yYh0krL0_RqNcdde6xbbaAORjImMYk9ZQiXggalAqEqzgMTARp5EvFMxFLGiowbyQYUKCmCT_krkzTOAAWFCkhZ6iSF7k8R04UwoTKdBkfSSnJMiWFG_qeYrCqkqyGbjZyTubrkhoJmCJmTxK9J4kXJH5i9qSG6hspJ_ZylcmPiC_-nr5E-75u12tSxuqoslx8yCu0x1fL13LRMGelgap33cHwsaGTPp9gHAbPX8gHy6w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELaqggQLDwHijQcYGNw2jhMnA0JVARFRKiQ6sFlJbFMqSEtTivhR_EfObgKqkNg6sCSDIyfOXb7v7ny5Q-gYKEQCzfiEJ9QlzIk5CUPNSBAw5Unu6ZRPm03wTid4eAjvKuiz_BfGpFWWmGiBWg5SEyOvuyZ6yULwB86Hr8R0jTK7q2ULjala3KiPd3DZ8rPoAuR7QunVZbd1TYquAiQFT5Cw0I0drV3HB1NBe7KhUzhw6cUBVTpNZKiYr8GOV-ApgD0iqZ82VByHHsC9jE38ExB_AawISm2m4P13SAeQHcDe7GmbJtmE06DYGAUSdFm9DzxSc7warYEb4LJZIpzlAUtuV6v_7LWsoZXCisbNqdqvo4rKNlC_WeQz4OgFUBJfZunowyIibj4_wkOPey84KspjAGPjVi8ewAS_L48ziVuDbFJ8lnAnU8PEnmzSfL6JuvNY3RaqZoNMbSMc-DCgE1OkSDHmJolWsuFTR3OYVSu-g05LsYrhtGCIAEfLqoAwKiAcT1BhVWAH7ZdCFQV05OJHort_Dx-hpevubVu0o87NHlqmpjGxTY7bR9Xx6E0doMV0Mn7KR4dWTTESc5b_F--9JCk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+image+encryption+algorithm+integrating+chaotic+image+encryption+and+convolutional+neural+networks&rft.jtitle=I-Manager%27s+Journal+on+Electronics+Engineering&rft.au=Nuthakki%2C+Ramesh+Babu&rft.au=Vaka%2C+Naga+Venkata+Sainadh&rft.au=Nagam%2C+Gollaji&rft.au=Gundabatthula%2C+Shalem+Raju&rft.date=2025-03-01&rft.issn=2229-7286&rft.eissn=2249-0760&rft.volume=15&rft.issue=2&rft.spage=16&rft_id=info:doi/10.26634%2Fjele.15.2.21734&rft.externalDBID=n%2Fa&rft.externalDocID=10_26634_jele_15_2_21734
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2229-7286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2229-7286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2229-7286&client=summon