Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals

Background Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavioral and brain functions Jg. 7; H. 1; S. 30
Hauptverfasser: Winkler, Irene, Haufe, Stefan, Tangermann, Michael
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 02.08.2011
Springer Nature B.V
BMC
Schlagworte:
ISSN:1744-9081, 1744-9081
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts. Methods We propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects. Results Based on six features only, the optimized linear classifier performed on level with the inter-expert disagreement ( < 10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components. Conclusions We propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies.
AbstractList Abstract Background Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts. Methods We propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects. Results Based on six features only, the optimized linear classifier performed on level with the inter-expert disagreement (<10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components. Conclusions We propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies.
Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts.BACKGROUNDArtifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts.We propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects.METHODSWe propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects.Based on six features only, the optimized linear classifier performed on level with the inter-expert disagreement (<10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components.RESULTSBased on six features only, the optimized linear classifier performed on level with the inter-expert disagreement (<10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components.We propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies.CONCLUSIONSWe propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies.
Background Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts. Methods We propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects. Results Based on six features only, the optimized linear classifier performed on level with the inter-expert disagreement ( < 10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components. Conclusions We propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies.
Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts. We propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects. Based on six features only, the optimized linear classifier performed on level with the inter-expert disagreement (<10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components. We propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies.
Author Winkler, Irene
Tangermann, Michael
Haufe, Stefan
AuthorAffiliation 1 Machine Learning Laboratory, Berlin Institute of Technology, Franklinstr. 28/29, 10587 Berlin, Germany
AuthorAffiliation_xml – name: 1 Machine Learning Laboratory, Berlin Institute of Technology, Franklinstr. 28/29, 10587 Berlin, Germany
Author_xml – sequence: 1
  givenname: Irene
  surname: Winkler
  fullname: Winkler, Irene
  email: irene.winkler@tu-berlin.de
  organization: Machine Learning Laboratory, Berlin Institute of Technology
– sequence: 2
  givenname: Stefan
  surname: Haufe
  fullname: Haufe, Stefan
  organization: Machine Learning Laboratory, Berlin Institute of Technology
– sequence: 3
  givenname: Michael
  surname: Tangermann
  fullname: Tangermann, Michael
  organization: Machine Learning Laboratory, Berlin Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21810266$$D View this record in MEDLINE/PubMed
BookMark eNp1kktvGyEUhVGUKq9m22U16qarSS6PAWZTybLcNFKkSn1sskEMBhdrBlyYiZR_XxwnbhIpG57nfBzgnqLDEINF6AOGC4wlv8SCsboFiWtRUzhAJ_uFw2fjY3Sa8xqASkbIETomWGIgnJ-g29k0xkGP3lTzXufsnTdlFkMVXTVLo3fajJPuq-v5rJ7HYVOOD2OuXEz77eqHHeJd0fhQLRZX1U-_CrrP79E7Vzp7_tifod9fF7_m3-qb71eFdlMbLtuxpksMDrvSUEJMJySR1GDTaamxdkaDZC3rJOCO8ca0DAvCOyIlNqzhVjt6hq533GXUa7VJftDpXkXt1cNCTCulS1LTW2Vo05DOMaBWMIpBLgtGc0c5AJeuKawvO9Zm6ga7NOWuSfcvoC93gv-jVvFOUSwa1tAC-PwISPHvZPOoBp-N7XsdbJyyki1pmWi4KMpPr5TrOKXtw6kWCAUMnBTRx-d59kGePrAI2E5gUsw5WaeMHx8-sMTzvcKgtnWitqWgtqWghKJQbBevbE_kNw2XO0MuwrCy6X_aNxz_AMQey2Y
CitedBy_id crossref_primary_10_3233_JAD_201560
crossref_primary_10_1002_hbm_26643
crossref_primary_10_1016_j_dib_2017_11_032
crossref_primary_10_1109_TNSRE_2020_2980223
crossref_primary_10_1016_j_eswa_2021_115941
crossref_primary_10_1016_j_bspc_2023_104677
crossref_primary_10_1016_j_jneumeth_2017_10_011
crossref_primary_10_1044_2019_AJA_19_0011
crossref_primary_10_1016_j_displa_2023_102415
crossref_primary_10_1016_j_neuroimage_2021_118713
crossref_primary_10_1162_jocn_a_02257
crossref_primary_10_1371_journal_pone_0258335
crossref_primary_10_1080_2326263X_2017_1304020
crossref_primary_10_1088_1741_2560_13_6_066005
crossref_primary_10_1016_j_dcn_2024_101468
crossref_primary_10_1088_1741_2552_aa8232
crossref_primary_10_4028_www_scientific_net_JBBBE_41_91
crossref_primary_10_1016_j_ijpsycho_2023_01_006
crossref_primary_10_1080_15374416_2020_1796680
crossref_primary_10_1016_j_bpsc_2021_11_006
crossref_primary_10_3389_fnins_2022_974162
crossref_primary_10_1016_j_bspc_2023_104657
crossref_primary_10_1080_10447318_2023_2260983
crossref_primary_10_3389_fnins_2017_00012
crossref_primary_10_1016_j_neuroimage_2024_120619
crossref_primary_10_1038_s41398_021_01763_3
crossref_primary_10_3389_fpsyg_2022_1065598
crossref_primary_10_1109_ACCESS_2018_2842082
crossref_primary_10_1016_j_cogsys_2018_11_002
crossref_primary_10_3390_s19102302
crossref_primary_10_1016_j_physbeh_2023_114321
crossref_primary_10_1016_j_jneuroling_2022_101098
crossref_primary_10_1016_j_engappai_2023_106345
crossref_primary_10_1016_j_infbeh_2022_101807
crossref_primary_10_3390_brainsci15010028
crossref_primary_10_3389_fnins_2019_00441
crossref_primary_10_1002_ejp_4737
crossref_primary_10_1038_s41598_024_68905_7
crossref_primary_10_1002_aur_2131
crossref_primary_10_1038_s41598_021_80995_1
crossref_primary_10_3390_app112110461
crossref_primary_10_1016_j_neuroimage_2019_06_059
crossref_primary_10_1016_j_neuroimage_2024_120848
crossref_primary_10_1038_s41598_024_76423_9
crossref_primary_10_1093_cercor_bhab425
crossref_primary_10_1016_j_clinph_2019_06_012
crossref_primary_10_1016_j_neuroimage_2024_120965
crossref_primary_10_1371_journal_pone_0098322
crossref_primary_10_3389_fnins_2020_577160
crossref_primary_10_1038_s41598_024_82696_x
crossref_primary_10_1038_s41598_019_40743_y
crossref_primary_10_1080_17470919_2023_2278199
crossref_primary_10_1007_s10548_021_00854_0
crossref_primary_10_1016_j_compbiomed_2024_109305
crossref_primary_10_3390_brainsci13040621
crossref_primary_10_1016_j_neuroimage_2020_117674
crossref_primary_10_1016_j_parkreldis_2021_02_005
crossref_primary_10_1016_j_bspc_2017_06_012
crossref_primary_10_1016_j_pscychresns_2021_111367
crossref_primary_10_1016_j_neuroimage_2020_117670
crossref_primary_10_3390_bdcc5030039
crossref_primary_10_1016_j_sleep_2025_106645
crossref_primary_10_3758_s13415_019_00759_3
crossref_primary_10_1016_j_neuroimage_2019_06_046
crossref_primary_10_1109_TNSRE_2025_3601445
crossref_primary_10_1109_ACCESS_2021_3125728
crossref_primary_10_3389_fnhum_2014_00156
crossref_primary_10_37819_hb_1_2068
crossref_primary_10_1038_s42003_023_05168_4
crossref_primary_10_1063_1_5049191
crossref_primary_10_1016_j_dcn_2023_101260
crossref_primary_10_1002_hbm_26719
crossref_primary_10_1016_j_neucom_2021_09_012
crossref_primary_10_1007_s12144_025_07338_5
crossref_primary_10_1109_TBME_2018_2889512
crossref_primary_10_3389_fnbot_2024_1336438
crossref_primary_10_1007_s11357_023_01041_8
crossref_primary_10_1016_j_biopsycho_2018_10_004
crossref_primary_10_1016_j_neurobiolaging_2024_04_001
crossref_primary_10_1016_j_neuroimage_2023_120426
crossref_primary_10_3389_fnins_2018_00097
crossref_primary_10_1098_rsos_190048
crossref_primary_10_1016_j_neuroimage_2024_120667
crossref_primary_10_3389_fpsyg_2022_823700
crossref_primary_10_1016_j_neuroimage_2019_05_026
crossref_primary_10_15446_ing_investig_v36n3_54037
crossref_primary_10_1016_j_neuroimage_2018_03_016
crossref_primary_10_1007_s10548_022_00917_w
crossref_primary_10_1080_1028415X_2021_1954292
crossref_primary_10_3389_fninf_2019_00055
crossref_primary_10_1038_s41598_021_87746_2
crossref_primary_10_3389_fnins_2023_1222472
crossref_primary_10_1109_TNSRE_2025_3555542
crossref_primary_10_1016_j_dcn_2023_101251
crossref_primary_10_3389_fnins_2024_1412527
crossref_primary_10_1038_s41598_019_49726_5
crossref_primary_10_1038_s41598_019_47372_5
crossref_primary_10_12688_f1000research_17613_2
crossref_primary_10_12688_f1000research_17613_1
crossref_primary_10_1152_jn_00163_2025
crossref_primary_10_1016_j_neuroimage_2024_120891
crossref_primary_10_1109_TNSRE_2020_3017167
crossref_primary_10_1016_j_neuropsychologia_2017_09_012
crossref_primary_10_1093_comjnl_bxaa175
crossref_primary_10_1016_j_medengphy_2012_08_017
crossref_primary_10_1016_j_ajp_2023_103654
crossref_primary_10_3390_app9245340
crossref_primary_10_3389_fnins_2017_00548
crossref_primary_10_3389_fphys_2020_615961
crossref_primary_10_1016_j_neuroimage_2018_03_035
crossref_primary_10_1016_j_ebr_2025_100809
crossref_primary_10_1016_j_ijpsycho_2020_09_019
crossref_primary_10_1109_JPROC_2015_2425807
crossref_primary_10_1016_j_compbiomed_2024_109225
crossref_primary_10_1016_j_cortex_2024_02_009
crossref_primary_10_1016_j_bbe_2021_06_007
crossref_primary_10_1088_1741_2552_adbebe
crossref_primary_10_1088_2057_1976_acaca2
crossref_primary_10_1061_JCEMD4_COENG_16651
crossref_primary_10_1002_hbm_26727
crossref_primary_10_3389_fnhum_2018_00366
crossref_primary_10_1038_s42003_021_02240_9
crossref_primary_10_3390_brainsci12020293
crossref_primary_10_3758_s13414_024_02916_4
crossref_primary_10_1007_s11633_024_1492_6
crossref_primary_10_1016_j_schres_2025_07_003
crossref_primary_10_3390_brainsci13121639
crossref_primary_10_1186_s41239_025_00554_w
crossref_primary_10_1109_TNSRE_2022_3154891
crossref_primary_10_1159_000542360
crossref_primary_10_1016_j_enbuild_2024_114165
crossref_primary_10_1080_0144929X_2021_1876763
crossref_primary_10_1016_j_neuroimage_2019_04_028
crossref_primary_10_3389_fnins_2024_1441799
crossref_primary_10_3390_biomedinformatics2010007
crossref_primary_10_1016_j_neuroimage_2021_118313
crossref_primary_10_1080_17588928_2019_1627303
crossref_primary_10_3390_brainsci15070714
crossref_primary_10_1152_jn_00253_2023
crossref_primary_10_1002_hbm_24851
crossref_primary_10_1016_j_procs_2016_08_253
crossref_primary_10_3389_fnhum_2018_00391
crossref_primary_10_3390_s22134747
crossref_primary_10_1016_j_bspc_2021_103292
crossref_primary_10_3389_fpsyg_2023_1171215
crossref_primary_10_1155_2022_2014001
crossref_primary_10_3389_fpsyt_2019_00719
crossref_primary_10_1108_EL_10_2018_0202
crossref_primary_10_1016_j_dcn_2022_101077
crossref_primary_10_3390_app12052647
crossref_primary_10_1088_1741_2552_ac42b6
crossref_primary_10_1007_s00221_018_5427_8
crossref_primary_10_1038_s41598_023_45512_6
crossref_primary_10_3389_fneur_2021_644874
crossref_primary_10_1016_j_jenvp_2024_102308
crossref_primary_10_1088_1741_2552_ad6a8c
crossref_primary_10_1002_dev_22249
crossref_primary_10_1007_s13246_018_0691_2
crossref_primary_10_1186_s40708_022_00167_3
crossref_primary_10_1016_j_jecp_2019_104758
crossref_primary_10_3390_s22197314
crossref_primary_10_1016_j_jneumeth_2015_01_030
crossref_primary_10_1044_2025_JSLHR_24_00836
crossref_primary_10_1016_j_neuropsychologia_2023_108589
crossref_primary_10_3389_fnins_2018_00513
crossref_primary_10_1177_10790632211024241
crossref_primary_10_3390_s20247040
crossref_primary_10_1016_j_bspc_2023_104927
crossref_primary_10_1038_s41598_022_17013_5
crossref_primary_10_1038_s42003_024_06439_4
crossref_primary_10_3390_app13042703
crossref_primary_10_1016_j_neuroimage_2019_02_070
crossref_primary_10_1097_MAO_0000000000004581
crossref_primary_10_1093_scan_nsaf036
crossref_primary_10_1007_s11571_016_9382_4
crossref_primary_10_3389_fnins_2022_801774
crossref_primary_10_3390_electronics14153106
crossref_primary_10_1155_2018_5081258
crossref_primary_10_1088_1741_2552_abd51f
crossref_primary_10_3389_fnhum_2016_00193
crossref_primary_10_1016_j_cortex_2022_11_015
crossref_primary_10_1155_2021_6613105
crossref_primary_10_1016_j_heliyon_2024_e27198
crossref_primary_10_1155_2015_720450
crossref_primary_10_3390_brainsci13060969
crossref_primary_10_1016_j_clinph_2018_06_002
crossref_primary_10_1080_0144929X_2025_2504514
crossref_primary_10_1016_j_bandl_2024_105437
crossref_primary_10_1016_j_nbd_2024_106643
crossref_primary_10_1111_ejn_13897
crossref_primary_10_1523_JNEUROSCI_2004_22_2023
crossref_primary_10_3390_nu17152425
crossref_primary_10_3390_s24186103
crossref_primary_10_1038_s41598_017_14474_x
crossref_primary_10_1080_1028415X_2020_1730614
crossref_primary_10_1088_1741_2552_aca8ce
crossref_primary_10_3389_fnins_2021_660449
crossref_primary_10_1016_j_neuroimage_2020_117266
crossref_primary_10_3389_fnsys_2020_00049
crossref_primary_10_1016_j_neucli_2016_07_002
crossref_primary_10_1152_jn_00388_2019
crossref_primary_10_1016_j_learninstruc_2023_101870
crossref_primary_10_1016_j_ergon_2021_103159
crossref_primary_10_1093_scan_nsaf059
crossref_primary_10_1109_TBME_2014_2300164
crossref_primary_10_1016_j_bspc_2022_103790
crossref_primary_10_1155_2024_9967369
crossref_primary_10_1038_s44184_023_00038_7
crossref_primary_10_3390_s23020928
crossref_primary_10_1523_JNEUROSCI_0564_22_2022
crossref_primary_10_1016_j_jobe_2024_111644
crossref_primary_10_1038_s42003_025_08601_y
crossref_primary_10_1109_TNSRE_2017_2678161
crossref_primary_10_1016_j_bspc_2021_103284
crossref_primary_10_1145_3427471
crossref_primary_10_3390_s21144885
crossref_primary_10_3389_fnhum_2018_00096
crossref_primary_10_1016_j_jneuroling_2021_101043
crossref_primary_10_1016_j_jneumeth_2018_06_014
crossref_primary_10_1016_j_neuroimage_2019_116054
crossref_primary_10_1017_S0305000920000501
crossref_primary_10_1080_10548408_2025_2505890
crossref_primary_10_1093_cercor_bhab471
crossref_primary_10_1111_psyp_12810
crossref_primary_10_1016_j_buildenv_2020_107223
crossref_primary_10_3389_fnsys_2020_00053
crossref_primary_10_1007_s13246_022_01135_1
crossref_primary_10_3390_e16126553
crossref_primary_10_1016_j_bpsc_2024_05_001
crossref_primary_10_1007_s12264_025_01375_7
crossref_primary_10_1371_journal_pcbi_1007065
crossref_primary_10_3389_fnhum_2022_852657
crossref_primary_10_3389_fnins_2021_566004
crossref_primary_10_1038_s41598_023_27528_0
crossref_primary_10_1016_j_dcn_2024_101493
crossref_primary_10_1016_j_bandl_2025_105610
crossref_primary_10_1155_2016_4562601
crossref_primary_10_1007_s10899_017_9693_3
crossref_primary_10_1007_s11760_021_01947_w
crossref_primary_10_1111_desc_12782
crossref_primary_10_1007_s40708_017_0074_6
crossref_primary_10_3389_fninf_2021_720229
crossref_primary_10_1016_j_ijhcs_2023_103066
crossref_primary_10_1080_23273798_2023_2295499
crossref_primary_10_1093_cercor_bhab086
crossref_primary_10_1016_j_clinph_2021_08_019
crossref_primary_10_1152_jn_00650_2016
crossref_primary_10_1016_j_foodres_2021_110873
crossref_primary_10_3389_fnins_2023_1267901
crossref_primary_10_1016_j_neuroimage_2019_116117
crossref_primary_10_1016_j_concog_2021_103210
crossref_primary_10_1111_mice_12515
crossref_primary_10_1186_s13229_021_00425_x
crossref_primary_10_1088_1741_2560_13_1_016018
crossref_primary_10_1016_j_dib_2019_104101
crossref_primary_10_1016_j_neures_2019_10_011
crossref_primary_10_1109_JAS_2020_1003450
crossref_primary_10_3389_fnagi_2021_680200
crossref_primary_10_3389_fnhum_2021_659410
crossref_primary_10_1109_JBHI_2019_2920381
crossref_primary_10_1038_s41598_024_57426_y
crossref_primary_10_3389_fnhum_2023_1251690
crossref_primary_10_1080_2326263X_2014_912881
crossref_primary_10_1016_j_jneumeth_2021_109209
crossref_primary_10_1371_journal_pone_0289508
crossref_primary_10_1016_j_bspc_2023_105074
crossref_primary_10_1016_j_neuroimage_2021_118160
crossref_primary_10_3390_brainsci10100712
crossref_primary_10_1093_cercor_bhae241
crossref_primary_10_1038_s41598_020_75861_5
crossref_primary_10_3389_fncom_2022_803384
crossref_primary_10_1016_j_jneumeth_2015_02_025
crossref_primary_10_7717_peerj_4380
crossref_primary_10_1016_j_clinph_2023_12_133
crossref_primary_10_1016_j_bandl_2018_09_005
crossref_primary_10_1080_17470919_2019_1675758
crossref_primary_10_1016_j_neuroimage_2019_116361
crossref_primary_10_1080_10447318_2024_2358461
crossref_primary_10_1002_brb3_70020
crossref_primary_10_1038_s41598_022_05810_x
crossref_primary_10_1088_1741_2552_ab7613
crossref_primary_10_1109_JPROC_2023_3286445
crossref_primary_10_1097_PR9_0000000000001251
crossref_primary_10_1016_j_neuroimage_2022_119305
crossref_primary_10_1088_1741_2552_aba87d
crossref_primary_10_1111_ejn_15774
crossref_primary_10_1073_pnas_2427088122
crossref_primary_10_1080_17470919_2023_2208878
crossref_primary_10_1016_j_jneumeth_2021_109460
crossref_primary_10_1162_jocn_a_00734
crossref_primary_10_3390_brainsci11101312
crossref_primary_10_1016_j_buildenv_2021_108134
crossref_primary_10_1016_j_jneumeth_2022_109501
crossref_primary_10_1093_schbul_sbaa083
crossref_primary_10_1093_cercor_bhad297
crossref_primary_10_1016_j_jadr_2025_100891
crossref_primary_10_1080_17470919_2024_2358558
crossref_primary_10_1016_j_jneumeth_2014_01_027
crossref_primary_10_1109_TNSRE_2014_2375879
crossref_primary_10_1111_psyp_70087
crossref_primary_10_3390_app9235078
crossref_primary_10_1016_j_psychres_2023_115256
crossref_primary_10_1002_hbm_23938
crossref_primary_10_1007_s10111_020_00653_w
crossref_primary_10_1073_pnas_2117000119
crossref_primary_10_1016_j_neucom_2020_04_144
crossref_primary_10_1109_ACCESS_2024_3360328
crossref_primary_10_1002_aur_2701
crossref_primary_10_1038_s42003_025_07805_6
crossref_primary_10_1093_cercor_bhac251
crossref_primary_10_1007_s11042_023_15653_x
crossref_primary_10_3389_fnbeh_2023_1285773
crossref_primary_10_1016_j_neuroimage_2022_118991
crossref_primary_10_3389_fnint_2020_00021
crossref_primary_10_1016_j_crmeth_2023_100482
crossref_primary_10_1016_j_neuroimage_2022_118994
crossref_primary_10_1162_neco_a_01415
crossref_primary_10_3390_sym13122337
crossref_primary_10_1109_ACCESS_2013_2260791
crossref_primary_10_1016_j_neunet_2020_11_002
crossref_primary_10_1080_1028415X_2017_1347998
crossref_primary_10_1016_j_dcn_2022_101140
crossref_primary_10_1016_j_eswa_2022_118621
crossref_primary_10_1038_s41598_023_37524_z
crossref_primary_10_1109_ACCESS_2020_3046993
crossref_primary_10_3389_fnins_2020_575521
crossref_primary_10_3758_s13414_023_02802_5
crossref_primary_10_3389_fnins_2022_950539
crossref_primary_10_1038_s41598_024_76046_0
crossref_primary_10_1016_j_bspc_2024_106022
crossref_primary_10_1016_j_xpro_2025_103682
crossref_primary_10_1016_j_cortex_2017_05_003
crossref_primary_10_1016_j_jad_2019_05_070
crossref_primary_10_1088_1741_2552_ac01a0
crossref_primary_10_1111_jsr_12679
crossref_primary_10_1016_j_bspc_2022_103942
crossref_primary_10_3389_fphys_2022_817239
crossref_primary_10_1080_10447318_2022_2108586
crossref_primary_10_1016_j_isci_2025_113109
crossref_primary_10_1038_s41398_020_01160_2
crossref_primary_10_1016_j_cognition_2021_104600
crossref_primary_10_3389_fnhum_2023_1126938
crossref_primary_10_1016_j_ijpsycho_2021_02_016
crossref_primary_10_1093_cercor_bhad360
crossref_primary_10_28978_nesciences_328851
crossref_primary_10_1016_j_neuroimage_2022_119624
crossref_primary_10_1038_s41598_024_61316_8
crossref_primary_10_1097_WNR_0000000000001640
crossref_primary_10_1016_j_neuroimage_2021_118578
crossref_primary_10_3389_fnhum_2023_1070404
crossref_primary_10_1016_j_ijpsycho_2018_01_003
crossref_primary_10_1088_1741_2560_11_3_036008
crossref_primary_10_1113_JP286639
crossref_primary_10_1080_17470919_2019_1674686
crossref_primary_10_1371_journal_pone_0210862
crossref_primary_10_1038_srep15890
crossref_primary_10_1111_epi_17897
crossref_primary_10_1523_JNEUROSCI_0861_21_2022
crossref_primary_10_2478_msr_2019_0016
crossref_primary_10_1016_j_dib_2022_108663
crossref_primary_10_1093_milmed_usaf224
crossref_primary_10_1088_1741_2552_ad788e
crossref_primary_10_1152_jn_00003_2019
crossref_primary_10_1016_j_neunet_2017_01_005
crossref_primary_10_1016_j_asoc_2020_107028
crossref_primary_10_1016_j_biopsycho_2024_108775
crossref_primary_10_1016_j_bspc_2024_106613
crossref_primary_10_3390_s130506272
crossref_primary_10_1016_j_jneumeth_2021_109282
crossref_primary_10_1080_0954898X_2023_2263083
crossref_primary_10_1016_j_neucli_2017_10_059
crossref_primary_10_1002_aur_2992
crossref_primary_10_1038_s44222_024_00185_2
crossref_primary_10_3390_ijerph19074413
crossref_primary_10_3390_a17110477
crossref_primary_10_1016_j_jneumeth_2013_04_017
crossref_primary_10_1016_j_neuroimage_2023_119896
crossref_primary_10_1109_TCDS_2023_3338460
crossref_primary_10_1038_s41597_022_01524_x
crossref_primary_10_1038_s44220_025_00410_w
crossref_primary_10_1111_ejn_14398
crossref_primary_10_1162_nol_a_00002
crossref_primary_10_1111_ejn_15120
crossref_primary_10_1002_pne2_70001
crossref_primary_10_1155_2018_1350692
crossref_primary_10_1088_1741_2552_aacfdf
crossref_primary_10_1088_1741_2552_ac1037
crossref_primary_10_1088_1741_2552_ad5c04
crossref_primary_10_1371_journal_pbio_3001713
crossref_primary_10_12688_f1000research_17029_1
crossref_primary_10_1038_s41386_023_01586_4
crossref_primary_10_1016_j_compbiomed_2024_108727
crossref_primary_10_3390_brainsci14030267
crossref_primary_10_7554_eLife_85980
crossref_primary_10_3389_fnbot_2021_773477
crossref_primary_10_1097_j_pain_0000000000002469
crossref_primary_10_1007_s12559_014_9282_z
crossref_primary_10_1088_1741_2552_acc2e9
crossref_primary_10_1088_1741_2560_11_3_035013
crossref_primary_10_1007_s11571_022_09794_2
crossref_primary_10_1080_20445911_2019_1642898
crossref_primary_10_1007_s11571_017_9447_z
crossref_primary_10_1016_j_cortex_2023_10_005
crossref_primary_10_1016_j_neuri_2023_100143
crossref_primary_10_1016_j_neuroimage_2025_121032
crossref_primary_10_1109_TBCAS_2025_3573027
crossref_primary_10_1016_j_artmed_2014_12_006
crossref_primary_10_3390_brainsci14030251
crossref_primary_10_1111_psyp_12290
crossref_primary_10_1016_j_ijpsycho_2018_07_002
crossref_primary_10_1177_13670069241285332
crossref_primary_10_1080_0361073X_2018_1449585
crossref_primary_10_1016_j_heliyon_2024_e38681
crossref_primary_10_1111_psyp_13557
crossref_primary_10_1016_j_nicl_2021_102746
crossref_primary_10_1109_TNNLS_2022_3174528
crossref_primary_10_1088_1741_2552_ac123f
crossref_primary_10_3390_foods9121856
crossref_primary_10_3390_brainsci9120355
crossref_primary_10_3390_s23157006
crossref_primary_10_1016_j_dcn_2021_101024
crossref_primary_10_1016_j_dcn_2023_101302
crossref_primary_10_1162_imag_a_00566
crossref_primary_10_1080_17455030_2023_2187237
crossref_primary_10_1007_s00221_021_06128_2
crossref_primary_10_1002_hbm_26550
crossref_primary_10_1093_cercor_bhad079
crossref_primary_10_1016_j_apacoust_2025_110717
crossref_primary_10_1038_s41598_020_61909_z
crossref_primary_10_1111_psyp_13566
crossref_primary_10_1080_01691864_2024_2369794
crossref_primary_10_1111_psyp_13321
crossref_primary_10_1038_s41598_024_68398_4
crossref_primary_10_1038_sdata_2018_291
crossref_primary_10_3389_fpsyg_2020_00760
crossref_primary_10_1002_hbm_70267
crossref_primary_10_1109_JSEN_2019_2906572
crossref_primary_10_3390_app11010015
crossref_primary_10_1093_cercor_bhaf025
crossref_primary_10_1007_s00221_017_4999_z
crossref_primary_10_1093_cercor_bhad089
crossref_primary_10_1093_scan_nsaa071
crossref_primary_10_1016_j_neuroimage_2022_119586
crossref_primary_10_1523_JNEUROSCI_1849_22_2023
crossref_primary_10_1016_j_jneumeth_2020_108961
crossref_primary_10_1016_j_bandc_2019_103619
crossref_primary_10_1007_s11357_023_01022_x
crossref_primary_10_3390_s16020241
crossref_primary_10_1002_hbm_25129
crossref_primary_10_1016_j_cortex_2019_12_027
crossref_primary_10_3390_app11010164
crossref_primary_10_1016_j_brainresbull_2024_111082
crossref_primary_10_1016_j_clinph_2021_06_034
crossref_primary_10_1109_TAFFC_2021_3137857
crossref_primary_10_1038_s41598_020_61119_7
crossref_primary_10_3389_fnhum_2016_00669
crossref_primary_10_3390_app12010389
crossref_primary_10_1038_s41598_024_55366_1
crossref_primary_10_1016_j_neuroimage_2022_119218
crossref_primary_10_1016_j_neuroimage_2020_116934
crossref_primary_10_1016_j_clinph_2021_05_011
crossref_primary_10_1007_s12311_018_0923_8
crossref_primary_10_1073_pnas_2502135122
crossref_primary_10_1162_jocn_a_02169
crossref_primary_10_3389_fpsyg_2021_721672
crossref_primary_10_1007_s11042_022_12887_z
crossref_primary_10_1016_j_ijpsycho_2016_11_005
crossref_primary_10_1038_s41380_023_02337_z
crossref_primary_10_1016_j_neuroimage_2024_120915
crossref_primary_10_1186_s40708_022_00173_5
crossref_primary_10_1016_j_isci_2025_112429
Cites_doi 10.1016/j.clinph.2009.01.015
10.1097/WNP.0b013e3180556926
10.1016/S0987-7053(00)00055-1
10.1016/j.neuroimage.2009.10.010
10.1016/j.neuroimage.2010.03.022
10.1016/S1388-2457(03)00093-2
10.1007/BF02512476
10.1016/j.clinph.2006.10.019
10.1016/0013-4694(72)90106-X
10.1007/s10439-008-9442-y
10.1016/j.clinph.2004.11.001
10.1109/TBME.2003.816076
10.1016/S0047-259X(03)00096-4
10.1016/j.jneumeth.2007.09.022
10.1016/j.neuroimage.2008.04.246
10.1016/j.clinph.2003.12.015
10.1016/j.compbiomed.2007.12.001
10.1016/S0167-8760(00)00088-X
10.1016/j.clinph.2005.12.013
ContentType Journal Article
Copyright Winkler et al; licensee BioMed Central Ltd. 2011
2011 Winkler et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2011 Winkler et al; licensee BioMed Central Ltd. 2011 Winkler et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Winkler et al; licensee BioMed Central Ltd. 2011
– notice: 2011 Winkler et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2011 Winkler et al; licensee BioMed Central Ltd. 2011 Winkler et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7TK
7X7
7XB
88E
88G
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
K9.
M0S
M1P
M2M
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
DOA
DOI 10.1186/1744-9081-7-30
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Neurosciences Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Psychology Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Animal Behavior Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Psychology
EISSN 1744-9081
EndPage 30
ExternalDocumentID oai_doaj_org_article_c3552bf403e743108d81ca6f360068f5
PMC3175453
2504066991
21810266
10_1186_1744_9081_7_30
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5GY
5VS
6J9
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABIVO
ABUWG
ACGFO
ACGFS
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
IPY
ISR
ITC
KQ8
M1P
M2M
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7TK
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c689t-3d10f1f10f322cb78283c1cba8a1afca08494b801b465c941726b2881c456eaf3
IEDL.DBID RSV
ISICitedReferencesCount 586
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000294944600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1744-9081
IngestDate Tue Oct 14 18:55:40 EDT 2025
Tue Nov 04 01:46:43 EST 2025
Fri Sep 05 12:02:52 EDT 2025
Tue Oct 07 05:24:26 EDT 2025
Thu Apr 03 06:51:40 EDT 2025
Sat Nov 29 03:26:06 EST 2025
Tue Nov 18 22:16:43 EST 2025
Sat Sep 06 07:27:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Source Component
Common Spatial Pattern
Motor Imagery
Principal Component Analysis Component
Independent Component Analysis
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c689t-3d10f1f10f322cb78283c1cba8a1afca08494b801b465c941726b2881c456eaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://link.springer.com/10.1186/1744-9081-7-30
PMID 21810266
PQID 902301062
PQPubID 55045
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_c3552bf403e743108d81ca6f360068f5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3175453
proquest_miscellaneous_892947567
proquest_journals_902301062
pubmed_primary_21810266
crossref_citationtrail_10_1186_1744_9081_7_30
crossref_primary_10_1186_1744_9081_7_30
springer_journals_10_1186_1744_9081_7_30
PublicationCentury 2000
PublicationDate 2011-08-02
PublicationDateYYYYMMDD 2011-08-02
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-02
  day: 02
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Behavioral and brain functions
PublicationTitleAbbrev Behav Brain Funct
PublicationTitleAlternate Behav Brain Funct
PublicationYear 2011
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References 10.1186/1744-9081-7-30-B10
10.1186/1744-9081-7-30-B21
-
10.1186/1744-9081-7-30-B6
10.1186/1744-9081-7-30-B13
10.1186/1744-9081-7-30-B35
10.1186/1744-9081-7-30-B5
10.1186/1744-9081-7-30-B12
10.1186/1744-9081-7-30-B4
10.1186/1744-9081-7-30-B11
10.1186/1744-9081-7-30-B33
10.1186/1744-9081-7-30-B3
10.1186/1744-9081-7-30-B2
10.1186/1744-9081-7-30-B17
10.1186/1744-9081-7-30-B27
10.1186/1744-9081-7-30-B26
10.1186/1744-9081-7-30-B19
10.1186/1744-9081-7-30-B8
20877434 - Front Neurosci. 2010 Sep 07;4:null
12948787 - Clin Neurophysiol. 2003 Sep;114(9):1580-93
15066548 - Clin Neurophysiol. 2004 May;115(5):1220-32
20303409 - Neuroimage. 2010 Jul 15;51(4):1303-9
17271830 - Conf Proc IEEE Eng Med Biol Soc. 2004;2:925-8
8182960 - Med Biol Eng Comput. 1994 Jan;32(1):35-42
19833218 - Neuroimage. 2010 Feb 1;49(3):2416-32
17545826 - J Clin Neurophysiol. 2007 Jun;24(3):232-43
19964963 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2470-3
18583157 - Neuroimage. 2008 Aug 15;42(2):726-38
19345611 - Clin Neurophysiol. 2009 May;120(5):868-77
16646851 - Stat Appl Genet Mol Biol. 2005;4:Article32
18288259 - Comput Intell Neurosci. 2007;:82069
15792897 - Clin Neurophysiol. 2005 Apr;116(4):878-85
18222418 - Comput Biol Med. 2008 Mar;38(3):348-60
16458594 - Clin Neurophysiol. 2006 Apr;117(4):912-27
20600976 - Neuroimage. 2011 May 15;56(2):814-25
20636297 - Psychophysiology. 2011 Feb;48(2):229-40
18228142 - Ann Biomed Eng. 2008 Mar;36(3):467-75
17169606 - Clin Neurophysiol. 2007 Mar;118(3):480-94
10740792 - Neurophysiol Clin. 2000 Feb;30(1):5-19
12943278 - IEEE Trans Biomed Eng. 2003 Sep;50(9):1108-16
15032997 - Psychophysiology. 2004 Mar;41(2):313-25
18031824 - J Neurosci Methods. 2008 Jan 15;167(1):82-90
10731767 - Psychophysiology. 2000 Mar;37(2):163-78
4121520 - Electroencephalogr Clin Neurophysiol. 1972 Jun;32(6):701-5
References_xml – ident: 10.1186/1744-9081-7-30-B19
  doi: 10.1016/j.clinph.2009.01.015
– ident: -
  doi: 10.1097/WNP.0b013e3180556926
– ident: 10.1186/1744-9081-7-30-B6
  doi: 10.1016/S0987-7053(00)00055-1
– ident: 10.1186/1744-9081-7-30-B12
  doi: 10.1016/j.neuroimage.2009.10.010
– ident: 10.1186/1744-9081-7-30-B33
  doi: 10.1016/j.neuroimage.2010.03.022
– ident: 10.1186/1744-9081-7-30-B4
  doi: 10.1016/S1388-2457(03)00093-2
– ident: 10.1186/1744-9081-7-30-B26
  doi: 10.1007/BF02512476
– ident: 10.1186/1744-9081-7-30-B5
  doi: 10.1016/j.clinph.2006.10.019
– ident: 10.1186/1744-9081-7-30-B35
  doi: 10.1016/0013-4694(72)90106-X
– ident: 10.1186/1744-9081-7-30-B11
  doi: 10.1007/s10439-008-9442-y
– ident: 10.1186/1744-9081-7-30-B3
  doi: 10.1016/j.clinph.2004.11.001
– ident: 10.1186/1744-9081-7-30-B17
  doi: 10.1109/TBME.2003.816076
– ident: -
  doi: 10.1016/S0047-259X(03)00096-4
– ident: 10.1186/1744-9081-7-30-B2
  doi: 10.1016/j.jneumeth.2007.09.022
– ident: 10.1186/1744-9081-7-30-B27
  doi: 10.1016/j.neuroimage.2008.04.246
– ident: 10.1186/1744-9081-7-30-B13
  doi: 10.1016/j.clinph.2003.12.015
– ident: 10.1186/1744-9081-7-30-B10
  doi: 10.1016/j.compbiomed.2007.12.001
– ident: 10.1186/1744-9081-7-30-B8
  doi: 10.1016/S0167-8760(00)00088-X
– ident: 10.1186/1744-9081-7-30-B21
  doi: 10.1016/j.clinph.2005.12.013
– reference: 17169606 - Clin Neurophysiol. 2007 Mar;118(3):480-94
– reference: 12943278 - IEEE Trans Biomed Eng. 2003 Sep;50(9):1108-16
– reference: 20600976 - Neuroimage. 2011 May 15;56(2):814-25
– reference: 18583157 - Neuroimage. 2008 Aug 15;42(2):726-38
– reference: 19345611 - Clin Neurophysiol. 2009 May;120(5):868-77
– reference: 17545826 - J Clin Neurophysiol. 2007 Jun;24(3):232-43
– reference: 4121520 - Electroencephalogr Clin Neurophysiol. 1972 Jun;32(6):701-5
– reference: 18288259 - Comput Intell Neurosci. 2007;:82069
– reference: 10740792 - Neurophysiol Clin. 2000 Feb;30(1):5-19
– reference: 19964963 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2470-3
– reference: 17271830 - Conf Proc IEEE Eng Med Biol Soc. 2004;2:925-8
– reference: 18228142 - Ann Biomed Eng. 2008 Mar;36(3):467-75
– reference: 16458594 - Clin Neurophysiol. 2006 Apr;117(4):912-27
– reference: 15066548 - Clin Neurophysiol. 2004 May;115(5):1220-32
– reference: 20636297 - Psychophysiology. 2011 Feb;48(2):229-40
– reference: 8182960 - Med Biol Eng Comput. 1994 Jan;32(1):35-42
– reference: 16646851 - Stat Appl Genet Mol Biol. 2005;4:Article32
– reference: 18222418 - Comput Biol Med. 2008 Mar;38(3):348-60
– reference: 12948787 - Clin Neurophysiol. 2003 Sep;114(9):1580-93
– reference: 10731767 - Psychophysiology. 2000 Mar;37(2):163-78
– reference: 18031824 - J Neurosci Methods. 2008 Jan 15;167(1):82-90
– reference: 15792897 - Clin Neurophysiol. 2005 Apr;116(4):878-85
– reference: 20303409 - Neuroimage. 2010 Jul 15;51(4):1303-9
– reference: 15032997 - Psychophysiology. 2004 Mar;41(2):313-25
– reference: 20877434 - Front Neurosci. 2010 Sep 07;4:null
– reference: 19833218 - Neuroimage. 2010 Feb 1;49(3):2416-32
SSID ssj0038422
Score 2.4973297
Snippet Background Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for...
Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for...
Abstract Background: Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis...
Abstract Background Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 30
SubjectTerms Adult
Aged
Behavioral Therapy
Biomedical and Life Sciences
Biomedicine
Electroencephalography - classification
Electroencephalography - methods
Evoked Potentials, Auditory - physiology
Humans
Male
Methodology
Methods
Middle Aged
Neurology
Neurosciences
Psychiatry
Reaction Time - physiology
Signal Processing, Computer-Assisted - instrumentation
Spectrum allocation
Studies
User-Computer Interface
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCqFeUNnyCAXkAwIuVuPE6zjHpdoCElSIlyou1tixYSWarbq7SP33jJ0HLBRx4ZJDbCWjmbHnm3jyDcBjjYWtEcl5G6y5nGLg6H3g3pN7YS1Qpf4pn15XJyf69LR--0urr1gT1tEDd4o7dBQQCxtkXvoY7HLdaOFQhVLFvxtCYi8l1DMkU90eXGqZzg8IbkteU9Tr6RqFVofjPU4C5lvhKLH2XwU1_6yY_O3YNEWj4z242cNINuvEvwXXfDuB_VlLKfTZJXvCUmFn-mI-gRtv-vPzCeyO-93lPnyebWh2ZGxlqTVmLBpKdmLLkJ4cf3rY0FteHc143DeWbay6YARzx2H2zp8tyVnZomXz-Qv2fvElEjLfho_H8w9HL3nfaoE7pes1WUrkQQS60AJ3lmCDLp1wFjUKDA5zLWtpKZpZqaaulgR7lC00mYIAmMdQ3oGdlqS4B4wSKh0atBQSLWGxCkUjsKgaUQRKt5syAz5o3Liehzy2w_hmUj6ilYkWMtFCpjJlnsHTcf55x8Dx15nPowHHWZE5O90gfzK9P5l_-VMGB4P5Tb-cV_QKytQoeS4yYOMorcN4uIKtX25WRhPOlNVUVRnc7XxllCOiKEp1VQbVlhdtCbo90i6-JqrviO7klHT2bPC3n0JdrYT7_0MJB7A7fDvPiwews77Y-Idw3X1fL1YXj9JS-wGjeSgT
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFqFeeGyBhgLyAQGXqHHidZwT2lZbQIJVVR6quFiOE5eVaNLuA6n_nhmvE7RQuHDZQ2xlJ5nxzDf25BuA58qkZWEMGm9liliMjItNXbu4rtG8TMGN9P1TvrzPp1N1eloch9qcRSir7Hyid9RVa2mPfL8gsIz5S_r64jKmplF0uBo6aNyELSIqEwPYOphMj086V5wpkaaBqZEruY_oW8QFBsEYZUs2IpEn7L8OZf5ZLPnbiakPREd3__MR7sGdgEDZeG0y9-FG3QxhZ9xg9n1-xV4wXxPqN9uHcPtDOHofwnbvKq924Ot4hbOJ7JX5rppUb-RVzFrn70zfS6zwX94djmNyOW1DBRsMEXI_zE7q8xbtnM0aNpm8YR9nZ8Tl_AA-H00-Hb6NQ5eG2EpVLFHJPHHc4Q_6Blsi4lCZ5bY0ynDjrEmUKESJgbAUcmQLgYhJlqlS3CJ2q43LHsKgQSl2gWEuplxlSoymJcK43PCKmzSveOowU6-yCOJOY9oGCnPqpPFd-1RGSU0a1qRhnessieBlP_9iTd7x15kHZAD9LCLd9hfa-ZkOa1hbxGZp6USS1YS7ElXhQxjpMkkf2rhRBHud3nXwBAvdKz0C1o_iEqZzGdPU7WqhFUJUkY9kHsGjta31chAAwyxZRpBvWOGGoJsjzeybZwknYChG-M5edfb6S6jrX8Ljf8q_B9vdfnqSPoHBcr6qn8It-2M5W8yfhZX3E6zeNeU
  priority: 102
  providerName: ProQuest
Title Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals
URI https://link.springer.com/article/10.1186/1744-9081-7-30
https://www.ncbi.nlm.nih.gov/pubmed/21810266
https://www.proquest.com/docview/902301062
https://www.proquest.com/docview/892947567
https://pubmed.ncbi.nlm.nih.gov/PMC3175453
https://doaj.org/article/c3552bf403e743108d81ca6f360068f5
Volume 7
WOSCitedRecordID wos000294944600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1744-9081
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038422
  issn: 1744-9081
  databaseCode: RBZ
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1744-9081
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038422
  issn: 1744-9081
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1744-9081
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038422
  issn: 1744-9081
  databaseCode: M~E
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1744-9081
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038422
  issn: 1744-9081
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1744-9081
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038422
  issn: 1744-9081
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1744-9081
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038422
  issn: 1744-9081
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1744-9081
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038422
  issn: 1744-9081
  databaseCode: M2M
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1744-9081
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038422
  issn: 1744-9081
  databaseCode: RSV
  dateStart: 20051201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NDaG98NEBC4PKDwh4iUgcx3Eeu6mDSbSqOpgKL5bj2KMSS6Z-IO2_5-wmQWVDghc_2JfkYt_5fmefzwCvhaJFrhQKb6nykKXKhsoYGxqD4qXyWHF_f8rFp2w8FrNZPtmBqD0L46Pd2y1JP1N7tRb8PUJnFuZowUJ8MTrpe2jqhFPF6flFO_cmglHapGa8_cyW6fEZ-u-ClbejI__YIvWW5_TR__P8GB42KJMMNmLxBHZM1YODQYUe9tUNeUN83KdfUO_Bg1Gzvd6D_W46vDmAb4M1UruErsTfnOliivwwktr6N7szEWv8ytnJIHTTSl25oAyCKLhrJlNzVaMsk3lFhsMP5Hx-6fI1P4Uvp8PPJx_D5iaGUHORr3Ag48jGFgvUf10gqhCJjnWhhIqV1SoSLGcFGruC8VTnDFERL6gQsUZ8ZpRNnsFuhVwcAkF_S9hSFWgxC4RqmYrLWNGsjKlFb7xMAgjbQZK6SVPubsv4Ib27Irh0nSpdp8pMJlEAbzv6602Cjr9SHrsx76hcYm1fUS8uZaOnUiP-ooVlUWIctopEiT-huE24O0xj0wCOWomRjbYv8RPoyKFvTQMgXSuqqdt7UZWp10spEIayLOVZAM834tXx4UAWesI8gGxL8LYY3W6p5t99JnAH_liKffauFb_fTN3dCS_-nfQI9tsF9Ii-hN3VYm1ewX39czVfLvpwL5tlvhR92DsejifTvl_QwHJER1g3ORtNvva9fv4C3rsvXQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgqAXHlseoTx84HWJmjjZxDkgtMCWVt2uELRoxcU4jl1WoknZB2h_FP-RGW8StFC49cAlh7WVTLzfzHwTj2cAHgnF80wpBG-hMj_uKusrY6xvDMJLZaFKXP-UD4N0OBSjUfZ2DX40Z2EorbKxic5QF5Wmb-TbGZFljF_4i9OvPjWNos3VpoPGEhX7ZvEdI7bp873X-Pc-5nynf_hq16-bCvg6EdkMZQoDG1q8IJR1jg5SRDrUuRIqVFarQMRZnKPdzuOkq7MYHXyScyFCjVTDKBvhfS_ARTTjKWWQpaM2votEzHldFzIUyTZy_djP0OX6uBLBit9z7QHO4rR_pmb-tj_r3N7Otf9swa7D1Zpfs95SIW7Amik7sNkr1aw6WbAnzGW8uq2EDlw-qBMLOrDROoLFJnzszXE2lbJlrmcoZVM5ALPKujvTaZA5PgXl98mgViWlozDk_-0we2dOKtRiNi5Zv_-GvR8fU6Xqm3B0Lm9_C9ZLlOIOMIw0hS1UjlwhR5KaqrAIFU-LkNtUiCLywG8QInVdoJ36hHyRLlATiSRESUKUTGUUePC0nX-6LE3y15kvCXDtLCop7n6oJseytlBSI_PkuY2DyBCrDESBL6ESGyV0jMh2PdhqcCZrOzeVLcg8YO0oGijadVKlqeZTKZCAx2k3ST24vcR2KwfRywAZogfpCupXBF0dKcefXQ10or1xF9fsWaMfv4Q6exHu_lP-h3Bl9_BgIAd7w_0t2Gh2DgJ-D9Znk7m5D5f0t9l4OnngdJ7Bp_PWmZ-kn5Bo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VBVW98NhCCeXhAwIuUfNwHEfispRdqCirikJVcbEcxy4r0aTaB1L_PTPeJGhpkZC45BBP4ok9nvkmHs8AvJA6KQutUXgrXYQ80y7U1rrQWhQvXcRa-Popp0f5ZCLPzorjDXjTnYXx0e7dluTqTANlaaoX-5eVWy1xKfYRRvOwQGsWYifosN_iVDCIfPWT004Pp5InSZum8foza2bIZ-u_CWJej5T8Y7vUW6Hx3f_j_x7cadEnG67E5T5s2HoAO8MaPe-LK_aS-XhQ_6N9AFuf2m33AWz3avJqB74Nl0hNiV6Zr6hJsUZ-elnj_JvprMQSezk8GIakbpqagjUYouO-mX22Fw3KOJvWbDR6z06m55TH-QF8HY--HHwI2woNoRGyWOAEx5GLHV5QL5gS0YZMTWxKLXWsndGR5AUv0QiWXGSm4IiWRJlIGRvEbVa79CFs1sjFI2Doh0lX6RItaYkQLtdxFeskr-LEoZdepQGE3YQp06YvpyoaP5R3Y6RQNKiKBlXlKo0CeNXTX64Sd_yV8i3Nf09FCbf9jWZ2rtr1qwzisqR0PEotYa5IVvgRWrhU0CEblwWw10mParXAHLtABw997iQA1rfi8qU9GV3bZjlXEuEpzzORB7C7ErWeDwJf6CGLAPI1IVxjdL2lnn73GcIJFPIMx-x1J4q_mbp5EB7_O-lz2Dp-N1ZHh5OPe7Dd_WOPkiewuZgt7VO4bX4upvPZM78cfwEPwDQo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Classification+of+Artifactual+ICA-Components+for+Artifact+Removal+in+EEG+Signals&rft.jtitle=Behavioral+and+brain+functions&rft.au=Winkler%2C+Irene&rft.au=Haufe%2C+Stefan&rft.au=Tangermann%2C+Michael&rft.date=2011-08-02&rft.pub=BioMed+Central&rft.eissn=1744-9081&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1186%2F1744-9081-7-30&rft.externalDocID=10_1186_1744_9081_7_30
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-9081&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-9081&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-9081&client=summon