Global patterns of freshwater species diversity, threat and endemism
AIM: Global‐scale studies are required to identify broad‐scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad‐scale patterns of...
Gespeichert in:
| Veröffentlicht in: | Global ecology and biogeography Jg. 23; H. 1; S. 40 - 51 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Blackwell Publishing Ltd
01.01.2014
John Wiley & Sons Ltd Blackwell Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 1466-822X, 1466-8238, 1466-822X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | AIM: Global‐scale studies are required to identify broad‐scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad‐scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. LOCATION: Global. METHODS: We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°. RESULTS: We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. MAIN CONCLUSIONS: We demonstrate that broad‐scale patterns of species richness, threatened‐species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water. |
|---|---|
| AbstractList | AIM: Global‐scale studies are required to identify broad‐scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad‐scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. LOCATION: Global. METHODS: We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°. RESULTS: We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. MAIN CONCLUSIONS: We demonstrate that broad‐scale patterns of species richness, threatened‐species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water. Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species.AIMGlobal-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species.Global.LOCATIONGlobal.We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°.METHODSWe compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°.We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts.RESULTSWe showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts.We demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water.MAIN CONCLUSIONSWe demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water. Aim Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. Location Global. Methods We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°. Results We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. Main conclusions We demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water. [PUBLICATION ABSTRACT] Aim Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. Location Global. Methods We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1 degree . Results We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. Main conclusions We demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water. Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. Global. We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°. We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. We demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water. Aim Global‐scale studies are required to identify broad‐scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad‐scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. Location Global. Methods We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°. Results We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. Main conclusions We demonstrate that broad‐scale patterns of species richness, threatened‐species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water. |
| Author | Whitton, Felix Richman, Nadia I. Collen, Ben Pollock, Caroline Soulsby, Anne-Marie Baillie, Jonathan E. M. Dyer, Ellie E. Böhm, Monika Darwall, William R. T. Cumberlidge, Neil |
| Author_xml | – sequence: 1 fullname: Collen, Ben – sequence: 2 fullname: Whitton, Felix – sequence: 3 fullname: Dyer, Ellie E – sequence: 4 fullname: Baillie, Jonathan E. M – sequence: 5 fullname: Cumberlidge, Neil – sequence: 6 fullname: Darwall, William R. T – sequence: 7 fullname: Pollock, Caroline – sequence: 8 fullname: Richman, Nadia I – sequence: 9 fullname: Soulsby, Anne‐Marie – sequence: 10 fullname: Böhm, Monika |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28079504$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/26430385$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl9v0zAUxSM0xLbCAx8AiISQQKKb_9t5QYIxCtIGQmOMN8tx7NYljYvtbvTb45K2gwmk-cWJ7--cXN-c_WKn850piocQHMC8DsemPoAIVOxOsQcJY0OBsNjZPqNvu8V-jFMAACWU3St2ESMYYEH3irej1teqLecqJRO6WHpb2mDi5Erl9zLOjXYmlo27NCG6tHxZpkkwKpWqa0rTNWbm4ux-cdeqNpoH631QnL87_nL0fnjyafTh6PXJUDNRsSGtkK0EUjVj2BqloaIWA11jq5uaaqQFQLzJZ7zWFSWWQkoJIBpiArnhCg-KV73vfFHPTKNNl4Jq5Ty4mQpL6ZWTf1c6N5FjfykJ5ZXIXx0Uz9cGwf9YmJhkbl-btlWd8YsoYZUXgpzcAhW04gAheguUMIFpFvCMPr2BTv0idHloK4owiBklmXr85z23F9z8tgw8WwMqatXaoDrt4jUnAK8oWBkd9pwOPsZgrNQuqeT8ajyulRDIVYBkDpD8HaCseHFDsTH9F7t2v3KtWf4flKPjNxvFo14xjcmH634JwITgVb_Dvu5iMj-3dRW-S8Yxp_Li40h-RWfiszg9lReZf9LzVnmpxiHP4PwMAUhy1AHJucG_AGUY9JM |
| CODEN | GEBIFS |
| CitedBy_id | crossref_primary_10_1016_j_scitotenv_2016_01_199 crossref_primary_10_1093_zoolinnean_zlae117 crossref_primary_10_1139_cjfas_2019_0105 crossref_primary_10_3389_frwa_2021_662765 crossref_primary_10_1038_s41598_020_65883_4 crossref_primary_10_15446_caldasia_v44n1_84798 crossref_primary_10_1016_j_scitotenv_2019_134364 crossref_primary_10_1111_ecog_03711 crossref_primary_10_1098_rsos_250472 crossref_primary_10_1016_j_biocon_2018_05_019 crossref_primary_10_2112_JCOASTRES_D_19_00081_1 crossref_primary_10_1007_s10980_025_02148_3 crossref_primary_10_1016_j_scitotenv_2017_02_031 crossref_primary_10_1111_ddi_13808 crossref_primary_10_1002_wat2_1142 crossref_primary_10_1111_eva_13387 crossref_primary_10_1007_s10750_023_05440_y crossref_primary_10_1016_j_ecolind_2019_105772 crossref_primary_10_1111_gcb_14753 crossref_primary_10_1016_j_gloenvcha_2024_102949 crossref_primary_10_1093_jcbiol_ruad059 crossref_primary_10_1007_s11160_019_09576_w crossref_primary_10_1061__ASCE_WR_1943_5452_0001212 crossref_primary_10_1002_ece3_10970 crossref_primary_10_7717_peerj_8060 crossref_primary_10_1038_s41562_020_01039_8 crossref_primary_10_1002_aqc_3058 crossref_primary_10_3389_fmars_2022_1077997 crossref_primary_10_1139_er_2017_0024 crossref_primary_10_1016_j_scitotenv_2018_04_056 crossref_primary_10_1186_s13717_024_00492_x crossref_primary_10_1016_j_fishres_2015_01_004 crossref_primary_10_1111_fwb_12631 crossref_primary_10_1007_s10452_021_09880_3 crossref_primary_10_1093_conphys_coz092 crossref_primary_10_1111_jbi_12480 crossref_primary_10_3389_fenvs_2022_1022776 crossref_primary_10_1007_s10750_016_2743_5 crossref_primary_10_1177_1940082918779069 crossref_primary_10_1111_gcb_16723 crossref_primary_10_3390_ani12131626 crossref_primary_10_1002_aqc_3282 crossref_primary_10_1093_jcbiol_ruab088 crossref_primary_10_1111_ddi_13717 crossref_primary_10_1371_journal_pone_0210496 crossref_primary_10_1016_j_genrep_2023_101761 crossref_primary_10_1111_azo_12408 crossref_primary_10_1002_tafs_10330 crossref_primary_10_3897_zse_90_8688 crossref_primary_10_1016_j_ecolind_2020_107079 crossref_primary_10_4081_jlimnol_2021_1999 crossref_primary_10_1007_s10641_021_01175_8 crossref_primary_10_1002_tafs_10458 crossref_primary_10_4102_koedoe_v59i1_1375 crossref_primary_10_1016_j_scitotenv_2017_08_112 crossref_primary_10_3897_biss_3_37077 crossref_primary_10_1038_s41598_022_06978_y crossref_primary_10_1111_jfb_14243 crossref_primary_10_1002_lno_12061 crossref_primary_10_1016_j_biocon_2025_111262 crossref_primary_10_1007_s42974_023_00141_x crossref_primary_10_1002_aqc_3274 crossref_primary_10_1002_aqc_4000 crossref_primary_10_1890_130324 crossref_primary_10_3897_zookeys_1065_71687 crossref_primary_10_2478_cjf_2023_0004 crossref_primary_10_1111_fwb_13865 crossref_primary_10_1007_s00550_025_00573_1 crossref_primary_10_1111_fwb_12774 crossref_primary_10_1016_j_scitotenv_2016_09_097 crossref_primary_10_1016_j_limno_2020_125844 crossref_primary_10_1111_gcb_14961 crossref_primary_10_1088_1748_9326_adc1e4 crossref_primary_10_3897_zookeys_1110_79615 crossref_primary_10_1038_s41598_020_69579_7 crossref_primary_10_1038_s41598_023_36569_4 crossref_primary_10_1126_science_aau5573 crossref_primary_10_1007_s13280_020_01415_8 crossref_primary_10_1016_j_envsci_2023_05_020 crossref_primary_10_1111_2041_210X_70152 crossref_primary_10_1371_journal_pone_0202695 crossref_primary_10_3390_d14010016 crossref_primary_10_5735_086_058_0409 crossref_primary_10_1080_20442041_2019_1645548 crossref_primary_10_1016_j_scitotenv_2024_178204 crossref_primary_10_1016_j_biocon_2023_109931 crossref_primary_10_1093_icb_icae023 crossref_primary_10_1016_j_biocon_2021_109090 crossref_primary_10_1111_fwb_12796 crossref_primary_10_3390_w14071112 crossref_primary_10_3390_w14223622 crossref_primary_10_1111_ddi_12780 crossref_primary_10_2112_JCOASTRES_D_22_00085_1 crossref_primary_10_1002_wat2_70003 crossref_primary_10_1002_ece3_6514 crossref_primary_10_1002_ece3_10661 crossref_primary_10_1111_jbi_14605 crossref_primary_10_1002_aqc_3088 crossref_primary_10_1111_jbi_13766 crossref_primary_10_1002_aqc_4057 crossref_primary_10_1139_cjfas_2015_0450 crossref_primary_10_1016_j_biocon_2025_111337 crossref_primary_10_1016_j_scitotenv_2021_149105 crossref_primary_10_3390_su8090875 crossref_primary_10_1080_02705060_2022_2144956 crossref_primary_10_2305_THYC4522 crossref_primary_10_1111_conl_13081 crossref_primary_10_3390_w14193121 crossref_primary_10_1007_s42965_021_00192_z crossref_primary_10_1111_gcb_70183 crossref_primary_10_1111_gcb_13760 crossref_primary_10_1016_j_biocon_2016_07_012 crossref_primary_10_22201_ib_20078706e_2018_0_2177 crossref_primary_10_1007_s10750_017_3105_7 crossref_primary_10_2989_16085914_2024_2357292 crossref_primary_10_1111_een_13216 crossref_primary_10_3897_natureconservation_43_58997 crossref_primary_10_1002_rra_4361 crossref_primary_10_1016_j_ecolind_2022_108559 crossref_primary_10_3390_w12010260 crossref_primary_10_1002_aqc_2490 crossref_primary_10_1016_j_marenvres_2020_104936 crossref_primary_10_3390_w15040632 crossref_primary_10_1007_s10750_015_2354_6 crossref_primary_10_1002_aqc_3108 crossref_primary_10_1080_00222933_2020_1829724 crossref_primary_10_3390_biology14091191 crossref_primary_10_1002_ece3_9493 crossref_primary_10_1016_j_heliyon_2025_e43826 crossref_primary_10_1111_faf_12380 crossref_primary_10_1111_ddi_12218 crossref_primary_10_1002_ece3_71397 crossref_primary_10_1016_j_biocon_2022_109637 crossref_primary_10_1007_s10201_022_00697_z crossref_primary_10_1002_aqc_3336 crossref_primary_10_3390_plants8100424 crossref_primary_10_1111_fwb_13322 crossref_primary_10_1139_er_2023_0034 crossref_primary_10_1016_j_scitotenv_2024_174416 crossref_primary_10_1002_wat2_1641 crossref_primary_10_1007_s10531_021_02146_2 crossref_primary_10_1016_j_biocon_2024_110839 crossref_primary_10_1093_jcbiol_ruab002 crossref_primary_10_1093_jhered_esz072 crossref_primary_10_1002_aqc_2478 crossref_primary_10_1002_aqc_3449 crossref_primary_10_1111_fwb_13210 crossref_primary_10_1111_gcb_16439 crossref_primary_10_1007_s11252_019_00859_5 crossref_primary_10_1007_s11273_014_9356_4 crossref_primary_10_1016_j_ecolind_2022_109434 crossref_primary_10_1111_fme_12494 crossref_primary_10_1111_1755_0998_13235 crossref_primary_10_1080_20442041_2022_2152247 crossref_primary_10_1016_j_jglr_2019_08_002 crossref_primary_10_1111_raq_12531 crossref_primary_10_22201_ib_20078706e_2021_92_3433 crossref_primary_10_3897_BDJ_10_e85992 crossref_primary_10_1590_S2179_975X1115 crossref_primary_10_1007_s10750_021_04771_y crossref_primary_10_1002_ecs2_4326 crossref_primary_10_1111_fwb_13466 crossref_primary_10_1111_fwb_13583 crossref_primary_10_1111_cobi_13320 crossref_primary_10_1007_s10750_022_04845_5 crossref_primary_10_3390_rs9030211 crossref_primary_10_1038_srep19080 crossref_primary_10_1016_j_jhydrol_2019_03_035 crossref_primary_10_3390_microbiolres15020056 crossref_primary_10_1016_j_ecoinf_2024_102575 crossref_primary_10_1051_kmae_2025002 crossref_primary_10_1111_jbi_13816 crossref_primary_10_1139_cjfas_2020_0372 crossref_primary_10_7717_peerj_9764 crossref_primary_10_3724_ahr_2095_0357_2022_0046 crossref_primary_10_1007_s00267_015_0472_6 crossref_primary_10_1111_fwb_13112 crossref_primary_10_1007_s10841_022_00397_0 crossref_primary_10_1016_j_scitotenv_2022_158958 crossref_primary_10_1007_s10646_018_02011_z crossref_primary_10_1080_0269249X_2019_1574243 crossref_primary_10_3390_w12061668 crossref_primary_10_1111_gcb_14556 crossref_primary_10_1016_j_biocon_2024_110929 crossref_primary_10_1111_cobi_13574 crossref_primary_10_1139_facets_2023_0217 crossref_primary_10_1016_j_oneear_2025_101416 crossref_primary_10_1016_j_biocon_2020_108903 crossref_primary_10_1021_acs_est_5c03559 crossref_primary_10_1098_rsos_200172 crossref_primary_10_1002_aqc_4103 crossref_primary_10_1016_j_ecoleng_2024_107237 crossref_primary_10_1111_fwb_13128 crossref_primary_10_3390_fishes8100486 crossref_primary_10_1002_lol2_10123 crossref_primary_10_3390_d16050269 crossref_primary_10_1016_j_biocon_2018_04_033 crossref_primary_10_1016_j_scitotenv_2019_04_392 crossref_primary_10_1139_cjfas_2020_0474 crossref_primary_10_1111_jvs_13097 crossref_primary_10_1007_s10750_019_04147_3 crossref_primary_10_1007_s10522_021_09931_0 crossref_primary_10_1007_s10661_024_12630_1 crossref_primary_10_1655_0018_0831_76_4_366 crossref_primary_10_1016_j_biocon_2022_109561 crossref_primary_10_1371_journal_pone_0259921 crossref_primary_10_1080_00222933_2022_2078241 crossref_primary_10_1111_fwb_14107 crossref_primary_10_3390_su17114922 crossref_primary_10_1007_s00267_016_0684_4 crossref_primary_10_1016_j_ympev_2022_107443 crossref_primary_10_1371_journal_pone_0308806 crossref_primary_10_1007_s11160_020_09600_4 crossref_primary_10_1007_s10750_024_05572_9 crossref_primary_10_1007_s10641_019_00871_w crossref_primary_10_1007_s10452_021_09884_z crossref_primary_10_1590_0001_3765202220210646 crossref_primary_10_3897_zookeys_618_9212 crossref_primary_10_1002_aqc_3596 crossref_primary_10_1007_s00531_014_1109_3 crossref_primary_10_1139_cjfas_2020_0480 crossref_primary_10_1016_j_biocon_2019_05_003 crossref_primary_10_1016_j_biocon_2016_09_005 crossref_primary_10_1016_j_ympev_2023_107754 crossref_primary_10_3390_d6030597 crossref_primary_10_3389_fevo_2019_00041 crossref_primary_10_1111_ddi_12271 crossref_primary_10_1051_kmae_2019046 crossref_primary_10_3389_fenvs_2023_1122464 crossref_primary_10_1111_fwb_70062 crossref_primary_10_1016_j_chemosphere_2022_133879 crossref_primary_10_1016_j_scitotenv_2017_06_173 crossref_primary_10_1016_j_biocon_2019_03_019 crossref_primary_10_1371_journal_pone_0321571 crossref_primary_10_1016_j_ecolind_2016_01_019 crossref_primary_10_1038_s41559_017_0258_8 crossref_primary_10_1002_aqc_3741 crossref_primary_10_1111_ecog_05697 crossref_primary_10_1111_fwb_13395 crossref_primary_10_1007_s10750_025_05964_5 crossref_primary_10_1177_0309133318765084 crossref_primary_10_1002_aqc_2653 crossref_primary_10_3389_fenvs_2018_00048 crossref_primary_10_1002_aqc_2652 crossref_primary_10_1016_j_limno_2024_126187 crossref_primary_10_1126_science_1246752 crossref_primary_10_1016_j_envres_2024_119607 crossref_primary_10_1016_j_scitotenv_2024_174824 crossref_primary_10_3390_hydrobiology4020009 crossref_primary_10_1002_aqc_3627 crossref_primary_10_21926_aeer_2303042 crossref_primary_10_1007_s10750_014_1930_5 crossref_primary_10_1111_ddi_13269 crossref_primary_10_1002_edn3_70147 crossref_primary_10_1002_ece3_71551 crossref_primary_10_3389_fevo_2022_1087866 crossref_primary_10_1007_s10980_025_02197_8 crossref_primary_10_1111_gcb_15282 crossref_primary_10_1007_s11356_022_24288_8 crossref_primary_10_1016_j_geosus_2024_100252 crossref_primary_10_1111_cobi_13811 crossref_primary_10_1111_ddi_13142 crossref_primary_10_1002_ecs2_1355 crossref_primary_10_1163_1937240X_00002478 crossref_primary_10_1111_1752_1688_13130 crossref_primary_10_3389_fgene_2018_00295 crossref_primary_10_1002_eap_2534 crossref_primary_10_3390_fishes4040049 crossref_primary_10_1051_kmae_2021027 crossref_primary_10_1111_aen_12381 crossref_primary_10_1016_j_marenvres_2025_107312 crossref_primary_10_1007_s10641_018_0754_y crossref_primary_10_1111_acv_12422 crossref_primary_10_1016_j_ympev_2022_107645 crossref_primary_10_1038_s41598_025_96955_y crossref_primary_10_1002_aqc_2638 crossref_primary_10_1111_cobi_12813 crossref_primary_10_1111_mec_16659 crossref_primary_10_1111_geb_13648 crossref_primary_10_1051_kmae_2022006 crossref_primary_10_1111_emr_12562 crossref_primary_10_3390_w14192995 crossref_primary_10_1016_j_ecolind_2018_12_001 crossref_primary_10_1146_annurev_ecolsys_112414_054142 crossref_primary_10_1016_j_scitotenv_2024_178182 crossref_primary_10_1371_journal_pone_0130710 crossref_primary_10_1002_aqc_3719 crossref_primary_10_1002_ecs2_2786 crossref_primary_10_1111_cobi_13914 crossref_primary_10_1002_aqc_3956 crossref_primary_10_1073_pnas_2214334120 crossref_primary_10_3389_fevo_2021_610325 crossref_primary_10_3897_zoologia_37_e47223 crossref_primary_10_1093_mollus_eyaa034 crossref_primary_10_1080_20442041_2024_2321088 crossref_primary_10_1002_aqc_3785 crossref_primary_10_1002_rra_4399 crossref_primary_10_1111_ecog_05374 crossref_primary_10_1139_er_2024_0139 crossref_primary_10_1002_aqc_3540 crossref_primary_10_1002_edn3_53 crossref_primary_10_37055_nsz_129503 crossref_primary_10_1002_aqc_3309 crossref_primary_10_1007_s10750_020_04385_w crossref_primary_10_1016_j_baae_2021_11_007 crossref_primary_10_1111_gcb_16462 crossref_primary_10_1016_j_jenvman_2022_115180 crossref_primary_10_3389_fmars_2022_829285 crossref_primary_10_1021_acs_est_5c03154 crossref_primary_10_3389_fevo_2020_592404 crossref_primary_10_1371_journal_pone_0231683 crossref_primary_10_1002_aqc_2681 crossref_primary_10_1007_s00267_019_01160_z crossref_primary_10_1016_j_ecoinf_2024_102629 crossref_primary_10_3390_d13050215 crossref_primary_10_1111_icad_12795 crossref_primary_10_1002_edn3_43 crossref_primary_10_1080_01426397_2020_1808959 crossref_primary_10_23818_limn_45_14 crossref_primary_10_2478_jlecol_2020_0009 crossref_primary_10_1111_gcb_13183 crossref_primary_10_1016_j_scitotenv_2022_155774 crossref_primary_10_3390_land11071090 crossref_primary_10_3390_su15119103 crossref_primary_10_3390_su12051879 crossref_primary_10_1038_s43247_023_01195_5 crossref_primary_10_1007_s10750_020_04230_0 crossref_primary_10_1002_iroh_202002039 crossref_primary_10_1007_s10344_022_01577_8 crossref_primary_10_1007_s10750_015_2440_9 crossref_primary_10_1674_0003_0031_185_2_187 crossref_primary_10_1002_ecs2_1660 crossref_primary_10_1016_j_limno_2018_12_001 crossref_primary_10_1007_s10640_021_00569_7 crossref_primary_10_1016_j_watbs_2022_100078 crossref_primary_10_1038_s41437_024_00700_6 crossref_primary_10_1016_j_watbs_2022_100076 crossref_primary_10_1002_aqc_3511 crossref_primary_10_1111_1365_2664_12295 crossref_primary_10_1098_rsos_150033 crossref_primary_10_1007_s10530_024_03297_3 crossref_primary_10_1111_csp2_427 crossref_primary_10_1016_j_ecolind_2025_114129 crossref_primary_10_1016_j_jnc_2018_08_007 crossref_primary_10_3390_rs16050916 crossref_primary_10_1186_s12302_023_00831_3 crossref_primary_10_1111_gcb_12749 crossref_primary_10_1111_fwb_14086 crossref_primary_10_1002_rra_3820 crossref_primary_10_1007_s10531_016_1148_0 crossref_primary_10_1111_fme_12606 crossref_primary_10_1016_j_ecolind_2023_110238 crossref_primary_10_1080_15627020_2021_1885309 crossref_primary_10_1111_brv_13137 crossref_primary_10_1007_s10750_021_04644_4 crossref_primary_10_1007_s10750_023_05152_3 crossref_primary_10_3390_land12061250 crossref_primary_10_3390_biology10070680 crossref_primary_10_1111_1365_2656_12980 crossref_primary_10_1007_s10592_024_01628_4 crossref_primary_10_1016_j_biocon_2023_110233 crossref_primary_10_1016_j_scitotenv_2024_171849 crossref_primary_10_1016_j_ecolind_2024_111857 crossref_primary_10_1002_aqc_2924 crossref_primary_10_1674_0003_0031_182_2_191 crossref_primary_10_5194_bg_18_6567_2021 crossref_primary_10_1111_cobi_14036 crossref_primary_10_1007_s10531_019_01865_x crossref_primary_10_1007_s10641_024_01568_5 crossref_primary_10_1002_ece3_4017 crossref_primary_10_1111_fwb_12917 crossref_primary_10_1134_S0032945224700012 crossref_primary_10_1007_s11625_023_01341_0 crossref_primary_10_3389_fevo_2023_1215471 crossref_primary_10_1038_s41467_022_30866_8 crossref_primary_10_1002_fee_2550 crossref_primary_10_1080_10106049_2022_2109759 crossref_primary_10_1007_s10661_024_13071_6 crossref_primary_10_1007_s10750_017_3176_5 crossref_primary_10_1016_j_limno_2022_126005 crossref_primary_10_1111_cobi_14168 crossref_primary_10_1007_s11160_022_09710_1 crossref_primary_10_48156_1388_2024_1917262 crossref_primary_10_1002_ece3_7658 crossref_primary_10_1007_s10750_014_1910_9 crossref_primary_10_1111_ddi_12913 crossref_primary_10_3390_su142416677 crossref_primary_10_3390_fishes8120571 crossref_primary_10_1371_journal_pone_0283377 crossref_primary_10_1007_s10750_023_05264_w crossref_primary_10_3390_plants10061111 crossref_primary_10_1111_geb_12397 crossref_primary_10_1002_edn3_480 crossref_primary_10_1111_geb_70069 crossref_primary_10_1111_brv_12480 crossref_primary_10_1016_j_gecadv_2024_100006 crossref_primary_10_1016_j_scitotenv_2024_172850 crossref_primary_10_1016_j_ecolind_2023_110390 crossref_primary_10_1111_mec_15036 crossref_primary_10_1111_jbi_13019 crossref_primary_10_1016_j_scitotenv_2019_135419 crossref_primary_10_1002_edn3_70062 crossref_primary_10_1088_2515_7620_ad75ec crossref_primary_10_1002_aqc_2971 crossref_primary_10_1371_journal_pone_0156217 crossref_primary_10_3390_su132011259 crossref_primary_10_1016_j_jenvman_2025_127042 crossref_primary_10_1016_j_ecoinf_2025_103251 crossref_primary_10_1002_ece3_8762 crossref_primary_10_1007_s10661_022_10684_7 crossref_primary_10_1007_s10750_016_2858_8 crossref_primary_10_1111_aec_13137 crossref_primary_10_3390_su122410473 crossref_primary_10_1093_jcbiol_ruae069 crossref_primary_10_1111_jfb_15195 crossref_primary_10_1093_plankt_fbaa002 crossref_primary_10_1002_fee_2361 crossref_primary_10_1111_rec_14026 crossref_primary_10_1146_annurev_environ_121522_045106 crossref_primary_10_1016_j_ejop_2019_03_003 crossref_primary_10_1590_1676_0611_bn_2024_1682 crossref_primary_10_1002_aqc_2965 crossref_primary_10_1002_edn3_9 crossref_primary_10_1016_j_ecolind_2023_110256 crossref_primary_10_3389_fevo_2021_632973 crossref_primary_10_1016_j_scitotenv_2017_10_333 crossref_primary_10_1111_acv_12989 crossref_primary_10_1093_fshmag_vuaf012 crossref_primary_10_3354_aei00481 crossref_primary_10_3389_fevo_2022_817708 crossref_primary_10_1016_j_ecolind_2018_03_090 crossref_primary_10_1051_kmae_2020019 crossref_primary_10_1002_aqc_2958 crossref_primary_10_1111_ddi_12831 crossref_primary_10_1080_03067319_2021_1924160 crossref_primary_10_1111_icad_12809 crossref_primary_10_1038_s41598_021_95385_w crossref_primary_10_1007_s10750_022_04808_w crossref_primary_10_1016_j_chemosphere_2018_12_142 crossref_primary_10_3390_d16080468 crossref_primary_10_1007_s00267_023_01927_5 crossref_primary_10_1126_science_aav9242 |
| Cites_doi | 10.1126/science.1069349 10.1111/j.1523-1739.2008.01044.x 10.1139/f03-081 10.1016/j.biocon.2012.07.015 10.1111/1365-2656.12018 10.1098/rspb.2009.0656 10.1098/rspb.2006.3700 10.1038/nature09440 10.1016/S1366-7017(99)00008-2 10.2307/1468478 10.1017/S1464793105006950 10.1126/science.1165115 10.1111/j.1466-8238.2011.00660.x 10.1111/j.1755-263X.2011.00202.x 10.1899/08-171.1 10.1016/j.biocon.2010.10.030 10.1126/science.1194442 10.1111/j.1600-0587.2009.06299.x 10.1111/j.1466-822X.2005.00165.x 10.1111/j.1466-822X.2004.00121.x 10.1126/science.329.5988.140-a 10.2307/2532039 10.1126/science.1103538 10.1016/j.biocon.2012.01.016 10.1641/B580507 10.1111/j.1523-1739.2008.00937.x 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E 10.1098/rstb.2004.1595 10.1126/science.1072779 10.1111/j.1755-263X.2008.00009.x 10.1111/j.1466-8238.2011.00749.x 10.1007/s10750-007-9246-3 10.1038/nature11148 10.1111/j.1461-0248.2005.00726.x 10.1038/nature05237 10.1899/08-118.1 10.1111/j.0906-7590.2003.03397.x 10.1111/j.1466-8238.2011.00673.x 10.1371/journal.pbio.0040208 10.1016/j.biocon.2009.02.038 10.1111/j.1523-1739.2008.01117.x |
| ContentType | Journal Article |
| Copyright | Copyright © 2014 John Wiley & Sons Ltd. 2013 The Authors. published by John Wiley & Sons Ltd. 2015 INIST-CNRS Copyright © 2014 John Wiley © Sons Ltd 2013 The Authors. published by John Wiley & Sons Ltd. 2013 |
| Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons Ltd. – notice: 2013 The Authors. published by John Wiley & Sons Ltd. – notice: 2015 INIST-CNRS – notice: Copyright © 2014 John Wiley © Sons Ltd – notice: 2013 The Authors. published by John Wiley & Sons Ltd. 2013 |
| DBID | FBQ BSCLL 24P AAYXX CITATION IQODW NPM 7QG 7SN 7SS 7ST 7U6 C1K 7U1 F1W H95 L.G 7X8 7S9 L.6 5PM |
| DOI | 10.1111/geb.12096 |
| DatabaseName | AGRIS Istex Wiley Online Library Open Access CrossRef Pascal-Francis PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Risk Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management Risk Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic Entomology Abstracts Risk Abstracts PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology Environmental Sciences |
| EISSN | 1466-8238 1466-822X |
| EndPage | 51 |
| ExternalDocumentID | PMC4579866 3144643301 26430385 28079504 10_1111_geb_12096 GEB12096 24034434 ark_67375_WNG_V2S8Q8MM_W US201400004134 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Rufford Foundation – fundername: European Commission‐funded BIOFRESH project funderid: FP7‐ENV‐2008 |
| GroupedDBID | -~X .3N .GA .Y3 10A 1OC 29I 31~ 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AAHKG AAISJ AAKGQ AANLZ AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABHUG ABLJU ABPLY ABPPZ ABPTK ABPVW ABTLG ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACPRK ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AGUYK AIRJO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF ASPBG ATUGU AUFTA AVWKF AZFZN BDRZF BFHJK BMNLL BMXJE BRXPI BY8 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DWIUU EBS ECGQY EJD EQZMY ESX F00 F01 F04 FBQ FEDTE G-S GODZA GTFYD HF~ HGD HQ2 HTVGU HVGLF HZI IHE IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT VQP W99 WIH WIK WQJ WRC WXSBR XG1 ZZTAW ~KM 0R~ AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ABXSQ ACHIC ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG ALVPJ AQVQM BSCLL HGLYW IPSME OIG 24P AAYXX CITATION O8X IQODW NPM 7QG 7SN 7SS 7ST 7U6 C1K 7U1 F1W H95 L.G 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c6896-592f982ab663feac1a5f30cb3fcdb5c2c8027d5f37bc954f5155404c13417e7a3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 491 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327608500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1466-822X |
| IngestDate | Tue Nov 04 01:55:01 EST 2025 Fri Jul 11 18:28:31 EDT 2025 Thu Jul 10 19:25:36 EDT 2025 Tue Oct 07 09:40:06 EDT 2025 Sun Nov 09 08:08:01 EST 2025 Thu Apr 03 07:05:42 EDT 2025 Wed Apr 02 07:14:57 EDT 2025 Tue Nov 18 21:43:04 EST 2025 Sat Nov 29 03:01:07 EST 2025 Wed Jan 22 16:32:34 EST 2025 Thu Jul 03 22:43:49 EDT 2025 Tue Nov 11 03:34:44 EST 2025 Wed Dec 27 19:16:16 EST 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Endemic species Congruence conservation planning Conservation Biogeography Ecology decapods diversity metric Crustacea Freshwater environment Species diversity Geographic distribution Arthropoda Metric Decapoda Planning Invertebrata Distribution range Species richness geographical range species richness |
| Language | English |
| License | Attribution http://creativecommons.org/licenses/by/3.0 CC BY 4.0 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6896-592f982ab663feac1a5f30cb3fcdb5c2c8027d5f37bc954f5155404c13417e7a3 |
| Notes | http://dx.doi.org/10.1111/geb.12096 istex:6A4423CE92AA644E0ABCED79E6FADE8154760B5C Appendix S1 Reptile and fish species in our analyses of freshwater species.Figure S1 Proportion of freshwater fish species by biogeographical realm. Rufford Foundation European Commission-funded BIOFRESH project - No. FP7-ENV-2008 ark:/67375/WNG-V2S8Q8MM-W ArticleID:GEB12096 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 [Copyright line has been changed since first online publication on July 3, 2013]. |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12096 |
| PMID | 26430385 |
| PQID | 1464613654 |
| PQPubID | 1066347 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4579866 proquest_miscellaneous_1999921746 proquest_miscellaneous_1859702256 proquest_miscellaneous_1468351857 proquest_journals_1464613654 pubmed_primary_26430385 pascalfrancis_primary_28079504 crossref_citationtrail_10_1111_geb_12096 crossref_primary_10_1111_geb_12096 wiley_primary_10_1111_geb_12096_GEB12096 jstor_primary_24034434 istex_primary_ark_67375_WNG_V2S8Q8MM_W fao_agris_US201400004134 |
| PublicationCentury | 2000 |
| PublicationDate | January 2014 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – month: 01 year: 2014 text: January 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford – name: England – name: Oxford, UK |
| PublicationTitle | Global ecology and biogeography |
| PublicationTitleAlternate | Global Ecology and Biogeography |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd John Wiley & Sons Ltd Blackwell Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons Ltd – name: Blackwell – name: Wiley Subscription Services, Inc |
| References | Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S.E., Sullivan, C.A., Liermann, C.R. & Davies, P.M. (2010) Global threats to human water security and river biodiversity. Nature, 467, 555-561. Rossiter, N. & Kawanabe, H. (2000) Ancient lakes: biodiversity, ecology and evolution. Academic Press, London, UK. Heino, J., Muotka, T., Paavola, R. & Paasivirta, L. (2003) Among-taxon congruence in biodiversity patterns: can stream insect diversity be predicted using single taxonomic groups? Canadian Journal of Fisheries and Aquatic Sciences, 60, 1039-1049. IUCN Species Survival Commission (2012) IUCN Red List categories and criteria. Version 3.1, 2nd edn. IUCN, Gland, Switzerland. Heino, J., Muotka, T., Paavola, R., Hämäläinen, H. & Koskenniemi, E. (2002) Correspondence between regional delineations and spatial patterns in macroinvertebrate assemblages of boreal headwater streams. Journal of the North American Benthological Society, 21, 397-413. Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S. & Naeem, S. (2012) Biodiversity loss and its impact on humanity. Nature, 486, 59-67. Convention on Biological Diversity (2010) COP 10 decision X/2. Strategic plan for biodiversity 2011-2020. Convention on Biological Diversity, Montreal, Canada. Available at: http://www.cbd.int/decision/cop/?id=12268 (accessed 22 May 2013). Jetz, W. & Rahbek, C. (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548-1551. Collen, B., Loh, J., Whitmee, S., McRae, L., Amin, R. & Baillie, J.E.M. (2009a) Monitoring change in vertebrate abundance: the Living Planet Index. Conservation Biology, 23, 317-327. Collen, B., Böhm, M., Kemp, R. & Baillie, J.E.M. (eds) (2012) Spineless: status and trends of the world's invertebrates. Zoological Society of London, London, UK. Schipper, J., Chanson, J.S., Chiozza, F. et al. (2008) The status of the world's land and aquatic mammals: diversity, threat, and knowledge. Science, 322, 225-230. McInnes, L., Purvis, A. & Orme, C.D.L. (2009) Where do species' geographic ranges stop and why? Landscape impermeability and the Afrotropical avifauna. Proceedings of the Royal Society B: Biological Sciences, 276, 3063-3070. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.r-project.org/ (accessed 22 May 2012). Tedesco, P.A., Leprieur, F., Hugueny, B., Brosse, S., Dürr, H.H., Beauchard, O., Busson, F. & Oberdorff, T. (2012) Patterns and processes of global riverine fish endemism. Global Ecology and Biogeography, 21, 977-987. Baillie, J.E.M., Collen, B., Amin, R., Akcakaya, H.R., Butchart, S.H.M., Brummitt, N., Meagher, T.R., Ram, M., Hilton-Taylor, C. & Mace, G. (2008) Towards monitoring global biodiversity. Conservation Letters, 1, 18-26. Hurlbert, A.H. & Jetz, W. (2007) Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proceedings of the National Academy of Sciences USA, 104, 13384-13389. Vinson, M.R. & Hawkins, C.P. (2003) Broad-scale geographical patterns in local stream insect genera richness. Ecography, 26, 751-767. Boyero, L., Pearson, R.G., Dudgeon, D. et al. (2012) Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Global Ecology and Biogeography, 21, 134-141. Galewski, T., Collen, B., McRae, L., Loh, J., Grillas, P., Gauthier-Clerc, M. & Devictor, V. (2011) Long-term trends in the abundance of Mediterranean wetland vertebrates: from global recovery to localized declines. Biological Conservation, 144, 1392-1399. World Bank (2011) Gross domestic product 2009. World Bank, Washington, DC. Available at: http://data.worldbank.org/ (accessed 20 May 2011). Collen, B. & Baillie, J.E.M. (2010) Barometer of life: sampling. Science, 329, 140. Clifford, P., Richardson, S. & Hermon, D. (1989) Assessing the significance of the correlation between two spatial processes. Biometrics, 45, 123-134. Whitton, F.J.S., Purvis, A., Orme, C.D.L. & Olalla-Tárraga, M.á. (2012) Understanding global patterns in amphibian geographic range size: does Rapoport rule? Global Ecology and Biogeography, 21, 179-190. Gleick, P.H. (1998) The human right to water. Water Policy, 1, 487-503. Cumberlidge, N., Ng, P.K.L., Yeo, D.C.J., Magalhães, C., Campos, M.R., Alvarez, F., Naruse, T., Daniels, S.R., Esser, L.J., Attipoe, F.Y.K., Clotilde-Ba, F.-L., Darwall, W., McIvor, A., Baillie, J.E.M., Collen, B. & Ram, M. (2009) Freshwater crabs and the biodiversity crisis: importance, threats, status, and conservation challenges. Biological Conservaion, 142, 1665-1673. Salafsky, N., Salzer, D., Stattersfield, A.J., Hilton-Taylor, C., Neugarten, R., Butchart, S.H.M., Collen, B., Cox, N., Master, L.L., O'Connor, S. & Wilkie, D. (2008) A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conservation Biology, 22, 897-911. Rahbek, C., Gotelli, N.J., Colwell, R.K., Entsminger, G.L., Rangel, T.F.L.V.B. & Graves, G.R. (2007) Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society B: Biological Sciences, 274, 165-174. Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S.L., Fischman, D.L. & Waller, R.W. (2004) Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783-1786. Darwall, W.R.T., Holland, R.A., Smith, K.G., Allen, D., Brooks, E.G.E., Katarya, V., Pollock, C.M., Shi, Y., Clausnitzer, V., Cumberlidge, N., Cuttelod, A., Dijkstra, K.-D.B., Diop, M.D., García, N., Seddon, M.B., Skelton, P.H., Snoeks, J., Tweddle, D. & Vié, J.-C. (2011b) Implications of bias in conservation research and investment for freshwater species. Conservation Letters, 4, 474-482. Böhm, M., Collen, B., Baillie, J.E.M. et al. (2013) The conservation status of the world's reptiles. Biological Conservaion, 157, 372-385. IUCN (2012) IUCN Red List of threatened species. Version 2012.1. IUCN, Gland, Switzerland. Available at: http://www.iucnredlist.org/ (accessed 5 July 2012). Strayer, D.L. & Dudgeon, D. (2010) Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society, 29, 344-358. Newcombe, R.G. (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Statistics in Medicine, 17, 857-872. Legendre, L. & Legendre, P. (1998) Numerical ecology, 2nd edn. Elsevier Science, Amsterdam. Balian, E.V., Segers, H., Lévèque, C. & Martens, K. (2008) The Freshwater Animal Diversity Assessment: an overview of the results. Hydrobiologia, 595, 627-637. Grenyer, R., Orme, C.D.L., Jackson, S.F., Thomas, G.H., Davies, R.G., Davies, T.J., Jones, K.E., Olson, V.A., Ridgely, R.S., Rasmussen, P.C., Ding, T.-S., Bennett, P.M., Blackburn, T.M., Gaston, K.J., Gittleman, J.L. & Owens, I.P.F. (2006) Global distribution and conservation of rare and threatened vertebrates. Nature, 444, 93-96. Abell, R., Thieme, M.L., Revenga, C. et al. (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58, 403-414. Hoffmann, M., Hilton-Taylor, C., Angulo, A. et al. (2010) The impact of conservation on the status of the world's vertebrates. Science, 330, 1503-1509. Diniz-Filho, J.A.F., Bastos, R.P., Rangel, T.F.L.V.B., Bini, L.M., Carvalho, P. & Silva, R.J. (2005) Macroecological correlates and spatial patterns of anuran description dates in the Brazilian cerrado. Global Ecology and Biogeography, 14, 469-477. Mace, G.M., Collar, N.J., Gaston, K.J., Hilton-Taylor, C., Akçakaya, H.R., Leader-Williams, N., Milner-Gulland, E.J. & Stuart, S.N. (2008) Quantification of extinction risk: IUCN's system for classifying threatened species. Conservation Biology, 22, 1424-1442. Revenga, C., Campbell, I., Abell, R., de Villers, P. & Bryer, M. (2005) Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 397-413. Ceballos, G. & Ehrlich, P.R. (2002) Mammal population losses and the extinction crisis. Science, 296, 904-907. Orme, C.D.L., Davies, R.G., Olson, V.A., Thomas, G.H., Ding, T.-S., Rasmussen, P.C., Ridgely, R.S., Stattersfield, A.J., Bennett, P.M., Owens, I.P.F., Blackburn, T.M. & Gaston, K.J. (2006) Global patterns of geographic range size in birds. PLoS Biology, 4, 1276-1283. Holland, R.A., Darwall, W.R.T. & Smith, K.G. (2012) Conservation priorities for freshwater biodiversity: the Key Biodiversity Area approach refined and tested for continental Africa. Biological Conservaion, 148, 167-179. Eschmeyer, W.N. & Fong, J.D. (2012) Species by family/subfamily in the Catalog of Fishes. California Academy of Sciences, San Francisco, CA. Available at: http://research.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp (accessed 5 October 2012). Collen, B., Purvis, A. & Gittleman, J.L. (2004) Biological correlates of description date in carnivores and primates. Global Ecology and Biogeography, 13, 459-467. Pearson, R.G. & Boyero, L. (2009) Gradients in regional diversity of freshwater taxa. Journal of the North American Benthological Society, 28, 504-514. Darwall, W., Smith, K., Allen, D., Holland, R., Harrison, I. & Brooks, E. (eds) (2011a) The diversity of life in African freshwaters: underwater, under threat. IUCN, Cambridge, UK and Gland, Switzerland. Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.-I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.-H., Soto, D., Stiassny, M.L.J. & Sullivan, C.A. (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81, 163-182. Groombridge, B. & Jenkins, M. (1998) Freshwa 2007; 104 2010; 33 1989; 45 2012; 486 2010; 329 2002; 296 2012 2002; 297 2011 2010 2010; 467 2008; 58 2009 1998 2009; 276 2011a 2006; 4 2008; 322 2008; 1 2012; 148 2004; 306 2009; 28 2006; 81 1998; 17 2005; 360 2011b; 4 2000 2010; 29 2009b 2002; 21 2004; 13 2007; 274 2010; 330 2013; 82 2003; 26 2013; 157 2008; 22 1998; 1 2009a; 23 2009; 142 2003; 60 2008; 595 2012; 21 2011; 144 2006; 444 2005; 14 e_1_2_6_51_1 Collen B. (e_1_2_6_14_1) 2012 e_1_2_6_53_1 e_1_2_6_30_1 Groombridge B. (e_1_2_6_26_1) 1998 e_1_2_6_19_1 World Bank (e_1_2_6_55_1) 2011 Convention on Biological Diversity (e_1_2_6_15_1) 2010 e_1_2_6_36_1 R Development Core Team (e_1_2_6_41_1) 2012 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_38_1 Rossiter N. (e_1_2_6_45_1) 2000 IUCN (e_1_2_6_32_1) 2012 e_1_2_6_43_1 e_1_2_6_20_1 Collen B. (e_1_2_6_13_1) 2009 e_1_2_6_9_1 Eschmeyer W.N. (e_1_2_6_22_1) 2012 e_1_2_6_5_1 IUCN Species Survival Commission (e_1_2_6_33_1) 2012 e_1_2_6_7_1 e_1_2_6_24_1 Legendre L. (e_1_2_6_35_1) 1998 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 Darwall W. (e_1_2_6_17_1) 2009 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 Darwall W. (e_1_2_6_18_1) 2011 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 19040654 - Conserv Biol. 2009 Apr;23(2):317-27 2720048 - Biometrics. 1989 Mar;45(1):123-34 20978281 - Science. 2010 Dec 10;330(6010):1503-9 22678280 - Nature. 2012 Jun 06;486(7401):59-67 17148246 - Proc Biol Sci. 2007 Jan 22;274(1607):165-74 23173605 - J Anim Ecol. 2013 Mar;82(2):365-76 19515666 - Proc Biol Sci. 2009 Sep 7;276(1670):3063-70 15814353 - Philos Trans R Soc Lond B Biol Sci. 2005 Feb 28;360(1454):397-413 17686977 - Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13384-9 18847444 - Conserv Biol. 2008 Dec;22(6):1424-42 16336747 - Biol Rev Camb Philos Soc. 2006 May;81(2):163-82 9595616 - Stat Med. 1998 Apr 30;17(8):857-72 15486254 - Science. 2004 Dec 3;306(5702):1783-6 17080090 - Nature. 2006 Nov 2;444(7115):93-6 18845749 - Science. 2008 Oct 10;322(5899):225-30 16774453 - PLoS Biol. 2006 Jul;4(7):e208 18544093 - Conserv Biol. 2008 Aug;22(4):897-911 11988573 - Science. 2002 May 3;296(5569):904-7 12202829 - Science. 2002 Aug 30;297(5586):1548-51 20616248 - Science. 2010 Jul 9;329(5988):140; author reply 141-2 20882010 - Nature. 2010 Sep 30;467(7315):555-61 |
| References_xml | – reference: Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S. & Naeem, S. (2012) Biodiversity loss and its impact on humanity. Nature, 486, 59-67. – reference: Eschmeyer, W.N. & Fong, J.D. (2012) Species by family/subfamily in the Catalog of Fishes. California Academy of Sciences, San Francisco, CA. Available at: http://research.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp (accessed 5 October 2012). – reference: Balian, E.V., Segers, H., Lévèque, C. & Martens, K. (2008) The Freshwater Animal Diversity Assessment: an overview of the results. Hydrobiologia, 595, 627-637. – reference: Whitton, F.J.S., Purvis, A., Orme, C.D.L. & Olalla-Tárraga, M.á. (2012) Understanding global patterns in amphibian geographic range size: does Rapoport rule? Global Ecology and Biogeography, 21, 179-190. – reference: R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.r-project.org/ (accessed 22 May 2012). – reference: McInnes, L., Purvis, A. & Orme, C.D.L. (2009) Where do species' geographic ranges stop and why? Landscape impermeability and the Afrotropical avifauna. Proceedings of the Royal Society B: Biological Sciences, 276, 3063-3070. – reference: IUCN Species Survival Commission (2012) IUCN Red List categories and criteria. Version 3.1, 2nd edn. IUCN, Gland, Switzerland. – reference: Holland, R.A., Darwall, W.R.T. & Smith, K.G. (2012) Conservation priorities for freshwater biodiversity: the Key Biodiversity Area approach refined and tested for continental Africa. Biological Conservaion, 148, 167-179. – reference: Abell, R., Thieme, M.L., Revenga, C. et al. (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58, 403-414. – reference: Rangel, T.F., Diniz-Filho, J.A.F. & Bini, L.M. (2010) SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography, 33, 46-50. – reference: Clifford, P., Richardson, S. & Hermon, D. (1989) Assessing the significance of the correlation between two spatial processes. Biometrics, 45, 123-134. – reference: Böhm, M., Collen, B., Baillie, J.E.M. et al. (2013) The conservation status of the world's reptiles. Biological Conservaion, 157, 372-385. – reference: Galewski, T., Collen, B., McRae, L., Loh, J., Grillas, P., Gauthier-Clerc, M. & Devictor, V. (2011) Long-term trends in the abundance of Mediterranean wetland vertebrates: from global recovery to localized declines. Biological Conservation, 144, 1392-1399. – reference: Gleick, P.H. (1998) The human right to water. Water Policy, 1, 487-503. – reference: Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S.E., Sullivan, C.A., Liermann, C.R. & Davies, P.M. (2010) Global threats to human water security and river biodiversity. Nature, 467, 555-561. – reference: Cumberlidge, N., Ng, P.K.L., Yeo, D.C.J., Magalhães, C., Campos, M.R., Alvarez, F., Naruse, T., Daniels, S.R., Esser, L.J., Attipoe, F.Y.K., Clotilde-Ba, F.-L., Darwall, W., McIvor, A., Baillie, J.E.M., Collen, B. & Ram, M. (2009) Freshwater crabs and the biodiversity crisis: importance, threats, status, and conservation challenges. Biological Conservaion, 142, 1665-1673. – reference: Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.-I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.-H., Soto, D., Stiassny, M.L.J. & Sullivan, C.A. (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81, 163-182. – reference: Hoffmann, M., Hilton-Taylor, C., Angulo, A. et al. (2010) The impact of conservation on the status of the world's vertebrates. Science, 330, 1503-1509. – reference: Boyero, L., Pearson, R.G., Dudgeon, D. et al. (2012) Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Global Ecology and Biogeography, 21, 134-141. – reference: Diniz-Filho, J.A.F., Bastos, R.P., Rangel, T.F.L.V.B., Bini, L.M., Carvalho, P. & Silva, R.J. (2005) Macroecological correlates and spatial patterns of anuran description dates in the Brazilian cerrado. Global Ecology and Biogeography, 14, 469-477. – reference: Groombridge, B. & Jenkins, M. (1998) Freshwater biodiversity: a preliminary global assessment. World Conservation Monitoring Centre, Cambridge, UK. – reference: Rahbek, C., Gotelli, N.J., Colwell, R.K., Entsminger, G.L., Rangel, T.F.L.V.B. & Graves, G.R. (2007) Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society B: Biological Sciences, 274, 165-174. – reference: Collen, B., Böhm, M., Kemp, R. & Baillie, J.E.M. (eds) (2012) Spineless: status and trends of the world's invertebrates. Zoological Society of London, London, UK. – reference: Orme, C.D.L., Davies, R.G., Olson, V.A., Thomas, G.H., Ding, T.-S., Rasmussen, P.C., Ridgely, R.S., Stattersfield, A.J., Bennett, P.M., Owens, I.P.F., Blackburn, T.M. & Gaston, K.J. (2006) Global patterns of geographic range size in birds. PLoS Biology, 4, 1276-1283. – reference: Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S.L., Fischman, D.L. & Waller, R.W. (2004) Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783-1786. – reference: World Bank (2011) Gross domestic product 2009. World Bank, Washington, DC. Available at: http://data.worldbank.org/ (accessed 20 May 2011). – reference: Collen, B. & Baillie, J.E.M. (2010) Barometer of life: sampling. Science, 329, 140. – reference: Schipper, J., Chanson, J.S., Chiozza, F. et al. (2008) The status of the world's land and aquatic mammals: diversity, threat, and knowledge. Science, 322, 225-230. – reference: Convention on Biological Diversity (2010) COP 10 decision X/2. Strategic plan for biodiversity 2011-2020. Convention on Biological Diversity, Montreal, Canada. Available at: http://www.cbd.int/decision/cop/?id=12268 (accessed 22 May 2013). – reference: IUCN (2012) IUCN Red List of threatened species. Version 2012.1. IUCN, Gland, Switzerland. Available at: http://www.iucnredlist.org/ (accessed 5 July 2012). – reference: Legendre, L. & Legendre, P. (1998) Numerical ecology, 2nd edn. Elsevier Science, Amsterdam. – reference: Collen, B., Loh, J., Whitmee, S., McRae, L., Amin, R. & Baillie, J.E.M. (2009a) Monitoring change in vertebrate abundance: the Living Planet Index. Conservation Biology, 23, 317-327. – reference: Revenga, C., Campbell, I., Abell, R., de Villers, P. & Bryer, M. (2005) Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 397-413. – reference: Pearson, R.G. & Boyero, L. (2009) Gradients in regional diversity of freshwater taxa. Journal of the North American Benthological Society, 28, 504-514. – reference: Ceballos, G. & Ehrlich, P.R. (2002) Mammal population losses and the extinction crisis. Science, 296, 904-907. – reference: Newcombe, R.G. (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Statistics in Medicine, 17, 857-872. – reference: Collen, B., Purvis, A. & Gittleman, J.L. (2004) Biological correlates of description date in carnivores and primates. Global Ecology and Biogeography, 13, 459-467. – reference: Darwall, W., Smith, K., Allen, D., Holland, R., Harrison, I. & Brooks, E. (eds) (2011a) The diversity of life in African freshwaters: underwater, under threat. IUCN, Cambridge, UK and Gland, Switzerland. – reference: Heino, J., Muotka, T., Paavola, R. & Paasivirta, L. (2003) Among-taxon congruence in biodiversity patterns: can stream insect diversity be predicted using single taxonomic groups? Canadian Journal of Fisheries and Aquatic Sciences, 60, 1039-1049. – reference: Darwall, W.R.T., Holland, R.A., Smith, K.G., Allen, D., Brooks, E.G.E., Katarya, V., Pollock, C.M., Shi, Y., Clausnitzer, V., Cumberlidge, N., Cuttelod, A., Dijkstra, K.-D.B., Diop, M.D., García, N., Seddon, M.B., Skelton, P.H., Snoeks, J., Tweddle, D. & Vié, J.-C. (2011b) Implications of bias in conservation research and investment for freshwater species. Conservation Letters, 4, 474-482. – reference: Mace, G.M., Collar, N.J., Gaston, K.J., Hilton-Taylor, C., Akçakaya, H.R., Leader-Williams, N., Milner-Gulland, E.J. & Stuart, S.N. (2008) Quantification of extinction risk: IUCN's system for classifying threatened species. Conservation Biology, 22, 1424-1442. – reference: Rossiter, N. & Kawanabe, H. (2000) Ancient lakes: biodiversity, ecology and evolution. Academic Press, London, UK. – reference: Salafsky, N., Salzer, D., Stattersfield, A.J., Hilton-Taylor, C., Neugarten, R., Butchart, S.H.M., Collen, B., Cox, N., Master, L.L., O'Connor, S. & Wilkie, D. (2008) A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conservation Biology, 22, 897-911. – reference: Tisseuil, C., Cornu, J.-F., Beauchard, O., Brosse, S., Darwall, W., Holland, R., Hugueny, B., Tedesco, P.A. & Oberdorff, T. (2013) Global diversity patterns and cross-taxa convergence in freshwater systems. Journal of Animal Ecology, 82, 365-376. – reference: Hurlbert, A.H. & Jetz, W. (2007) Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proceedings of the National Academy of Sciences USA, 104, 13384-13389. – reference: Vinson, M.R. & Hawkins, C.P. (2003) Broad-scale geographical patterns in local stream insect genera richness. Ecography, 26, 751-767. – reference: Strayer, D.L. & Dudgeon, D. (2010) Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society, 29, 344-358. – reference: Jetz, W. & Rahbek, C. (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548-1551. – reference: Tedesco, P.A., Leprieur, F., Hugueny, B., Brosse, S., Dürr, H.H., Beauchard, O., Busson, F. & Oberdorff, T. (2012) Patterns and processes of global riverine fish endemism. Global Ecology and Biogeography, 21, 977-987. – reference: Grenyer, R., Orme, C.D.L., Jackson, S.F., Thomas, G.H., Davies, R.G., Davies, T.J., Jones, K.E., Olson, V.A., Ridgely, R.S., Rasmussen, P.C., Ding, T.-S., Bennett, P.M., Blackburn, T.M., Gaston, K.J., Gittleman, J.L. & Owens, I.P.F. (2006) Global distribution and conservation of rare and threatened vertebrates. Nature, 444, 93-96. – reference: Heino, J., Muotka, T., Paavola, R., Hämäläinen, H. & Koskenniemi, E. (2002) Correspondence between regional delineations and spatial patterns in macroinvertebrate assemblages of boreal headwater streams. Journal of the North American Benthological Society, 21, 397-413. – reference: Baillie, J.E.M., Collen, B., Amin, R., Akcakaya, H.R., Butchart, S.H.M., Brummitt, N., Meagher, T.R., Ram, M., Hilton-Taylor, C. & Mace, G. (2008) Towards monitoring global biodiversity. Conservation Letters, 1, 18-26. – year: 2011 – volume: 157 start-page: 372 year: 2013 end-page: 385 article-title: The conservation status of the world's reptiles publication-title: Biological Conservaion – volume: 322 start-page: 225 year: 2008 end-page: 230 article-title: The status of the world's land and aquatic mammals: diversity, threat, and knowledge. publication-title: Science – volume: 297 start-page: 1548 year: 2002 end-page: 1551 article-title: Geographic range size and determinants of avian species richness publication-title: Science – volume: 142 start-page: 1665 year: 2009 end-page: 1673 article-title: Freshwater crabs and the biodiversity crisis: importance, threats, status, and conservation challenges publication-title: Biological Conservaion – volume: 58 start-page: 403 year: 2008 end-page: 414 article-title: Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation publication-title: BioScience – volume: 60 start-page: 1039 year: 2003 end-page: 1049 article-title: Among‐taxon congruence in biodiversity patterns: can stream insect diversity be predicted using single taxonomic groups? publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 21 start-page: 977 year: 2012 end-page: 987 article-title: Patterns and processes of global riverine fish endemism publication-title: Global Ecology and Biogeography – year: 1998 – volume: 17 start-page: 857 year: 1998 end-page: 872 article-title: Two‐sided confidence intervals for the single proportion: comparison of seven methods publication-title: Statistics in Medicine – volume: 595 start-page: 627 year: 2008 end-page: 637 article-title: The Freshwater Animal Diversity Assessment: an overview of the results publication-title: Hydrobiologia – volume: 360 start-page: 397 year: 2005 end-page: 413 article-title: Prospects for monitoring freshwater ecosystems towards the 2010 targets publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 330 start-page: 1503 year: 2010 end-page: 1509 article-title: The impact of conservation on the status of the world's vertebrates publication-title: Science – volume: 28 start-page: 504 year: 2009 end-page: 514 article-title: Gradients in regional diversity of freshwater taxa publication-title: Journal of the North American Benthological Society – volume: 144 start-page: 1392 year: 2011 end-page: 1399 article-title: Long‐term trends in the abundance of Mediterranean wetland vertebrates: from global recovery to localized declines publication-title: Biological Conservation – start-page: 67 year: 2009b end-page: 76 – volume: 22 start-page: 1424 year: 2008 end-page: 1442 article-title: Quantification of extinction risk: IUCN's system for classifying threatened species publication-title: Conservation Biology – volume: 306 start-page: 1783 year: 2004 end-page: 1786 article-title: Status and trends of amphibian declines and extinctions worldwide publication-title: Science – volume: 296 start-page: 904 year: 2002 end-page: 907 article-title: Mammal population losses and the extinction crisis publication-title: Science – volume: 4 start-page: 1276 year: 2006 end-page: 1283 article-title: Global patterns of geographic range size in birds publication-title: PLoS Biology – volume: 45 start-page: 123 year: 1989 end-page: 134 article-title: Assessing the significance of the correlation between two spatial processes publication-title: Biometrics – start-page: 43 year: 2009 end-page: 54 – volume: 4 start-page: 474 year: 2011b end-page: 482 article-title: Implications of bias in conservation research and investment for freshwater species publication-title: Conservation Letters – volume: 1 start-page: 18 year: 2008 end-page: 26 article-title: Towards monitoring global biodiversity publication-title: Conservation Letters – volume: 486 start-page: 59 year: 2012 end-page: 67 article-title: Biodiversity loss and its impact on humanity publication-title: Nature – volume: 276 start-page: 3063 year: 2009 end-page: 3070 article-title: Where do species' geographic ranges stop and why? Landscape impermeability and the Afrotropical avifauna publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 444 start-page: 93 year: 2006 end-page: 96 article-title: Global distribution and conservation of rare and threatened vertebrates publication-title: Nature – volume: 33 start-page: 46 year: 2010 end-page: 50 article-title: SAM: a comprehensive application for Spatial Analysis in Macroecology publication-title: Ecography – volume: 329 start-page: 140 year: 2010 article-title: Barometer of life: sampling publication-title: Science – volume: 21 start-page: 397 year: 2002 end-page: 413 article-title: Correspondence between regional delineations and spatial patterns in macroinvertebrate assemblages of boreal headwater streams publication-title: Journal of the North American Benthological Society – volume: 26 start-page: 751 year: 2003 end-page: 767 article-title: Broad‐scale geographical patterns in local stream insect genera richness publication-title: Ecography – year: 2000 – volume: 21 start-page: 179 year: 2012 end-page: 190 article-title: Understanding global patterns in amphibian geographic range size: does Rapoport rule? publication-title: Global Ecology and Biogeography – volume: 148 start-page: 167 year: 2012 end-page: 179 article-title: Conservation priorities for freshwater biodiversity: the Key Biodiversity Area approach refined and tested for continental Africa publication-title: Biological Conservaion – year: 2010 – year: 2012 – volume: 1 start-page: 487 year: 1998 end-page: 503 article-title: The human right to water publication-title: Water Policy – volume: 274 start-page: 165 year: 2007 end-page: 174 article-title: Predicting continental‐scale patterns of bird species richness with spatially explicit models publication-title: Proceedings of the Royal Society B: Biological Sciences – year: 2011a – volume: 467 start-page: 555 year: 2010 end-page: 561 article-title: Global threats to human water security and river biodiversity publication-title: Nature – volume: 82 start-page: 365 year: 2013 end-page: 376 article-title: Global diversity patterns and cross‐taxa convergence in freshwater systems publication-title: Journal of Animal Ecology – volume: 23 start-page: 317 year: 2009a end-page: 327 article-title: Monitoring change in vertebrate abundance: the Living Planet Index publication-title: Conservation Biology – volume: 22 start-page: 897 year: 2008 end-page: 911 article-title: A standard lexicon for biodiversity conservation: unified classifications of threats and actions publication-title: Conservation Biology – volume: 29 start-page: 344 year: 2010 end-page: 358 article-title: Freshwater biodiversity conservation: recent progress and future challenges publication-title: Journal of the North American Benthological Society – volume: 21 start-page: 134 year: 2012 end-page: 141 article-title: Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates publication-title: Global Ecology and Biogeography – volume: 81 start-page: 163 year: 2006 end-page: 182 article-title: Freshwater biodiversity: importance, threats, status and conservation challenges publication-title: Biological Reviews – volume: 14 start-page: 469 year: 2005 end-page: 477 article-title: Macroecological correlates and spatial patterns of anuran description dates in the Brazilian cerrado publication-title: Global Ecology and Biogeography – volume: 13 start-page: 459 year: 2004 end-page: 467 article-title: Biological correlates of description date in carnivores and primates publication-title: Global Ecology and Biogeography – volume: 104 start-page: 13384 year: 2007 end-page: 13389 article-title: Species richness, hotspots, and the scale dependence of range maps in ecology and conservation publication-title: Proceedings of the National Academy of Sciences USA – ident: e_1_2_6_8_1 doi: 10.1126/science.1069349 – ident: e_1_2_6_36_1 doi: 10.1111/j.1523-1739.2008.01044.x – ident: e_1_2_6_28_1 doi: 10.1139/f03-081 – ident: e_1_2_6_5_1 doi: 10.1016/j.biocon.2012.07.015 – ident: e_1_2_6_51_1 doi: 10.1111/1365-2656.12018 – ident: e_1_2_6_37_1 doi: 10.1098/rspb.2009.0656 – ident: e_1_2_6_42_1 doi: 10.1098/rspb.2006.3700 – volume-title: Gross domestic product 2009 year: 2011 ident: e_1_2_6_55_1 – ident: e_1_2_6_53_1 doi: 10.1038/nature09440 – ident: e_1_2_6_24_1 doi: 10.1016/S1366-7017(99)00008-2 – volume-title: Freshwater biodiversity: a preliminary global assessment year: 1998 ident: e_1_2_6_26_1 – ident: e_1_2_6_27_1 doi: 10.2307/1468478 – ident: e_1_2_6_21_1 doi: 10.1017/S1464793105006950 – ident: e_1_2_6_47_1 doi: 10.1126/science.1165115 – volume-title: IUCN Red List categories and criteria year: 2012 ident: e_1_2_6_33_1 – ident: e_1_2_6_54_1 doi: 10.1111/j.1466-8238.2011.00660.x – ident: e_1_2_6_19_1 doi: 10.1111/j.1755-263X.2011.00202.x – ident: e_1_2_6_48_1 doi: 10.1899/08-171.1 – ident: e_1_2_6_23_1 doi: 10.1016/j.biocon.2010.10.030 – ident: e_1_2_6_29_1 doi: 10.1126/science.1194442 – ident: e_1_2_6_43_1 doi: 10.1111/j.1600-0587.2009.06299.x – start-page: 43 volume-title: Wildlife in a changing world: an analysis of the 2008 IUCN Red List of Threatened Species year: 2009 ident: e_1_2_6_17_1 – ident: e_1_2_6_20_1 doi: 10.1111/j.1466-822X.2005.00165.x – volume-title: Numerical ecology year: 1998 ident: e_1_2_6_35_1 – ident: e_1_2_6_11_1 doi: 10.1111/j.1466-822X.2004.00121.x – start-page: 67 volume-title: Wildlife in a changing world: an analysis of the 2008 IUCN Red List of Threatened Species year: 2009 ident: e_1_2_6_13_1 – ident: e_1_2_6_10_1 doi: 10.1126/science.329.5988.140-a – volume-title: Ancient lakes: biodiversity, ecology and evolution year: 2000 ident: e_1_2_6_45_1 – ident: e_1_2_6_9_1 doi: 10.2307/2532039 – ident: e_1_2_6_49_1 doi: 10.1126/science.1103538 – ident: e_1_2_6_30_1 doi: 10.1016/j.biocon.2012.01.016 – ident: e_1_2_6_2_1 doi: 10.1641/B580507 – ident: e_1_2_6_46_1 doi: 10.1111/j.1523-1739.2008.00937.x – ident: e_1_2_6_38_1 doi: 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E – ident: e_1_2_6_44_1 doi: 10.1098/rstb.2004.1595 – volume-title: The diversity of life in African freshwaters: underwater, under threat year: 2011 ident: e_1_2_6_18_1 – ident: e_1_2_6_34_1 doi: 10.1126/science.1072779 – ident: e_1_2_6_3_1 doi: 10.1111/j.1755-263X.2008.00009.x – ident: e_1_2_6_50_1 doi: 10.1111/j.1466-8238.2011.00749.x – ident: e_1_2_6_4_1 doi: 10.1007/s10750-007-9246-3 – ident: e_1_2_6_7_1 doi: 10.1038/nature11148 – volume-title: COP 10 decision X/2. Strategic plan for biodiversity 2011–2020 year: 2010 ident: e_1_2_6_15_1 – volume-title: Species by family/subfamily in the Catalog of Fishes year: 2012 ident: e_1_2_6_22_1 – ident: e_1_2_6_31_1 doi: 10.1111/j.1461-0248.2005.00726.x – volume-title: IUCN Red List of threatened species year: 2012 ident: e_1_2_6_32_1 – ident: e_1_2_6_25_1 doi: 10.1038/nature05237 – ident: e_1_2_6_40_1 doi: 10.1899/08-118.1 – ident: e_1_2_6_52_1 doi: 10.1111/j.0906-7590.2003.03397.x – ident: e_1_2_6_6_1 doi: 10.1111/j.1466-8238.2011.00673.x – ident: e_1_2_6_39_1 doi: 10.1371/journal.pbio.0040208 – volume-title: Spineless: status and trends of the world's invertebrates year: 2012 ident: e_1_2_6_14_1 – ident: e_1_2_6_16_1 doi: 10.1016/j.biocon.2009.02.038 – ident: e_1_2_6_12_1 doi: 10.1111/j.1523-1739.2008.01117.x – volume-title: R: a language and environment for statistical computing year: 2012 ident: e_1_2_6_41_1 – reference: 17148246 - Proc Biol Sci. 2007 Jan 22;274(1607):165-74 – reference: 12202829 - Science. 2002 Aug 30;297(5586):1548-51 – reference: 16336747 - Biol Rev Camb Philos Soc. 2006 May;81(2):163-82 – reference: 15814353 - Philos Trans R Soc Lond B Biol Sci. 2005 Feb 28;360(1454):397-413 – reference: 11988573 - Science. 2002 May 3;296(5569):904-7 – reference: 15486254 - Science. 2004 Dec 3;306(5702):1783-6 – reference: 16774453 - PLoS Biol. 2006 Jul;4(7):e208 – reference: 9595616 - Stat Med. 1998 Apr 30;17(8):857-72 – reference: 17686977 - Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13384-9 – reference: 19040654 - Conserv Biol. 2009 Apr;23(2):317-27 – reference: 17080090 - Nature. 2006 Nov 2;444(7115):93-6 – reference: 23173605 - J Anim Ecol. 2013 Mar;82(2):365-76 – reference: 18847444 - Conserv Biol. 2008 Dec;22(6):1424-42 – reference: 18544093 - Conserv Biol. 2008 Aug;22(4):897-911 – reference: 18845749 - Science. 2008 Oct 10;322(5899):225-30 – reference: 20616248 - Science. 2010 Jul 9;329(5988):140; author reply 141-2 – reference: 19515666 - Proc Biol Sci. 2009 Sep 7;276(1670):3063-70 – reference: 22678280 - Nature. 2012 Jun 06;486(7401):59-67 – reference: 2720048 - Biometrics. 1989 Mar;45(1):123-34 – reference: 20882010 - Nature. 2010 Sep 30;467(7315):555-61 – reference: 20978281 - Science. 2010 Dec 10;330(6010):1503-9 |
| SSID | ssj0005456 |
| Score | 2.5964315 |
| Snippet | AIM: Global‐scale studies are required to identify broad‐scale patterns in the distributions of species, to evaluate the processes that determine diversity and... Aim Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and... Aim Global‐scale studies are required to identify broad‐scale patterns in the distributions of species, to evaluate the processes that determine diversity and... Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to... |
| SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley jstor istex fao |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 40 |
| SubjectTerms | Amphibians Animal and plant ecology Animal, plant and microbial ecology Biodiversity Biodiversity conservation biogeography Biological and medical sciences Cambaridae Congruence conservation planning crabs crayfish Crustacea Decapoda decapods diversity metric ecosystems Extinct species extinction fish Fresh water Fresh water ecosystems Freshwater Freshwater organisms Fundamental and applied biological sciences. Psychology General aspects geographical range geographical variation interspecific variation Invertebrates mammals planning reptiles Research Papers risk species differences Species diversity species richness Synecology Taxa Threatened species Wildlife conservation |
| Title | Global patterns of freshwater species diversity, threat and endemism |
| URI | https://api.istex.fr/ark:/67375/WNG-V2S8Q8MM-W/fulltext.pdf https://www.jstor.org/stable/24034434 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12096 https://www.ncbi.nlm.nih.gov/pubmed/26430385 https://www.proquest.com/docview/1464613654 https://www.proquest.com/docview/1468351857 https://www.proquest.com/docview/1859702256 https://www.proquest.com/docview/1999921746 https://pubmed.ncbi.nlm.nih.gov/PMC4579866 |
| Volume | 23 |
| WOSCitedRecordID | wos000327608500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1466-8238 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005456 issn: 1466-822X databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF71ARIXHoVQQ4kWhFAPGCX2PsUJaFIObVQooblZu2u7qQCnilMe_56Z9SONKBUSlyjKfrac2dnZmfXMN4Q87xuIGlguQ8fTLGRcq9Dy2IaZ5MJxrASt2PUP5GikJhN9tEZeN7UwFT9Ee-CGK8Pba1zgxpaXFvlpZl9h4adYJ5v9fqywb0PEjpb5HYzXpUUihF1wUtMKYRpPe-nKZrSemxm4qCjdn012IqZKmhKklVdtLq7yQ_9Mp7zs5vp9anjnv_7hXXK7dk_pm0qf7pG1rNgiNwee2vrXFukMlnVxAKsNQ3mf7FW9A-i5p-ssSjrLaQ6R_PQH-LJzivWcEJLTtMkCeUkXU3RXqSlSiqfwoG7fHpDxcPDp3fuwbtAQOqG0CLmOcq0iY8FtycGC9w3P456zce5Sy13kFAS9KfwmrdOc5dhOBjTDIYmczKSJO2SjmBXZNqHSCiVsiv0sYwbKoqVjGedWpCkS0uiA7DYzlbiavRybaHxNmigGpJV4aQXkWQs9ryg7rgJtw3Qn5hRMaTI-jjDQRP8WHi0gL7wOtBeb-RdMf5M8ORntJ5-jY_VBHR4mJwHpeCVpgchtyBjeobuiNUuA6knNewDYadQoqW1GiUEYE5h1CMNP22EQP77CMUU2u_AYcJmRv-sajIIgEVwzLq7BQFygMRoFzMNKe5cPCU4qvi8OiFzR6xaAjOSrI8XZ1DOTMy61EnDPXa_Xfxd_sj946788-nfoY3ILp6k6_9ohG4v5RfaE3HDfF2flvOsXP3zKieqSzb2Pw_HBb-f2Wm8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEB61BQQvHIVQQykGIdQHjFJ7T4kXjrRFJFFRr7yt7LXdVIBTxSnHv2dmfaQRpULiLcqOLXv229mZ9cw3AC-2YowaWC4Dy9MsYFyrIOFREmSSC8upErRi1-_L4VCNRnpvCd40tTAVP0R74EYrw9lrWuB0IH1hlZ9kyWuq_BTLcI3hLkMoD9nePMGD8bq2SAS4DY5qXiHK42kvXdiNlvN4gj4qqfdnk55IuZJxierKqz4Xlzmif-ZTXvRz3Ua1fef_XvEu3K4dVP9thah7sJQVq3Cj58itf61CpzevjEOx2jSU9-FD1T3AP3OEnUXpT3I_x1h-_AO92alPFZ0YlPtpkwfyyp-NyWH14yL16RweAfftARxu9w7e7wZ1i4bACqVFwHWYaxXGCTouOdrwrZjnUdcmUW7ThNvQKgx7U_xPJlZzllNDGcSGJRo5mck46sBKMSmyNfBlIpRIUupoGTGEi5aWZZwnIk2JkkZ7sNlMlbE1fzm10fhqmjgGtWWctjx43oqeVaQdlwmt4Xyb-ASNqTncDynUJA8XH82Dlw4E7cXx9AslwElujoc75ijcV5_VYGCOPeg4lLSCxG7IGN1hYwE2cwHVlZp3UWC9wZGprUZJYRgCORIch5-1w6h--ogTF9nk3Mmg00wMXlfIKAwT0Tnj4goZjAw0xaMo87CC7_wh0U2lL8YeyAVgtwLESb44UpyOHTc541IrgffcdMD-u_rNTu-d-_Ho30Wfws3dg0Hf9D8OPz2GWzRl1WnYOqzMpufZE7huv89Oy-mGswS_AXimW9I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB61KSAuPAqhgVIMQqgHjNJknxIXIElBpFGhhOa2stfepgKcKEl5_Htm1o80olRI3KLsZ8uenZ2dWc98A_B0L8KogTkZWp6kIeNahTFvx2EqubCcKkFzdv2-HAzUaKQP1-BlWQuT80NUB260Mry9pgWeThN3bpWfpPELqvwU67DBqIlMDTY6H3vD_jLFg_GiukiEuBGOCmYhyuSpLl7Zj9ZdNEEvlQT8s0xQpGzJaI4Cc3mni4tc0T8zKs97un6r6t38v5e8BTcKFzV4levUbVhLs0242vX01r82od5d1sYhrDAO8zvQyfsHBFNP2ZnNg4kLHEbz4x_oz84CqunEsDxIykyQ58FiTC5rEGVJQCfxqHLf7sKw1_305m1YNGkIrVBahFy3nFatKEbXxaEV34u4azdt3HY2ibltWYWBb4L_ydhqzhy1lEHtsEQkJ1MZtetQyyZZugWBjIUScUI9LdsMFUZLy1LOY5EkREqjG7BbTpWxBYM5NdL4aspIBqVlvLQa8KSCTnPajotAWzjfJjpBc2qGRy0KNsnHxUdrwDOvBNXF0ewLpcBJbo4H--Zz60h9UAcH5rgBda8lFZD4DRmjO-ysqM0SoJpS8yYCtks9MoXdmFMgxgRlHuLw42oYxU-fcaIsnZx5DLrNxOF1CUZhoIjuGReXYDA20BSRIuZerr7Lh0RHlb4ZN0CuKHYFIFby1ZHsdOzZyRmXWgm8565X7L-L3-x3X_sf9_8d-giuHXZ6pv9u8P4BXKcZy4_DtqG2mJ2lD-GK_b44nc92ClPwG81UXOg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+patterns+of+freshwater+species+diversity%2C+threat+and+endemism&rft.jtitle=Global+ecology+and+biogeography&rft.au=Collen%2C+Ben&rft.au=Whitton%2C+Felix&rft.au=Dyer%2C+Ellie+E.&rft.au=Baillie%2C+Jonathan+E.+M.&rft.date=2014-01-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=23&rft.issue=1&rft.spage=40&rft.epage=51&rft_id=info:doi/10.1111%2Fgeb.12096&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_geb_12096 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |