Global patterns of freshwater species diversity, threat and endemism

AIM: Global‐scale studies are required to identify broad‐scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad‐scale patterns of...

Full description

Saved in:
Bibliographic Details
Published in:Global ecology and biogeography Vol. 23; no. 1; pp. 40 - 51
Main Authors: Collen, Ben, Whitton, Felix, Dyer, Ellie E, Baillie, Jonathan E. M, Cumberlidge, Neil, Darwall, William R. T, Pollock, Caroline, Richman, Nadia I, Soulsby, Anne‐Marie, Böhm, Monika
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.01.2014
John Wiley & Sons Ltd
Blackwell
Wiley Subscription Services, Inc
Subjects:
ISSN:1466-822X, 1466-8238, 1466-822X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract AIM: Global‐scale studies are required to identify broad‐scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad‐scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. LOCATION: Global. METHODS: We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°. RESULTS: We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. MAIN CONCLUSIONS: We demonstrate that broad‐scale patterns of species richness, threatened‐species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water.
AbstractList AIM: Global‐scale studies are required to identify broad‐scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad‐scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. LOCATION: Global. METHODS: We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°. RESULTS: We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. MAIN CONCLUSIONS: We demonstrate that broad‐scale patterns of species richness, threatened‐species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water.
Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species.AIMGlobal-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species.Global.LOCATIONGlobal.We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°.METHODSWe compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°.We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts.RESULTSWe showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts.We demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water.MAIN CONCLUSIONSWe demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water.
Aim Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. Location Global. Methods We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°. Results We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. Main conclusions We demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water. [PUBLICATION ABSTRACT]
Aim Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. Location Global. Methods We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1 degree . Results We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. Main conclusions We demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water.
Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. Global. We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°. We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. We demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water.
Aim Global‐scale studies are required to identify broad‐scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad‐scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. Location Global. Methods We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°. Results We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. Main conclusions We demonstrate that broad‐scale patterns of species richness, threatened‐species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water.
Author Whitton, Felix
Richman, Nadia I.
Collen, Ben
Pollock, Caroline
Soulsby, Anne-Marie
Baillie, Jonathan E. M.
Dyer, Ellie E.
Böhm, Monika
Darwall, William R. T.
Cumberlidge, Neil
Author_xml – sequence: 1
  fullname: Collen, Ben
– sequence: 2
  fullname: Whitton, Felix
– sequence: 3
  fullname: Dyer, Ellie E
– sequence: 4
  fullname: Baillie, Jonathan E. M
– sequence: 5
  fullname: Cumberlidge, Neil
– sequence: 6
  fullname: Darwall, William R. T
– sequence: 7
  fullname: Pollock, Caroline
– sequence: 8
  fullname: Richman, Nadia I
– sequence: 9
  fullname: Soulsby, Anne‐Marie
– sequence: 10
  fullname: Böhm, Monika
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28079504$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/26430385$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9v0zAUxSM0xLbCAx8AiISQQKKb_9t5QYIxCtIGQmOMN8tx7NYljYvtbvTb45K2gwmk-cWJ7--cXN-c_WKn850piocQHMC8DsemPoAIVOxOsQcJY0OBsNjZPqNvu8V-jFMAACWU3St2ESMYYEH3irej1teqLecqJRO6WHpb2mDi5Erl9zLOjXYmlo27NCG6tHxZpkkwKpWqa0rTNWbm4ux-cdeqNpoH631QnL87_nL0fnjyafTh6PXJUDNRsSGtkK0EUjVj2BqloaIWA11jq5uaaqQFQLzJZ7zWFSWWQkoJIBpiArnhCg-KV73vfFHPTKNNl4Jq5Ty4mQpL6ZWTf1c6N5FjfykJ5ZXIXx0Uz9cGwf9YmJhkbl-btlWd8YsoYZUXgpzcAhW04gAheguUMIFpFvCMPr2BTv0idHloK4owiBklmXr85z23F9z8tgw8WwMqatXaoDrt4jUnAK8oWBkd9pwOPsZgrNQuqeT8ajyulRDIVYBkDpD8HaCseHFDsTH9F7t2v3KtWf4flKPjNxvFo14xjcmH634JwITgVb_Dvu5iMj-3dRW-S8Yxp_Li40h-RWfiszg9lReZf9LzVnmpxiHP4PwMAUhy1AHJucG_AGUY9JM
CODEN GEBIFS
CitedBy_id crossref_primary_10_1016_j_scitotenv_2016_01_199
crossref_primary_10_1093_zoolinnean_zlae117
crossref_primary_10_1139_cjfas_2019_0105
crossref_primary_10_3389_frwa_2021_662765
crossref_primary_10_1038_s41598_020_65883_4
crossref_primary_10_15446_caldasia_v44n1_84798
crossref_primary_10_1016_j_scitotenv_2019_134364
crossref_primary_10_1111_ecog_03711
crossref_primary_10_1098_rsos_250472
crossref_primary_10_1016_j_biocon_2018_05_019
crossref_primary_10_2112_JCOASTRES_D_19_00081_1
crossref_primary_10_1007_s10980_025_02148_3
crossref_primary_10_1016_j_scitotenv_2017_02_031
crossref_primary_10_1111_ddi_13808
crossref_primary_10_1002_wat2_1142
crossref_primary_10_1111_eva_13387
crossref_primary_10_1007_s10750_023_05440_y
crossref_primary_10_1016_j_ecolind_2019_105772
crossref_primary_10_1111_gcb_14753
crossref_primary_10_1016_j_gloenvcha_2024_102949
crossref_primary_10_1093_jcbiol_ruad059
crossref_primary_10_1007_s11160_019_09576_w
crossref_primary_10_1061__ASCE_WR_1943_5452_0001212
crossref_primary_10_1002_ece3_10970
crossref_primary_10_7717_peerj_8060
crossref_primary_10_1038_s41562_020_01039_8
crossref_primary_10_1002_aqc_3058
crossref_primary_10_3389_fmars_2022_1077997
crossref_primary_10_1139_er_2017_0024
crossref_primary_10_1016_j_scitotenv_2018_04_056
crossref_primary_10_1186_s13717_024_00492_x
crossref_primary_10_1016_j_fishres_2015_01_004
crossref_primary_10_1111_fwb_12631
crossref_primary_10_1007_s10452_021_09880_3
crossref_primary_10_1093_conphys_coz092
crossref_primary_10_1111_jbi_12480
crossref_primary_10_3389_fenvs_2022_1022776
crossref_primary_10_1007_s10750_016_2743_5
crossref_primary_10_1177_1940082918779069
crossref_primary_10_1111_gcb_16723
crossref_primary_10_3390_ani12131626
crossref_primary_10_1002_aqc_3282
crossref_primary_10_1093_jcbiol_ruab088
crossref_primary_10_1111_ddi_13717
crossref_primary_10_1371_journal_pone_0210496
crossref_primary_10_1016_j_genrep_2023_101761
crossref_primary_10_1111_azo_12408
crossref_primary_10_1002_tafs_10330
crossref_primary_10_3897_zse_90_8688
crossref_primary_10_1016_j_ecolind_2020_107079
crossref_primary_10_4081_jlimnol_2021_1999
crossref_primary_10_1007_s10641_021_01175_8
crossref_primary_10_1002_tafs_10458
crossref_primary_10_4102_koedoe_v59i1_1375
crossref_primary_10_1016_j_scitotenv_2017_08_112
crossref_primary_10_3897_biss_3_37077
crossref_primary_10_1038_s41598_022_06978_y
crossref_primary_10_1111_jfb_14243
crossref_primary_10_1002_lno_12061
crossref_primary_10_1016_j_biocon_2025_111262
crossref_primary_10_1007_s42974_023_00141_x
crossref_primary_10_1002_aqc_3274
crossref_primary_10_1002_aqc_4000
crossref_primary_10_1890_130324
crossref_primary_10_3897_zookeys_1065_71687
crossref_primary_10_2478_cjf_2023_0004
crossref_primary_10_1111_fwb_13865
crossref_primary_10_1007_s00550_025_00573_1
crossref_primary_10_1111_fwb_12774
crossref_primary_10_1016_j_scitotenv_2016_09_097
crossref_primary_10_1016_j_limno_2020_125844
crossref_primary_10_1111_gcb_14961
crossref_primary_10_1088_1748_9326_adc1e4
crossref_primary_10_3897_zookeys_1110_79615
crossref_primary_10_1038_s41598_020_69579_7
crossref_primary_10_1038_s41598_023_36569_4
crossref_primary_10_1126_science_aau5573
crossref_primary_10_1007_s13280_020_01415_8
crossref_primary_10_1016_j_envsci_2023_05_020
crossref_primary_10_1111_2041_210X_70152
crossref_primary_10_1371_journal_pone_0202695
crossref_primary_10_3390_d14010016
crossref_primary_10_5735_086_058_0409
crossref_primary_10_1080_20442041_2019_1645548
crossref_primary_10_1016_j_scitotenv_2024_178204
crossref_primary_10_1016_j_biocon_2023_109931
crossref_primary_10_1093_icb_icae023
crossref_primary_10_1016_j_biocon_2021_109090
crossref_primary_10_1111_fwb_12796
crossref_primary_10_3390_w14071112
crossref_primary_10_3390_w14223622
crossref_primary_10_1111_ddi_12780
crossref_primary_10_2112_JCOASTRES_D_22_00085_1
crossref_primary_10_1002_wat2_70003
crossref_primary_10_1002_ece3_6514
crossref_primary_10_1002_ece3_10661
crossref_primary_10_1111_jbi_14605
crossref_primary_10_1002_aqc_3088
crossref_primary_10_1111_jbi_13766
crossref_primary_10_1002_aqc_4057
crossref_primary_10_1139_cjfas_2015_0450
crossref_primary_10_1016_j_biocon_2025_111337
crossref_primary_10_1016_j_scitotenv_2021_149105
crossref_primary_10_3390_su8090875
crossref_primary_10_1080_02705060_2022_2144956
crossref_primary_10_2305_THYC4522
crossref_primary_10_1111_conl_13081
crossref_primary_10_3390_w14193121
crossref_primary_10_1007_s42965_021_00192_z
crossref_primary_10_1111_gcb_70183
crossref_primary_10_1111_gcb_13760
crossref_primary_10_1016_j_biocon_2016_07_012
crossref_primary_10_22201_ib_20078706e_2018_0_2177
crossref_primary_10_1007_s10750_017_3105_7
crossref_primary_10_2989_16085914_2024_2357292
crossref_primary_10_1111_een_13216
crossref_primary_10_3897_natureconservation_43_58997
crossref_primary_10_1002_rra_4361
crossref_primary_10_1016_j_ecolind_2022_108559
crossref_primary_10_3390_w12010260
crossref_primary_10_1002_aqc_2490
crossref_primary_10_1016_j_marenvres_2020_104936
crossref_primary_10_3390_w15040632
crossref_primary_10_1007_s10750_015_2354_6
crossref_primary_10_1002_aqc_3108
crossref_primary_10_1080_00222933_2020_1829724
crossref_primary_10_3390_biology14091191
crossref_primary_10_1002_ece3_9493
crossref_primary_10_1016_j_heliyon_2025_e43826
crossref_primary_10_1111_faf_12380
crossref_primary_10_1111_ddi_12218
crossref_primary_10_1002_ece3_71397
crossref_primary_10_1016_j_biocon_2022_109637
crossref_primary_10_1007_s10201_022_00697_z
crossref_primary_10_1002_aqc_3336
crossref_primary_10_3390_plants8100424
crossref_primary_10_1111_fwb_13322
crossref_primary_10_1139_er_2023_0034
crossref_primary_10_1016_j_scitotenv_2024_174416
crossref_primary_10_1002_wat2_1641
crossref_primary_10_1007_s10531_021_02146_2
crossref_primary_10_1016_j_biocon_2024_110839
crossref_primary_10_1093_jcbiol_ruab002
crossref_primary_10_1093_jhered_esz072
crossref_primary_10_1002_aqc_2478
crossref_primary_10_1002_aqc_3449
crossref_primary_10_1111_fwb_13210
crossref_primary_10_1111_gcb_16439
crossref_primary_10_1007_s11252_019_00859_5
crossref_primary_10_1007_s11273_014_9356_4
crossref_primary_10_1016_j_ecolind_2022_109434
crossref_primary_10_1111_fme_12494
crossref_primary_10_1111_1755_0998_13235
crossref_primary_10_1080_20442041_2022_2152247
crossref_primary_10_1016_j_jglr_2019_08_002
crossref_primary_10_1111_raq_12531
crossref_primary_10_22201_ib_20078706e_2021_92_3433
crossref_primary_10_3897_BDJ_10_e85992
crossref_primary_10_1590_S2179_975X1115
crossref_primary_10_1007_s10750_021_04771_y
crossref_primary_10_1002_ecs2_4326
crossref_primary_10_1111_fwb_13466
crossref_primary_10_1111_fwb_13583
crossref_primary_10_1111_cobi_13320
crossref_primary_10_1007_s10750_022_04845_5
crossref_primary_10_3390_rs9030211
crossref_primary_10_1038_srep19080
crossref_primary_10_1016_j_jhydrol_2019_03_035
crossref_primary_10_3390_microbiolres15020056
crossref_primary_10_1016_j_ecoinf_2024_102575
crossref_primary_10_1051_kmae_2025002
crossref_primary_10_1111_jbi_13816
crossref_primary_10_1139_cjfas_2020_0372
crossref_primary_10_7717_peerj_9764
crossref_primary_10_3724_ahr_2095_0357_2022_0046
crossref_primary_10_1007_s00267_015_0472_6
crossref_primary_10_1111_fwb_13112
crossref_primary_10_1007_s10841_022_00397_0
crossref_primary_10_1016_j_scitotenv_2022_158958
crossref_primary_10_1007_s10646_018_02011_z
crossref_primary_10_1080_0269249X_2019_1574243
crossref_primary_10_3390_w12061668
crossref_primary_10_1111_gcb_14556
crossref_primary_10_1016_j_biocon_2024_110929
crossref_primary_10_1111_cobi_13574
crossref_primary_10_1139_facets_2023_0217
crossref_primary_10_1016_j_oneear_2025_101416
crossref_primary_10_1016_j_biocon_2020_108903
crossref_primary_10_1021_acs_est_5c03559
crossref_primary_10_1098_rsos_200172
crossref_primary_10_1002_aqc_4103
crossref_primary_10_1016_j_ecoleng_2024_107237
crossref_primary_10_1111_fwb_13128
crossref_primary_10_3390_fishes8100486
crossref_primary_10_1002_lol2_10123
crossref_primary_10_3390_d16050269
crossref_primary_10_1016_j_biocon_2018_04_033
crossref_primary_10_1016_j_scitotenv_2019_04_392
crossref_primary_10_1139_cjfas_2020_0474
crossref_primary_10_1111_jvs_13097
crossref_primary_10_1007_s10750_019_04147_3
crossref_primary_10_1007_s10522_021_09931_0
crossref_primary_10_1007_s10661_024_12630_1
crossref_primary_10_1655_0018_0831_76_4_366
crossref_primary_10_1016_j_biocon_2022_109561
crossref_primary_10_1371_journal_pone_0259921
crossref_primary_10_1080_00222933_2022_2078241
crossref_primary_10_1111_fwb_14107
crossref_primary_10_3390_su17114922
crossref_primary_10_1007_s00267_016_0684_4
crossref_primary_10_1016_j_ympev_2022_107443
crossref_primary_10_1371_journal_pone_0308806
crossref_primary_10_1007_s11160_020_09600_4
crossref_primary_10_1007_s10750_024_05572_9
crossref_primary_10_1007_s10641_019_00871_w
crossref_primary_10_1007_s10452_021_09884_z
crossref_primary_10_1590_0001_3765202220210646
crossref_primary_10_3897_zookeys_618_9212
crossref_primary_10_1002_aqc_3596
crossref_primary_10_1007_s00531_014_1109_3
crossref_primary_10_1139_cjfas_2020_0480
crossref_primary_10_1016_j_biocon_2019_05_003
crossref_primary_10_1016_j_biocon_2016_09_005
crossref_primary_10_1016_j_ympev_2023_107754
crossref_primary_10_3390_d6030597
crossref_primary_10_3389_fevo_2019_00041
crossref_primary_10_1111_ddi_12271
crossref_primary_10_1051_kmae_2019046
crossref_primary_10_3389_fenvs_2023_1122464
crossref_primary_10_1111_fwb_70062
crossref_primary_10_1016_j_chemosphere_2022_133879
crossref_primary_10_1016_j_scitotenv_2017_06_173
crossref_primary_10_1016_j_biocon_2019_03_019
crossref_primary_10_1371_journal_pone_0321571
crossref_primary_10_1016_j_ecolind_2016_01_019
crossref_primary_10_1038_s41559_017_0258_8
crossref_primary_10_1002_aqc_3741
crossref_primary_10_1111_ecog_05697
crossref_primary_10_1111_fwb_13395
crossref_primary_10_1007_s10750_025_05964_5
crossref_primary_10_1177_0309133318765084
crossref_primary_10_1002_aqc_2653
crossref_primary_10_3389_fenvs_2018_00048
crossref_primary_10_1002_aqc_2652
crossref_primary_10_1016_j_limno_2024_126187
crossref_primary_10_1126_science_1246752
crossref_primary_10_1016_j_envres_2024_119607
crossref_primary_10_1016_j_scitotenv_2024_174824
crossref_primary_10_3390_hydrobiology4020009
crossref_primary_10_1002_aqc_3627
crossref_primary_10_21926_aeer_2303042
crossref_primary_10_1007_s10750_014_1930_5
crossref_primary_10_1111_ddi_13269
crossref_primary_10_1002_edn3_70147
crossref_primary_10_1002_ece3_71551
crossref_primary_10_3389_fevo_2022_1087866
crossref_primary_10_1007_s10980_025_02197_8
crossref_primary_10_1111_gcb_15282
crossref_primary_10_1007_s11356_022_24288_8
crossref_primary_10_1016_j_geosus_2024_100252
crossref_primary_10_1111_cobi_13811
crossref_primary_10_1111_ddi_13142
crossref_primary_10_1002_ecs2_1355
crossref_primary_10_1163_1937240X_00002478
crossref_primary_10_1111_1752_1688_13130
crossref_primary_10_3389_fgene_2018_00295
crossref_primary_10_1002_eap_2534
crossref_primary_10_3390_fishes4040049
crossref_primary_10_1051_kmae_2021027
crossref_primary_10_1111_aen_12381
crossref_primary_10_1016_j_marenvres_2025_107312
crossref_primary_10_1007_s10641_018_0754_y
crossref_primary_10_1111_acv_12422
crossref_primary_10_1016_j_ympev_2022_107645
crossref_primary_10_1038_s41598_025_96955_y
crossref_primary_10_1002_aqc_2638
crossref_primary_10_1111_cobi_12813
crossref_primary_10_1111_mec_16659
crossref_primary_10_1111_geb_13648
crossref_primary_10_1051_kmae_2022006
crossref_primary_10_1111_emr_12562
crossref_primary_10_3390_w14192995
crossref_primary_10_1016_j_ecolind_2018_12_001
crossref_primary_10_1146_annurev_ecolsys_112414_054142
crossref_primary_10_1016_j_scitotenv_2024_178182
crossref_primary_10_1371_journal_pone_0130710
crossref_primary_10_1002_aqc_3719
crossref_primary_10_1002_ecs2_2786
crossref_primary_10_1111_cobi_13914
crossref_primary_10_1002_aqc_3956
crossref_primary_10_1073_pnas_2214334120
crossref_primary_10_3389_fevo_2021_610325
crossref_primary_10_3897_zoologia_37_e47223
crossref_primary_10_1093_mollus_eyaa034
crossref_primary_10_1080_20442041_2024_2321088
crossref_primary_10_1002_aqc_3785
crossref_primary_10_1002_rra_4399
crossref_primary_10_1111_ecog_05374
crossref_primary_10_1139_er_2024_0139
crossref_primary_10_1002_aqc_3540
crossref_primary_10_1002_edn3_53
crossref_primary_10_37055_nsz_129503
crossref_primary_10_1002_aqc_3309
crossref_primary_10_1007_s10750_020_04385_w
crossref_primary_10_1016_j_baae_2021_11_007
crossref_primary_10_1111_gcb_16462
crossref_primary_10_1016_j_jenvman_2022_115180
crossref_primary_10_3389_fmars_2022_829285
crossref_primary_10_1021_acs_est_5c03154
crossref_primary_10_3389_fevo_2020_592404
crossref_primary_10_1371_journal_pone_0231683
crossref_primary_10_1002_aqc_2681
crossref_primary_10_1007_s00267_019_01160_z
crossref_primary_10_1016_j_ecoinf_2024_102629
crossref_primary_10_3390_d13050215
crossref_primary_10_1111_icad_12795
crossref_primary_10_1002_edn3_43
crossref_primary_10_1080_01426397_2020_1808959
crossref_primary_10_23818_limn_45_14
crossref_primary_10_2478_jlecol_2020_0009
crossref_primary_10_1111_gcb_13183
crossref_primary_10_1016_j_scitotenv_2022_155774
crossref_primary_10_3390_land11071090
crossref_primary_10_3390_su15119103
crossref_primary_10_3390_su12051879
crossref_primary_10_1038_s43247_023_01195_5
crossref_primary_10_1007_s10750_020_04230_0
crossref_primary_10_1002_iroh_202002039
crossref_primary_10_1007_s10344_022_01577_8
crossref_primary_10_1007_s10750_015_2440_9
crossref_primary_10_1674_0003_0031_185_2_187
crossref_primary_10_1002_ecs2_1660
crossref_primary_10_1016_j_limno_2018_12_001
crossref_primary_10_1007_s10640_021_00569_7
crossref_primary_10_1016_j_watbs_2022_100078
crossref_primary_10_1038_s41437_024_00700_6
crossref_primary_10_1016_j_watbs_2022_100076
crossref_primary_10_1002_aqc_3511
crossref_primary_10_1111_1365_2664_12295
crossref_primary_10_1098_rsos_150033
crossref_primary_10_1007_s10530_024_03297_3
crossref_primary_10_1111_csp2_427
crossref_primary_10_1016_j_ecolind_2025_114129
crossref_primary_10_1016_j_jnc_2018_08_007
crossref_primary_10_3390_rs16050916
crossref_primary_10_1186_s12302_023_00831_3
crossref_primary_10_1111_gcb_12749
crossref_primary_10_1111_fwb_14086
crossref_primary_10_1002_rra_3820
crossref_primary_10_1007_s10531_016_1148_0
crossref_primary_10_1111_fme_12606
crossref_primary_10_1016_j_ecolind_2023_110238
crossref_primary_10_1080_15627020_2021_1885309
crossref_primary_10_1111_brv_13137
crossref_primary_10_1007_s10750_021_04644_4
crossref_primary_10_1007_s10750_023_05152_3
crossref_primary_10_3390_land12061250
crossref_primary_10_3390_biology10070680
crossref_primary_10_1111_1365_2656_12980
crossref_primary_10_1007_s10592_024_01628_4
crossref_primary_10_1016_j_biocon_2023_110233
crossref_primary_10_1016_j_scitotenv_2024_171849
crossref_primary_10_1016_j_ecolind_2024_111857
crossref_primary_10_1002_aqc_2924
crossref_primary_10_1674_0003_0031_182_2_191
crossref_primary_10_5194_bg_18_6567_2021
crossref_primary_10_1111_cobi_14036
crossref_primary_10_1007_s10531_019_01865_x
crossref_primary_10_1007_s10641_024_01568_5
crossref_primary_10_1002_ece3_4017
crossref_primary_10_1111_fwb_12917
crossref_primary_10_1134_S0032945224700012
crossref_primary_10_1007_s11625_023_01341_0
crossref_primary_10_3389_fevo_2023_1215471
crossref_primary_10_1038_s41467_022_30866_8
crossref_primary_10_1002_fee_2550
crossref_primary_10_1080_10106049_2022_2109759
crossref_primary_10_1007_s10661_024_13071_6
crossref_primary_10_1007_s10750_017_3176_5
crossref_primary_10_1016_j_limno_2022_126005
crossref_primary_10_1111_cobi_14168
crossref_primary_10_1007_s11160_022_09710_1
crossref_primary_10_48156_1388_2024_1917262
crossref_primary_10_1002_ece3_7658
crossref_primary_10_1007_s10750_014_1910_9
crossref_primary_10_1111_ddi_12913
crossref_primary_10_3390_su142416677
crossref_primary_10_3390_fishes8120571
crossref_primary_10_1371_journal_pone_0283377
crossref_primary_10_1007_s10750_023_05264_w
crossref_primary_10_3390_plants10061111
crossref_primary_10_1111_geb_12397
crossref_primary_10_1002_edn3_480
crossref_primary_10_1111_geb_70069
crossref_primary_10_1111_brv_12480
crossref_primary_10_1016_j_gecadv_2024_100006
crossref_primary_10_1016_j_scitotenv_2024_172850
crossref_primary_10_1016_j_ecolind_2023_110390
crossref_primary_10_1111_mec_15036
crossref_primary_10_1111_jbi_13019
crossref_primary_10_1016_j_scitotenv_2019_135419
crossref_primary_10_1002_edn3_70062
crossref_primary_10_1088_2515_7620_ad75ec
crossref_primary_10_1002_aqc_2971
crossref_primary_10_1371_journal_pone_0156217
crossref_primary_10_3390_su132011259
crossref_primary_10_1016_j_jenvman_2025_127042
crossref_primary_10_1016_j_ecoinf_2025_103251
crossref_primary_10_1002_ece3_8762
crossref_primary_10_1007_s10661_022_10684_7
crossref_primary_10_1007_s10750_016_2858_8
crossref_primary_10_1111_aec_13137
crossref_primary_10_3390_su122410473
crossref_primary_10_1093_jcbiol_ruae069
crossref_primary_10_1111_jfb_15195
crossref_primary_10_1093_plankt_fbaa002
crossref_primary_10_1002_fee_2361
crossref_primary_10_1111_rec_14026
crossref_primary_10_1146_annurev_environ_121522_045106
crossref_primary_10_1016_j_ejop_2019_03_003
crossref_primary_10_1590_1676_0611_bn_2024_1682
crossref_primary_10_1002_aqc_2965
crossref_primary_10_1002_edn3_9
crossref_primary_10_1016_j_ecolind_2023_110256
crossref_primary_10_3389_fevo_2021_632973
crossref_primary_10_1016_j_scitotenv_2017_10_333
crossref_primary_10_1111_acv_12989
crossref_primary_10_1093_fshmag_vuaf012
crossref_primary_10_3354_aei00481
crossref_primary_10_3389_fevo_2022_817708
crossref_primary_10_1016_j_ecolind_2018_03_090
crossref_primary_10_1051_kmae_2020019
crossref_primary_10_1002_aqc_2958
crossref_primary_10_1111_ddi_12831
crossref_primary_10_1080_03067319_2021_1924160
crossref_primary_10_1111_icad_12809
crossref_primary_10_1038_s41598_021_95385_w
crossref_primary_10_1007_s10750_022_04808_w
crossref_primary_10_1016_j_chemosphere_2018_12_142
crossref_primary_10_3390_d16080468
crossref_primary_10_1007_s00267_023_01927_5
crossref_primary_10_1126_science_aav9242
Cites_doi 10.1126/science.1069349
10.1111/j.1523-1739.2008.01044.x
10.1139/f03-081
10.1016/j.biocon.2012.07.015
10.1111/1365-2656.12018
10.1098/rspb.2009.0656
10.1098/rspb.2006.3700
10.1038/nature09440
10.1016/S1366-7017(99)00008-2
10.2307/1468478
10.1017/S1464793105006950
10.1126/science.1165115
10.1111/j.1466-8238.2011.00660.x
10.1111/j.1755-263X.2011.00202.x
10.1899/08-171.1
10.1016/j.biocon.2010.10.030
10.1126/science.1194442
10.1111/j.1600-0587.2009.06299.x
10.1111/j.1466-822X.2005.00165.x
10.1111/j.1466-822X.2004.00121.x
10.1126/science.329.5988.140-a
10.2307/2532039
10.1126/science.1103538
10.1016/j.biocon.2012.01.016
10.1641/B580507
10.1111/j.1523-1739.2008.00937.x
10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
10.1098/rstb.2004.1595
10.1126/science.1072779
10.1111/j.1755-263X.2008.00009.x
10.1111/j.1466-8238.2011.00749.x
10.1007/s10750-007-9246-3
10.1038/nature11148
10.1111/j.1461-0248.2005.00726.x
10.1038/nature05237
10.1899/08-118.1
10.1111/j.0906-7590.2003.03397.x
10.1111/j.1466-8238.2011.00673.x
10.1371/journal.pbio.0040208
10.1016/j.biocon.2009.02.038
10.1111/j.1523-1739.2008.01117.x
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons Ltd.
2013 The Authors. published by John Wiley & Sons Ltd.
2015 INIST-CNRS
Copyright © 2014 John Wiley © Sons Ltd
2013 The Authors. published by John Wiley & Sons Ltd. 2013
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons Ltd.
– notice: 2013 The Authors. published by John Wiley & Sons Ltd.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 John Wiley © Sons Ltd
– notice: 2013 The Authors. published by John Wiley & Sons Ltd. 2013
DBID FBQ
BSCLL
24P
AAYXX
CITATION
IQODW
NPM
7QG
7SN
7SS
7ST
7U6
C1K
7U1
F1W
H95
L.G
7X8
7S9
L.6
5PM
DOI 10.1111/geb.12096
DatabaseName AGRIS
Istex
Wiley Online Library Open Access
CrossRef
Pascal-Francis
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Risk Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
Risk Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
Entomology Abstracts
Risk Abstracts
PubMed



Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1466-8238
1466-822X
EndPage 51
ExternalDocumentID PMC4579866
3144643301
26430385
28079504
10_1111_geb_12096
GEB12096
24034434
ark_67375_WNG_V2S8Q8MM_W
US201400004134
Genre article
Journal Article
GrantInformation_xml – fundername: Rufford Foundation
– fundername: European Commission‐funded BIOFRESH project
  funderid: FP7‐ENV‐2008
GroupedDBID -~X
.3N
.GA
.Y3
10A
1OC
29I
31~
33P
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABHUG
ABLJU
ABPLY
ABPPZ
ABPTK
ABPVW
ABTLG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AIRJO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
BDRZF
BFHJK
BMNLL
BMXJE
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DWIUU
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
FBQ
FEDTE
G-S
GODZA
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
HZI
IHE
IX1
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
P2W
P4D
Q11
QB0
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
VQP
W99
WIH
WIK
WQJ
WRC
WXSBR
XG1
ZZTAW
~KM
0R~
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABSQW
ABXSQ
ACHIC
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
ALVPJ
AQVQM
BSCLL
HGLYW
IPSME
OIG
24P
AAYXX
CITATION
O8X
IQODW
NPM
7QG
7SN
7SS
7ST
7U6
C1K
7U1
F1W
H95
L.G
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c6896-592f982ab663feac1a5f30cb3fcdb5c2c8027d5f37bc954f5155404c13417e7a3
IEDL.DBID 24P
ISICitedReferencesCount 491
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327608500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1466-822X
IngestDate Tue Nov 04 01:55:01 EST 2025
Fri Jul 11 18:28:31 EDT 2025
Thu Jul 10 19:25:36 EDT 2025
Tue Oct 07 09:40:06 EDT 2025
Sun Nov 09 08:08:01 EST 2025
Thu Apr 03 07:05:42 EDT 2025
Wed Apr 02 07:14:57 EDT 2025
Tue Nov 18 21:43:04 EST 2025
Sat Nov 29 03:01:07 EST 2025
Wed Jan 22 16:32:34 EST 2025
Thu Jul 03 22:43:49 EDT 2025
Tue Nov 11 03:34:44 EST 2025
Wed Dec 27 19:16:16 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Endemic species
Congruence
conservation planning
Conservation
Biogeography
Ecology
decapods
diversity metric
Crustacea
Freshwater environment
Species diversity
Geographic distribution
Arthropoda
Metric
Decapoda
Planning
Invertebrata
Distribution range
Species richness
geographical range
species richness
Language English
License Attribution
http://creativecommons.org/licenses/by/3.0
CC BY 4.0
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6896-592f982ab663feac1a5f30cb3fcdb5c2c8027d5f37bc954f5155404c13417e7a3
Notes http://dx.doi.org/10.1111/geb.12096
istex:6A4423CE92AA644E0ABCED79E6FADE8154760B5C
Appendix S1 Reptile and fish species in our analyses of freshwater species.Figure S1 Proportion of freshwater fish species by biogeographical realm.
Rufford Foundation
European Commission-funded BIOFRESH project - No. FP7-ENV-2008
ark:/67375/WNG-V2S8Q8MM-W
ArticleID:GEB12096
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
[Copyright line has been changed since first online publication on July 3, 2013].
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12096
PMID 26430385
PQID 1464613654
PQPubID 1066347
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4579866
proquest_miscellaneous_1999921746
proquest_miscellaneous_1859702256
proquest_miscellaneous_1468351857
proquest_journals_1464613654
pubmed_primary_26430385
pascalfrancis_primary_28079504
crossref_citationtrail_10_1111_geb_12096
crossref_primary_10_1111_geb_12096
wiley_primary_10_1111_geb_12096_GEB12096
jstor_primary_24034434
istex_primary_ark_67375_WNG_V2S8Q8MM_W
fao_agris_US201400004134
PublicationCentury 2000
PublicationDate January 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
– name: Oxford, UK
PublicationTitle Global ecology and biogeography
PublicationTitleAlternate Global Ecology and Biogeography
PublicationYear 2014
Publisher Blackwell Publishing Ltd
John Wiley & Sons Ltd
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
– name: Blackwell
– name: Wiley Subscription Services, Inc
References Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S.E., Sullivan, C.A., Liermann, C.R. & Davies, P.M. (2010) Global threats to human water security and river biodiversity. Nature, 467, 555-561.
Rossiter, N. & Kawanabe, H. (2000) Ancient lakes: biodiversity, ecology and evolution. Academic Press, London, UK.
Heino, J., Muotka, T., Paavola, R. & Paasivirta, L. (2003) Among-taxon congruence in biodiversity patterns: can stream insect diversity be predicted using single taxonomic groups? Canadian Journal of Fisheries and Aquatic Sciences, 60, 1039-1049.
IUCN Species Survival Commission (2012) IUCN Red List categories and criteria. Version 3.1, 2nd edn. IUCN, Gland, Switzerland.
Heino, J., Muotka, T., Paavola, R., Hämäläinen, H. & Koskenniemi, E. (2002) Correspondence between regional delineations and spatial patterns in macroinvertebrate assemblages of boreal headwater streams. Journal of the North American Benthological Society, 21, 397-413.
Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S. & Naeem, S. (2012) Biodiversity loss and its impact on humanity. Nature, 486, 59-67.
Convention on Biological Diversity (2010) COP 10 decision X/2. Strategic plan for biodiversity 2011-2020. Convention on Biological Diversity, Montreal, Canada. Available at: http://www.cbd.int/decision/cop/?id=12268 (accessed 22 May 2013).
Jetz, W. & Rahbek, C. (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548-1551.
Collen, B., Loh, J., Whitmee, S., McRae, L., Amin, R. & Baillie, J.E.M. (2009a) Monitoring change in vertebrate abundance: the Living Planet Index. Conservation Biology, 23, 317-327.
Collen, B., Böhm, M., Kemp, R. & Baillie, J.E.M. (eds) (2012) Spineless: status and trends of the world's invertebrates. Zoological Society of London, London, UK.
Schipper, J., Chanson, J.S., Chiozza, F. et al. (2008) The status of the world's land and aquatic mammals: diversity, threat, and knowledge. Science, 322, 225-230.
McInnes, L., Purvis, A. & Orme, C.D.L. (2009) Where do species' geographic ranges stop and why? Landscape impermeability and the Afrotropical avifauna. Proceedings of the Royal Society B: Biological Sciences, 276, 3063-3070.
R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.r-project.org/ (accessed 22 May 2012).
Tedesco, P.A., Leprieur, F., Hugueny, B., Brosse, S., Dürr, H.H., Beauchard, O., Busson, F. & Oberdorff, T. (2012) Patterns and processes of global riverine fish endemism. Global Ecology and Biogeography, 21, 977-987.
Baillie, J.E.M., Collen, B., Amin, R., Akcakaya, H.R., Butchart, S.H.M., Brummitt, N., Meagher, T.R., Ram, M., Hilton-Taylor, C. & Mace, G. (2008) Towards monitoring global biodiversity. Conservation Letters, 1, 18-26.
Hurlbert, A.H. & Jetz, W. (2007) Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proceedings of the National Academy of Sciences USA, 104, 13384-13389.
Vinson, M.R. & Hawkins, C.P. (2003) Broad-scale geographical patterns in local stream insect genera richness. Ecography, 26, 751-767.
Boyero, L., Pearson, R.G., Dudgeon, D. et al. (2012) Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Global Ecology and Biogeography, 21, 134-141.
Galewski, T., Collen, B., McRae, L., Loh, J., Grillas, P., Gauthier-Clerc, M. & Devictor, V. (2011) Long-term trends in the abundance of Mediterranean wetland vertebrates: from global recovery to localized declines. Biological Conservation, 144, 1392-1399.
World Bank (2011) Gross domestic product 2009. World Bank, Washington, DC. Available at: http://data.worldbank.org/ (accessed 20 May 2011).
Collen, B. & Baillie, J.E.M. (2010) Barometer of life: sampling. Science, 329, 140.
Clifford, P., Richardson, S. & Hermon, D. (1989) Assessing the significance of the correlation between two spatial processes. Biometrics, 45, 123-134.
Whitton, F.J.S., Purvis, A., Orme, C.D.L. & Olalla-Tárraga, M.á. (2012) Understanding global patterns in amphibian geographic range size: does Rapoport rule? Global Ecology and Biogeography, 21, 179-190.
Gleick, P.H. (1998) The human right to water. Water Policy, 1, 487-503.
Cumberlidge, N., Ng, P.K.L., Yeo, D.C.J., Magalhães, C., Campos, M.R., Alvarez, F., Naruse, T., Daniels, S.R., Esser, L.J., Attipoe, F.Y.K., Clotilde-Ba, F.-L., Darwall, W., McIvor, A., Baillie, J.E.M., Collen, B. & Ram, M. (2009) Freshwater crabs and the biodiversity crisis: importance, threats, status, and conservation challenges. Biological Conservaion, 142, 1665-1673.
Salafsky, N., Salzer, D., Stattersfield, A.J., Hilton-Taylor, C., Neugarten, R., Butchart, S.H.M., Collen, B., Cox, N., Master, L.L., O'Connor, S. & Wilkie, D. (2008) A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conservation Biology, 22, 897-911.
Rahbek, C., Gotelli, N.J., Colwell, R.K., Entsminger, G.L., Rangel, T.F.L.V.B. & Graves, G.R. (2007) Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society B: Biological Sciences, 274, 165-174.
Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S.L., Fischman, D.L. & Waller, R.W. (2004) Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783-1786.
Darwall, W.R.T., Holland, R.A., Smith, K.G., Allen, D., Brooks, E.G.E., Katarya, V., Pollock, C.M., Shi, Y., Clausnitzer, V., Cumberlidge, N., Cuttelod, A., Dijkstra, K.-D.B., Diop, M.D., García, N., Seddon, M.B., Skelton, P.H., Snoeks, J., Tweddle, D. & Vié, J.-C. (2011b) Implications of bias in conservation research and investment for freshwater species. Conservation Letters, 4, 474-482.
Böhm, M., Collen, B., Baillie, J.E.M. et al. (2013) The conservation status of the world's reptiles. Biological Conservaion, 157, 372-385.
IUCN (2012) IUCN Red List of threatened species. Version 2012.1. IUCN, Gland, Switzerland. Available at: http://www.iucnredlist.org/ (accessed 5 July 2012).
Strayer, D.L. & Dudgeon, D. (2010) Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society, 29, 344-358.
Newcombe, R.G. (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Statistics in Medicine, 17, 857-872.
Legendre, L. & Legendre, P. (1998) Numerical ecology, 2nd edn. Elsevier Science, Amsterdam.
Balian, E.V., Segers, H., Lévèque, C. & Martens, K. (2008) The Freshwater Animal Diversity Assessment: an overview of the results. Hydrobiologia, 595, 627-637.
Grenyer, R., Orme, C.D.L., Jackson, S.F., Thomas, G.H., Davies, R.G., Davies, T.J., Jones, K.E., Olson, V.A., Ridgely, R.S., Rasmussen, P.C., Ding, T.-S., Bennett, P.M., Blackburn, T.M., Gaston, K.J., Gittleman, J.L. & Owens, I.P.F. (2006) Global distribution and conservation of rare and threatened vertebrates. Nature, 444, 93-96.
Abell, R., Thieme, M.L., Revenga, C. et al. (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58, 403-414.
Hoffmann, M., Hilton-Taylor, C., Angulo, A. et al. (2010) The impact of conservation on the status of the world's vertebrates. Science, 330, 1503-1509.
Diniz-Filho, J.A.F., Bastos, R.P., Rangel, T.F.L.V.B., Bini, L.M., Carvalho, P. & Silva, R.J. (2005) Macroecological correlates and spatial patterns of anuran description dates in the Brazilian cerrado. Global Ecology and Biogeography, 14, 469-477.
Mace, G.M., Collar, N.J., Gaston, K.J., Hilton-Taylor, C., Akçakaya, H.R., Leader-Williams, N., Milner-Gulland, E.J. & Stuart, S.N. (2008) Quantification of extinction risk: IUCN's system for classifying threatened species. Conservation Biology, 22, 1424-1442.
Revenga, C., Campbell, I., Abell, R., de Villers, P. & Bryer, M. (2005) Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 397-413.
Ceballos, G. & Ehrlich, P.R. (2002) Mammal population losses and the extinction crisis. Science, 296, 904-907.
Orme, C.D.L., Davies, R.G., Olson, V.A., Thomas, G.H., Ding, T.-S., Rasmussen, P.C., Ridgely, R.S., Stattersfield, A.J., Bennett, P.M., Owens, I.P.F., Blackburn, T.M. & Gaston, K.J. (2006) Global patterns of geographic range size in birds. PLoS Biology, 4, 1276-1283.
Holland, R.A., Darwall, W.R.T. & Smith, K.G. (2012) Conservation priorities for freshwater biodiversity: the Key Biodiversity Area approach refined and tested for continental Africa. Biological Conservaion, 148, 167-179.
Eschmeyer, W.N. & Fong, J.D. (2012) Species by family/subfamily in the Catalog of Fishes. California Academy of Sciences, San Francisco, CA. Available at: http://research.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp (accessed 5 October 2012).
Collen, B., Purvis, A. & Gittleman, J.L. (2004) Biological correlates of description date in carnivores and primates. Global Ecology and Biogeography, 13, 459-467.
Pearson, R.G. & Boyero, L. (2009) Gradients in regional diversity of freshwater taxa. Journal of the North American Benthological Society, 28, 504-514.
Darwall, W., Smith, K., Allen, D., Holland, R., Harrison, I. & Brooks, E. (eds) (2011a) The diversity of life in African freshwaters: underwater, under threat. IUCN, Cambridge, UK and Gland, Switzerland.
Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.-I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.-H., Soto, D., Stiassny, M.L.J. & Sullivan, C.A. (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81, 163-182.
Groombridge, B. & Jenkins, M. (1998) Freshwa
2007; 104
2010; 33
1989; 45
2012; 486
2010; 329
2002; 296
2012
2002; 297
2011
2010
2010; 467
2008; 58
2009
1998
2009; 276
2011a
2006; 4
2008; 322
2008; 1
2012; 148
2004; 306
2009; 28
2006; 81
1998; 17
2005; 360
2011b; 4
2000
2010; 29
2009b
2002; 21
2004; 13
2007; 274
2010; 330
2013; 82
2003; 26
2013; 157
2008; 22
1998; 1
2009a; 23
2009; 142
2003; 60
2008; 595
2012; 21
2011; 144
2006; 444
2005; 14
e_1_2_6_51_1
Collen B. (e_1_2_6_14_1) 2012
e_1_2_6_53_1
e_1_2_6_30_1
Groombridge B. (e_1_2_6_26_1) 1998
e_1_2_6_19_1
World Bank (e_1_2_6_55_1) 2011
Convention on Biological Diversity (e_1_2_6_15_1) 2010
e_1_2_6_36_1
R Development Core Team (e_1_2_6_41_1) 2012
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_38_1
Rossiter N. (e_1_2_6_45_1) 2000
IUCN (e_1_2_6_32_1) 2012
e_1_2_6_43_1
e_1_2_6_20_1
Collen B. (e_1_2_6_13_1) 2009
e_1_2_6_9_1
Eschmeyer W.N. (e_1_2_6_22_1) 2012
e_1_2_6_5_1
IUCN Species Survival Commission (e_1_2_6_33_1) 2012
e_1_2_6_7_1
e_1_2_6_24_1
Legendre L. (e_1_2_6_35_1) 1998
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
Darwall W. (e_1_2_6_17_1) 2009
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
Darwall W. (e_1_2_6_18_1) 2011
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
19040654 - Conserv Biol. 2009 Apr;23(2):317-27
2720048 - Biometrics. 1989 Mar;45(1):123-34
20978281 - Science. 2010 Dec 10;330(6010):1503-9
22678280 - Nature. 2012 Jun 06;486(7401):59-67
17148246 - Proc Biol Sci. 2007 Jan 22;274(1607):165-74
23173605 - J Anim Ecol. 2013 Mar;82(2):365-76
19515666 - Proc Biol Sci. 2009 Sep 7;276(1670):3063-70
15814353 - Philos Trans R Soc Lond B Biol Sci. 2005 Feb 28;360(1454):397-413
17686977 - Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13384-9
18847444 - Conserv Biol. 2008 Dec;22(6):1424-42
16336747 - Biol Rev Camb Philos Soc. 2006 May;81(2):163-82
9595616 - Stat Med. 1998 Apr 30;17(8):857-72
15486254 - Science. 2004 Dec 3;306(5702):1783-6
17080090 - Nature. 2006 Nov 2;444(7115):93-6
18845749 - Science. 2008 Oct 10;322(5899):225-30
16774453 - PLoS Biol. 2006 Jul;4(7):e208
18544093 - Conserv Biol. 2008 Aug;22(4):897-911
11988573 - Science. 2002 May 3;296(5569):904-7
12202829 - Science. 2002 Aug 30;297(5586):1548-51
20616248 - Science. 2010 Jul 9;329(5988):140; author reply 141-2
20882010 - Nature. 2010 Sep 30;467(7315):555-61
References_xml – reference: Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S. & Naeem, S. (2012) Biodiversity loss and its impact on humanity. Nature, 486, 59-67.
– reference: Eschmeyer, W.N. & Fong, J.D. (2012) Species by family/subfamily in the Catalog of Fishes. California Academy of Sciences, San Francisco, CA. Available at: http://research.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp (accessed 5 October 2012).
– reference: Balian, E.V., Segers, H., Lévèque, C. & Martens, K. (2008) The Freshwater Animal Diversity Assessment: an overview of the results. Hydrobiologia, 595, 627-637.
– reference: Whitton, F.J.S., Purvis, A., Orme, C.D.L. & Olalla-Tárraga, M.á. (2012) Understanding global patterns in amphibian geographic range size: does Rapoport rule? Global Ecology and Biogeography, 21, 179-190.
– reference: R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.r-project.org/ (accessed 22 May 2012).
– reference: McInnes, L., Purvis, A. & Orme, C.D.L. (2009) Where do species' geographic ranges stop and why? Landscape impermeability and the Afrotropical avifauna. Proceedings of the Royal Society B: Biological Sciences, 276, 3063-3070.
– reference: IUCN Species Survival Commission (2012) IUCN Red List categories and criteria. Version 3.1, 2nd edn. IUCN, Gland, Switzerland.
– reference: Holland, R.A., Darwall, W.R.T. & Smith, K.G. (2012) Conservation priorities for freshwater biodiversity: the Key Biodiversity Area approach refined and tested for continental Africa. Biological Conservaion, 148, 167-179.
– reference: Abell, R., Thieme, M.L., Revenga, C. et al. (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58, 403-414.
– reference: Rangel, T.F., Diniz-Filho, J.A.F. & Bini, L.M. (2010) SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography, 33, 46-50.
– reference: Clifford, P., Richardson, S. & Hermon, D. (1989) Assessing the significance of the correlation between two spatial processes. Biometrics, 45, 123-134.
– reference: Böhm, M., Collen, B., Baillie, J.E.M. et al. (2013) The conservation status of the world's reptiles. Biological Conservaion, 157, 372-385.
– reference: Galewski, T., Collen, B., McRae, L., Loh, J., Grillas, P., Gauthier-Clerc, M. & Devictor, V. (2011) Long-term trends in the abundance of Mediterranean wetland vertebrates: from global recovery to localized declines. Biological Conservation, 144, 1392-1399.
– reference: Gleick, P.H. (1998) The human right to water. Water Policy, 1, 487-503.
– reference: Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S.E., Sullivan, C.A., Liermann, C.R. & Davies, P.M. (2010) Global threats to human water security and river biodiversity. Nature, 467, 555-561.
– reference: Cumberlidge, N., Ng, P.K.L., Yeo, D.C.J., Magalhães, C., Campos, M.R., Alvarez, F., Naruse, T., Daniels, S.R., Esser, L.J., Attipoe, F.Y.K., Clotilde-Ba, F.-L., Darwall, W., McIvor, A., Baillie, J.E.M., Collen, B. & Ram, M. (2009) Freshwater crabs and the biodiversity crisis: importance, threats, status, and conservation challenges. Biological Conservaion, 142, 1665-1673.
– reference: Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.-I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.-H., Soto, D., Stiassny, M.L.J. & Sullivan, C.A. (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81, 163-182.
– reference: Hoffmann, M., Hilton-Taylor, C., Angulo, A. et al. (2010) The impact of conservation on the status of the world's vertebrates. Science, 330, 1503-1509.
– reference: Boyero, L., Pearson, R.G., Dudgeon, D. et al. (2012) Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Global Ecology and Biogeography, 21, 134-141.
– reference: Diniz-Filho, J.A.F., Bastos, R.P., Rangel, T.F.L.V.B., Bini, L.M., Carvalho, P. & Silva, R.J. (2005) Macroecological correlates and spatial patterns of anuran description dates in the Brazilian cerrado. Global Ecology and Biogeography, 14, 469-477.
– reference: Groombridge, B. & Jenkins, M. (1998) Freshwater biodiversity: a preliminary global assessment. World Conservation Monitoring Centre, Cambridge, UK.
– reference: Rahbek, C., Gotelli, N.J., Colwell, R.K., Entsminger, G.L., Rangel, T.F.L.V.B. & Graves, G.R. (2007) Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society B: Biological Sciences, 274, 165-174.
– reference: Collen, B., Böhm, M., Kemp, R. & Baillie, J.E.M. (eds) (2012) Spineless: status and trends of the world's invertebrates. Zoological Society of London, London, UK.
– reference: Orme, C.D.L., Davies, R.G., Olson, V.A., Thomas, G.H., Ding, T.-S., Rasmussen, P.C., Ridgely, R.S., Stattersfield, A.J., Bennett, P.M., Owens, I.P.F., Blackburn, T.M. & Gaston, K.J. (2006) Global patterns of geographic range size in birds. PLoS Biology, 4, 1276-1283.
– reference: Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S.L., Fischman, D.L. & Waller, R.W. (2004) Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783-1786.
– reference: World Bank (2011) Gross domestic product 2009. World Bank, Washington, DC. Available at: http://data.worldbank.org/ (accessed 20 May 2011).
– reference: Collen, B. & Baillie, J.E.M. (2010) Barometer of life: sampling. Science, 329, 140.
– reference: Schipper, J., Chanson, J.S., Chiozza, F. et al. (2008) The status of the world's land and aquatic mammals: diversity, threat, and knowledge. Science, 322, 225-230.
– reference: Convention on Biological Diversity (2010) COP 10 decision X/2. Strategic plan for biodiversity 2011-2020. Convention on Biological Diversity, Montreal, Canada. Available at: http://www.cbd.int/decision/cop/?id=12268 (accessed 22 May 2013).
– reference: IUCN (2012) IUCN Red List of threatened species. Version 2012.1. IUCN, Gland, Switzerland. Available at: http://www.iucnredlist.org/ (accessed 5 July 2012).
– reference: Legendre, L. & Legendre, P. (1998) Numerical ecology, 2nd edn. Elsevier Science, Amsterdam.
– reference: Collen, B., Loh, J., Whitmee, S., McRae, L., Amin, R. & Baillie, J.E.M. (2009a) Monitoring change in vertebrate abundance: the Living Planet Index. Conservation Biology, 23, 317-327.
– reference: Revenga, C., Campbell, I., Abell, R., de Villers, P. & Bryer, M. (2005) Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 397-413.
– reference: Pearson, R.G. & Boyero, L. (2009) Gradients in regional diversity of freshwater taxa. Journal of the North American Benthological Society, 28, 504-514.
– reference: Ceballos, G. & Ehrlich, P.R. (2002) Mammal population losses and the extinction crisis. Science, 296, 904-907.
– reference: Newcombe, R.G. (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Statistics in Medicine, 17, 857-872.
– reference: Collen, B., Purvis, A. & Gittleman, J.L. (2004) Biological correlates of description date in carnivores and primates. Global Ecology and Biogeography, 13, 459-467.
– reference: Darwall, W., Smith, K., Allen, D., Holland, R., Harrison, I. & Brooks, E. (eds) (2011a) The diversity of life in African freshwaters: underwater, under threat. IUCN, Cambridge, UK and Gland, Switzerland.
– reference: Heino, J., Muotka, T., Paavola, R. & Paasivirta, L. (2003) Among-taxon congruence in biodiversity patterns: can stream insect diversity be predicted using single taxonomic groups? Canadian Journal of Fisheries and Aquatic Sciences, 60, 1039-1049.
– reference: Darwall, W.R.T., Holland, R.A., Smith, K.G., Allen, D., Brooks, E.G.E., Katarya, V., Pollock, C.M., Shi, Y., Clausnitzer, V., Cumberlidge, N., Cuttelod, A., Dijkstra, K.-D.B., Diop, M.D., García, N., Seddon, M.B., Skelton, P.H., Snoeks, J., Tweddle, D. & Vié, J.-C. (2011b) Implications of bias in conservation research and investment for freshwater species. Conservation Letters, 4, 474-482.
– reference: Mace, G.M., Collar, N.J., Gaston, K.J., Hilton-Taylor, C., Akçakaya, H.R., Leader-Williams, N., Milner-Gulland, E.J. & Stuart, S.N. (2008) Quantification of extinction risk: IUCN's system for classifying threatened species. Conservation Biology, 22, 1424-1442.
– reference: Rossiter, N. & Kawanabe, H. (2000) Ancient lakes: biodiversity, ecology and evolution. Academic Press, London, UK.
– reference: Salafsky, N., Salzer, D., Stattersfield, A.J., Hilton-Taylor, C., Neugarten, R., Butchart, S.H.M., Collen, B., Cox, N., Master, L.L., O'Connor, S. & Wilkie, D. (2008) A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conservation Biology, 22, 897-911.
– reference: Tisseuil, C., Cornu, J.-F., Beauchard, O., Brosse, S., Darwall, W., Holland, R., Hugueny, B., Tedesco, P.A. & Oberdorff, T. (2013) Global diversity patterns and cross-taxa convergence in freshwater systems. Journal of Animal Ecology, 82, 365-376.
– reference: Hurlbert, A.H. & Jetz, W. (2007) Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proceedings of the National Academy of Sciences USA, 104, 13384-13389.
– reference: Vinson, M.R. & Hawkins, C.P. (2003) Broad-scale geographical patterns in local stream insect genera richness. Ecography, 26, 751-767.
– reference: Strayer, D.L. & Dudgeon, D. (2010) Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society, 29, 344-358.
– reference: Jetz, W. & Rahbek, C. (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548-1551.
– reference: Tedesco, P.A., Leprieur, F., Hugueny, B., Brosse, S., Dürr, H.H., Beauchard, O., Busson, F. & Oberdorff, T. (2012) Patterns and processes of global riverine fish endemism. Global Ecology and Biogeography, 21, 977-987.
– reference: Grenyer, R., Orme, C.D.L., Jackson, S.F., Thomas, G.H., Davies, R.G., Davies, T.J., Jones, K.E., Olson, V.A., Ridgely, R.S., Rasmussen, P.C., Ding, T.-S., Bennett, P.M., Blackburn, T.M., Gaston, K.J., Gittleman, J.L. & Owens, I.P.F. (2006) Global distribution and conservation of rare and threatened vertebrates. Nature, 444, 93-96.
– reference: Heino, J., Muotka, T., Paavola, R., Hämäläinen, H. & Koskenniemi, E. (2002) Correspondence between regional delineations and spatial patterns in macroinvertebrate assemblages of boreal headwater streams. Journal of the North American Benthological Society, 21, 397-413.
– reference: Baillie, J.E.M., Collen, B., Amin, R., Akcakaya, H.R., Butchart, S.H.M., Brummitt, N., Meagher, T.R., Ram, M., Hilton-Taylor, C. & Mace, G. (2008) Towards monitoring global biodiversity. Conservation Letters, 1, 18-26.
– year: 2011
– volume: 157
  start-page: 372
  year: 2013
  end-page: 385
  article-title: The conservation status of the world's reptiles
  publication-title: Biological Conservaion
– volume: 322
  start-page: 225
  year: 2008
  end-page: 230
  article-title: The status of the world's land and aquatic mammals: diversity, threat, and knowledge.
  publication-title: Science
– volume: 297
  start-page: 1548
  year: 2002
  end-page: 1551
  article-title: Geographic range size and determinants of avian species richness
  publication-title: Science
– volume: 142
  start-page: 1665
  year: 2009
  end-page: 1673
  article-title: Freshwater crabs and the biodiversity crisis: importance, threats, status, and conservation challenges
  publication-title: Biological Conservaion
– volume: 58
  start-page: 403
  year: 2008
  end-page: 414
  article-title: Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation
  publication-title: BioScience
– volume: 60
  start-page: 1039
  year: 2003
  end-page: 1049
  article-title: Among‐taxon congruence in biodiversity patterns: can stream insect diversity be predicted using single taxonomic groups?
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 21
  start-page: 977
  year: 2012
  end-page: 987
  article-title: Patterns and processes of global riverine fish endemism
  publication-title: Global Ecology and Biogeography
– year: 1998
– volume: 17
  start-page: 857
  year: 1998
  end-page: 872
  article-title: Two‐sided confidence intervals for the single proportion: comparison of seven methods
  publication-title: Statistics in Medicine
– volume: 595
  start-page: 627
  year: 2008
  end-page: 637
  article-title: The Freshwater Animal Diversity Assessment: an overview of the results
  publication-title: Hydrobiologia
– volume: 360
  start-page: 397
  year: 2005
  end-page: 413
  article-title: Prospects for monitoring freshwater ecosystems towards the 2010 targets
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 330
  start-page: 1503
  year: 2010
  end-page: 1509
  article-title: The impact of conservation on the status of the world's vertebrates
  publication-title: Science
– volume: 28
  start-page: 504
  year: 2009
  end-page: 514
  article-title: Gradients in regional diversity of freshwater taxa
  publication-title: Journal of the North American Benthological Society
– volume: 144
  start-page: 1392
  year: 2011
  end-page: 1399
  article-title: Long‐term trends in the abundance of Mediterranean wetland vertebrates: from global recovery to localized declines
  publication-title: Biological Conservation
– start-page: 67
  year: 2009b
  end-page: 76
– volume: 22
  start-page: 1424
  year: 2008
  end-page: 1442
  article-title: Quantification of extinction risk: IUCN's system for classifying threatened species
  publication-title: Conservation Biology
– volume: 306
  start-page: 1783
  year: 2004
  end-page: 1786
  article-title: Status and trends of amphibian declines and extinctions worldwide
  publication-title: Science
– volume: 296
  start-page: 904
  year: 2002
  end-page: 907
  article-title: Mammal population losses and the extinction crisis
  publication-title: Science
– volume: 4
  start-page: 1276
  year: 2006
  end-page: 1283
  article-title: Global patterns of geographic range size in birds
  publication-title: PLoS Biology
– volume: 45
  start-page: 123
  year: 1989
  end-page: 134
  article-title: Assessing the significance of the correlation between two spatial processes
  publication-title: Biometrics
– start-page: 43
  year: 2009
  end-page: 54
– volume: 4
  start-page: 474
  year: 2011b
  end-page: 482
  article-title: Implications of bias in conservation research and investment for freshwater species
  publication-title: Conservation Letters
– volume: 1
  start-page: 18
  year: 2008
  end-page: 26
  article-title: Towards monitoring global biodiversity
  publication-title: Conservation Letters
– volume: 486
  start-page: 59
  year: 2012
  end-page: 67
  article-title: Biodiversity loss and its impact on humanity
  publication-title: Nature
– volume: 276
  start-page: 3063
  year: 2009
  end-page: 3070
  article-title: Where do species' geographic ranges stop and why? Landscape impermeability and the Afrotropical avifauna
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 444
  start-page: 93
  year: 2006
  end-page: 96
  article-title: Global distribution and conservation of rare and threatened vertebrates
  publication-title: Nature
– volume: 33
  start-page: 46
  year: 2010
  end-page: 50
  article-title: SAM: a comprehensive application for Spatial Analysis in Macroecology
  publication-title: Ecography
– volume: 329
  start-page: 140
  year: 2010
  article-title: Barometer of life: sampling
  publication-title: Science
– volume: 21
  start-page: 397
  year: 2002
  end-page: 413
  article-title: Correspondence between regional delineations and spatial patterns in macroinvertebrate assemblages of boreal headwater streams
  publication-title: Journal of the North American Benthological Society
– volume: 26
  start-page: 751
  year: 2003
  end-page: 767
  article-title: Broad‐scale geographical patterns in local stream insect genera richness
  publication-title: Ecography
– year: 2000
– volume: 21
  start-page: 179
  year: 2012
  end-page: 190
  article-title: Understanding global patterns in amphibian geographic range size: does Rapoport rule?
  publication-title: Global Ecology and Biogeography
– volume: 148
  start-page: 167
  year: 2012
  end-page: 179
  article-title: Conservation priorities for freshwater biodiversity: the Key Biodiversity Area approach refined and tested for continental Africa
  publication-title: Biological Conservaion
– year: 2010
– year: 2012
– volume: 1
  start-page: 487
  year: 1998
  end-page: 503
  article-title: The human right to water
  publication-title: Water Policy
– volume: 274
  start-page: 165
  year: 2007
  end-page: 174
  article-title: Predicting continental‐scale patterns of bird species richness with spatially explicit models
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– year: 2011a
– volume: 467
  start-page: 555
  year: 2010
  end-page: 561
  article-title: Global threats to human water security and river biodiversity
  publication-title: Nature
– volume: 82
  start-page: 365
  year: 2013
  end-page: 376
  article-title: Global diversity patterns and cross‐taxa convergence in freshwater systems
  publication-title: Journal of Animal Ecology
– volume: 23
  start-page: 317
  year: 2009a
  end-page: 327
  article-title: Monitoring change in vertebrate abundance: the Living Planet Index
  publication-title: Conservation Biology
– volume: 22
  start-page: 897
  year: 2008
  end-page: 911
  article-title: A standard lexicon for biodiversity conservation: unified classifications of threats and actions
  publication-title: Conservation Biology
– volume: 29
  start-page: 344
  year: 2010
  end-page: 358
  article-title: Freshwater biodiversity conservation: recent progress and future challenges
  publication-title: Journal of the North American Benthological Society
– volume: 21
  start-page: 134
  year: 2012
  end-page: 141
  article-title: Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates
  publication-title: Global Ecology and Biogeography
– volume: 81
  start-page: 163
  year: 2006
  end-page: 182
  article-title: Freshwater biodiversity: importance, threats, status and conservation challenges
  publication-title: Biological Reviews
– volume: 14
  start-page: 469
  year: 2005
  end-page: 477
  article-title: Macroecological correlates and spatial patterns of anuran description dates in the Brazilian cerrado
  publication-title: Global Ecology and Biogeography
– volume: 13
  start-page: 459
  year: 2004
  end-page: 467
  article-title: Biological correlates of description date in carnivores and primates
  publication-title: Global Ecology and Biogeography
– volume: 104
  start-page: 13384
  year: 2007
  end-page: 13389
  article-title: Species richness, hotspots, and the scale dependence of range maps in ecology and conservation
  publication-title: Proceedings of the National Academy of Sciences USA
– ident: e_1_2_6_8_1
  doi: 10.1126/science.1069349
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1523-1739.2008.01044.x
– ident: e_1_2_6_28_1
  doi: 10.1139/f03-081
– ident: e_1_2_6_5_1
  doi: 10.1016/j.biocon.2012.07.015
– ident: e_1_2_6_51_1
  doi: 10.1111/1365-2656.12018
– ident: e_1_2_6_37_1
  doi: 10.1098/rspb.2009.0656
– ident: e_1_2_6_42_1
  doi: 10.1098/rspb.2006.3700
– volume-title: Gross domestic product 2009
  year: 2011
  ident: e_1_2_6_55_1
– ident: e_1_2_6_53_1
  doi: 10.1038/nature09440
– ident: e_1_2_6_24_1
  doi: 10.1016/S1366-7017(99)00008-2
– volume-title: Freshwater biodiversity: a preliminary global assessment
  year: 1998
  ident: e_1_2_6_26_1
– ident: e_1_2_6_27_1
  doi: 10.2307/1468478
– ident: e_1_2_6_21_1
  doi: 10.1017/S1464793105006950
– ident: e_1_2_6_47_1
  doi: 10.1126/science.1165115
– volume-title: IUCN Red List categories and criteria
  year: 2012
  ident: e_1_2_6_33_1
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1466-8238.2011.00660.x
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1755-263X.2011.00202.x
– ident: e_1_2_6_48_1
  doi: 10.1899/08-171.1
– ident: e_1_2_6_23_1
  doi: 10.1016/j.biocon.2010.10.030
– ident: e_1_2_6_29_1
  doi: 10.1126/science.1194442
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1600-0587.2009.06299.x
– start-page: 43
  volume-title: Wildlife in a changing world: an analysis of the 2008 IUCN Red List of Threatened Species
  year: 2009
  ident: e_1_2_6_17_1
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1466-822X.2005.00165.x
– volume-title: Numerical ecology
  year: 1998
  ident: e_1_2_6_35_1
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1466-822X.2004.00121.x
– start-page: 67
  volume-title: Wildlife in a changing world: an analysis of the 2008 IUCN Red List of Threatened Species
  year: 2009
  ident: e_1_2_6_13_1
– ident: e_1_2_6_10_1
  doi: 10.1126/science.329.5988.140-a
– volume-title: Ancient lakes: biodiversity, ecology and evolution
  year: 2000
  ident: e_1_2_6_45_1
– ident: e_1_2_6_9_1
  doi: 10.2307/2532039
– ident: e_1_2_6_49_1
  doi: 10.1126/science.1103538
– ident: e_1_2_6_30_1
  doi: 10.1016/j.biocon.2012.01.016
– ident: e_1_2_6_2_1
  doi: 10.1641/B580507
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1523-1739.2008.00937.x
– ident: e_1_2_6_38_1
  doi: 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
– ident: e_1_2_6_44_1
  doi: 10.1098/rstb.2004.1595
– volume-title: The diversity of life in African freshwaters: underwater, under threat
  year: 2011
  ident: e_1_2_6_18_1
– ident: e_1_2_6_34_1
  doi: 10.1126/science.1072779
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1755-263X.2008.00009.x
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1466-8238.2011.00749.x
– ident: e_1_2_6_4_1
  doi: 10.1007/s10750-007-9246-3
– ident: e_1_2_6_7_1
  doi: 10.1038/nature11148
– volume-title: COP 10 decision X/2. Strategic plan for biodiversity 2011–2020
  year: 2010
  ident: e_1_2_6_15_1
– volume-title: Species by family/subfamily in the Catalog of Fishes
  year: 2012
  ident: e_1_2_6_22_1
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1461-0248.2005.00726.x
– volume-title: IUCN Red List of threatened species
  year: 2012
  ident: e_1_2_6_32_1
– ident: e_1_2_6_25_1
  doi: 10.1038/nature05237
– ident: e_1_2_6_40_1
  doi: 10.1899/08-118.1
– ident: e_1_2_6_52_1
  doi: 10.1111/j.0906-7590.2003.03397.x
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1466-8238.2011.00673.x
– ident: e_1_2_6_39_1
  doi: 10.1371/journal.pbio.0040208
– volume-title: Spineless: status and trends of the world's invertebrates
  year: 2012
  ident: e_1_2_6_14_1
– ident: e_1_2_6_16_1
  doi: 10.1016/j.biocon.2009.02.038
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1523-1739.2008.01117.x
– volume-title: R: a language and environment for statistical computing
  year: 2012
  ident: e_1_2_6_41_1
– reference: 17148246 - Proc Biol Sci. 2007 Jan 22;274(1607):165-74
– reference: 12202829 - Science. 2002 Aug 30;297(5586):1548-51
– reference: 16336747 - Biol Rev Camb Philos Soc. 2006 May;81(2):163-82
– reference: 15814353 - Philos Trans R Soc Lond B Biol Sci. 2005 Feb 28;360(1454):397-413
– reference: 11988573 - Science. 2002 May 3;296(5569):904-7
– reference: 15486254 - Science. 2004 Dec 3;306(5702):1783-6
– reference: 16774453 - PLoS Biol. 2006 Jul;4(7):e208
– reference: 9595616 - Stat Med. 1998 Apr 30;17(8):857-72
– reference: 17686977 - Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13384-9
– reference: 19040654 - Conserv Biol. 2009 Apr;23(2):317-27
– reference: 17080090 - Nature. 2006 Nov 2;444(7115):93-6
– reference: 23173605 - J Anim Ecol. 2013 Mar;82(2):365-76
– reference: 18847444 - Conserv Biol. 2008 Dec;22(6):1424-42
– reference: 18544093 - Conserv Biol. 2008 Aug;22(4):897-911
– reference: 18845749 - Science. 2008 Oct 10;322(5899):225-30
– reference: 20616248 - Science. 2010 Jul 9;329(5988):140; author reply 141-2
– reference: 19515666 - Proc Biol Sci. 2009 Sep 7;276(1670):3063-70
– reference: 22678280 - Nature. 2012 Jun 06;486(7401):59-67
– reference: 2720048 - Biometrics. 1989 Mar;45(1):123-34
– reference: 20882010 - Nature. 2010 Sep 30;467(7315):555-61
– reference: 20978281 - Science. 2010 Dec 10;330(6010):1503-9
SSID ssj0005456
Score 2.5964315
Snippet AIM: Global‐scale studies are required to identify broad‐scale patterns in the distributions of species, to evaluate the processes that determine diversity and...
Aim Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and...
Aim Global‐scale studies are required to identify broad‐scale patterns in the distributions of species, to evaluate the processes that determine diversity and...
Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
jstor
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 40
SubjectTerms Amphibians
Animal and plant ecology
Animal, plant and microbial ecology
Biodiversity
Biodiversity conservation
biogeography
Biological and medical sciences
Cambaridae
Congruence
conservation planning
crabs
crayfish
Crustacea
Decapoda
decapods
diversity metric
ecosystems
Extinct species
extinction
fish
Fresh water
Fresh water ecosystems
Freshwater
Freshwater organisms
Fundamental and applied biological sciences. Psychology
General aspects
geographical range
geographical variation
interspecific variation
Invertebrates
mammals
planning
reptiles
Research Papers
risk
species differences
Species diversity
species richness
Synecology
Taxa
Threatened species
Wildlife conservation
Title Global patterns of freshwater species diversity, threat and endemism
URI https://api.istex.fr/ark:/67375/WNG-V2S8Q8MM-W/fulltext.pdf
https://www.jstor.org/stable/24034434
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12096
https://www.ncbi.nlm.nih.gov/pubmed/26430385
https://www.proquest.com/docview/1464613654
https://www.proquest.com/docview/1468351857
https://www.proquest.com/docview/1859702256
https://www.proquest.com/docview/1999921746
https://pubmed.ncbi.nlm.nih.gov/PMC4579866
Volume 23
WOSCitedRecordID wos000327608500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1466-8238
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005456
  issn: 1466-822X
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7aBSReuAzKCqMKCKE9kClN7NgRT8Da8bBVg7Gtb5Hj2OsEpFPTcfn3nONcuooxIfFSVfWXKD0-tr_jHH8H4GXGbM5kpP0kNNxneRT5UkW5r6WwyrJMBq5-ysm-GI3keJwcrsCb5ixMpQ_RbrjRyHDzNQ1wlZVXBvmZyXbo4Ge8Cuv9fiSpbkPIDhf5HYzXR4tiH1fBcS0rRGk87aVLi9GqVVOkqGTdn012IqVKqhKtZasyF9fx0D_TKa_SXLdODe_91z-8D3dreuq9rfzpAayYYgNuD5y09a8N6AwW5-IQVk8M5UPYrWoHeBdOrrMovan1LEbykx_IZWcenefEkNzLmyyQ1958QnTVU0Xu0S48utu3R3A8HHx-_8GvCzT4OpZJ7PMktIkMVYa0xeIM3lfcRoHOIqvzjOtQSwx6c_xNZDrhzFI5GRYwTSJywggVdWCtmBZmEzxlktyy3Kn5MxFzxYLcBFaFypgwlqYL201PpbpWL6ciGl_TJopBa6XOWl140UIvKsmO60Cb2N2pOsOpND0-CinQJH6Lj9aFV84H2ovV7Aulvwmeno720pPwSH6UBwfpaRc6zklaIGkbMkZ36C15zQIgA5HwAAFbjRul9ZxRUhDGYso6xObnbTOan17hqMJMLx0GKTPpd92AkRgkIjXj8Q0YjAsSikYR87jy3sVDIkml98VdEEt-3QJIkXy5pTifOGVyxkUiY7zntvPrv5s_3Ru8c1-e_Dv0Kdyhbqr2v7ZgbT67NM_glv4-Py9nPTf48VOMZQ_Wdz8Nj_d_A_3bXAA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_tAwQvfAzKCmMEhNAeFhQSO3EkXoC1G6KrgK1b3yzHsdcJSKe24-O_58756CrGhMRbVf8SJefz-c65-x3A84zZnIlI-2louM_yKPKFinJfi8QqyzIRuP4pR72k3xfDYfpxCV7XtTAlP0Rz4EYrw9lrWuB0IH1hlZ-Y7CVVfsbLsMpQjVC_V3c-dwe9eYoH41V1UezjRjismIUok6e5eGE_WrZqjF4qCfhnnaBI2ZJqigKzZaeLy1zRPzMqL3q6bqvq3v6_l7wDtyoX1XtT6tRdWDLFGlzvOHrrX2vQ6sxr4xBWGYfpPdgp-wd4Z46ys5h6Y-tZjOZHP9CfnXhU04lhuZfXmSDb3mxELqunityjk3hUuW_3YdDtHL7b86smDb6ORRr7PA1tKkKVoeti0Yq_UtxGgc4iq_OM61ALDHxz_C_JdMqZpZYyLGCaiOQSk6ioBSvFuDDr4CmT5pbljtGfJTFXLMhNYFWojAljYdqwVU-V1BWDOTXS-CrrSAalJZ202vCsgZ6VtB2XgdZxvqU6QXMqBwchBZvk4-KjteGFU4LmYjX5QilwCZfH_V15FB6IT2J_Xx63oeW0pAESvyFjdIfNBbWZA0SQpDxAwEatR7KyG1MKxFhMmYc4_LQZRvHTZxxVmPG5w6DbTBxeV2AEBoronvH4CgzGBilFpIh5UKrv_CHRUaVvxm1IFhS7ARAr-eJIcTpy7OSMJ6mI8Z5bTrH_Ln6523nrfjz8d-gTuLF3uN-Tvff9D4_gJk1ZeR62ASuzybl5DNf099npdLJZ2YLf4rBe_g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe2DhAvfAzKAmMEhNAeCAqJnTgSL0DbgeiqwejWN8vxxzoBadV2fPz33DkfXcWYkHir6l-i5Hw-3zl3vyPkaU6tpjxWQRYZFlAdxwGXsQ4UT620NOeh659y1E8HAz4aZQdr5FVdC1PyQzQHbrgynL3GBW6m2p5b5Scmf4GVn8k62aDYRKZFNjqfesP-MsWDsqq6KAlgIxxVzEKYydNcvLIfrVs5AS8VBfyzTlDEbEk5B4HZstPFRa7onxmV5z1dt1X1bv7fS94iNyoX1X9d6tRtsmaKTXK16-itf22SdndZGwewyjjM75BO2T_AnzrKzmLuT6xvIZof_wB_duZjTSeE5b6uM0Ge-4sxuqy-LLSPJ_Ggct_ukmGv-_ntu6Bq0hCohGdJwLLIZjySObguFqz4S8lsHKo8tkrnTEWKQ-Cr4b80VxmjFlvK0JAqJJJLTSrjNmkVk8JsEV-aTFuqHaM_TRMmaahNaGUkjYkSbjyyW0-VUBWDOTbS-CrqSAakJZy0PPKkgU5L2o6LQFsw30KegDkVw8MIg030ceHRPPLMKUFzsZx9wRS4lInjwZ44ig75R76_L4490nZa0gCR35BSvMPOitosATxMMxYCYLvWI1HZjTkGYjTBzEMYftwMg_jxM44szOTMYcBtRg6vSzAcAkVwz1hyCQZigwwjUsDcK9V3-ZDgqOI3Y4-kK4rdAJCVfHWkOB07dnLK0owncM9dp9h_F7_Y675xP-7_O_QRuXbQ6Yn--8GHB-Q6zlh5HLZNWovZmXlIrqjvi9P5bKcyBb8B5HheeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+patterns+of+freshwater+species+diversity%2C+threat+and+endemism&rft.jtitle=Global+ecology+and+biogeography&rft.au=COLLEN%2C+Ben&rft.au=WHITTON%2C+Felix&rft.au=DYER%2C+Ellie+E&rft.au=BAILLIE%2C+Jonathan+E.+M&rft.date=2014-01-01&rft.pub=Blackwell&rft.issn=1466-822X&rft.volume=23&rft.issue=1-2&rft.spage=40&rft.epage=51&rft_id=info:doi/10.1111%2Fgeb.12096&rft.externalDBID=n%2Fa&rft.externalDocID=28079504
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon