Estimating the normal background rate of species extinction

A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100–1000 times pre‐human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Conservation biology Ročník 29; číslo 2; s. 452 - 462
Hlavní autoři: De Vos, Jurriaan M, Joppa, Lucas N, Gittleman, John L, Stephens, Patrick R, Pimm, Stuart L
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Blackwell Scientific Publications 01.04.2015
Blackwell Publishing Ltd
Wiley Periodicals Inc
Témata:
ISSN:0888-8892, 1523-1739, 1523-1739
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100–1000 times pre‐human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard‐bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification—the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over‐ and under‐estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre‐human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05–0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher.
AbstractList A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100–1000 times pre‐human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard‐bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification—the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over‐ and under‐estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre‐human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05–0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher. Estimación de la Tasa Normal de Extinción de Especies Una medida clave del impacto global de la humanidad es cuánto han incrementado las tasas de extinción de las especies. Las declaraciones conocidas establecen que estas son 100 – 1,000 veces los niveles de extinción pre‐humanos o de fondo. Estimar las tasas recientes es un proceso directo, pero establecer una tasa de fondo para comparar no lo es. Investigadores previos han elegido un punto de referencia aproximado de una extinción por millón de especies por año (E/MEA). Exploramos líneas dispares de evidencia que sugieren un estimado sustancialmente más bajo. Los datos fósiles producen estimados directos de las tasas de extinción, pero son temporalmente burdos, en su mayoría limitados a los taxones marinos de cuerpos duros, y generalmente involucran a los géneros y no a las especies. Basándonos en estos datos, la pérdida de fondo típica es de 0.01 géneros por millón de géneros por año. Las filogenias moleculares están disponibles para más taxones y ecosistemas, pero se debate si pueden usarse para estimar por separado las tasas de extinción y especiación. Seleccionamos datos para dirigirnos a asuntos conocidos y los usamos para determinar los estimados de extinción medios a partir de distribuciones estadísticas de valores probables para plantas y animales terrestres. Después creamos simulaciones para explorar los efectos de las suposiciones del modelo de violación. Finalmente, recopilamos los estimados de diversificación – la diferencia entre las tasas de especiación y extinción para taxones diferentes. Los estimados medios de las tasas de extinción variaron desde 0.023 hasta 0.135 E/MEA. Los resultados de la simulación sugirieron una sobre‐ y subestimación de la extinción a partir filogenias individuales que se cancelaron unas a otras cuando se analizaron conjuntos grandes de filogenias. No hubo evidencia de declinaciones generales pre‐humanas, recientes y extensas en la diversidad. Esto implica que las tasas de extinción promedio son menores a las tasas de diversificación promedio. Las tasas medias de diversificación fueron 0.05 – 0.2 especies nuevas por millón de especies por año. Con base en estos resultados, concluimos que las típicas tasas de extinción de fondo pueden ser más cercanas a 0.1 E/MEA. Así, las tasas de extinción actuales son mil veces más altas que las tasas naturales de extinción de fondo y que las tasas futuras probablemente sean 10, 000 veces más altas.
A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100–1000 times pre‐human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard‐bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification—the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over‐ and under‐estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre‐human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05–0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher.
A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100-1000 times pre-human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard-bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification-the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over- and under-estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre-human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05-0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher.Original Abstract: Estimacion de la Tasa Normal de Extincion de Especies Una medida clave del impacto global de la humanidad es cuanto han incrementado las tasas de extincion de las especies. Las declaraciones conocidas establecen que estas son 100 - 1,000 veces los niveles de extincion pre-humanos o de fondo. Estimar las tasas recientes es un proceso directo, pero establecer una tasa de fondo para comparar no lo es. Investigadores previos han elegido un punto de referencia aproximado de una extincion por millon de especies por ano (E/MEA). Exploramos lineas dispares de evidencia que sugieren un estimado sustancialmente mas bajo. Los datos fosiles producen estimados directos de las tasas de extincion, pero son temporalmente burdos, en su mayoria limitados a los taxones marinos de cuerpos duros, y generalmente involucran a los generos y no a las especies. Basandonos en estos datos, la perdida de fondo tipica es de 0.01 generos por millon de generos por ano. Las filogenias moleculares estan disponibles para mas taxones y ecosistemas, pero se debate si pueden usarse para estimar por separado las tasas de extincion y especiacion. Seleccionamos datos para dirigirnos a asuntos conocidos y los usamos para determinar los estimados de extincion medios a partir de distribuciones estadisticas de valores probables para plantas y animales terrestres. Despues creamos simulaciones para explorar los efectos de las suposiciones del modelo de violacion. Finalmente, recopilamos los estimados de diversificacion - la diferencia entre las tasas de especiacion y extincion para taxones diferentes. Los estimados medios de las tasas de extincion variaron desde 0.023 hasta 0.135 E/MEA. Los resultados de la simulacion sugirieron una sobre- y subestimacion de la extincion a partir filogenias individuales que se cancelaron unas a otras cuando se analizaron conjuntos grandes de filogenias. No hubo evidencia de declinaciones generales pre-humanas, recientes y extensas en la diversidad. Esto implica que las tasas de extincion promedio son menores a las tasas de diversificacion promedio. Las tasas medias de diversificacion fueron 0.05 - 0.2 especies nuevas por millon de especies por ano. Con base en estos resultados, concluimos que las tipicas tasas de extincion de fondo pueden ser mas cercanas a 0.1 E/MEA. Asi, las tasas de extincion actuales son mil veces mas altas que las tasas naturales de extincion de fondo y que las tasas futuras probablemente sean 10, 000 veces mas altas.
A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100–1000 times pre‐human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard‐bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification—the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over‐ and under‐estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre‐human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05–0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher. Estimación de la Tasa Normal de Extinción de Especies Resumen Una medida clave del impacto global de la humanidad es cuánto han incrementado las tasas de extinción de las especies. Las declaraciones conocidas establecen que estas son 100 – 1,000 veces los niveles de extinción pre‐humanos o de fondo. Estimar las tasas recientes es un proceso directo, pero establecer una tasa de fondo para comparar no lo es. Investigadores previos han elegido un punto de referencia aproximado de una extinción por millón de especies por año (E/MEA). Exploramos líneas dispares de evidencia que sugieren un estimado sustancialmente más bajo. Los datos fósiles producen estimados directos de las tasas de extinción, pero son temporalmente burdos, en su mayoría limitados a los taxones marinos de cuerpos duros, y generalmente involucran a los géneros y no a las especies. Basándonos en estos datos, la pérdida de fondo típica es de 0.01 géneros por millón de géneros por año. Las filogenias moleculares están disponibles para más taxones y ecosistemas, pero se debate si pueden usarse para estimar por separado las tasas de extinción y especiación. Seleccionamos datos para dirigirnos a asuntos conocidos y los usamos para determinar los estimados de extinción medios a partir de distribuciones estadísticas de valores probables para plantas y animales terrestres. Después creamos simulaciones para explorar los efectos de las suposiciones del modelo de violación. Finalmente, recopilamos los estimados de diversificación – la diferencia entre las tasas de especiación y extinción para taxones diferentes. Los estimados medios de las tasas de extinción variaron desde 0.023 hasta 0.135 E/MEA. Los resultados de la simulación sugirieron una sobre‐ y subestimación de la extinción a partir filogenias individuales que se cancelaron unas a otras cuando se analizaron conjuntos grandes de filogenias. No hubo evidencia de declinaciones generales pre‐humanas, recientes y extensas en la diversidad. Esto implica que las tasas de extinción promedio son menores a las tasas de diversificación promedio. Las tasas medias de diversificación fueron 0.05 – 0.2 especies nuevas por millón de especies por año. Con base en estos resultados, concluimos que las típicas tasas de extinción de fondo pueden ser más cercanas a 0.1 E/MEA. Así, las tasas de extinción actuales son mil veces más altas que las tasas naturales de extinción de fondo y que las tasas futuras probablemente sean 10, 000 veces más altas.
A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100-1000 times pre-human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard-bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification—the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over- and under-estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre-human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05-0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher. Una medida clave del impacto global de la humanidad es cuánto han incrementado las tasas de extinción de las especies. Las declaraciones conocidas establecen que estas son 100 - 1,000 veces los niveles de extinción pre-humanos o de fondo. Estimar las tasas recientes es un proceso directo, pero establecer una tasa de fondo para comparar no lo es. Investigadores previos han elegido un punto de referencia aproximado de una extinción por millón de especies por año (E/MEA). Exploramos líneas dispares de evidencia que sugieren un estimado sustancialmente más bajo. Los datos fósiles producen estimados directos de las tasas de extinción, pero son temporalmente burdos, en su mayoría limitados a los taxones marinos de cuerpos duros, y generalmente involucran a los géneros y no a las especies. Basándonos en estos datos, la pérdida de fondo típica es de 0.01 géneros por millón de géneros por año. Las filogenias moleculares están disponibles para más taxones y ecosistemas, pero se debate si pueden usarse para estimar por separado las tasas de extinción y especiación. Seleccionamos datos para dirigirnos a asuntos conocidos y los usamos para determinar los estimados de extinción medios a partir de distribuciones estadísticas de valores probables para plantas y animales terrestres. Después creamos simulaciones para explorar los efectos de las suposiciones del modelo de violación. Finalmente, recopilamos los estimados de diversificación - la diferencia entre las tasas de especiación y extinción para taxones diferentes. Los estimados medios de las tasas de extinción variaron desde 0.023 hasta 0.135 E/MEA. Los resultados de la simulación sugirieron una sobre- y subestimación de la extinción a partir filogenias individuales que se cancelaron unas a otras cuando se analizaron conjuntos grandes de filogenias. No hubo evidencia de declinaciones generales pre-humanas, recientes y extensas en la diversidad. Esto implica que las tasas de extinción promedio son menores a las tasas de diversificación promedio. Las tasas medias de diversificación fueron 0.05 - 0.2 especies nuevas por millón de especies por año. Con base en estos resultados, concluimos que las típicas tasas de extinción de fondo pueden ser más cercanas a 0.1 E/MEA. Así, las tasas de extinción actuales son mil veces más altas que las tasas naturales de extinción de fondo y que las tasas futuras probablemente sean 10, 000 veces más altas.
A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100-1000 times pre-human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard-bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification-the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over- and under-estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre-human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05-0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher.A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100-1000 times pre-human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard-bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification-the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over- and under-estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre-human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05-0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher.
Author Pimm, Stuart L.
Joppa, Lucas N.
Gittleman, John L.
Stephens, Patrick R.
De Vos, Jurriaan M.
Author_xml – sequence: 1
  fullname: De Vos, Jurriaan M
– sequence: 2
  fullname: Joppa, Lucas N
– sequence: 3
  fullname: Gittleman, John L
– sequence: 4
  fullname: Stephens, Patrick R
– sequence: 5
  fullname: Pimm, Stuart L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25159086$$D View this record in MEDLINE/PubMed
BookMark eNqN0V1rFDEUBuAgFbut3vgDdEAEEaaefE0yeGW3tRZKS6mllyGTPbNmOztZk1ls_71Zpy1SRJqbc_O8B_KeHbLVhx4JeU1hj-b3yYXG71HGNTwjEyoZL6ni9RaZgNa61Lpm22QnpQUA1JKKF2SbSSpr0NWEfD5Mg1_awffzYviBRR_i0nZFY931PIZ1PyuiHbAIbZFW6DymAm8ydoMP_UvyvLVdwld3c5dcfj38Pv1WnpwdHU-_nJSu0grKhgkUM86ZrB1w2iDKpmYACFVVc4faaXBOgNSSSaaYFA2yxjXYcjez7Yzvkg_j3lUMP9eYBrP0yWHX2R7DOhla1UJoqig8gVaaVVII9RQqGDCoRabvHtFFWMc-_3mjmM5GbRa-uVPrZokzs4q52Hhr7svO4OMIXAwpRWwfCAWzuaTZXNL8uWTG8Ag7P9hN7UO0vvt3hI6RX77D2_8sN9Oz_eP7zPsxs0hDiH9nGAdlWC4298WyK0fn04A3D87Ga1MprqS5Oj0yB1fi_OB8_8KcZv929K0Nxs6jT-byggGVALRmSir-G3x40Ts
CitedBy_id crossref_primary_10_1016_j_marmicro_2017_07_003
crossref_primary_10_1111_btp_12453
crossref_primary_10_1089_ast_2019_2061
crossref_primary_10_1126_science_aaf3565
crossref_primary_10_1007_s11406_021_00436_1
crossref_primary_10_1038_ncomms9862
crossref_primary_10_1016_j_resconrec_2018_08_003
crossref_primary_10_1111_conl_12313
crossref_primary_10_1371_journal_pclm_0000225
crossref_primary_10_1016_j_joclim_2023_100260
crossref_primary_10_3390_f9040200
crossref_primary_10_3390_d16080456
crossref_primary_10_3389_fevo_2020_00041
crossref_primary_10_1111_nph_14516
crossref_primary_10_1016_j_baae_2022_02_007
crossref_primary_10_1111_cobi_14343
crossref_primary_10_1016_j_tree_2015_05_009
crossref_primary_10_1111_1755_0998_13897
crossref_primary_10_2139_ssrn_5053106
crossref_primary_10_1007_s11430_020_9826_4
crossref_primary_10_1186_s13750_022_00279_7
crossref_primary_10_1007_s13280_020_01399_5
crossref_primary_10_1038_s41598_019_47540_7
crossref_primary_10_1080_17550874_2019_1646831
crossref_primary_10_1016_j_ecoleng_2019_07_035
crossref_primary_10_1002_ppp3_10173
crossref_primary_10_1111_syen_12538
crossref_primary_10_1073_pnas_2002548117
crossref_primary_10_3390_philosophies6020031
crossref_primary_10_3390_rs13020292
crossref_primary_10_1016_j_pld_2020_06_002
crossref_primary_10_1111_ele_13294
crossref_primary_10_1139_facets_2023_0167
crossref_primary_10_1371_journal_pone_0207080
crossref_primary_10_1111_bjso_12818
crossref_primary_10_3390_su11174676
crossref_primary_10_1016_j_chaos_2025_117239
crossref_primary_10_1017_S0025315418000607
crossref_primary_10_1017_S0376892925000074
crossref_primary_10_1111_ele_12648
crossref_primary_10_1007_s10531_019_01734_7
crossref_primary_10_1108_SAMPJ_09_2021_0375
crossref_primary_10_1111_gcb_14663
crossref_primary_10_1111_ddi_13153
crossref_primary_10_1111_ddi_70032
crossref_primary_10_3390_d16090591
crossref_primary_10_1016_j_ympev_2018_04_001
crossref_primary_10_1111_cobi_14202
crossref_primary_10_1163_1937240X_00002381
crossref_primary_10_1016_j_jclepro_2021_128968
crossref_primary_10_1155_2016_3460416
crossref_primary_10_1371_journal_pone_0234694
crossref_primary_10_1111_cobi_13590
crossref_primary_10_1134_S2079086418050079
crossref_primary_10_1002_ppp3_10617
crossref_primary_10_1007_s10841_018_0109_1
crossref_primary_10_3354_meps13201
crossref_primary_10_1016_j_gecco_2024_e03139
crossref_primary_10_1007_s10806_020_09839_8
crossref_primary_10_7717_peerj_1410
crossref_primary_10_1016_j_jnc_2021_125957
crossref_primary_10_1007_s13280_018_1087_y
crossref_primary_10_3389_fevo_2022_893088
crossref_primary_10_1080_10871209_2020_1860271
crossref_primary_10_1371_journal_pone_0169156
crossref_primary_10_3390_taxonomy5020032
crossref_primary_10_1038_s42003_025_08396_y
crossref_primary_10_1002_pan3_10431
crossref_primary_10_1007_s10531_021_02145_3
crossref_primary_10_1111_csp2_510
crossref_primary_10_7554_eLife_45199
crossref_primary_10_3390_plants11040503
crossref_primary_10_1111_btp_70013
crossref_primary_10_1007_s12224_022_09411_4
crossref_primary_10_1186_s12870_025_07127_z
crossref_primary_10_1016_j_fmre_2022_08_008
crossref_primary_10_1002_ppp3_10309
crossref_primary_10_1016_j_energy_2025_138384
crossref_primary_10_1016_j_ecoleng_2023_106935
crossref_primary_10_1007_s10611_017_9698_y
crossref_primary_10_1007_s10750_016_2948_7
crossref_primary_10_1016_j_biocon_2025_111110
crossref_primary_10_1016_j_biocon_2023_110424
crossref_primary_10_1111_ddi_13170
crossref_primary_10_1111_ibi_13368
crossref_primary_10_1093_ae_tmz001
crossref_primary_10_1111_pala_12274
crossref_primary_10_1007_s42532_023_00157_7
crossref_primary_10_1038_s41467_021_25507_5
crossref_primary_10_1093_sysbio_syv062
crossref_primary_10_1111_acv_12462
crossref_primary_10_1111_icad_12309
crossref_primary_10_1016_j_cosust_2021_03_008
crossref_primary_10_1162_inov_a_00254
crossref_primary_10_1016_j_biocon_2025_111001
crossref_primary_10_1016_j_ecolind_2016_04_039
crossref_primary_10_1002_ppp3_3
crossref_primary_10_1111_1749_4877_12451
crossref_primary_10_1111_cobi_14353
crossref_primary_10_1007_s13280_025_02230_9
crossref_primary_10_1139_facets_2017_0102
crossref_primary_10_3390_taxonomy4030033
crossref_primary_10_1093_zoolinnean_zlaa099
crossref_primary_10_1126_sciadv_adq2853
crossref_primary_10_3390_su16135484
crossref_primary_10_1007_s10336_018_1561_0
crossref_primary_10_1093_jmammal_gyx101
crossref_primary_10_1111_gcb_70174
crossref_primary_10_1007_s13364_023_00727_w
crossref_primary_10_1016_j_chemosphere_2023_140821
crossref_primary_10_1093_sysbio_syad072
crossref_primary_10_1136_bmj_l460
crossref_primary_10_1007_s12224_021_09393_9
crossref_primary_10_1111_let_12195
crossref_primary_10_3897_zookeys_560_6264
crossref_primary_10_1016_j_agee_2017_07_029
crossref_primary_10_1016_j_tree_2015_09_008
crossref_primary_10_1073_pnas_1815080115
crossref_primary_10_1111_btp_12745
crossref_primary_10_1111_ibi_12954
crossref_primary_10_1016_j_biocon_2022_109733
crossref_primary_10_1093_sysbio_syaf006
crossref_primary_10_1016_j_ecoinf_2022_101604
crossref_primary_10_1016_j_biocon_2022_109738
crossref_primary_10_3390_su8070595
crossref_primary_10_1093_biosci_biw016
crossref_primary_10_1016_j_biocon_2025_111340
crossref_primary_10_1038_srep41591
crossref_primary_10_1017_pab_2022_5
crossref_primary_10_1111_cobi_12745
crossref_primary_10_1111_nph_15612
crossref_primary_10_1111_geb_13560
crossref_primary_10_1016_j_ecocom_2018_08_004
crossref_primary_10_1016_j_ecoinf_2023_102090
crossref_primary_10_1038_s41598_021_92691_1
crossref_primary_10_1016_j_ecoleng_2019_105592
crossref_primary_10_1002_jwmg_21836
crossref_primary_10_1002_ppp3_10110
crossref_primary_10_3389_fbioe_2022_871651
crossref_primary_10_1007_s11258_024_01403_y
crossref_primary_10_1111_nph_18158
crossref_primary_10_1016_j_jnc_2025_127071
crossref_primary_10_1126_science_aau2650
crossref_primary_10_1016_j_baae_2017_08_005
crossref_primary_10_1111_ddi_13657
crossref_primary_10_1002_bse_3139
crossref_primary_10_1007_s10666_024_09984_8
crossref_primary_10_1016_j_foreco_2019_117642
crossref_primary_10_1007_s13280_018_1116_x
crossref_primary_10_1007_s11356_024_32269_2
crossref_primary_10_1108_AAAJ_06_2017_2957
crossref_primary_10_1016_j_theriogenology_2018_11_027
crossref_primary_10_1073_pnas_2001919117
crossref_primary_10_1038_srep23814
crossref_primary_10_1088_1755_1315_1068_1_012042
crossref_primary_10_1146_annurev_ento_120220_024402
crossref_primary_10_1186_s12915_017_0401_7
crossref_primary_10_1111_gcb_70072
crossref_primary_10_1146_annurev_environ_120120_054300
crossref_primary_10_3390_ani12223226
crossref_primary_10_1016_j_biocon_2024_110749
crossref_primary_10_1038_s41597_022_01234_4
crossref_primary_10_1093_botlinnean_boae045
crossref_primary_10_1007_s12224_024_09449_6
crossref_primary_10_1016_j_biocon_2025_111316
crossref_primary_10_1007_s12152_020_09452_6
crossref_primary_10_1073_pnas_1601073113
crossref_primary_10_1093_femsec_fiz193
crossref_primary_10_1007_s10750_021_04644_4
crossref_primary_10_1111_1365_2664_70020
crossref_primary_10_1016_j_heliyon_2021_e06997
crossref_primary_10_1007_s00606_018_1552_x
crossref_primary_10_1002_aqc_70083
crossref_primary_10_1111_1365_2656_12980
crossref_primary_10_1093_biosci_biw088
crossref_primary_10_1007_s10531_021_02282_9
crossref_primary_10_1111_geb_70087
crossref_primary_10_1007_s10531_018_1596_9
crossref_primary_10_1111_jvs_13209
crossref_primary_10_1111_csp2_70147
crossref_primary_10_1186_s13071_025_06920_x
crossref_primary_10_1038_s41559_019_0906_2
crossref_primary_10_1111_csp2_12701
crossref_primary_10_1146_annurev_arplant_042916_040949
crossref_primary_10_1016_j_scitotenv_2022_156909
crossref_primary_10_1038_s41596_025_01201_4
crossref_primary_10_3390_su11030802
crossref_primary_10_1073_pnas_1521179113
crossref_primary_10_3389_fevo_2021_634711
crossref_primary_10_1016_j_oneear_2023_10_001
crossref_primary_10_3390_geosciences11090370
crossref_primary_10_1007_s10980_019_00788_w
crossref_primary_10_1016_j_marenvres_2025_106983
crossref_primary_10_1007_s10841_017_9961_7
crossref_primary_10_1139_er_2021_0014
crossref_primary_10_1016_j_tree_2017_07_002
crossref_primary_10_1177_2053019616666867
crossref_primary_10_1111_oik_09519
crossref_primary_10_1002_bse_2260
crossref_primary_10_1073_pnas_1918373117
crossref_primary_10_1007_s10344_025_01990_9
crossref_primary_10_1016_j_biocon_2024_110843
crossref_primary_10_1016_j_tree_2022_10_013
crossref_primary_10_1016_j_jenvp_2021_101624
crossref_primary_10_3390_f14030621
crossref_primary_10_1016_j_jnc_2025_126887
crossref_primary_10_1111_jzo_13031
crossref_primary_10_1016_j_marpol_2015_10_002
crossref_primary_10_1016_j_pbi_2017_09_010
crossref_primary_10_1215_22011919_9320156
crossref_primary_10_1016_j_ecohyd_2023_02_004
crossref_primary_10_1016_j_jeem_2016_08_003
crossref_primary_10_1007_s12686_021_01204_9
crossref_primary_10_1016_j_gloplacha_2016_12_008
crossref_primary_10_1016_j_theriogenology_2020_01_022
crossref_primary_10_1111_brv_12875
crossref_primary_10_1007_s10530_024_03299_1
crossref_primary_10_1111_brv_12631
crossref_primary_10_1111_cobi_13562
crossref_primary_10_1111_ele_12589
crossref_primary_10_3390_d13080383
crossref_primary_10_1016_j_tplants_2023_06_010
crossref_primary_10_1111_csp2_12845
crossref_primary_10_1016_j_gecadv_2024_100006
crossref_primary_10_1016_j_jnc_2019_125749
crossref_primary_10_1177_2053019615618681
crossref_primary_10_3390_ijerph17010056
crossref_primary_10_54112_bbasr_v2024i1_66
crossref_primary_10_1016_j_jnc_2025_126851
crossref_primary_10_1186_s41936_020_00171_1
crossref_primary_10_1111_ecog_05778
crossref_primary_10_1016_j_ecolecon_2025_108607
crossref_primary_10_1016_j_oneear_2025_101429
crossref_primary_10_1073_pnas_1719889115
crossref_primary_10_1007_s00606_019_01616_z
crossref_primary_10_1111_evo_13593
crossref_primary_10_3389_fevo_2018_00024
crossref_primary_10_1016_j_scitotenv_2021_152316
crossref_primary_10_1007_s10841_018_00121_x
crossref_primary_10_1111_brv_12368
crossref_primary_10_1002_ajp_23632
crossref_primary_10_1016_j_ympev_2022_107592
crossref_primary_10_1016_j_baae_2022_11_010
crossref_primary_10_1016_j_jnc_2024_126688
crossref_primary_10_1007_s40415_019_00568_5
crossref_primary_10_1111_acv_12185
crossref_primary_10_1002_pan3_27
crossref_primary_10_1002_ppp3_10160
crossref_primary_10_1111_oik_10077
crossref_primary_10_3390_ecologies5010004
crossref_primary_10_1002_ajb2_1266
crossref_primary_10_1111_1758_2229_12883
crossref_primary_10_1111_mam_12187
crossref_primary_10_1016_j_biocon_2022_109671
crossref_primary_10_1371_journal_pone_0254467
crossref_primary_10_1111_brv_12816
crossref_primary_10_1016_j_tree_2017_02_014
crossref_primary_10_1038_s41467_018_07049_5
crossref_primary_10_2744_CCB_1471_1
crossref_primary_10_1016_j_ecolind_2023_111100
crossref_primary_10_3897_BDJ_11_e101327
crossref_primary_10_1071_PC14907
crossref_primary_10_3390_su10010194
crossref_primary_10_1016_j_tree_2025_01_002
crossref_primary_10_1111_aec_12932
crossref_primary_10_1016_j_biocon_2018_10_026
crossref_primary_10_1111_jse_12599
crossref_primary_10_1007_s13412_023_00819_8
crossref_primary_10_1111_1749_4877_12646
crossref_primary_10_1016_j_biocon_2020_108791
crossref_primary_10_1111_gcb_70218
crossref_primary_10_3389_fevo_2022_896387
crossref_primary_10_1017_S0030605318000315
crossref_primary_10_1111_cobi_13430
crossref_primary_10_1038_s41467_024_55542_x
crossref_primary_10_1002_ppp3_10146
crossref_primary_10_1016_j_gene_2023_147719
crossref_primary_10_1080_14888386_2016_1206836
crossref_primary_10_1093_sysbio_syab044
crossref_primary_10_1139_facets_2020_0084
crossref_primary_10_1002_ecy_4322
crossref_primary_10_1111_mam_12049
crossref_primary_10_1177_2053019616688022
crossref_primary_10_1080_11263504_2020_1857866
Cites_doi 10.1073/pnas.0802597105
10.1093/bioinformatics/btg412
10.2307/1310807
10.1371/journal.pbio.0060071
10.1086/593137
10.1111/j.2041-210X.2012.00234.x
10.1073/pnas.0601928103
10.1111/j.2517-6161.1953.tb00138.x
10.1038/nature13272
10.1126/science.1246752
10.1126/science.1135590
10.1073/pnas.0811087106
10.1111/j.2006.0906-7590.04272.x
10.1086/428682
10.1038/423821a
10.1098/rspb.2008.0630
10.1038/ncomms2958
10.1371/journal.pbio.1000493
10.1666/0094-8373(2005)031<0006:POAEIT>2.0.CO;2
10.1111/j.1523-1739.1998.96332.x
10.1098/rspb.2011.1439
10.1038/313216a0
10.1098/rspb.2009.2163
10.1038/nature09678
10.1007/s10531-009-9761-9
10.1093/aob/mcs196
10.1016/j.sajb.2013.07.005
10.1111/j.1461-0248.2009.01333.x
10.1016/j.tree.2012.07.010
10.1214/aoms/1177730285
10.1073/pnas.1102543108
10.1093/aob/mcs124
10.1093/sysbio/syr091
10.1111/j.1461-0248.2009.01307.x
10.1111/j.1469-8137.2011.03909.x
10.1111/j.0014-3820.2002.tb00134.x
10.1371/journal.pbio.1001381
10.1146/annurev.ecolsys.37.091305.110035
10.1111/j.1558-5646.2008.00455.x
10.1073/pnas.0604181103
10.1017/S0094837300016134
10.1111/j.1558-5646.2009.00926.x
10.1016/j.tree.2013.09.007
10.1111/j.0014-3820.2001.tb00826.x
10.1016/S0031-0182(96)00100-9
10.56021/9780801882210
10.1093/bioinformatics/btr405
10.1146/annurev-ecolsys-063008-102010
10.1371/journal.pone.0025780
ContentType Journal Article
Copyright 2015 Society for Conservation Biology
2014 Society for Conservation Biology
2014 Society for Conservation Biology.
2015, Society for Conservation Biology
Copyright_xml – notice: 2015 Society for Conservation Biology
– notice: 2014 Society for Conservation Biology
– notice: 2014 Society for Conservation Biology.
– notice: 2015, Society for Conservation Biology
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7X8
7S9
L.6
DOI 10.1111/cobi.12380
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
Ecology Abstracts

AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1523-1739
EndPage 462
ExternalDocumentID 3623208331
25159086
10_1111_cobi_12380
COBI12380
24482652
ark_67375_WNG_DW4QDQBS_N
US201500192757
Genre article
Journal Article
Feature
GroupedDBID ---
-DZ
.-4
.3N
.GA
.Y3
05W
0R~
10A
1OC
29F
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAJUZ
AAKGQ
AANLZ
AAONW
AASGY
AAUTI
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABEFU
ABEML
ABHUG
ABJNI
ABLJU
ABPLY
ABPPZ
ABPTK
ABPVW
ABTLG
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACPVT
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFDN
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AI.
AIAGR
AIRJO
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
D0L
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OES
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QN7
R.K
ROL
RSU
RX1
SA0
SUPJJ
TEORI
TN5
UB1
UKR
UQL
V8K
VH1
VOH
W8V
W99
WBKPD
WHG
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
XSW
YFH
YUY
YV5
YZZ
ZCA
ZCG
ZO4
ZZTAW
~02
~IA
~KM
~WT
1OB
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABSQW
ABXSQ
ACHIC
ACRPL
ACYXJ
ADNMO
ADUKH
ADXHL
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
ALVPJ
AQVQM
BSCLL
HGLYW
IPSME
OIG
SAMSI
AAYXX
ABUFD
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c6870-b24e4d33259c031bee5b9200e06693ce8c80cc405852527254be2bcbef3cdafd3
IEDL.DBID DRFUL
ISICitedReferencesCount 370
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351353400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-8892
1523-1739
IngestDate Fri Jul 11 18:28:40 EDT 2025
Tue Oct 07 09:59:33 EDT 2025
Thu Oct 02 10:08:54 EDT 2025
Fri Jul 25 10:51:14 EDT 2025
Thu Apr 03 07:08:36 EDT 2025
Sat Nov 29 06:55:45 EST 2025
Tue Nov 18 22:20:23 EST 2025
Wed Jan 22 16:41:54 EST 2025
Thu Jul 03 22:32:05 EDT 2025
Tue Sep 09 05:32:00 EDT 2025
Wed Dec 27 19:18:29 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords extinction rate
lineages through time
registro fósil
tasa de extinción
fossil record
filogenias moleculares
linajes a través del tiempo
diversification rates
tasa de diversificación
molecular phylogenies
Language English
License 2014 Society for Conservation Biology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6870-b24e4d33259c031bee5b9200e06693ce8c80cc405852527254be2bcbef3cdafd3
Notes http://dx.doi.org/10.1111/cobi.12380
istex:E5867C98A3461F0122EA4D94D3D67C3B5CD6A457
ark:/67375/WNG-DW4QDQBS-N
ArticleID:COBI12380
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 25159086
PQID 1662809477
PQPubID 36794
PageCount 11
ParticipantIDs proquest_miscellaneous_1694481710
proquest_miscellaneous_1668265447
proquest_miscellaneous_1664202094
proquest_journals_1662809477
pubmed_primary_25159086
crossref_primary_10_1111_cobi_12380
crossref_citationtrail_10_1111_cobi_12380
wiley_primary_10_1111_cobi_12380_COBI12380
jstor_primary_10_2307_24482652
istex_primary_ark_67375_WNG_DW4QDQBS_N
fao_agris_US201500192757
PublicationCentury 2000
PublicationDate April 2015
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: April 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Conservation biology
PublicationTitleAlternate Conservation Biology
PublicationYear 2015
Publisher Blackwell Scientific Publications
Blackwell Publishing Ltd
Wiley Periodicals Inc
Publisher_xml – name: Blackwell Scientific Publications
– name: Blackwell Publishing Ltd
– name: Wiley Periodicals Inc
References Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:6-20.
Foote, M., and D. M. Raup. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121-140.
Ryberg, M., R. H. Nilsson, and P. B. Matheny. 2011. DivBayes and SubT: exploring species diversification using Bayesian statistics. Bioinformatics 27:2439-2440.
Gore, A. 2006. An inconvenient truth: The planetary emergency of global warming and what we can do about it. Rodale Books, New York.
FitzJohn, R. G. 2012. Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution 3:1084-1092.
Pimm, S. L., C. N. Jenkins, R. Abell, T. M. Brooks, J. L. Gittleman, L. Joppa, P. H. Raven, C. M. Roberts, and J. O. Sexton. 2014. The biodiversity of species, their rates of extinction, distribution, and protection. Science 344: 987. DOI: 10.1126/science.1246752
Nee, S., E. C. Holmes, R. M. May, P. H. Harvey, S. Nee, E. C. Holmes, R. M. May, and P. H. Harvey. 1994. Extinction rates can be estimated from molecular phylogenies. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 344:77-82.
Rabosky, D. L., G. J. Slater, and M. E. Alfaro. 2012. Clade age and species richness are decoupled across the Eukaryotic tree of life. PLoS Biology 10(8). DOI:10.1371/journal.pbio.1001381
Ferrer, M. M., and S. V. Good. 2012a. Correction. Annals of Botany 110:1079-1081.
Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences 105:11536-11542.
Etienne, R. S., B. Haegeman, T. Stadler, T. Aze, P. N. Pearson, A. Purvis, and A. B. Phillimore. 2012. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proceedings of the Royal Society B: Biological Sciences 279:1300-1309.
Weir, J. T., and D. Schluter. 2007. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315:1574-1576.
Moran, P. 1953. The estimation of the parameters of a birth and death process. Journal of the Royal Statistical Society. Series B (Methodological) 15:241-245.
Etienne, R. S., and J. Rosindell. 2012. Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification. Systematic Biology 61:204-213.
Fritz, S. A., O. R. P. Bininda Emonds, and A. Purvis. 2009. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecology Letters 12:538-549.
Pimm, S., P. Raven, A. Peterson, Ç. H. Şekercioğlu, and P. R. Ehrlich. 2006. Human impacts on the rates of recent, present, and future bird extinctions. Proceedings of the National Academy of Sciences 103:10941-10946.
Flessa, K. W., and D. Jablonski. 1985. Declining Phanerozoic background extinction rates: Effect of taxonomic structure? Nature 313:216-218.
De-Nova, J. A., R Medina, J. C Montero, A Weeks, J. A Rosell, M. E Olson, L. E Eguiarte, and S Magallón. 2012. Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales). New Phytologist 193:276-287.
McPeek, M. A. 2008. The ecological dynamics of clade diversification and community assembly. The American Naturalist 172:E270-E284.
Rabosky, D. L. 2009a. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecology Letters 12:735-743.
Morlon, H., M. D. Potts, and J. B. Plotkin. 2010. Inferring the dynamics of diversification: a coalescent approach. PLoS Biology 8(9). DOI:10.1371/journal.pbio.1000493.
Valente, L. M., V. Savolainen, and P. Vargas. 2010. Unparalleled rates of species diversification in Europe. Proceedings of the Royal Society B: Biological Sciences 277:1489-1496.
Turgeon, J., R. Stoks, R. A. Thum, J. M. Brown, and M. A. McPeek. 2005. Simultaneous quaternary radiations of three damselfly clades across the Holarctic. The American Naturalist 165:E78-E107.
Purvis, A. 2008. Phylogenetic approaches to the study of extinction. Annual Review of Ecology, Evolution, and Systematics 39:301-319.
Morlon, H., T. L. Parsons, and J. B. Plotkin. 2011. Reconciling molecular phylogenies with the fossil record. Proceedings of the National Academy of Sciences 108:16327-16332.
Paradis, E., J. Claude, and K. Strimmer. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289-290.
Zhou, Z., and S. Zheng. 2003. Palaeobiology: the missing link in Ginkgo evolution. Nature 423:821-822.
Russell, G. J., T. M. Brooks, M. M. McKinney, and C. G. Anderson. 1998. Present and future taxonomic selectivity in bird and mammal extinctions. Conservation Biology 12:1365-1376.
Rabosky, D. L., and I. J. Lovette. 2008. Density-dependent diversification in North American wood warblers. Proceedings of the Royal Society B: Biological Sciences 275:2363-2371.
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.
Quental, T. B., and C. R. Marshall. 2011. The molecular phylogenetic signature of clades in decline. PloS one 6. DOI: 10.1371/journal.pone.0025780
Alfaro, M. E., F. Santini, C. Brock, H. Alamillo, A. Dornburg, D. L. Rabosky, G. Carnevale, and L. J. Harmon. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences 106:13410-13414.
Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127:285-311.
Koenen, E., J. de Vos, G. Atchison, M. Simon, B. Schrire, E. de Souza, L. de Queiroz, and C. Hughes. 2013. Exploring the tempo of species diversification in legumes. South African Journal of Botany 89:19-30.
Price, T. D., et al. 2014. Niche filling slows the diversification of Himalayan songbirds. Nature 509:222-225.
Ferrer, M. M., and S. V. Good. 2012b. Self-sterility in flowering plants: preventing self-fertilization increases family diversification rates. Annals of Botany 110:535-553.
Barnosky, A. D., N. Matzke, S. Tomiya, G. O. U. Wogan, B. Swartz, T. B. Quental, C. Marshall, J. L. McGuire, E. L. Lindsey, and K. C. Maguire. 2011. Has the earth's sixth mass extinction already arrived? Nature 471:51-57.
Stork, N. E. 2010. Re-assessing current extinction rates. Biodiversity and Conservation 19:357-371.
Harnik, P. G., H. K. Lotze, S. C. Anderson, Z. V. Finkel, S. Finnegan, D. R. Lindberg, L. H. Liow, R. Lockwood, C. R. McClain, and J. L. McGuire. 2012. Extinctions in ancient and modern seas. Trends in Ecology & Evolution 27:608-617.
Pyron, R. A., and F. T. Burbrink. 2013. Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses. Trends in Ecology & Evolution 28:729-736.
Magallon, S., and M. J. Sanderson. 2001. Absolute diversification rates in angiosperm clades. Evolution 55:1762-1780.
Rabosky, D. L. 2009b. Extinction rates should not be estimated from molecular phylogenies. Evolution 64:1816-1824.
Rabosky, D. L., F. Santini, J. Eastman, S. A. Smith, B. Sidlauskas, J. Chang, and M. E. Alfaro. 2013. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nature Communications 4:1958. DOI: 10.1038/ncomms2958.
Bokma, F. 2008. Bayesian estimation of speciation and extinction probabilities from (in) complete phylogenies. Evolution 62:2441-2445.
Wilson, D. E., and D. A. M. Reeder. 2005. Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, Maryland.
Myers, N. 1989. Extinction rates past and present. BioScience 39:39-41.
Hughes, C., and R Eastwood. 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences 103:10334-10339.
Nee, S. 2006. Birth-death models in macroevolution. Annual Review of Ecology, Evolution, and Systematics 37:1-17.
Phillimore, A. B., and T. D. Price. 2008. Density-dependent cladogenesis in birds. PLoS biology 6. DOI: 10.1371/journal.pbio.0060071.
Kendall, D. G. 1948. On the generalized "birth-and-death" process. The Annals of Mathematical Statistics 19:1-15.
Pimm, S., G. J. Russell, J. Gittleman, and T. M. Brooks. 1995. The future of biodiversity. Science 269:347-350.
2012; 61
2004; 20
2013; 4
2013; 28
2009; 64
2010; 19
2013; 89
2006; 37
2008; 39
1948; 19
2006
1995
2008; 105
2005
2008; 6
2011; 471
1953; 15
2011; 6
2012; 10
1996; 127
2009; 12
1994; 344
2012; 110
2012; 3
2011; 108
2007; 315
2005; 165
2014; 509
2010; 277
2012; 193
2005; 31
1985; 313
1995; 269
2012; 27
2012; 279
2001; 55
2003; 423
2008; 62
2011; 27
2008; 275
1998; 12
2006; 103
2008; 172
1989; 39
2009; 106
1996; 22
2010; 8
2014; 344
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
Gore A. (e_1_2_6_17_1) 2006
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
Nee S. (e_1_2_6_29_1) 1994; 344
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.
– reference: Turgeon, J., R. Stoks, R. A. Thum, J. M. Brown, and M. A. McPeek. 2005. Simultaneous quaternary radiations of three damselfly clades across the Holarctic. The American Naturalist 165:E78-E107.
– reference: Pimm, S., G. J. Russell, J. Gittleman, and T. M. Brooks. 1995. The future of biodiversity. Science 269:347-350.
– reference: Pimm, S. L., C. N. Jenkins, R. Abell, T. M. Brooks, J. L. Gittleman, L. Joppa, P. H. Raven, C. M. Roberts, and J. O. Sexton. 2014. The biodiversity of species, their rates of extinction, distribution, and protection. Science 344: 987. DOI: 10.1126/science.1246752
– reference: Weir, J. T., and D. Schluter. 2007. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315:1574-1576.
– reference: Ryberg, M., R. H. Nilsson, and P. B. Matheny. 2011. DivBayes and SubT: exploring species diversification using Bayesian statistics. Bioinformatics 27:2439-2440.
– reference: Nee, S. 2006. Birth-death models in macroevolution. Annual Review of Ecology, Evolution, and Systematics 37:1-17.
– reference: Zhou, Z., and S. Zheng. 2003. Palaeobiology: the missing link in Ginkgo evolution. Nature 423:821-822.
– reference: McPeek, M. A. 2008. The ecological dynamics of clade diversification and community assembly. The American Naturalist 172:E270-E284.
– reference: Quental, T. B., and C. R. Marshall. 2011. The molecular phylogenetic signature of clades in decline. PloS one 6. DOI: 10.1371/journal.pone.0025780
– reference: De-Nova, J. A., R Medina, J. C Montero, A Weeks, J. A Rosell, M. E Olson, L. E Eguiarte, and S Magallón. 2012. Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales). New Phytologist 193:276-287.
– reference: Purvis, A. 2008. Phylogenetic approaches to the study of extinction. Annual Review of Ecology, Evolution, and Systematics 39:301-319.
– reference: Harnik, P. G., H. K. Lotze, S. C. Anderson, Z. V. Finkel, S. Finnegan, D. R. Lindberg, L. H. Liow, R. Lockwood, C. R. McClain, and J. L. McGuire. 2012. Extinctions in ancient and modern seas. Trends in Ecology & Evolution 27:608-617.
– reference: Morlon, H., T. L. Parsons, and J. B. Plotkin. 2011. Reconciling molecular phylogenies with the fossil record. Proceedings of the National Academy of Sciences 108:16327-16332.
– reference: Bokma, F. 2008. Bayesian estimation of speciation and extinction probabilities from (in) complete phylogenies. Evolution 62:2441-2445.
– reference: Nee, S., E. C. Holmes, R. M. May, P. H. Harvey, S. Nee, E. C. Holmes, R. M. May, and P. H. Harvey. 1994. Extinction rates can be estimated from molecular phylogenies. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 344:77-82.
– reference: Pyron, R. A., and F. T. Burbrink. 2013. Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses. Trends in Ecology & Evolution 28:729-736.
– reference: Valente, L. M., V. Savolainen, and P. Vargas. 2010. Unparalleled rates of species diversification in Europe. Proceedings of the Royal Society B: Biological Sciences 277:1489-1496.
– reference: Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127:285-311.
– reference: Morlon, H., M. D. Potts, and J. B. Plotkin. 2010. Inferring the dynamics of diversification: a coalescent approach. PLoS Biology 8(9). DOI:10.1371/journal.pbio.1000493.
– reference: Etienne, R. S., and J. Rosindell. 2012. Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification. Systematic Biology 61:204-213.
– reference: Koenen, E., J. de Vos, G. Atchison, M. Simon, B. Schrire, E. de Souza, L. de Queiroz, and C. Hughes. 2013. Exploring the tempo of species diversification in legumes. South African Journal of Botany 89:19-30.
– reference: Rabosky, D. L., and I. J. Lovette. 2008. Density-dependent diversification in North American wood warblers. Proceedings of the Royal Society B: Biological Sciences 275:2363-2371.
– reference: Flessa, K. W., and D. Jablonski. 1985. Declining Phanerozoic background extinction rates: Effect of taxonomic structure? Nature 313:216-218.
– reference: Price, T. D., et al. 2014. Niche filling slows the diversification of Himalayan songbirds. Nature 509:222-225.
– reference: Ferrer, M. M., and S. V. Good. 2012a. Correction. Annals of Botany 110:1079-1081.
– reference: Rabosky, D. L., F. Santini, J. Eastman, S. A. Smith, B. Sidlauskas, J. Chang, and M. E. Alfaro. 2013. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nature Communications 4:1958. DOI: 10.1038/ncomms2958.
– reference: Rabosky, D. L., G. J. Slater, and M. E. Alfaro. 2012. Clade age and species richness are decoupled across the Eukaryotic tree of life. PLoS Biology 10(8). DOI:10.1371/journal.pbio.1001381
– reference: Paradis, E., J. Claude, and K. Strimmer. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289-290.
– reference: Rabosky, D. L. 2009b. Extinction rates should not be estimated from molecular phylogenies. Evolution 64:1816-1824.
– reference: Gore, A. 2006. An inconvenient truth: The planetary emergency of global warming and what we can do about it. Rodale Books, New York.
– reference: Stork, N. E. 2010. Re-assessing current extinction rates. Biodiversity and Conservation 19:357-371.
– reference: Myers, N. 1989. Extinction rates past and present. BioScience 39:39-41.
– reference: FitzJohn, R. G. 2012. Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution 3:1084-1092.
– reference: Moran, P. 1953. The estimation of the parameters of a birth and death process. Journal of the Royal Statistical Society. Series B (Methodological) 15:241-245.
– reference: Russell, G. J., T. M. Brooks, M. M. McKinney, and C. G. Anderson. 1998. Present and future taxonomic selectivity in bird and mammal extinctions. Conservation Biology 12:1365-1376.
– reference: Rabosky, D. L. 2009a. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecology Letters 12:735-743.
– reference: Etienne, R. S., B. Haegeman, T. Stadler, T. Aze, P. N. Pearson, A. Purvis, and A. B. Phillimore. 2012. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proceedings of the Royal Society B: Biological Sciences 279:1300-1309.
– reference: Pimm, S., P. Raven, A. Peterson, Ç. H. Şekercioğlu, and P. R. Ehrlich. 2006. Human impacts on the rates of recent, present, and future bird extinctions. Proceedings of the National Academy of Sciences 103:10941-10946.
– reference: Alfaro, M. E., F. Santini, C. Brock, H. Alamillo, A. Dornburg, D. L. Rabosky, G. Carnevale, and L. J. Harmon. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences 106:13410-13414.
– reference: Wilson, D. E., and D. A. M. Reeder. 2005. Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, Maryland.
– reference: Fritz, S. A., O. R. P. Bininda Emonds, and A. Purvis. 2009. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecology Letters 12:538-549.
– reference: Barnosky, A. D., N. Matzke, S. Tomiya, G. O. U. Wogan, B. Swartz, T. B. Quental, C. Marshall, J. L. McGuire, E. L. Lindsey, and K. C. Maguire. 2011. Has the earth's sixth mass extinction already arrived? Nature 471:51-57.
– reference: Ferrer, M. M., and S. V. Good. 2012b. Self-sterility in flowering plants: preventing self-fertilization increases family diversification rates. Annals of Botany 110:535-553.
– reference: Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:6-20.
– reference: Hughes, C., and R Eastwood. 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences 103:10334-10339.
– reference: Magallon, S., and M. J. Sanderson. 2001. Absolute diversification rates in angiosperm clades. Evolution 55:1762-1780.
– reference: Kendall, D. G. 1948. On the generalized "birth-and-death" process. The Annals of Mathematical Statistics 19:1-15.
– reference: Foote, M., and D. M. Raup. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121-140.
– reference: Phillimore, A. B., and T. D. Price. 2008. Density-dependent cladogenesis in birds. PLoS biology 6. DOI: 10.1371/journal.pbio.0060071.
– reference: Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences 105:11536-11542.
– volume: 313
  start-page: 216
  year: 1985
  end-page: 218
  article-title: Declining Phanerozoic background extinction rates: Effect of taxonomic structure
  publication-title: Nature
– volume: 4
  start-page: 1958
  year: 2013
  article-title: Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation
  publication-title: Nature Communications
– volume: 20
  start-page: 289
  year: 2004
  end-page: 290
  article-title: APE: analyses of phylogenetics and evolution in R language
  publication-title: Bioinformatics
– year: 2005
– volume: 10
  issue: 8
  year: 2012
  article-title: Clade age and species richness are decoupled across the Eukaryotic tree of life
  publication-title: PLoS Biology
– volume: 19
  start-page: 1
  year: 1948
  end-page: 15
  article-title: On the generalized “birth‐and‐death” process
  publication-title: The Annals of Mathematical Statistics
– volume: 22
  start-page: 121
  year: 1996
  end-page: 140
  article-title: Fossil preservation and the stratigraphic ranges of taxa
  publication-title: Paleobiology
– volume: 105
  start-page: 11536
  year: 2008
  end-page: 11542
  article-title: Dynamics of origination and extinction in the marine fossil record
  publication-title: Proceedings of the National Academy of Sciences
– volume: 277
  start-page: 1489
  year: 2010
  end-page: 1496
  article-title: Unparalleled rates of species diversification in Europe
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 27
  start-page: 2439
  year: 2011
  end-page: 2440
  article-title: DivBayes and SubT: exploring species diversification using Bayesian statistics
  publication-title: Bioinformatics
– volume: 12
  start-page: 735
  year: 2009
  end-page: 743
  article-title: Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions
  publication-title: Ecology Letters
– volume: 6
  year: 2008
  article-title: Density‐dependent cladogenesis in birds
  publication-title: PLoS biology
– volume: 64
  start-page: 1816
  year: 2009
  end-page: 1824
  article-title: Extinction rates should not be estimated from molecular phylogenies
  publication-title: Evolution
– volume: 31
  start-page: 6
  year: 2005
  end-page: 20
  article-title: Pulsed origination and extinction in the marine realm
  publication-title: Paleobiology
– volume: 344
  start-page: 77
  year: 1994
  end-page: 82
  article-title: Extinction rates can be estimated from molecular phylogenies. Philosophical Transactions of the Royal Society of London
  publication-title: Series B: Biological Sciences
– volume: 28
  start-page: 729
  year: 2013
  end-page: 736
  article-title: Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses
  publication-title: Trends in Ecology & Evolution
– volume: 127
  start-page: 285
  year: 1996
  end-page: 311
  article-title: Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals
  publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology
– volume: 108
  start-page: 16327
  year: 2011
  end-page: 16332
  article-title: Reconciling molecular phylogenies with the fossil record
  publication-title: Proceedings of the National Academy of Sciences
– volume: 61
  start-page: 204
  year: 2012
  end-page: 213
  article-title: Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification
  publication-title: Systematic Biology
– volume: 39
  start-page: 39
  year: 1989
  end-page: 41
  article-title: Extinction rates past and present
  publication-title: BioScience
– volume: 55
  start-page: 1762
  year: 2001
  end-page: 1780
  article-title: Absolute diversification rates in angiosperm clades
  publication-title: Evolution
– volume: 3
  start-page: 1084
  year: 2012
  end-page: 1092
  publication-title: Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution
– volume: 315
  start-page: 1574
  year: 2007
  end-page: 1576
  article-title: The latitudinal gradient in recent speciation and extinction rates of birds and mammals
  publication-title: Science
– volume: 62
  start-page: 2441
  year: 2008
  end-page: 2445
  article-title: Bayesian estimation of speciation and extinction probabilities from (in) complete phylogenies
  publication-title: Evolution
– volume: 165
  start-page: E78
  year: 2005
  end-page: E107
  article-title: Simultaneous quaternary radiations of three damselfly clades across the Holarctic
  publication-title: The American Naturalist
– volume: 269
  start-page: 347
  year: 1995
  end-page: 350
  article-title: The future of biodiversity
  publication-title: Science
– volume: 103
  start-page: 10334
  year: 2006
  end-page: 10339
  article-title: Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes
  publication-title: Proceedings of the National Academy of Sciences
– volume: 39
  start-page: 301
  year: 2008
  end-page: 319
  article-title: Phylogenetic approaches to the study of extinction
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 89
  start-page: 19
  year: 2013
  end-page: 30
  article-title: Exploring the tempo of species diversification in legumes
  publication-title: South African Journal of Botany
– volume: 37
  start-page: 1
  year: 2006
  end-page: 17
  article-title: Birth‐death models in macroevolution
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 15
  start-page: 241
  year: 1953
  end-page: 245
  article-title: The estimation of the parameters of a birth and death process. Journal of the Royal Statistical Society
  publication-title: Series B (Methodological)
– volume: 172
  start-page: E270
  year: 2008
  end-page: E284
  article-title: The ecological dynamics of clade diversification and community assembly
  publication-title: The American Naturalist
– volume: 27
  start-page: 608
  year: 2012
  end-page: 617
  article-title: Extinctions in ancient and modern seas
  publication-title: Trends in Ecology & Evolution
– volume: 110
  start-page: 1079
  year: 2012
  end-page: 1081
  article-title: Correction
  publication-title: Annals of Botany
– volume: 193
  start-page: 276
  year: 2012
  end-page: 287
  article-title: Insights into the historical construction of species‐rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera
  publication-title: New Phytologist
– volume: 423
  start-page: 821
  year: 2003
  end-page: 822
  article-title: Palaeobiology: the missing link in Ginkgo evolution
  publication-title: Nature
– volume: 471
  start-page: 51
  year: 2011
  end-page: 57
  article-title: Has the earth's sixth mass extinction already arrived
  publication-title: Nature
– volume: 344
  start-page: 987
  year: 2014
  article-title: The biodiversity of species, their rates of extinction, distribution, and protection
  publication-title: Science
– volume: 103
  start-page: 10941
  year: 2006
  end-page: 10946
  article-title: Human impacts on the rates of recent, present, and future bird extinctions
  publication-title: Proceedings of the National Academy of Sciences
– volume: 8
  issue: 9
  year: 2010
  article-title: Inferring the dynamics of diversification: a coalescent approach
  publication-title: PLoS Biology
– volume: 509
  start-page: 222
  year: 2014
  end-page: 225
  article-title: Niche filling slows the diversification of Himalayan songbirds
  publication-title: Nature
– volume: 106
  start-page: 13410
  year: 2009
  end-page: 13414
  article-title: Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates
  publication-title: Proceedings of the National Academy of Sciences
– year: 2006
– volume: 12
  start-page: 538
  year: 2009
  end-page: 549
  article-title: Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics
  publication-title: Ecology Letters
– year: 1995
– volume: 12
  start-page: 1365
  year: 1998
  end-page: 1376
  article-title: Present and future taxonomic selectivity in bird and mammal extinctions
  publication-title: Conservation Biology
– volume: 19
  start-page: 357
  year: 2010
  end-page: 371
  article-title: Re‐assessing current extinction rates
  publication-title: Biodiversity and Conservation
– volume: 6
  year: 2011
  article-title: The molecular phylogenetic signature of clades in decline
  publication-title: PloS one
– volume: 110
  start-page: 535
  year: 2012
  end-page: 553
  article-title: Self‐sterility in flowering plants: preventing self‐fertilization increases family diversification rates
  publication-title: Annals of Botany
– volume: 279
  start-page: 1300
  year: 2012
  end-page: 1309
  article-title: Diversity‐dependence brings molecular phylogenies closer to agreement with the fossil record
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 275
  start-page: 2363
  year: 2008
  end-page: 2371
  article-title: Density‐dependent diversification in North American wood warblers
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– ident: e_1_2_6_4_1
  doi: 10.1073/pnas.0802597105
– ident: e_1_2_6_30_1
  doi: 10.1093/bioinformatics/btg412
– ident: e_1_2_6_27_1
  doi: 10.2307/1310807
– ident: e_1_2_6_31_1
  doi: 10.1371/journal.pbio.0060071
– ident: e_1_2_6_23_1
  doi: 10.1086/593137
– ident: e_1_2_6_12_1
  doi: 10.1111/j.2041-210X.2012.00234.x
– volume-title: An inconvenient truth: The planetary emergency of global warming and what we can do about it
  year: 2006
  ident: e_1_2_6_17_1
– ident: e_1_2_6_19_1
  doi: 10.1073/pnas.0601928103
– ident: e_1_2_6_24_1
  doi: 10.1111/j.2517-6161.1953.tb00138.x
– ident: e_1_2_6_35_1
  doi: 10.1038/nature13272
– ident: e_1_2_6_34_1
  doi: 10.1126/science.1246752
– ident: e_1_2_6_50_1
  doi: 10.1126/science.1135590
– ident: e_1_2_6_2_1
  doi: 10.1073/pnas.0811087106
– ident: e_1_2_6_44_1
  doi: 10.1111/j.2006.0906-7590.04272.x
– ident: e_1_2_6_48_1
  doi: 10.1086/428682
– ident: e_1_2_6_52_1
  doi: 10.1038/423821a
– volume: 344
  start-page: 77
  year: 1994
  ident: e_1_2_6_29_1
  article-title: Extinction rates can be estimated from molecular phylogenies. Philosophical Transactions of the Royal Society of London
  publication-title: Series B: Biological Sciences
– ident: e_1_2_6_41_1
  doi: 10.1098/rspb.2008.0630
– ident: e_1_2_6_42_1
  doi: 10.1038/ncomms2958
– ident: e_1_2_6_26_1
  doi: 10.1371/journal.pbio.1000493
– ident: e_1_2_6_14_1
  doi: 10.1666/0094-8373(2005)031<0006:POAEIT>2.0.CO;2
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1523-1739.1998.96332.x
– ident: e_1_2_6_8_1
  doi: 10.1098/rspb.2011.1439
– ident: e_1_2_6_13_1
  doi: 10.1038/313216a0
– ident: e_1_2_6_49_1
  doi: 10.1098/rspb.2009.2163
– ident: e_1_2_6_5_1
  doi: 10.1038/nature09678
– ident: e_1_2_6_47_1
  doi: 10.1007/s10531-009-9761-9
– ident: e_1_2_6_10_1
  doi: 10.1093/aob/mcs196
– ident: e_1_2_6_21_1
  doi: 10.1016/j.sajb.2013.07.005
– ident: e_1_2_6_39_1
  doi: 10.1111/j.1461-0248.2009.01333.x
– ident: e_1_2_6_18_1
  doi: 10.1016/j.tree.2012.07.010
– ident: e_1_2_6_20_1
  doi: 10.1214/aoms/1177730285
– ident: e_1_2_6_25_1
  doi: 10.1073/pnas.1102543108
– ident: e_1_2_6_11_1
  doi: 10.1093/aob/mcs124
– ident: e_1_2_6_9_1
  doi: 10.1093/sysbio/syr091
– ident: e_1_2_6_16_1
  doi: 10.1111/j.1461-0248.2009.01307.x
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1469-8137.2011.03909.x
– ident: e_1_2_6_33_1
  doi: 10.1111/j.0014-3820.2002.tb00134.x
– ident: e_1_2_6_43_1
  doi: 10.1371/journal.pbio.1001381
– ident: e_1_2_6_28_1
  doi: 10.1146/annurev.ecolsys.37.091305.110035
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1558-5646.2008.00455.x
– ident: e_1_2_6_32_1
  doi: 10.1073/pnas.0604181103
– ident: e_1_2_6_15_1
  doi: 10.1017/S0094837300016134
– ident: e_1_2_6_40_1
  doi: 10.1111/j.1558-5646.2009.00926.x
– ident: e_1_2_6_37_1
  doi: 10.1016/j.tree.2013.09.007
– ident: e_1_2_6_22_1
  doi: 10.1111/j.0014-3820.2001.tb00826.x
– ident: e_1_2_6_3_1
  doi: 10.1016/S0031-0182(96)00100-9
– ident: e_1_2_6_51_1
  doi: 10.56021/9780801882210
– ident: e_1_2_6_46_1
  doi: 10.1093/bioinformatics/btr405
– ident: e_1_2_6_36_1
  doi: 10.1146/annurev-ecolsys-063008-102010
– ident: e_1_2_6_38_1
  doi: 10.1371/journal.pone.0025780
SSID ssj0009514
Score 2.6244955
Snippet A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100–1000 times...
A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100-1000 times...
SourceID proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 452
SubjectTerms Animals
Biological Evolution
Chordata
Computer Simulation
Conservation biology
Conservation of Natural Resources
Contributed Papers
diversification rates
ecosystems
Estimating techniques
Extinction
extinction rate
Extinction, Biological
filogenias moleculares
fossil record
Fossils
Invertebrates
linajes a través del tiempo
lineages through time
Models, Biological
molecular phylogenies
new species
Phylogeny
Plants
plants (botany)
registro fósil
Speciation
Species extinction
tasa de diversificación
tasa de extinción
Taxa
Title Estimating the normal background rate of species extinction
URI https://api.istex.fr/ark:/67375/WNG-DW4QDQBS-N/fulltext.pdf
https://www.jstor.org/stable/24482652
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.12380
https://www.ncbi.nlm.nih.gov/pubmed/25159086
https://www.proquest.com/docview/1662809477
https://www.proquest.com/docview/1664202094
https://www.proquest.com/docview/1668265447
https://www.proquest.com/docview/1694481710
Volume 29
WOSCitedRecordID wos000351353400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1523-1739
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009514
  issn: 0888-8892
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5tHUi8wPi5wFYFgZBACmodp3YEL9vaAhIqjFGtb1bs2FO1KUHthth_z53zY500VUK8RcolTs_3nb_Ptc8Ar12_Z5zRLiJySkW1TSQd4soMjHA85jhmG3_YhJhM5GyWft-Aj81emKo-RDvhRsjw-ZoAnunlCshNqefvMe9KFOxbDAM36cDW8Md4-nWl6G5V2xtVXiRlyurypLSS5_rpGwPSpstKpKnk4T_NCsXbuOdNKuvHovGD__sV23C_5qDhfhU0D2HDFo_gbnUq5RVejXwl66vH8GGECYAobXEaIlEMCyK456HOzBntBinykApNhKULacMmau4QU_288FslnsB0PPp5-DmqT1vAfkHQRppxy_M4Rj1kEOna2kSniCGLpCSNjZVG9oxBficTljCBwlJbpo22LjZ55vL4KXSKsrA7EKbC8ITmSVLb4xZJhEVZlDEmBnkv72cygLeNy5WpS5HTiRjnqpEk5Bbl3RLAq9b2V1WA41arHew5lZ1iZlTTY0bzOEReRSICeOO7s306W5zRajaRqJPJJzU84UfDo4NjNQmg6_t7tRlaJq-QAaEIS1gAu00gqBrpS9UfDJhEjSywoZftbcQo_fGSFba89DacIS9P-VobaoTzte9J8VP6SAoDeFYFYvuxjIgp6tMA3vl4W-Msdfjt4Iu_ev4vxi_gHvm1Wra0C52LxaXdgzvm98V8uejCppjJbo3Av44xK4A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NDQQvjN8LGyMIhDSkoNZxakc8sbVlEyUwtmp7s2LHnqpNCeo2xP773Tlp6KSpEuItUpw4Pd93_j73fAZ457od44x2EZFTKqptIukQV6ZnhOMxxznb-MMmRJbJ4-P0R5ObQ3th6voQ7YIbIcPHawI4LUjPodxUevIRA69Exb7C0Y_QwVf6P4fj0VzV3bq4N8q8SMqUNfVJKZXn79M3ZqQ7Lq-Qp5KJ_8xSFG8jnze5rJ-Mhqv_-TMewcOGhYafa7d5DEu2fAL36nMpr_Bq4GtZXz2FTwMMAURqy5MQqWJYEsU9C3VuTmk_SFmEVGoirFxIWzZRdYcY7Cel3yzxDMbDweHObtSct4Ajg7CNNOOWF3GMisgg1rW1iU4RRRZpSRobK43sGIMMTyYsYQKlpbZMG21dbIrcFfFzWC6r0q5BmArDE1opSW2HW6QRFoVRzpjoFZ2im8sAtmY2V6YpRk5nYpypmSghsyhvlgDetm1_1SU4bm21hkOn8hOMjWp8wGglh-irSEQA7_14tk_n01PKZxOJOsq-qP4R3-_vbx-oLIBNP-Dz3VCivEIOhDIsYQFszDxBNVg_V91ej0lUyQI7etPeRpTSXy95aatL34YzZOYpX9iGOuF84XtS_JQu0sIAXtSe2H4sI2qKCjWAD97hFhhL7Xzf3vNXL_-l8Wu4v3v4baRGe9nXdXhANq6TmDZg-WJ6aV_BXfP7YnI-3WyAeA1yeC6I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5tZUN7Yb8hgzFPmyZtUqbWcRpHPA3abmgog7EK3qzYsVEFSlCBafz33DlpViRUadpbpDhxevZ3_j73fAfw3vW6xhntQiKnlFTbhNIhrkzfJE5EAtds44tNJFkmj4_T_SY2h87C1Pkh2g03Qob31wRwe164OZSbSk8-o-OVqNiXBFWR6cDS4OdovDeXdbdO7o0yL5Qy5U1-Ugrl-fv0rRXpvssr5Klk4j-zEMW7yOdtLusXo9Hj__wZT2ClYaHsSz1tnsI9Wz6Dh3Vdymu8Gvpc1tfPYWuILoBIbXnCkCqykijuGdO5OaXzIGXBKNUEqxyjI5uouhk6-0npD0u8gPFo-GvnW9jUW8CRQdiGmgsriihCRWQQ69raWKeIIou0JI2MlUZ2jUGGJ2Me8wSlpbZcG21dZIrcFdFL6JRVadeApYkRMe2UpLYrLNIIi8Io5zzpF92il8sAPs5srkyTjJxqYpypmSghsyhvlgDetW3P6xQcd7Zaw6FT-Qn6RjU-5LSTQ_Q1iZMAPvjxbJ_Op6cUz5bE6ij7qgZH4mBwsH2osgA2_YDPd0OB8go5EMqwmAewMZsJqsH6her1-1yiSk6wo7ftbUQp_fWSl7a68m0ER2aeioVtqBMhFr4nxU_pIS0MYLWeie3HcqKmqFAD-OQn3AJjqZ0f27v-6tW_NH4Dy_uDkdrbzb6vwyMycR3DtAGdy-mVfQ0PzO_LycV0s8HhDbc1LgM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+normal+background+rate+of+species+extinction&rft.jtitle=Conservation+biology&rft.au=De+Vos%2C+Jurriaan+M&rft.au=Joppa%2C+Lucas+N&rft.au=Gittleman%2C+John+L&rft.au=Stephens%2C+Patrick+R&rft.date=2015-04-01&rft.eissn=1523-1739&rft.volume=29&rft.issue=2&rft.spage=452&rft_id=info:doi/10.1111%2Fcobi.12380&rft_id=info%3Apmid%2F25159086&rft.externalDocID=25159086
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon