Estimating the normal background rate of species extinction
A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100–1000 times pre‐human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is n...
Uloženo v:
| Vydáno v: | Conservation biology Ročník 29; číslo 2; s. 452 - 462 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Blackwell Scientific Publications
01.04.2015
Blackwell Publishing Ltd Wiley Periodicals Inc |
| Témata: | |
| ISSN: | 0888-8892, 1523-1739, 1523-1739 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100–1000 times pre‐human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard‐bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification—the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over‐ and under‐estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre‐human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05–0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher. |
|---|---|
| AbstractList | A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100–1000 times pre‐human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard‐bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification—the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over‐ and under‐estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre‐human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05–0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher.
Estimación de la Tasa Normal de Extinción de Especies
Una medida clave del impacto global de la humanidad es cuánto han incrementado las tasas de extinción de las especies. Las declaraciones conocidas establecen que estas son 100 – 1,000 veces los niveles de extinción pre‐humanos o de fondo. Estimar las tasas recientes es un proceso directo, pero establecer una tasa de fondo para comparar no lo es. Investigadores previos han elegido un punto de referencia aproximado de una extinción por millón de especies por año (E/MEA). Exploramos líneas dispares de evidencia que sugieren un estimado sustancialmente más bajo. Los datos fósiles producen estimados directos de las tasas de extinción, pero son temporalmente burdos, en su mayoría limitados a los taxones marinos de cuerpos duros, y generalmente involucran a los géneros y no a las especies. Basándonos en estos datos, la pérdida de fondo típica es de 0.01 géneros por millón de géneros por año. Las filogenias moleculares están disponibles para más taxones y ecosistemas, pero se debate si pueden usarse para estimar por separado las tasas de extinción y especiación. Seleccionamos datos para dirigirnos a asuntos conocidos y los usamos para determinar los estimados de extinción medios a partir de distribuciones estadísticas de valores probables para plantas y animales terrestres. Después creamos simulaciones para explorar los efectos de las suposiciones del modelo de violación. Finalmente, recopilamos los estimados de diversificación – la diferencia entre las tasas de especiación y extinción para taxones diferentes. Los estimados medios de las tasas de extinción variaron desde 0.023 hasta 0.135 E/MEA. Los resultados de la simulación sugirieron una sobre‐ y subestimación de la extinción a partir filogenias individuales que se cancelaron unas a otras cuando se analizaron conjuntos grandes de filogenias. No hubo evidencia de declinaciones generales pre‐humanas, recientes y extensas en la diversidad. Esto implica que las tasas de extinción promedio son menores a las tasas de diversificación promedio. Las tasas medias de diversificación fueron 0.05 – 0.2 especies nuevas por millón de especies por año. Con base en estos resultados, concluimos que las típicas tasas de extinción de fondo pueden ser más cercanas a 0.1 E/MEA. Así, las tasas de extinción actuales son mil veces más altas que las tasas naturales de extinción de fondo y que las tasas futuras probablemente sean 10, 000 veces más altas. A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100–1000 times pre‐human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard‐bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification—the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over‐ and under‐estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre‐human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05–0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher. A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100-1000 times pre-human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard-bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification-the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over- and under-estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre-human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05-0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher.Original Abstract: Estimacion de la Tasa Normal de Extincion de Especies Una medida clave del impacto global de la humanidad es cuanto han incrementado las tasas de extincion de las especies. Las declaraciones conocidas establecen que estas son 100 - 1,000 veces los niveles de extincion pre-humanos o de fondo. Estimar las tasas recientes es un proceso directo, pero establecer una tasa de fondo para comparar no lo es. Investigadores previos han elegido un punto de referencia aproximado de una extincion por millon de especies por ano (E/MEA). Exploramos lineas dispares de evidencia que sugieren un estimado sustancialmente mas bajo. Los datos fosiles producen estimados directos de las tasas de extincion, pero son temporalmente burdos, en su mayoria limitados a los taxones marinos de cuerpos duros, y generalmente involucran a los generos y no a las especies. Basandonos en estos datos, la perdida de fondo tipica es de 0.01 generos por millon de generos por ano. Las filogenias moleculares estan disponibles para mas taxones y ecosistemas, pero se debate si pueden usarse para estimar por separado las tasas de extincion y especiacion. Seleccionamos datos para dirigirnos a asuntos conocidos y los usamos para determinar los estimados de extincion medios a partir de distribuciones estadisticas de valores probables para plantas y animales terrestres. Despues creamos simulaciones para explorar los efectos de las suposiciones del modelo de violacion. Finalmente, recopilamos los estimados de diversificacion - la diferencia entre las tasas de especiacion y extincion para taxones diferentes. Los estimados medios de las tasas de extincion variaron desde 0.023 hasta 0.135 E/MEA. Los resultados de la simulacion sugirieron una sobre- y subestimacion de la extincion a partir filogenias individuales que se cancelaron unas a otras cuando se analizaron conjuntos grandes de filogenias. No hubo evidencia de declinaciones generales pre-humanas, recientes y extensas en la diversidad. Esto implica que las tasas de extincion promedio son menores a las tasas de diversificacion promedio. Las tasas medias de diversificacion fueron 0.05 - 0.2 especies nuevas por millon de especies por ano. Con base en estos resultados, concluimos que las tipicas tasas de extincion de fondo pueden ser mas cercanas a 0.1 E/MEA. Asi, las tasas de extincion actuales son mil veces mas altas que las tasas naturales de extincion de fondo y que las tasas futuras probablemente sean 10, 000 veces mas altas. A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100–1000 times pre‐human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard‐bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification—the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over‐ and under‐estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre‐human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05–0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher. Estimación de la Tasa Normal de Extinción de Especies Resumen Una medida clave del impacto global de la humanidad es cuánto han incrementado las tasas de extinción de las especies. Las declaraciones conocidas establecen que estas son 100 – 1,000 veces los niveles de extinción pre‐humanos o de fondo. Estimar las tasas recientes es un proceso directo, pero establecer una tasa de fondo para comparar no lo es. Investigadores previos han elegido un punto de referencia aproximado de una extinción por millón de especies por año (E/MEA). Exploramos líneas dispares de evidencia que sugieren un estimado sustancialmente más bajo. Los datos fósiles producen estimados directos de las tasas de extinción, pero son temporalmente burdos, en su mayoría limitados a los taxones marinos de cuerpos duros, y generalmente involucran a los géneros y no a las especies. Basándonos en estos datos, la pérdida de fondo típica es de 0.01 géneros por millón de géneros por año. Las filogenias moleculares están disponibles para más taxones y ecosistemas, pero se debate si pueden usarse para estimar por separado las tasas de extinción y especiación. Seleccionamos datos para dirigirnos a asuntos conocidos y los usamos para determinar los estimados de extinción medios a partir de distribuciones estadísticas de valores probables para plantas y animales terrestres. Después creamos simulaciones para explorar los efectos de las suposiciones del modelo de violación. Finalmente, recopilamos los estimados de diversificación – la diferencia entre las tasas de especiación y extinción para taxones diferentes. Los estimados medios de las tasas de extinción variaron desde 0.023 hasta 0.135 E/MEA. Los resultados de la simulación sugirieron una sobre‐ y subestimación de la extinción a partir filogenias individuales que se cancelaron unas a otras cuando se analizaron conjuntos grandes de filogenias. No hubo evidencia de declinaciones generales pre‐humanas, recientes y extensas en la diversidad. Esto implica que las tasas de extinción promedio son menores a las tasas de diversificación promedio. Las tasas medias de diversificación fueron 0.05 – 0.2 especies nuevas por millón de especies por año. Con base en estos resultados, concluimos que las típicas tasas de extinción de fondo pueden ser más cercanas a 0.1 E/MEA. Así, las tasas de extinción actuales son mil veces más altas que las tasas naturales de extinción de fondo y que las tasas futuras probablemente sean 10, 000 veces más altas. A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100-1000 times pre-human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard-bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification—the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over- and under-estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre-human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05-0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher. Una medida clave del impacto global de la humanidad es cuánto han incrementado las tasas de extinción de las especies. Las declaraciones conocidas establecen que estas son 100 - 1,000 veces los niveles de extinción pre-humanos o de fondo. Estimar las tasas recientes es un proceso directo, pero establecer una tasa de fondo para comparar no lo es. Investigadores previos han elegido un punto de referencia aproximado de una extinción por millón de especies por año (E/MEA). Exploramos líneas dispares de evidencia que sugieren un estimado sustancialmente más bajo. Los datos fósiles producen estimados directos de las tasas de extinción, pero son temporalmente burdos, en su mayoría limitados a los taxones marinos de cuerpos duros, y generalmente involucran a los géneros y no a las especies. Basándonos en estos datos, la pérdida de fondo típica es de 0.01 géneros por millón de géneros por año. Las filogenias moleculares están disponibles para más taxones y ecosistemas, pero se debate si pueden usarse para estimar por separado las tasas de extinción y especiación. Seleccionamos datos para dirigirnos a asuntos conocidos y los usamos para determinar los estimados de extinción medios a partir de distribuciones estadísticas de valores probables para plantas y animales terrestres. Después creamos simulaciones para explorar los efectos de las suposiciones del modelo de violación. Finalmente, recopilamos los estimados de diversificación - la diferencia entre las tasas de especiación y extinción para taxones diferentes. Los estimados medios de las tasas de extinción variaron desde 0.023 hasta 0.135 E/MEA. Los resultados de la simulación sugirieron una sobre- y subestimación de la extinción a partir filogenias individuales que se cancelaron unas a otras cuando se analizaron conjuntos grandes de filogenias. No hubo evidencia de declinaciones generales pre-humanas, recientes y extensas en la diversidad. Esto implica que las tasas de extinción promedio son menores a las tasas de diversificación promedio. Las tasas medias de diversificación fueron 0.05 - 0.2 especies nuevas por millón de especies por año. Con base en estos resultados, concluimos que las típicas tasas de extinción de fondo pueden ser más cercanas a 0.1 E/MEA. Así, las tasas de extinción actuales son mil veces más altas que las tasas naturales de extinción de fondo y que las tasas futuras probablemente sean 10, 000 veces más altas. A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100-1000 times pre-human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard-bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification-the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over- and under-estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre-human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05-0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher.A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100-1000 times pre-human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard-bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification-the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over- and under-estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre-human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05-0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher. |
| Author | Pimm, Stuart L. Joppa, Lucas N. Gittleman, John L. Stephens, Patrick R. De Vos, Jurriaan M. |
| Author_xml | – sequence: 1 fullname: De Vos, Jurriaan M – sequence: 2 fullname: Joppa, Lucas N – sequence: 3 fullname: Gittleman, John L – sequence: 4 fullname: Stephens, Patrick R – sequence: 5 fullname: Pimm, Stuart L |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25159086$$D View this record in MEDLINE/PubMed |
| BookMark | eNqN0V1rFDEUBuAgFbut3vgDdEAEEaaefE0yeGW3tRZKS6mllyGTPbNmOztZk1ls_71Zpy1SRJqbc_O8B_KeHbLVhx4JeU1hj-b3yYXG71HGNTwjEyoZL6ni9RaZgNa61Lpm22QnpQUA1JKKF2SbSSpr0NWEfD5Mg1_awffzYviBRR_i0nZFY931PIZ1PyuiHbAIbZFW6DymAm8ydoMP_UvyvLVdwld3c5dcfj38Pv1WnpwdHU-_nJSu0grKhgkUM86ZrB1w2iDKpmYACFVVc4faaXBOgNSSSaaYFA2yxjXYcjez7Yzvkg_j3lUMP9eYBrP0yWHX2R7DOhla1UJoqig8gVaaVVII9RQqGDCoRabvHtFFWMc-_3mjmM5GbRa-uVPrZokzs4q52Hhr7svO4OMIXAwpRWwfCAWzuaTZXNL8uWTG8Ag7P9hN7UO0vvt3hI6RX77D2_8sN9Oz_eP7zPsxs0hDiH9nGAdlWC4298WyK0fn04A3D87Ga1MprqS5Oj0yB1fi_OB8_8KcZv929K0Nxs6jT-byggGVALRmSir-G3x40Ts |
| CitedBy_id | crossref_primary_10_1016_j_marmicro_2017_07_003 crossref_primary_10_1111_btp_12453 crossref_primary_10_1089_ast_2019_2061 crossref_primary_10_1126_science_aaf3565 crossref_primary_10_1007_s11406_021_00436_1 crossref_primary_10_1038_ncomms9862 crossref_primary_10_1016_j_resconrec_2018_08_003 crossref_primary_10_1111_conl_12313 crossref_primary_10_1371_journal_pclm_0000225 crossref_primary_10_1016_j_joclim_2023_100260 crossref_primary_10_3390_f9040200 crossref_primary_10_3390_d16080456 crossref_primary_10_3389_fevo_2020_00041 crossref_primary_10_1111_nph_14516 crossref_primary_10_1016_j_baae_2022_02_007 crossref_primary_10_1111_cobi_14343 crossref_primary_10_1016_j_tree_2015_05_009 crossref_primary_10_1111_1755_0998_13897 crossref_primary_10_2139_ssrn_5053106 crossref_primary_10_1007_s11430_020_9826_4 crossref_primary_10_1186_s13750_022_00279_7 crossref_primary_10_1007_s13280_020_01399_5 crossref_primary_10_1038_s41598_019_47540_7 crossref_primary_10_1080_17550874_2019_1646831 crossref_primary_10_1016_j_ecoleng_2019_07_035 crossref_primary_10_1002_ppp3_10173 crossref_primary_10_1111_syen_12538 crossref_primary_10_1073_pnas_2002548117 crossref_primary_10_3390_philosophies6020031 crossref_primary_10_3390_rs13020292 crossref_primary_10_1016_j_pld_2020_06_002 crossref_primary_10_1111_ele_13294 crossref_primary_10_1139_facets_2023_0167 crossref_primary_10_1371_journal_pone_0207080 crossref_primary_10_1111_bjso_12818 crossref_primary_10_3390_su11174676 crossref_primary_10_1016_j_chaos_2025_117239 crossref_primary_10_1017_S0025315418000607 crossref_primary_10_1017_S0376892925000074 crossref_primary_10_1111_ele_12648 crossref_primary_10_1007_s10531_019_01734_7 crossref_primary_10_1108_SAMPJ_09_2021_0375 crossref_primary_10_1111_gcb_14663 crossref_primary_10_1111_ddi_13153 crossref_primary_10_1111_ddi_70032 crossref_primary_10_3390_d16090591 crossref_primary_10_1016_j_ympev_2018_04_001 crossref_primary_10_1111_cobi_14202 crossref_primary_10_1163_1937240X_00002381 crossref_primary_10_1016_j_jclepro_2021_128968 crossref_primary_10_1155_2016_3460416 crossref_primary_10_1371_journal_pone_0234694 crossref_primary_10_1111_cobi_13590 crossref_primary_10_1134_S2079086418050079 crossref_primary_10_1002_ppp3_10617 crossref_primary_10_1007_s10841_018_0109_1 crossref_primary_10_3354_meps13201 crossref_primary_10_1016_j_gecco_2024_e03139 crossref_primary_10_1007_s10806_020_09839_8 crossref_primary_10_7717_peerj_1410 crossref_primary_10_1016_j_jnc_2021_125957 crossref_primary_10_1007_s13280_018_1087_y crossref_primary_10_3389_fevo_2022_893088 crossref_primary_10_1080_10871209_2020_1860271 crossref_primary_10_1371_journal_pone_0169156 crossref_primary_10_3390_taxonomy5020032 crossref_primary_10_1038_s42003_025_08396_y crossref_primary_10_1002_pan3_10431 crossref_primary_10_1007_s10531_021_02145_3 crossref_primary_10_1111_csp2_510 crossref_primary_10_7554_eLife_45199 crossref_primary_10_3390_plants11040503 crossref_primary_10_1111_btp_70013 crossref_primary_10_1007_s12224_022_09411_4 crossref_primary_10_1186_s12870_025_07127_z crossref_primary_10_1016_j_fmre_2022_08_008 crossref_primary_10_1002_ppp3_10309 crossref_primary_10_1016_j_energy_2025_138384 crossref_primary_10_1016_j_ecoleng_2023_106935 crossref_primary_10_1007_s10611_017_9698_y crossref_primary_10_1007_s10750_016_2948_7 crossref_primary_10_1016_j_biocon_2025_111110 crossref_primary_10_1016_j_biocon_2023_110424 crossref_primary_10_1111_ddi_13170 crossref_primary_10_1111_ibi_13368 crossref_primary_10_1093_ae_tmz001 crossref_primary_10_1111_pala_12274 crossref_primary_10_1007_s42532_023_00157_7 crossref_primary_10_1038_s41467_021_25507_5 crossref_primary_10_1093_sysbio_syv062 crossref_primary_10_1111_acv_12462 crossref_primary_10_1111_icad_12309 crossref_primary_10_1016_j_cosust_2021_03_008 crossref_primary_10_1162_inov_a_00254 crossref_primary_10_1016_j_biocon_2025_111001 crossref_primary_10_1016_j_ecolind_2016_04_039 crossref_primary_10_1002_ppp3_3 crossref_primary_10_1111_1749_4877_12451 crossref_primary_10_1111_cobi_14353 crossref_primary_10_1007_s13280_025_02230_9 crossref_primary_10_1139_facets_2017_0102 crossref_primary_10_3390_taxonomy4030033 crossref_primary_10_1093_zoolinnean_zlaa099 crossref_primary_10_1126_sciadv_adq2853 crossref_primary_10_3390_su16135484 crossref_primary_10_1007_s10336_018_1561_0 crossref_primary_10_1093_jmammal_gyx101 crossref_primary_10_1111_gcb_70174 crossref_primary_10_1007_s13364_023_00727_w crossref_primary_10_1016_j_chemosphere_2023_140821 crossref_primary_10_1093_sysbio_syad072 crossref_primary_10_1136_bmj_l460 crossref_primary_10_1007_s12224_021_09393_9 crossref_primary_10_1111_let_12195 crossref_primary_10_3897_zookeys_560_6264 crossref_primary_10_1016_j_agee_2017_07_029 crossref_primary_10_1016_j_tree_2015_09_008 crossref_primary_10_1073_pnas_1815080115 crossref_primary_10_1111_btp_12745 crossref_primary_10_1111_ibi_12954 crossref_primary_10_1016_j_biocon_2022_109733 crossref_primary_10_1093_sysbio_syaf006 crossref_primary_10_1016_j_ecoinf_2022_101604 crossref_primary_10_1016_j_biocon_2022_109738 crossref_primary_10_3390_su8070595 crossref_primary_10_1093_biosci_biw016 crossref_primary_10_1016_j_biocon_2025_111340 crossref_primary_10_1038_srep41591 crossref_primary_10_1017_pab_2022_5 crossref_primary_10_1111_cobi_12745 crossref_primary_10_1111_nph_15612 crossref_primary_10_1111_geb_13560 crossref_primary_10_1016_j_ecocom_2018_08_004 crossref_primary_10_1016_j_ecoinf_2023_102090 crossref_primary_10_1038_s41598_021_92691_1 crossref_primary_10_1016_j_ecoleng_2019_105592 crossref_primary_10_1002_jwmg_21836 crossref_primary_10_1002_ppp3_10110 crossref_primary_10_3389_fbioe_2022_871651 crossref_primary_10_1007_s11258_024_01403_y crossref_primary_10_1111_nph_18158 crossref_primary_10_1016_j_jnc_2025_127071 crossref_primary_10_1126_science_aau2650 crossref_primary_10_1016_j_baae_2017_08_005 crossref_primary_10_1111_ddi_13657 crossref_primary_10_1002_bse_3139 crossref_primary_10_1007_s10666_024_09984_8 crossref_primary_10_1016_j_foreco_2019_117642 crossref_primary_10_1007_s13280_018_1116_x crossref_primary_10_1007_s11356_024_32269_2 crossref_primary_10_1108_AAAJ_06_2017_2957 crossref_primary_10_1016_j_theriogenology_2018_11_027 crossref_primary_10_1073_pnas_2001919117 crossref_primary_10_1038_srep23814 crossref_primary_10_1088_1755_1315_1068_1_012042 crossref_primary_10_1146_annurev_ento_120220_024402 crossref_primary_10_1186_s12915_017_0401_7 crossref_primary_10_1111_gcb_70072 crossref_primary_10_1146_annurev_environ_120120_054300 crossref_primary_10_3390_ani12223226 crossref_primary_10_1016_j_biocon_2024_110749 crossref_primary_10_1038_s41597_022_01234_4 crossref_primary_10_1093_botlinnean_boae045 crossref_primary_10_1007_s12224_024_09449_6 crossref_primary_10_1016_j_biocon_2025_111316 crossref_primary_10_1007_s12152_020_09452_6 crossref_primary_10_1073_pnas_1601073113 crossref_primary_10_1093_femsec_fiz193 crossref_primary_10_1007_s10750_021_04644_4 crossref_primary_10_1111_1365_2664_70020 crossref_primary_10_1016_j_heliyon_2021_e06997 crossref_primary_10_1007_s00606_018_1552_x crossref_primary_10_1002_aqc_70083 crossref_primary_10_1111_1365_2656_12980 crossref_primary_10_1093_biosci_biw088 crossref_primary_10_1007_s10531_021_02282_9 crossref_primary_10_1111_geb_70087 crossref_primary_10_1007_s10531_018_1596_9 crossref_primary_10_1111_jvs_13209 crossref_primary_10_1111_csp2_70147 crossref_primary_10_1186_s13071_025_06920_x crossref_primary_10_1038_s41559_019_0906_2 crossref_primary_10_1111_csp2_12701 crossref_primary_10_1146_annurev_arplant_042916_040949 crossref_primary_10_1016_j_scitotenv_2022_156909 crossref_primary_10_1038_s41596_025_01201_4 crossref_primary_10_3390_su11030802 crossref_primary_10_1073_pnas_1521179113 crossref_primary_10_3389_fevo_2021_634711 crossref_primary_10_1016_j_oneear_2023_10_001 crossref_primary_10_3390_geosciences11090370 crossref_primary_10_1007_s10980_019_00788_w crossref_primary_10_1016_j_marenvres_2025_106983 crossref_primary_10_1007_s10841_017_9961_7 crossref_primary_10_1139_er_2021_0014 crossref_primary_10_1016_j_tree_2017_07_002 crossref_primary_10_1177_2053019616666867 crossref_primary_10_1111_oik_09519 crossref_primary_10_1002_bse_2260 crossref_primary_10_1073_pnas_1918373117 crossref_primary_10_1007_s10344_025_01990_9 crossref_primary_10_1016_j_biocon_2024_110843 crossref_primary_10_1016_j_tree_2022_10_013 crossref_primary_10_1016_j_jenvp_2021_101624 crossref_primary_10_3390_f14030621 crossref_primary_10_1016_j_jnc_2025_126887 crossref_primary_10_1111_jzo_13031 crossref_primary_10_1016_j_marpol_2015_10_002 crossref_primary_10_1016_j_pbi_2017_09_010 crossref_primary_10_1215_22011919_9320156 crossref_primary_10_1016_j_ecohyd_2023_02_004 crossref_primary_10_1016_j_jeem_2016_08_003 crossref_primary_10_1007_s12686_021_01204_9 crossref_primary_10_1016_j_gloplacha_2016_12_008 crossref_primary_10_1016_j_theriogenology_2020_01_022 crossref_primary_10_1111_brv_12875 crossref_primary_10_1007_s10530_024_03299_1 crossref_primary_10_1111_brv_12631 crossref_primary_10_1111_cobi_13562 crossref_primary_10_1111_ele_12589 crossref_primary_10_3390_d13080383 crossref_primary_10_1016_j_tplants_2023_06_010 crossref_primary_10_1111_csp2_12845 crossref_primary_10_1016_j_gecadv_2024_100006 crossref_primary_10_1016_j_jnc_2019_125749 crossref_primary_10_1177_2053019615618681 crossref_primary_10_3390_ijerph17010056 crossref_primary_10_54112_bbasr_v2024i1_66 crossref_primary_10_1016_j_jnc_2025_126851 crossref_primary_10_1186_s41936_020_00171_1 crossref_primary_10_1111_ecog_05778 crossref_primary_10_1016_j_ecolecon_2025_108607 crossref_primary_10_1016_j_oneear_2025_101429 crossref_primary_10_1073_pnas_1719889115 crossref_primary_10_1007_s00606_019_01616_z crossref_primary_10_1111_evo_13593 crossref_primary_10_3389_fevo_2018_00024 crossref_primary_10_1016_j_scitotenv_2021_152316 crossref_primary_10_1007_s10841_018_00121_x crossref_primary_10_1111_brv_12368 crossref_primary_10_1002_ajp_23632 crossref_primary_10_1016_j_ympev_2022_107592 crossref_primary_10_1016_j_baae_2022_11_010 crossref_primary_10_1016_j_jnc_2024_126688 crossref_primary_10_1007_s40415_019_00568_5 crossref_primary_10_1111_acv_12185 crossref_primary_10_1002_pan3_27 crossref_primary_10_1002_ppp3_10160 crossref_primary_10_1111_oik_10077 crossref_primary_10_3390_ecologies5010004 crossref_primary_10_1002_ajb2_1266 crossref_primary_10_1111_1758_2229_12883 crossref_primary_10_1111_mam_12187 crossref_primary_10_1016_j_biocon_2022_109671 crossref_primary_10_1371_journal_pone_0254467 crossref_primary_10_1111_brv_12816 crossref_primary_10_1016_j_tree_2017_02_014 crossref_primary_10_1038_s41467_018_07049_5 crossref_primary_10_2744_CCB_1471_1 crossref_primary_10_1016_j_ecolind_2023_111100 crossref_primary_10_3897_BDJ_11_e101327 crossref_primary_10_1071_PC14907 crossref_primary_10_3390_su10010194 crossref_primary_10_1016_j_tree_2025_01_002 crossref_primary_10_1111_aec_12932 crossref_primary_10_1016_j_biocon_2018_10_026 crossref_primary_10_1111_jse_12599 crossref_primary_10_1007_s13412_023_00819_8 crossref_primary_10_1111_1749_4877_12646 crossref_primary_10_1016_j_biocon_2020_108791 crossref_primary_10_1111_gcb_70218 crossref_primary_10_3389_fevo_2022_896387 crossref_primary_10_1017_S0030605318000315 crossref_primary_10_1111_cobi_13430 crossref_primary_10_1038_s41467_024_55542_x crossref_primary_10_1002_ppp3_10146 crossref_primary_10_1016_j_gene_2023_147719 crossref_primary_10_1080_14888386_2016_1206836 crossref_primary_10_1093_sysbio_syab044 crossref_primary_10_1139_facets_2020_0084 crossref_primary_10_1002_ecy_4322 crossref_primary_10_1111_mam_12049 crossref_primary_10_1177_2053019616688022 crossref_primary_10_1080_11263504_2020_1857866 |
| Cites_doi | 10.1073/pnas.0802597105 10.1093/bioinformatics/btg412 10.2307/1310807 10.1371/journal.pbio.0060071 10.1086/593137 10.1111/j.2041-210X.2012.00234.x 10.1073/pnas.0601928103 10.1111/j.2517-6161.1953.tb00138.x 10.1038/nature13272 10.1126/science.1246752 10.1126/science.1135590 10.1073/pnas.0811087106 10.1111/j.2006.0906-7590.04272.x 10.1086/428682 10.1038/423821a 10.1098/rspb.2008.0630 10.1038/ncomms2958 10.1371/journal.pbio.1000493 10.1666/0094-8373(2005)031<0006:POAEIT>2.0.CO;2 10.1111/j.1523-1739.1998.96332.x 10.1098/rspb.2011.1439 10.1038/313216a0 10.1098/rspb.2009.2163 10.1038/nature09678 10.1007/s10531-009-9761-9 10.1093/aob/mcs196 10.1016/j.sajb.2013.07.005 10.1111/j.1461-0248.2009.01333.x 10.1016/j.tree.2012.07.010 10.1214/aoms/1177730285 10.1073/pnas.1102543108 10.1093/aob/mcs124 10.1093/sysbio/syr091 10.1111/j.1461-0248.2009.01307.x 10.1111/j.1469-8137.2011.03909.x 10.1111/j.0014-3820.2002.tb00134.x 10.1371/journal.pbio.1001381 10.1146/annurev.ecolsys.37.091305.110035 10.1111/j.1558-5646.2008.00455.x 10.1073/pnas.0604181103 10.1017/S0094837300016134 10.1111/j.1558-5646.2009.00926.x 10.1016/j.tree.2013.09.007 10.1111/j.0014-3820.2001.tb00826.x 10.1016/S0031-0182(96)00100-9 10.56021/9780801882210 10.1093/bioinformatics/btr405 10.1146/annurev-ecolsys-063008-102010 10.1371/journal.pone.0025780 |
| ContentType | Journal Article |
| Copyright | 2015 Society for Conservation Biology 2014 Society for Conservation Biology 2014 Society for Conservation Biology. 2015, Society for Conservation Biology |
| Copyright_xml | – notice: 2015 Society for Conservation Biology – notice: 2014 Society for Conservation Biology – notice: 2014 Society for Conservation Biology. – notice: 2015, Society for Conservation Biology |
| DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7S9 L.6 |
| DOI | 10.1111/cobi.12380 |
| DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Sustainability Science Abstracts Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE Ecology Abstracts AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology |
| EISSN | 1523-1739 |
| EndPage | 462 |
| ExternalDocumentID | 3623208331 25159086 10_1111_cobi_12380 COBI12380 24482652 ark_67375_WNG_DW4QDQBS_N US201500192757 |
| Genre | article Journal Article Feature |
| GroupedDBID | --- -DZ .-4 .3N .GA .Y3 05W 0R~ 10A 1OC 29F 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAISJ AAJUZ AAKGQ AANLZ AAONW AASGY AAUTI AAXRX AAZKR ABBHK ABCQN ABCUV ABCVL ABEFU ABEML ABHUG ABJNI ABLJU ABPLY ABPPZ ABPTK ABPVW ABTLG ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACNCT ACPOU ACPRK ACPVT ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFDN AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AGUYK AI. AIAGR AIRJO AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F D0L DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 DWIUU EBS ECGQY EJD EQZMY ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HVGLF HZI HZ~ IHE IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OES OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QN7 R.K ROL RSU RX1 SA0 SUPJJ TEORI TN5 UB1 UKR UQL V8K VH1 VOH W8V W99 WBKPD WHG WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH XSW YFH YUY YV5 YZZ ZCA ZCG ZO4 ZZTAW ~02 ~IA ~KM ~WT 1OB AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ABXSQ ACHIC ACRPL ACYXJ ADNMO ADUKH ADXHL AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG ALVPJ AQVQM BSCLL HGLYW IPSME OIG SAMSI AAYXX ABUFD CITATION O8X CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c6870-b24e4d33259c031bee5b9200e06693ce8c80cc405852527254be2bcbef3cdafd3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 370 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351353400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0888-8892 1523-1739 |
| IngestDate | Fri Jul 11 18:28:40 EDT 2025 Tue Oct 07 09:59:33 EDT 2025 Thu Oct 02 10:08:54 EDT 2025 Fri Jul 25 10:51:14 EDT 2025 Thu Apr 03 07:08:36 EDT 2025 Sat Nov 29 06:55:45 EST 2025 Tue Nov 18 22:20:23 EST 2025 Wed Jan 22 16:41:54 EST 2025 Thu Jul 03 22:32:05 EDT 2025 Tue Sep 09 05:32:00 EDT 2025 Wed Dec 27 19:18:29 EST 2023 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | extinction rate lineages through time registro fósil tasa de extinción fossil record filogenias moleculares linajes a través del tiempo diversification rates tasa de diversificación molecular phylogenies |
| Language | English |
| License | 2014 Society for Conservation Biology. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6870-b24e4d33259c031bee5b9200e06693ce8c80cc405852527254be2bcbef3cdafd3 |
| Notes | http://dx.doi.org/10.1111/cobi.12380 istex:E5867C98A3461F0122EA4D94D3D67C3B5CD6A457 ark:/67375/WNG-DW4QDQBS-N ArticleID:COBI12380 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 25159086 |
| PQID | 1662809477 |
| PQPubID | 36794 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1694481710 proquest_miscellaneous_1668265447 proquest_miscellaneous_1664202094 proquest_journals_1662809477 pubmed_primary_25159086 crossref_primary_10_1111_cobi_12380 crossref_citationtrail_10_1111_cobi_12380 wiley_primary_10_1111_cobi_12380_COBI12380 jstor_primary_10_2307_24482652 istex_primary_ark_67375_WNG_DW4QDQBS_N fao_agris_US201500192757 |
| PublicationCentury | 2000 |
| PublicationDate | April 2015 |
| PublicationDateYYYYMMDD | 2015-04-01 |
| PublicationDate_xml | – month: 04 year: 2015 text: April 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Conservation biology |
| PublicationTitleAlternate | Conservation Biology |
| PublicationYear | 2015 |
| Publisher | Blackwell Scientific Publications Blackwell Publishing Ltd Wiley Periodicals Inc |
| Publisher_xml | – name: Blackwell Scientific Publications – name: Blackwell Publishing Ltd – name: Wiley Periodicals Inc |
| References | Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:6-20. Foote, M., and D. M. Raup. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121-140. Ryberg, M., R. H. Nilsson, and P. B. Matheny. 2011. DivBayes and SubT: exploring species diversification using Bayesian statistics. Bioinformatics 27:2439-2440. Gore, A. 2006. An inconvenient truth: The planetary emergency of global warming and what we can do about it. Rodale Books, New York. FitzJohn, R. G. 2012. Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution 3:1084-1092. Pimm, S. L., C. N. Jenkins, R. Abell, T. M. Brooks, J. L. Gittleman, L. Joppa, P. H. Raven, C. M. Roberts, and J. O. Sexton. 2014. The biodiversity of species, their rates of extinction, distribution, and protection. Science 344: 987. DOI: 10.1126/science.1246752 Nee, S., E. C. Holmes, R. M. May, P. H. Harvey, S. Nee, E. C. Holmes, R. M. May, and P. H. Harvey. 1994. Extinction rates can be estimated from molecular phylogenies. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 344:77-82. Rabosky, D. L., G. J. Slater, and M. E. Alfaro. 2012. Clade age and species richness are decoupled across the Eukaryotic tree of life. PLoS Biology 10(8). DOI:10.1371/journal.pbio.1001381 Ferrer, M. M., and S. V. Good. 2012a. Correction. Annals of Botany 110:1079-1081. Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences 105:11536-11542. Etienne, R. S., B. Haegeman, T. Stadler, T. Aze, P. N. Pearson, A. Purvis, and A. B. Phillimore. 2012. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proceedings of the Royal Society B: Biological Sciences 279:1300-1309. Weir, J. T., and D. Schluter. 2007. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315:1574-1576. Moran, P. 1953. The estimation of the parameters of a birth and death process. Journal of the Royal Statistical Society. Series B (Methodological) 15:241-245. Etienne, R. S., and J. Rosindell. 2012. Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification. Systematic Biology 61:204-213. Fritz, S. A., O. R. P. Bininda Emonds, and A. Purvis. 2009. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecology Letters 12:538-549. Pimm, S., P. Raven, A. Peterson, Ç. H. Şekercioğlu, and P. R. Ehrlich. 2006. Human impacts on the rates of recent, present, and future bird extinctions. Proceedings of the National Academy of Sciences 103:10941-10946. Flessa, K. W., and D. Jablonski. 1985. Declining Phanerozoic background extinction rates: Effect of taxonomic structure? Nature 313:216-218. De-Nova, J. A., R Medina, J. C Montero, A Weeks, J. A Rosell, M. E Olson, L. E Eguiarte, and S Magallón. 2012. Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales). New Phytologist 193:276-287. McPeek, M. A. 2008. The ecological dynamics of clade diversification and community assembly. The American Naturalist 172:E270-E284. Rabosky, D. L. 2009a. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecology Letters 12:735-743. Morlon, H., M. D. Potts, and J. B. Plotkin. 2010. Inferring the dynamics of diversification: a coalescent approach. PLoS Biology 8(9). DOI:10.1371/journal.pbio.1000493. Valente, L. M., V. Savolainen, and P. Vargas. 2010. Unparalleled rates of species diversification in Europe. Proceedings of the Royal Society B: Biological Sciences 277:1489-1496. Turgeon, J., R. Stoks, R. A. Thum, J. M. Brown, and M. A. McPeek. 2005. Simultaneous quaternary radiations of three damselfly clades across the Holarctic. The American Naturalist 165:E78-E107. Purvis, A. 2008. Phylogenetic approaches to the study of extinction. Annual Review of Ecology, Evolution, and Systematics 39:301-319. Morlon, H., T. L. Parsons, and J. B. Plotkin. 2011. Reconciling molecular phylogenies with the fossil record. Proceedings of the National Academy of Sciences 108:16327-16332. Paradis, E., J. Claude, and K. Strimmer. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289-290. Zhou, Z., and S. Zheng. 2003. Palaeobiology: the missing link in Ginkgo evolution. Nature 423:821-822. Russell, G. J., T. M. Brooks, M. M. McKinney, and C. G. Anderson. 1998. Present and future taxonomic selectivity in bird and mammal extinctions. Conservation Biology 12:1365-1376. Rabosky, D. L., and I. J. Lovette. 2008. Density-dependent diversification in North American wood warblers. Proceedings of the Royal Society B: Biological Sciences 275:2363-2371. Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge. Quental, T. B., and C. R. Marshall. 2011. The molecular phylogenetic signature of clades in decline. PloS one 6. DOI: 10.1371/journal.pone.0025780 Alfaro, M. E., F. Santini, C. Brock, H. Alamillo, A. Dornburg, D. L. Rabosky, G. Carnevale, and L. J. Harmon. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences 106:13410-13414. Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127:285-311. Koenen, E., J. de Vos, G. Atchison, M. Simon, B. Schrire, E. de Souza, L. de Queiroz, and C. Hughes. 2013. Exploring the tempo of species diversification in legumes. South African Journal of Botany 89:19-30. Price, T. D., et al. 2014. Niche filling slows the diversification of Himalayan songbirds. Nature 509:222-225. Ferrer, M. M., and S. V. Good. 2012b. Self-sterility in flowering plants: preventing self-fertilization increases family diversification rates. Annals of Botany 110:535-553. Barnosky, A. D., N. Matzke, S. Tomiya, G. O. U. Wogan, B. Swartz, T. B. Quental, C. Marshall, J. L. McGuire, E. L. Lindsey, and K. C. Maguire. 2011. Has the earth's sixth mass extinction already arrived? Nature 471:51-57. Stork, N. E. 2010. Re-assessing current extinction rates. Biodiversity and Conservation 19:357-371. Harnik, P. G., H. K. Lotze, S. C. Anderson, Z. V. Finkel, S. Finnegan, D. R. Lindberg, L. H. Liow, R. Lockwood, C. R. McClain, and J. L. McGuire. 2012. Extinctions in ancient and modern seas. Trends in Ecology & Evolution 27:608-617. Pyron, R. A., and F. T. Burbrink. 2013. Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses. Trends in Ecology & Evolution 28:729-736. Magallon, S., and M. J. Sanderson. 2001. Absolute diversification rates in angiosperm clades. Evolution 55:1762-1780. Rabosky, D. L. 2009b. Extinction rates should not be estimated from molecular phylogenies. Evolution 64:1816-1824. Rabosky, D. L., F. Santini, J. Eastman, S. A. Smith, B. Sidlauskas, J. Chang, and M. E. Alfaro. 2013. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nature Communications 4:1958. DOI: 10.1038/ncomms2958. Bokma, F. 2008. Bayesian estimation of speciation and extinction probabilities from (in) complete phylogenies. Evolution 62:2441-2445. Wilson, D. E., and D. A. M. Reeder. 2005. Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, Maryland. Myers, N. 1989. Extinction rates past and present. BioScience 39:39-41. Hughes, C., and R Eastwood. 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences 103:10334-10339. Nee, S. 2006. Birth-death models in macroevolution. Annual Review of Ecology, Evolution, and Systematics 37:1-17. Phillimore, A. B., and T. D. Price. 2008. Density-dependent cladogenesis in birds. PLoS biology 6. DOI: 10.1371/journal.pbio.0060071. Kendall, D. G. 1948. On the generalized "birth-and-death" process. The Annals of Mathematical Statistics 19:1-15. Pimm, S., G. J. Russell, J. Gittleman, and T. M. Brooks. 1995. The future of biodiversity. Science 269:347-350. 2012; 61 2004; 20 2013; 4 2013; 28 2009; 64 2010; 19 2013; 89 2006; 37 2008; 39 1948; 19 2006 1995 2008; 105 2005 2008; 6 2011; 471 1953; 15 2011; 6 2012; 10 1996; 127 2009; 12 1994; 344 2012; 110 2012; 3 2011; 108 2007; 315 2005; 165 2014; 509 2010; 277 2012; 193 2005; 31 1985; 313 1995; 269 2012; 27 2012; 279 2001; 55 2003; 423 2008; 62 2011; 27 2008; 275 1998; 12 2006; 103 2008; 172 1989; 39 2009; 106 1996; 22 2010; 8 2014; 344 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 Gore A. (e_1_2_6_17_1) 2006 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 Nee S. (e_1_2_6_29_1) 1994; 344 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – reference: Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge. – reference: Turgeon, J., R. Stoks, R. A. Thum, J. M. Brown, and M. A. McPeek. 2005. Simultaneous quaternary radiations of three damselfly clades across the Holarctic. The American Naturalist 165:E78-E107. – reference: Pimm, S., G. J. Russell, J. Gittleman, and T. M. Brooks. 1995. The future of biodiversity. Science 269:347-350. – reference: Pimm, S. L., C. N. Jenkins, R. Abell, T. M. Brooks, J. L. Gittleman, L. Joppa, P. H. Raven, C. M. Roberts, and J. O. Sexton. 2014. The biodiversity of species, their rates of extinction, distribution, and protection. Science 344: 987. DOI: 10.1126/science.1246752 – reference: Weir, J. T., and D. Schluter. 2007. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315:1574-1576. – reference: Ryberg, M., R. H. Nilsson, and P. B. Matheny. 2011. DivBayes and SubT: exploring species diversification using Bayesian statistics. Bioinformatics 27:2439-2440. – reference: Nee, S. 2006. Birth-death models in macroevolution. Annual Review of Ecology, Evolution, and Systematics 37:1-17. – reference: Zhou, Z., and S. Zheng. 2003. Palaeobiology: the missing link in Ginkgo evolution. Nature 423:821-822. – reference: McPeek, M. A. 2008. The ecological dynamics of clade diversification and community assembly. The American Naturalist 172:E270-E284. – reference: Quental, T. B., and C. R. Marshall. 2011. The molecular phylogenetic signature of clades in decline. PloS one 6. DOI: 10.1371/journal.pone.0025780 – reference: De-Nova, J. A., R Medina, J. C Montero, A Weeks, J. A Rosell, M. E Olson, L. E Eguiarte, and S Magallón. 2012. Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales). New Phytologist 193:276-287. – reference: Purvis, A. 2008. Phylogenetic approaches to the study of extinction. Annual Review of Ecology, Evolution, and Systematics 39:301-319. – reference: Harnik, P. G., H. K. Lotze, S. C. Anderson, Z. V. Finkel, S. Finnegan, D. R. Lindberg, L. H. Liow, R. Lockwood, C. R. McClain, and J. L. McGuire. 2012. Extinctions in ancient and modern seas. Trends in Ecology & Evolution 27:608-617. – reference: Morlon, H., T. L. Parsons, and J. B. Plotkin. 2011. Reconciling molecular phylogenies with the fossil record. Proceedings of the National Academy of Sciences 108:16327-16332. – reference: Bokma, F. 2008. Bayesian estimation of speciation and extinction probabilities from (in) complete phylogenies. Evolution 62:2441-2445. – reference: Nee, S., E. C. Holmes, R. M. May, P. H. Harvey, S. Nee, E. C. Holmes, R. M. May, and P. H. Harvey. 1994. Extinction rates can be estimated from molecular phylogenies. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 344:77-82. – reference: Pyron, R. A., and F. T. Burbrink. 2013. Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses. Trends in Ecology & Evolution 28:729-736. – reference: Valente, L. M., V. Savolainen, and P. Vargas. 2010. Unparalleled rates of species diversification in Europe. Proceedings of the Royal Society B: Biological Sciences 277:1489-1496. – reference: Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127:285-311. – reference: Morlon, H., M. D. Potts, and J. B. Plotkin. 2010. Inferring the dynamics of diversification: a coalescent approach. PLoS Biology 8(9). DOI:10.1371/journal.pbio.1000493. – reference: Etienne, R. S., and J. Rosindell. 2012. Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification. Systematic Biology 61:204-213. – reference: Koenen, E., J. de Vos, G. Atchison, M. Simon, B. Schrire, E. de Souza, L. de Queiroz, and C. Hughes. 2013. Exploring the tempo of species diversification in legumes. South African Journal of Botany 89:19-30. – reference: Rabosky, D. L., and I. J. Lovette. 2008. Density-dependent diversification in North American wood warblers. Proceedings of the Royal Society B: Biological Sciences 275:2363-2371. – reference: Flessa, K. W., and D. Jablonski. 1985. Declining Phanerozoic background extinction rates: Effect of taxonomic structure? Nature 313:216-218. – reference: Price, T. D., et al. 2014. Niche filling slows the diversification of Himalayan songbirds. Nature 509:222-225. – reference: Ferrer, M. M., and S. V. Good. 2012a. Correction. Annals of Botany 110:1079-1081. – reference: Rabosky, D. L., F. Santini, J. Eastman, S. A. Smith, B. Sidlauskas, J. Chang, and M. E. Alfaro. 2013. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nature Communications 4:1958. DOI: 10.1038/ncomms2958. – reference: Rabosky, D. L., G. J. Slater, and M. E. Alfaro. 2012. Clade age and species richness are decoupled across the Eukaryotic tree of life. PLoS Biology 10(8). DOI:10.1371/journal.pbio.1001381 – reference: Paradis, E., J. Claude, and K. Strimmer. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289-290. – reference: Rabosky, D. L. 2009b. Extinction rates should not be estimated from molecular phylogenies. Evolution 64:1816-1824. – reference: Gore, A. 2006. An inconvenient truth: The planetary emergency of global warming and what we can do about it. Rodale Books, New York. – reference: Stork, N. E. 2010. Re-assessing current extinction rates. Biodiversity and Conservation 19:357-371. – reference: Myers, N. 1989. Extinction rates past and present. BioScience 39:39-41. – reference: FitzJohn, R. G. 2012. Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution 3:1084-1092. – reference: Moran, P. 1953. The estimation of the parameters of a birth and death process. Journal of the Royal Statistical Society. Series B (Methodological) 15:241-245. – reference: Russell, G. J., T. M. Brooks, M. M. McKinney, and C. G. Anderson. 1998. Present and future taxonomic selectivity in bird and mammal extinctions. Conservation Biology 12:1365-1376. – reference: Rabosky, D. L. 2009a. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecology Letters 12:735-743. – reference: Etienne, R. S., B. Haegeman, T. Stadler, T. Aze, P. N. Pearson, A. Purvis, and A. B. Phillimore. 2012. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proceedings of the Royal Society B: Biological Sciences 279:1300-1309. – reference: Pimm, S., P. Raven, A. Peterson, Ç. H. Şekercioğlu, and P. R. Ehrlich. 2006. Human impacts on the rates of recent, present, and future bird extinctions. Proceedings of the National Academy of Sciences 103:10941-10946. – reference: Alfaro, M. E., F. Santini, C. Brock, H. Alamillo, A. Dornburg, D. L. Rabosky, G. Carnevale, and L. J. Harmon. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences 106:13410-13414. – reference: Wilson, D. E., and D. A. M. Reeder. 2005. Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, Maryland. – reference: Fritz, S. A., O. R. P. Bininda Emonds, and A. Purvis. 2009. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecology Letters 12:538-549. – reference: Barnosky, A. D., N. Matzke, S. Tomiya, G. O. U. Wogan, B. Swartz, T. B. Quental, C. Marshall, J. L. McGuire, E. L. Lindsey, and K. C. Maguire. 2011. Has the earth's sixth mass extinction already arrived? Nature 471:51-57. – reference: Ferrer, M. M., and S. V. Good. 2012b. Self-sterility in flowering plants: preventing self-fertilization increases family diversification rates. Annals of Botany 110:535-553. – reference: Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:6-20. – reference: Hughes, C., and R Eastwood. 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences 103:10334-10339. – reference: Magallon, S., and M. J. Sanderson. 2001. Absolute diversification rates in angiosperm clades. Evolution 55:1762-1780. – reference: Kendall, D. G. 1948. On the generalized "birth-and-death" process. The Annals of Mathematical Statistics 19:1-15. – reference: Foote, M., and D. M. Raup. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121-140. – reference: Phillimore, A. B., and T. D. Price. 2008. Density-dependent cladogenesis in birds. PLoS biology 6. DOI: 10.1371/journal.pbio.0060071. – reference: Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences 105:11536-11542. – volume: 313 start-page: 216 year: 1985 end-page: 218 article-title: Declining Phanerozoic background extinction rates: Effect of taxonomic structure publication-title: Nature – volume: 4 start-page: 1958 year: 2013 article-title: Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation publication-title: Nature Communications – volume: 20 start-page: 289 year: 2004 end-page: 290 article-title: APE: analyses of phylogenetics and evolution in R language publication-title: Bioinformatics – year: 2005 – volume: 10 issue: 8 year: 2012 article-title: Clade age and species richness are decoupled across the Eukaryotic tree of life publication-title: PLoS Biology – volume: 19 start-page: 1 year: 1948 end-page: 15 article-title: On the generalized “birth‐and‐death” process publication-title: The Annals of Mathematical Statistics – volume: 22 start-page: 121 year: 1996 end-page: 140 article-title: Fossil preservation and the stratigraphic ranges of taxa publication-title: Paleobiology – volume: 105 start-page: 11536 year: 2008 end-page: 11542 article-title: Dynamics of origination and extinction in the marine fossil record publication-title: Proceedings of the National Academy of Sciences – volume: 277 start-page: 1489 year: 2010 end-page: 1496 article-title: Unparalleled rates of species diversification in Europe publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 27 start-page: 2439 year: 2011 end-page: 2440 article-title: DivBayes and SubT: exploring species diversification using Bayesian statistics publication-title: Bioinformatics – volume: 12 start-page: 735 year: 2009 end-page: 743 article-title: Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions publication-title: Ecology Letters – volume: 6 year: 2008 article-title: Density‐dependent cladogenesis in birds publication-title: PLoS biology – volume: 64 start-page: 1816 year: 2009 end-page: 1824 article-title: Extinction rates should not be estimated from molecular phylogenies publication-title: Evolution – volume: 31 start-page: 6 year: 2005 end-page: 20 article-title: Pulsed origination and extinction in the marine realm publication-title: Paleobiology – volume: 344 start-page: 77 year: 1994 end-page: 82 article-title: Extinction rates can be estimated from molecular phylogenies. Philosophical Transactions of the Royal Society of London publication-title: Series B: Biological Sciences – volume: 28 start-page: 729 year: 2013 end-page: 736 article-title: Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses publication-title: Trends in Ecology & Evolution – volume: 127 start-page: 285 year: 1996 end-page: 311 article-title: Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology – volume: 108 start-page: 16327 year: 2011 end-page: 16332 article-title: Reconciling molecular phylogenies with the fossil record publication-title: Proceedings of the National Academy of Sciences – volume: 61 start-page: 204 year: 2012 end-page: 213 article-title: Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification publication-title: Systematic Biology – volume: 39 start-page: 39 year: 1989 end-page: 41 article-title: Extinction rates past and present publication-title: BioScience – volume: 55 start-page: 1762 year: 2001 end-page: 1780 article-title: Absolute diversification rates in angiosperm clades publication-title: Evolution – volume: 3 start-page: 1084 year: 2012 end-page: 1092 publication-title: Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution – volume: 315 start-page: 1574 year: 2007 end-page: 1576 article-title: The latitudinal gradient in recent speciation and extinction rates of birds and mammals publication-title: Science – volume: 62 start-page: 2441 year: 2008 end-page: 2445 article-title: Bayesian estimation of speciation and extinction probabilities from (in) complete phylogenies publication-title: Evolution – volume: 165 start-page: E78 year: 2005 end-page: E107 article-title: Simultaneous quaternary radiations of three damselfly clades across the Holarctic publication-title: The American Naturalist – volume: 269 start-page: 347 year: 1995 end-page: 350 article-title: The future of biodiversity publication-title: Science – volume: 103 start-page: 10334 year: 2006 end-page: 10339 article-title: Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes publication-title: Proceedings of the National Academy of Sciences – volume: 39 start-page: 301 year: 2008 end-page: 319 article-title: Phylogenetic approaches to the study of extinction publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 89 start-page: 19 year: 2013 end-page: 30 article-title: Exploring the tempo of species diversification in legumes publication-title: South African Journal of Botany – volume: 37 start-page: 1 year: 2006 end-page: 17 article-title: Birth‐death models in macroevolution publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 15 start-page: 241 year: 1953 end-page: 245 article-title: The estimation of the parameters of a birth and death process. Journal of the Royal Statistical Society publication-title: Series B (Methodological) – volume: 172 start-page: E270 year: 2008 end-page: E284 article-title: The ecological dynamics of clade diversification and community assembly publication-title: The American Naturalist – volume: 27 start-page: 608 year: 2012 end-page: 617 article-title: Extinctions in ancient and modern seas publication-title: Trends in Ecology & Evolution – volume: 110 start-page: 1079 year: 2012 end-page: 1081 article-title: Correction publication-title: Annals of Botany – volume: 193 start-page: 276 year: 2012 end-page: 287 article-title: Insights into the historical construction of species‐rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera publication-title: New Phytologist – volume: 423 start-page: 821 year: 2003 end-page: 822 article-title: Palaeobiology: the missing link in Ginkgo evolution publication-title: Nature – volume: 471 start-page: 51 year: 2011 end-page: 57 article-title: Has the earth's sixth mass extinction already arrived publication-title: Nature – volume: 344 start-page: 987 year: 2014 article-title: The biodiversity of species, their rates of extinction, distribution, and protection publication-title: Science – volume: 103 start-page: 10941 year: 2006 end-page: 10946 article-title: Human impacts on the rates of recent, present, and future bird extinctions publication-title: Proceedings of the National Academy of Sciences – volume: 8 issue: 9 year: 2010 article-title: Inferring the dynamics of diversification: a coalescent approach publication-title: PLoS Biology – volume: 509 start-page: 222 year: 2014 end-page: 225 article-title: Niche filling slows the diversification of Himalayan songbirds publication-title: Nature – volume: 106 start-page: 13410 year: 2009 end-page: 13414 article-title: Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates publication-title: Proceedings of the National Academy of Sciences – year: 2006 – volume: 12 start-page: 538 year: 2009 end-page: 549 article-title: Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics publication-title: Ecology Letters – year: 1995 – volume: 12 start-page: 1365 year: 1998 end-page: 1376 article-title: Present and future taxonomic selectivity in bird and mammal extinctions publication-title: Conservation Biology – volume: 19 start-page: 357 year: 2010 end-page: 371 article-title: Re‐assessing current extinction rates publication-title: Biodiversity and Conservation – volume: 6 year: 2011 article-title: The molecular phylogenetic signature of clades in decline publication-title: PloS one – volume: 110 start-page: 535 year: 2012 end-page: 553 article-title: Self‐sterility in flowering plants: preventing self‐fertilization increases family diversification rates publication-title: Annals of Botany – volume: 279 start-page: 1300 year: 2012 end-page: 1309 article-title: Diversity‐dependence brings molecular phylogenies closer to agreement with the fossil record publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 275 start-page: 2363 year: 2008 end-page: 2371 article-title: Density‐dependent diversification in North American wood warblers publication-title: Proceedings of the Royal Society B: Biological Sciences – ident: e_1_2_6_4_1 doi: 10.1073/pnas.0802597105 – ident: e_1_2_6_30_1 doi: 10.1093/bioinformatics/btg412 – ident: e_1_2_6_27_1 doi: 10.2307/1310807 – ident: e_1_2_6_31_1 doi: 10.1371/journal.pbio.0060071 – ident: e_1_2_6_23_1 doi: 10.1086/593137 – ident: e_1_2_6_12_1 doi: 10.1111/j.2041-210X.2012.00234.x – volume-title: An inconvenient truth: The planetary emergency of global warming and what we can do about it year: 2006 ident: e_1_2_6_17_1 – ident: e_1_2_6_19_1 doi: 10.1073/pnas.0601928103 – ident: e_1_2_6_24_1 doi: 10.1111/j.2517-6161.1953.tb00138.x – ident: e_1_2_6_35_1 doi: 10.1038/nature13272 – ident: e_1_2_6_34_1 doi: 10.1126/science.1246752 – ident: e_1_2_6_50_1 doi: 10.1126/science.1135590 – ident: e_1_2_6_2_1 doi: 10.1073/pnas.0811087106 – ident: e_1_2_6_44_1 doi: 10.1111/j.2006.0906-7590.04272.x – ident: e_1_2_6_48_1 doi: 10.1086/428682 – ident: e_1_2_6_52_1 doi: 10.1038/423821a – volume: 344 start-page: 77 year: 1994 ident: e_1_2_6_29_1 article-title: Extinction rates can be estimated from molecular phylogenies. Philosophical Transactions of the Royal Society of London publication-title: Series B: Biological Sciences – ident: e_1_2_6_41_1 doi: 10.1098/rspb.2008.0630 – ident: e_1_2_6_42_1 doi: 10.1038/ncomms2958 – ident: e_1_2_6_26_1 doi: 10.1371/journal.pbio.1000493 – ident: e_1_2_6_14_1 doi: 10.1666/0094-8373(2005)031<0006:POAEIT>2.0.CO;2 – ident: e_1_2_6_45_1 doi: 10.1111/j.1523-1739.1998.96332.x – ident: e_1_2_6_8_1 doi: 10.1098/rspb.2011.1439 – ident: e_1_2_6_13_1 doi: 10.1038/313216a0 – ident: e_1_2_6_49_1 doi: 10.1098/rspb.2009.2163 – ident: e_1_2_6_5_1 doi: 10.1038/nature09678 – ident: e_1_2_6_47_1 doi: 10.1007/s10531-009-9761-9 – ident: e_1_2_6_10_1 doi: 10.1093/aob/mcs196 – ident: e_1_2_6_21_1 doi: 10.1016/j.sajb.2013.07.005 – ident: e_1_2_6_39_1 doi: 10.1111/j.1461-0248.2009.01333.x – ident: e_1_2_6_18_1 doi: 10.1016/j.tree.2012.07.010 – ident: e_1_2_6_20_1 doi: 10.1214/aoms/1177730285 – ident: e_1_2_6_25_1 doi: 10.1073/pnas.1102543108 – ident: e_1_2_6_11_1 doi: 10.1093/aob/mcs124 – ident: e_1_2_6_9_1 doi: 10.1093/sysbio/syr091 – ident: e_1_2_6_16_1 doi: 10.1111/j.1461-0248.2009.01307.x – ident: e_1_2_6_7_1 doi: 10.1111/j.1469-8137.2011.03909.x – ident: e_1_2_6_33_1 doi: 10.1111/j.0014-3820.2002.tb00134.x – ident: e_1_2_6_43_1 doi: 10.1371/journal.pbio.1001381 – ident: e_1_2_6_28_1 doi: 10.1146/annurev.ecolsys.37.091305.110035 – ident: e_1_2_6_6_1 doi: 10.1111/j.1558-5646.2008.00455.x – ident: e_1_2_6_32_1 doi: 10.1073/pnas.0604181103 – ident: e_1_2_6_15_1 doi: 10.1017/S0094837300016134 – ident: e_1_2_6_40_1 doi: 10.1111/j.1558-5646.2009.00926.x – ident: e_1_2_6_37_1 doi: 10.1016/j.tree.2013.09.007 – ident: e_1_2_6_22_1 doi: 10.1111/j.0014-3820.2001.tb00826.x – ident: e_1_2_6_3_1 doi: 10.1016/S0031-0182(96)00100-9 – ident: e_1_2_6_51_1 doi: 10.56021/9780801882210 – ident: e_1_2_6_46_1 doi: 10.1093/bioinformatics/btr405 – ident: e_1_2_6_36_1 doi: 10.1146/annurev-ecolsys-063008-102010 – ident: e_1_2_6_38_1 doi: 10.1371/journal.pone.0025780 |
| SSID | ssj0009514 |
| Score | 2.6244955 |
| Snippet | A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100–1000 times... A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100-1000 times... |
| SourceID | proquest pubmed crossref wiley jstor istex fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 452 |
| SubjectTerms | Animals Biological Evolution Chordata Computer Simulation Conservation biology Conservation of Natural Resources Contributed Papers diversification rates ecosystems Estimating techniques Extinction extinction rate Extinction, Biological filogenias moleculares fossil record Fossils Invertebrates linajes a través del tiempo lineages through time Models, Biological molecular phylogenies new species Phylogeny Plants plants (botany) registro fósil Speciation Species extinction tasa de diversificación tasa de extinción Taxa |
| Title | Estimating the normal background rate of species extinction |
| URI | https://api.istex.fr/ark:/67375/WNG-DW4QDQBS-N/fulltext.pdf https://www.jstor.org/stable/24482652 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.12380 https://www.ncbi.nlm.nih.gov/pubmed/25159086 https://www.proquest.com/docview/1662809477 https://www.proquest.com/docview/1664202094 https://www.proquest.com/docview/1668265447 https://www.proquest.com/docview/1694481710 |
| Volume | 29 |
| WOSCitedRecordID | wos000351353400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1523-1739 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009514 issn: 0888-8892 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5tHUi8wPi5wFYFgZBACmodp3YEL9vaAhIqjFGtb1bs2FO1KUHthth_z53zY500VUK8RcolTs_3nb_Ptc8Ar12_Z5zRLiJySkW1TSQd4soMjHA85jhmG3_YhJhM5GyWft-Aj81emKo-RDvhRsjw-ZoAnunlCshNqefvMe9KFOxbDAM36cDW8Md4-nWl6G5V2xtVXiRlyurypLSS5_rpGwPSpstKpKnk4T_NCsXbuOdNKuvHovGD__sV23C_5qDhfhU0D2HDFo_gbnUq5RVejXwl66vH8GGECYAobXEaIlEMCyK456HOzBntBinykApNhKULacMmau4QU_288FslnsB0PPp5-DmqT1vAfkHQRppxy_M4Rj1kEOna2kSniCGLpCSNjZVG9oxBficTljCBwlJbpo22LjZ55vL4KXSKsrA7EKbC8ITmSVLb4xZJhEVZlDEmBnkv72cygLeNy5WpS5HTiRjnqpEk5Bbl3RLAq9b2V1WA41arHew5lZ1iZlTTY0bzOEReRSICeOO7s306W5zRajaRqJPJJzU84UfDo4NjNQmg6_t7tRlaJq-QAaEIS1gAu00gqBrpS9UfDJhEjSywoZftbcQo_fGSFba89DacIS9P-VobaoTzte9J8VP6SAoDeFYFYvuxjIgp6tMA3vl4W-Msdfjt4Iu_ev4vxi_gHvm1Wra0C52LxaXdgzvm98V8uejCppjJbo3Av44xK4A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NDQQvjN8LGyMIhDSkoNZxakc8sbVlEyUwtmp7s2LHnqpNCeo2xP773Tlp6KSpEuItUpw4Pd93_j73fAZ457od44x2EZFTKqptIukQV6ZnhOMxxznb-MMmRJbJ4-P0R5ObQ3th6voQ7YIbIcPHawI4LUjPodxUevIRA69Exb7C0Y_QwVf6P4fj0VzV3bq4N8q8SMqUNfVJKZXn79M3ZqQ7Lq-Qp5KJ_8xSFG8jnze5rJ-Mhqv_-TMewcOGhYafa7d5DEu2fAL36nMpr_Bq4GtZXz2FTwMMAURqy5MQqWJYEsU9C3VuTmk_SFmEVGoirFxIWzZRdYcY7Cel3yzxDMbDweHObtSct4Ajg7CNNOOWF3GMisgg1rW1iU4RRRZpSRobK43sGIMMTyYsYQKlpbZMG21dbIrcFfFzWC6r0q5BmArDE1opSW2HW6QRFoVRzpjoFZ2im8sAtmY2V6YpRk5nYpypmSghsyhvlgDetm1_1SU4bm21hkOn8hOMjWp8wGglh-irSEQA7_14tk_n01PKZxOJOsq-qP4R3-_vbx-oLIBNP-Dz3VCivEIOhDIsYQFszDxBNVg_V91ej0lUyQI7etPeRpTSXy95aatL34YzZOYpX9iGOuF84XtS_JQu0sIAXtSe2H4sI2qKCjWAD97hFhhL7Xzf3vNXL_-l8Wu4v3v4baRGe9nXdXhANq6TmDZg-WJ6aV_BXfP7YnI-3WyAeA1yeC6I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5tZUN7Yb8hgzFPmyZtUqbWcRpHPA3abmgog7EK3qzYsVEFSlCBafz33DlpViRUadpbpDhxevZ3_j73fAfw3vW6xhntQiKnlFTbhNIhrkzfJE5EAtds44tNJFkmj4_T_SY2h87C1Pkh2g03Qob31wRwe164OZSbSk8-o-OVqNiXBFWR6cDS4OdovDeXdbdO7o0yL5Qy5U1-Ugrl-fv0rRXpvssr5Klk4j-zEMW7yOdtLusXo9Hj__wZT2ClYaHsSz1tnsI9Wz6Dh3Vdymu8Gvpc1tfPYWuILoBIbXnCkCqykijuGdO5OaXzIGXBKNUEqxyjI5uouhk6-0npD0u8gPFo-GvnW9jUW8CRQdiGmgsriihCRWQQ69raWKeIIou0JI2MlUZ2jUGGJ2Me8wSlpbZcG21dZIrcFdFL6JRVadeApYkRMe2UpLYrLNIIi8Io5zzpF92il8sAPs5srkyTjJxqYpypmSghsyhvlgDetW3P6xQcd7Zaw6FT-Qn6RjU-5LSTQ_Q1iZMAPvjxbJ_Op6cUz5bE6ij7qgZH4mBwsH2osgA2_YDPd0OB8go5EMqwmAewMZsJqsH6her1-1yiSk6wo7ftbUQp_fWSl7a68m0ER2aeioVtqBMhFr4nxU_pIS0MYLWeie3HcqKmqFAD-OQn3AJjqZ0f27v-6tW_NH4Dy_uDkdrbzb6vwyMycR3DtAGdy-mVfQ0PzO_LycV0s8HhDbc1LgM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+normal+background+rate+of+species+extinction&rft.jtitle=Conservation+biology&rft.au=De+Vos%2C+Jurriaan+M&rft.au=Joppa%2C+Lucas+N&rft.au=Gittleman%2C+John+L&rft.au=Stephens%2C+Patrick+R&rft.date=2015-04-01&rft.eissn=1523-1739&rft.volume=29&rft.issue=2&rft.spage=452&rft_id=info:doi/10.1111%2Fcobi.12380&rft_id=info%3Apmid%2F25159086&rft.externalDocID=25159086 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon |