A programmable two-qubit quantum processor in silicon

A two-qubit quantum processor in a silicon device is demonstrated, which can perform the Deutsch–Josza algorithm and the Grover search algorithm. Taken for a spin in silicon The development of platforms for spin-based quantum computing continues apace. The individual components of such a system have...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) Vol. 555; no. 7698; pp. 633 - 637
Main Authors: Watson, T. F., Philips, S. G. J., Kawakami, E., Ward, D. R., Scarlino, P., Veldhorst, M., Savage, D. E., Lagally, M. G., Friesen, Mark, Coppersmith, S. N., Eriksson, M. A., Vandersypen, L. M. K.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 29.03.2018
Nature Publishing Group
Subjects:
ISSN:0028-0836, 1476-4687, 1476-4687
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A two-qubit quantum processor in a silicon device is demonstrated, which can perform the Deutsch–Josza algorithm and the Grover search algorithm. Taken for a spin in silicon The development of platforms for spin-based quantum computing continues apace. The individual components of such a system have been the subject of much investigation, and they have been assembled to implement specific quantum-computational algorithms. Thomas Watson and colleagues have now taken such component integration and control to the next level. Using two single-electron-spin qubits in a silicon-based double quantum dot, they realize a system that can be simply programmed to perform different quantum algorithms on demand. Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing 1 , 2 . In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform 3 , 4 , 5 . Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations 6 , 7 , 8 , 9 . However, as seen with small-scale demonstrations of quantum computers using other types of qubit 10 , 11 , 12 , 13 , combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.
AbstractList Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.
Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.
A two-qubit quantum processor in a silicon device is demonstrated, which can perform the Deutsch–Josza algorithm and the Grover search algorithm. Taken for a spin in silicon The development of platforms for spin-based quantum computing continues apace. The individual components of such a system have been the subject of much investigation, and they have been assembled to implement specific quantum-computational algorithms. Thomas Watson and colleagues have now taken such component integration and control to the next level. Using two single-electron-spin qubits in a silicon-based double quantum dot, they realize a system that can be simply programmed to perform different quantum algorithms on demand. Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing 1 , 2 . In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform 3 , 4 , 5 . Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations 6 , 7 , 8 , 9 . However, as seen with small-scale demonstrations of quantum computers using other types of qubit 10 , 11 , 12 , 13 , combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.
Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing (1,2). In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform (3,4,5). Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations (6,7,8,9). However, as seen with small-scale demonstrations of quantum computers using other types of qubit (10,11,12,13), combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. We overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.
Audience Academic
Author Friesen, Mark
Philips, S. G. J.
Kawakami, E.
Eriksson, M. A.
Watson, T. F.
Veldhorst, M.
Scarlino, P.
Coppersmith, S. N.
Vandersypen, L. M. K.
Savage, D. E.
Ward, D. R.
Lagally, M. G.
Author_xml – sequence: 1
  givenname: T. F.
  surname: Watson
  fullname: Watson, T. F.
  organization: QuTech and the Kavli Institute of Nanoscience, Delft University of Technology
– sequence: 2
  givenname: S. G. J.
  surname: Philips
  fullname: Philips, S. G. J.
  organization: QuTech and the Kavli Institute of Nanoscience, Delft University of Technology
– sequence: 3
  givenname: E.
  surname: Kawakami
  fullname: Kawakami, E.
  organization: QuTech and the Kavli Institute of Nanoscience, Delft University of Technology
– sequence: 4
  givenname: D. R.
  surname: Ward
  fullname: Ward, D. R.
  organization: University of Wisconsin-Madison
– sequence: 5
  givenname: P.
  surname: Scarlino
  fullname: Scarlino, P.
  organization: QuTech and the Kavli Institute of Nanoscience, Delft University of Technology
– sequence: 6
  givenname: M.
  surname: Veldhorst
  fullname: Veldhorst, M.
  organization: QuTech and the Kavli Institute of Nanoscience, Delft University of Technology
– sequence: 7
  givenname: D. E.
  surname: Savage
  fullname: Savage, D. E.
  organization: University of Wisconsin-Madison
– sequence: 8
  givenname: M. G.
  surname: Lagally
  fullname: Lagally, M. G.
  organization: University of Wisconsin-Madison
– sequence: 9
  givenname: Mark
  surname: Friesen
  fullname: Friesen, Mark
  organization: University of Wisconsin-Madison
– sequence: 10
  givenname: S. N.
  surname: Coppersmith
  fullname: Coppersmith, S. N.
  organization: University of Wisconsin-Madison
– sequence: 11
  givenname: M. A.
  surname: Eriksson
  fullname: Eriksson, M. A.
  organization: University of Wisconsin-Madison
– sequence: 12
  givenname: L. M. K.
  surname: Vandersypen
  fullname: Vandersypen, L. M. K.
  email: l.m.k.vandersypen@tudelft.nl
  organization: QuTech and the Kavli Institute of Nanoscience, Delft University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29443962$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1460099$$D View this record in Osti.gov
BookMark eNp10t9v1CAcAHBiZtxt-uS7aeaLRjuBUgqPl4s_liya6IyPBChUlpbeAY3uvx-Xm95u6dIH0vL5fqHf7_cEHPnRGwBeIniOYMU-eJmmYHDdUPoELBBpaEkoa47AAkLMSsgqegxOYryGENaoIc_AMeaEVJziBaiXxTqMXZDDIFVvivRnLDeTcqnYTNKnadhuaxPjGArni-h6p0f_HDy1so_mxd16Cn5--ni1-lJefvt8sVpelpoymkprYQuV4YxWlWyrRjVIYVizlleIaciUhTq_VxYri0irKNa24UjZBipqNKlOwdku7xiTE1G7ZPTvfL43OglEKIScZ_Rmh_JNN5OJSQwuatP30ptxigLnMhBGGl5n-voBvR6n4PMvZIVhg2vK8V51sjfCeTumIPU2qVjWFaaMEM6yKmdUZ7wJss8dsi5_PvBnM16v3UbcR-czKD-tGbaFn8n69iAgm2T-pk5OMYqLH98P7bvH7fLq1-rroX51V6tJDaYV6-AGGW7Ev9nZp9NhjDEY-58gKLaTKe5NZtbogc7dlMnlOwTp-kdi3u9iYs7sOxP27Zrjt1qI78k
CitedBy_id crossref_primary_10_1515_nanoph_2020_0484
crossref_primary_10_1140_epjqt_s40507_021_00119_6
crossref_primary_10_1103_PhysRevApplied_11_034030
crossref_primary_10_1038_s41467_025_57987_0
crossref_primary_10_1103_PhysRevApplied_19_044078
crossref_primary_10_1002_qute_202100104
crossref_primary_10_1038_s41534_022_00639_8
crossref_primary_10_1109_TCSII_2024_3470111
crossref_primary_10_1103_PhysRevApplied_9_054016
crossref_primary_10_1109_MNANO_2024_3475889
crossref_primary_10_1002_piuz_202501730
crossref_primary_10_1103_PhysRevApplied_14_024066
crossref_primary_10_3390_e27050479
crossref_primary_10_1063_5_0035300
crossref_primary_10_1088_1361_648X_ac49c6
crossref_primary_10_1088_2633_4356_acd743
crossref_primary_10_1103_PhysRevX_8_031084
crossref_primary_10_1038_s41467_020_20424_5
crossref_primary_10_1038_s41467_021_24693_6
crossref_primary_10_1063_5_0036520
crossref_primary_10_1038_s41586_019_1197_0
crossref_primary_10_1038_s41467_021_27880_7
crossref_primary_10_1038_s41534_020_00295_w
crossref_primary_10_1109_TQE_2023_3290593
crossref_primary_10_1038_s41534_023_00679_8
crossref_primary_10_1088_1361_6455_ac489c
crossref_primary_10_1038_s41467_022_28767_x
crossref_primary_10_1063_5_0006075
crossref_primary_10_1088_2058_9565_ac2d39
crossref_primary_10_1557_s43577_021_00136_x
crossref_primary_10_1016_j_sse_2024_108863
crossref_primary_10_1103_PhysRevResearch_6_043029
crossref_primary_10_1038_s41565_019_0426_x
crossref_primary_10_1016_j_micpro_2019_02_006
crossref_primary_10_1063_5_0105635
crossref_primary_10_1109_LED_2020_2995645
crossref_primary_10_1016_j_micpro_2019_02_004
crossref_primary_10_1038_s41928_020_00499_0
crossref_primary_10_1063_5_0012883
crossref_primary_10_1002_aoc_5192
crossref_primary_10_1038_s41598_022_15734_1
crossref_primary_10_1038_s41534_019_0125_3
crossref_primary_10_1038_s41598_023_34966_3
crossref_primary_10_1038_s41534_019_0190_7
crossref_primary_10_1103_PhysRevX_9_041003
crossref_primary_10_1103_41jh_w6ft
crossref_primary_10_1103_q418_pydy
crossref_primary_10_1103_PhysRevB_106_045305
crossref_primary_10_1557_s43577_021_00147_8
crossref_primary_10_1088_1367_2630_ac430c
crossref_primary_10_1038_s41534_019_0212_5
crossref_primary_10_1145_3624484
crossref_primary_10_1103_PhysRevApplied_22_024030
crossref_primary_10_1109_JSSC_2021_3115988
crossref_primary_10_1038_s41586_019_1381_2
crossref_primary_10_1103_PhysRevB_103_235314
crossref_primary_10_1038_s41598_021_98212_4
crossref_primary_10_1103_PhysRevB_108_L081303
crossref_primary_10_1126_science_abb2823
crossref_primary_10_1038_s41467_018_06039_x
crossref_primary_10_1103_PhysRevX_11_041032
crossref_primary_10_3390_nano11102743
crossref_primary_10_1088_1742_6596_1283_1_012005
crossref_primary_10_1088_1367_2630_ab60f4
crossref_primary_10_1088_1674_1056_ad8db1
crossref_primary_10_1103_PhysRevApplied_20_054024
crossref_primary_10_1038_s41586_019_1867_y
crossref_primary_10_1103_PhysRevApplied_12_064049
crossref_primary_10_1103_PRXQuantum_4_020305
crossref_primary_10_1109_TQE_2023_3272865
crossref_primary_10_1038_s41467_020_17211_7
crossref_primary_10_1038_s41586_022_04986_6
crossref_primary_10_1063_5_0059939
crossref_primary_10_1002_advs_202407442
crossref_primary_10_1002_aisy_202200079
crossref_primary_10_1109_TED_2018_2870115
crossref_primary_10_1063_5_0230605
crossref_primary_10_1039_D4NR04012K
crossref_primary_10_1134_S106378341909004X
crossref_primary_10_1103_PhysRevApplied_19_024015
crossref_primary_10_1134_S0021364021160050
crossref_primary_10_1002_adma_202003361
crossref_primary_10_1038_s41565_020_00828_6
crossref_primary_10_1007_s11128_021_03285_9
crossref_primary_10_1088_1674_1056_acf208
crossref_primary_10_1016_j_physleta_2024_129668
crossref_primary_10_1038_s41534_019_0225_0
crossref_primary_10_1038_s41534_022_00615_2
crossref_primary_10_1088_1367_2630_ab8ab0
crossref_primary_10_1038_s41467_024_45583_7
crossref_primary_10_1088_1674_1056_27_9_090308
crossref_primary_10_1103_qzn2_l71q
crossref_primary_10_1103_PhysRevB_103_245303
crossref_primary_10_1145_3591254
crossref_primary_10_1038_s41565_019_0400_7
crossref_primary_10_1088_1367_2630_aba85a
crossref_primary_10_1038_s41467_020_14560_1
crossref_primary_10_1063_1_5040474
crossref_primary_10_1103_xx7c_36f5
crossref_primary_10_1016_j_ijleo_2024_172181
crossref_primary_10_1088_2058_9565_ad7756
crossref_primary_10_1103_PRXQuantum_2_040306
crossref_primary_10_1088_1367_2630_ab7bf3
crossref_primary_10_1134_S1063782621010176
crossref_primary_10_1103_PhysRevApplied_23_054030
crossref_primary_10_1093_nsr_nwy153
crossref_primary_10_1063_5_0139670
crossref_primary_10_1088_1402_4896_addd6e
crossref_primary_10_1103_PhysRevApplied_10_014018
crossref_primary_10_1557_s43577_021_00133_0
crossref_primary_10_1038_s41586_021_03332_6
crossref_primary_10_1103_PhysRevB_101_045202
crossref_primary_10_1103_PhysRevApplied_18_024053
crossref_primary_10_1103_PhysRevApplied_21_014019
crossref_primary_10_1088_1361_6463_acd8c7
crossref_primary_10_1103_PhysRevApplied_11_044063
crossref_primary_10_1103_PRXQuantum_2_040358
crossref_primary_10_1038_s41467_019_14053_w
crossref_primary_10_1103_PhysRevB_106_L121402
crossref_primary_10_1038_s41467_022_28519_x
crossref_primary_10_1038_s43246_022_00304_9
crossref_primary_10_1063_5_0040967
crossref_primary_10_1103_xhq3_4jxz
crossref_primary_10_1038_s41534_019_0129_z
crossref_primary_10_2478_qic_2025_0003
crossref_primary_10_1088_0256_307X_38_9_094203
crossref_primary_10_1103_PhysRevApplied_19_024068
crossref_primary_10_1038_s41565_020_00816_w
crossref_primary_10_1038_s41578_020_00262_z
crossref_primary_10_1016_j_bios_2022_114339
crossref_primary_10_1063_1_5038258
crossref_primary_10_1063_1_5121444
crossref_primary_10_1038_s41534_020_0274_4
crossref_primary_10_1038_s41534_025_01074_1
crossref_primary_10_1038_s41567_023_02297_9
crossref_primary_10_1103_PhysRevA_111_042616
crossref_primary_10_1103_PhysRevX_9_021028
crossref_primary_10_1016_j_physleta_2020_126352
crossref_primary_10_1038_s41467_024_52010_4
crossref_primary_10_1038_s41534_019_0182_7
crossref_primary_10_1098_rsos_180410
crossref_primary_10_1103_PRXQuantum_2_040338
crossref_primary_10_1109_TQE_2024_3429451
crossref_primary_10_1088_1402_4896_ada501
crossref_primary_10_1109_TED_2025_3570285
crossref_primary_10_1038_s41928_021_00681_y
crossref_primary_10_1103_PhysRevX_8_011045
crossref_primary_10_1145_3474222
crossref_primary_10_1103_PhysRevX_10_021006
crossref_primary_10_3390_molecules29174222
crossref_primary_10_1039_D0NR08655J
crossref_primary_10_1103_PhysRevX_9_021011
crossref_primary_10_1002_adfm_202307285
crossref_primary_10_1063_1_5144202
crossref_primary_10_1103_PhysRevA_111_052425
crossref_primary_10_1016_j_physe_2025_116319
crossref_primary_10_1103_PhysRevB_103_L081404
crossref_primary_10_1038_s41535_021_00344_3
crossref_primary_10_1038_s41928_022_00727_9
crossref_primary_10_1088_1367_2630_ad19ab
crossref_primary_10_1038_s41567_020_0862_4
crossref_primary_10_1038_s41565_021_00846_y
crossref_primary_10_1038_s41467_018_07522_1
crossref_primary_10_1038_s41565_024_01853_5
crossref_primary_10_1088_2632_2153_ad88d5
crossref_primary_10_1038_s41567_024_02481_5
crossref_primary_10_1103_PhysRevApplied_10_044036
crossref_primary_10_1021_acs_nanolett_4c05540
crossref_primary_10_1103_PhysRevResearch_4_013031
crossref_primary_10_1038_s41467_019_10798_6
crossref_primary_10_1016_j_ssc_2019_04_004
crossref_primary_10_1109_MMM_2020_3023271
crossref_primary_10_1109_TCAD_2022_3166107
crossref_primary_10_1063_5_0002013
crossref_primary_10_1038_s41467_023_36951_w
crossref_primary_10_1088_1361_6528_abb559
crossref_primary_10_1016_j_jmapro_2024_07_127
crossref_primary_10_1038_s41565_020_0769_3
crossref_primary_10_1088_2058_9565_aaf3c4
crossref_primary_10_1007_s12034_021_02621_0
crossref_primary_10_1103_PhysRevApplied_17_054007
crossref_primary_10_1063_5_0151029
crossref_primary_10_1038_s41598_021_00859_6
crossref_primary_10_1002_andp_202100054
crossref_primary_10_1109_LED_2018_2835385
crossref_primary_10_1063_1_5031813
crossref_primary_10_1038_s41467_020_20280_3
crossref_primary_10_1002_qute_202100018
crossref_primary_10_1088_1361_6463_ac8430
crossref_primary_10_1088_1361_6528_adbb74
crossref_primary_10_1103_PhysRevResearch_4_033048
crossref_primary_10_1002_andp_201800393
crossref_primary_10_1038_s41534_018_0118_7
crossref_primary_10_1103_PhysRevApplied_15_044045
crossref_primary_10_1088_1674_1056_ac8919
crossref_primary_10_1103_PhysRevApplied_21_034022
crossref_primary_10_1038_s41567_024_02614_w
crossref_primary_10_1088_2632_2153_ac34db
crossref_primary_10_1103_PhysRevApplied_15_044042
crossref_primary_10_1038_s41598_018_36476_z
crossref_primary_10_1002_qua_26688
crossref_primary_10_1038_s42005_019_0262_1
crossref_primary_10_1002_qute_202100162
crossref_primary_10_1063_5_0004777
crossref_primary_10_1103_PhysRevA_111_032408
crossref_primary_10_1103_PhysRevX_10_041010
crossref_primary_10_1063_5_0002112
crossref_primary_10_1103_PhysRevApplied_16_054020
crossref_primary_10_1209_0295_5075_130_27001
crossref_primary_10_1002_adma_202201064
crossref_primary_10_1016_j_jmatprotec_2025_118937
crossref_primary_10_1109_TQE_2023_3324841
crossref_primary_10_1038_s41586_022_05117_x
crossref_primary_10_1088_1742_6596_2900_1_012009
crossref_primary_10_1016_j_mssp_2023_107477
crossref_primary_10_2320_matertrans_MT_M2024180
crossref_primary_10_1038_s41567_019_0673_7
crossref_primary_10_1088_2058_9565_aacad2
crossref_primary_10_3390_electronics10192404
crossref_primary_10_1103_PhysRevApplied_16_054034
crossref_primary_10_3390_s19184048
crossref_primary_10_1038_s41586_022_04603_6
crossref_primary_10_1103_PhysRevApplied_20_034066
crossref_primary_10_1016_j_apsusc_2021_149451
crossref_primary_10_1088_1361_6463_ac7366
crossref_primary_10_1039_D1NH00685A
crossref_primary_10_1038_s41586_021_03469_4
crossref_primary_10_1007_s41745_022_00311_2
crossref_primary_10_1016_j_ijmecsci_2022_108020
crossref_primary_10_1016_j_heliyon_2023_e18593
crossref_primary_10_1088_1361_6641_abe42d
crossref_primary_10_1109_TQE_2020_3034798
crossref_primary_10_1016_j_jmmm_2021_168284
crossref_primary_10_1007_s11467_022_1249_z
crossref_primary_10_1038_s41467_020_16745_0
crossref_primary_10_1103_PhysRevResearch_3_023038
crossref_primary_10_1140_epjqt_s40507_023_00181_2
crossref_primary_10_1016_j_scib_2020_10_005
crossref_primary_10_1063_5_0097339
crossref_primary_10_1063_5_0108206
crossref_primary_10_1103_PhysRevB_111_205412
crossref_primary_10_1007_s11831_023_09973_2
crossref_primary_10_1038_s41467_024_51902_9
crossref_primary_10_1103_PhysRevApplied_12_014026
crossref_primary_10_1038_s41534_019_0163_x
crossref_primary_10_1038_s41467_020_19835_1
crossref_primary_10_1002_qute_201900052
crossref_primary_10_1002_qute_202300367
crossref_primary_10_1140_epjqt_s40507_025_00405_7
crossref_primary_10_1038_s41467_025_58279_3
crossref_primary_10_1103_PhysRevApplied_10_054026
crossref_primary_10_1126_science_ady3799
crossref_primary_10_3390_e26050379
crossref_primary_10_3390_physics6030069
crossref_primary_10_1038_s41467_020_14818_8
crossref_primary_10_1103_PRXQuantum_2_020335
crossref_primary_10_1088_1367_2630_aad1ea
crossref_primary_10_1109_JSSC_2020_3024678
crossref_primary_10_1088_2058_9565_ac1dfe
crossref_primary_10_1038_s41467_018_05299_x
crossref_primary_10_1103_PhysRevApplied_10_044017
crossref_primary_10_1088_1367_2630_adb174
crossref_primary_10_1109_TED_2022_3158628
crossref_primary_10_1038_s41586_021_04182_y
crossref_primary_10_1038_s41534_018_0105_z
crossref_primary_10_1088_1361_6463_acb55e
crossref_primary_10_1038_s41534_022_00523_5
crossref_primary_10_1038_s41467_020_20388_6
crossref_primary_10_1038_s41467_019_09194_x
crossref_primary_10_1038_s41534_022_00645_w
crossref_primary_10_1063_5_0040234
crossref_primary_10_1063_5_0040241
crossref_primary_10_1103_PhysRevResearch_3_033086
crossref_primary_10_1038_s41534_024_00878_x
crossref_primary_10_1088_1367_2630_ac22ea
crossref_primary_10_1103_PRXQuantum_5_010347
crossref_primary_10_1088_1361_6528_ab061e
crossref_primary_10_1103_PhysRevApplied_20_044058
crossref_primary_10_1038_s41598_024_79553_2
crossref_primary_10_1002_adfm_202419940
crossref_primary_10_1103_PRXQuantum_2_010348
crossref_primary_10_1103_PhysRevApplied_13_034075
crossref_primary_10_1103_PRXQuantum_2_010347
crossref_primary_10_1038_s41928_021_00687_6
crossref_primary_10_1088_1361_648X_ab613f
crossref_primary_10_1109_TED_2018_2876355
crossref_primary_10_1088_0256_307X_37_2_020302
crossref_primary_10_1039_D5RA01109D
crossref_primary_10_1038_s41535_020_0237_1
crossref_primary_10_1038_s41586_020_2171_6
crossref_primary_10_1103_PRXQuantum_6_020307
crossref_primary_10_1088_1361_6641_ab516a
crossref_primary_10_1038_s41598_021_85231_4
crossref_primary_10_1103_PhysRevApplied_18_064040
crossref_primary_10_1038_s41467_021_24371_7
crossref_primary_10_1038_s41928_022_00722_0
crossref_primary_10_1103_PhysRevApplied_23_014072
crossref_primary_10_1103_PhysRevApplied_13_024019
crossref_primary_10_1038_s41534_020_0276_2
crossref_primary_10_1002_adma_202405916
crossref_primary_10_1063_5_0055908
crossref_primary_10_1007_s11128_023_04184_x
crossref_primary_10_1088_2058_9565_ab8aa4
crossref_primary_10_1088_1674_1056_adb68b
crossref_primary_10_1038_s41586_025_09157_x
crossref_primary_10_1038_s41467_022_33453_z
crossref_primary_10_1109_LED_2020_2984280
crossref_primary_10_1038_s41598_019_47806_0
crossref_primary_10_1103_PhysRevApplied_15_054025
crossref_primary_10_1103_PhysRevX_14_031003
crossref_primary_10_1038_s41565_021_00994_1
crossref_primary_10_1088_2515_7639_abb74e
crossref_primary_10_1038_s41586_020_2170_7
crossref_primary_10_1038_s41598_018_34108_0
crossref_primary_10_1088_1367_2630_aae61f
crossref_primary_10_1063_5_0016248
crossref_primary_10_1103_925y_b4s1
crossref_primary_10_1103_PRXQuantum_2_010353
crossref_primary_10_1088_2058_9565_acef54
crossref_primary_10_1103_PRXQuantum_4_030303
crossref_primary_10_1063_PT_3_3890
crossref_primary_10_3390_nano11113096
crossref_primary_10_1002_advs_202502789
crossref_primary_10_1063_5_0006442
crossref_primary_10_1088_2058_9565_abe989
crossref_primary_10_3390_app9030474
crossref_primary_10_1063_5_0097407
crossref_primary_10_1103_PhysRevApplied_13_034068
crossref_primary_10_1038_s41467_019_08970_z
crossref_primary_10_1103_kp8s_py9m
crossref_primary_10_1038_s41928_019_0234_1
crossref_primary_10_1002_pssa_202200145
crossref_primary_10_1038_s41534_020_00314_w
crossref_primary_10_1038_s41534_021_00500_4
crossref_primary_10_1038_s41565_019_0443_9
crossref_primary_10_1063_PT_3_4270
crossref_primary_10_1103_PRXQuantum_5_010306
crossref_primary_10_1103_PhysRevX_11_011019
crossref_primary_10_1088_1361_6641_adfe12
crossref_primary_10_1103_PhysRevApplied_17_024068
crossref_primary_10_1103_PhysRevApplied_11_024063
crossref_primary_10_1063_5_0111221
crossref_primary_10_1016_j_radphyschem_2022_110369
crossref_primary_10_1016_j_mser_2025_100928
crossref_primary_10_1038_s41586_021_04273_w
crossref_primary_10_1109_MMM_2020_2993477
crossref_primary_10_1103_PhysRevApplied_11_061006
crossref_primary_10_1103_PhysRevApplied_18_044064
crossref_primary_10_1007_s11128_024_04407_9
crossref_primary_10_1038_s41534_018_0112_0
crossref_primary_10_1038_s41565_019_0587_7
crossref_primary_10_1039_D5DT00749F
crossref_primary_10_1063_5_0031231
crossref_primary_10_1103_PhysRevResearch_2_012006
crossref_primary_10_1038_s41567_022_01870_y
crossref_primary_10_34133_icomputing_0115
crossref_primary_10_1038_s41586_024_07160_2
crossref_primary_10_1109_TCSI_2020_3019413
crossref_primary_10_1103_PhysRevResearch_3_043142
crossref_primary_10_1038_s41467_023_39568_1
crossref_primary_10_1557_s43577_023_00659_5
crossref_primary_10_1007_s43673_022_00058_z
crossref_primary_10_1016_j_mssp_2021_106308
crossref_primary_10_1088_2632_2153_ac104c
crossref_primary_10_1063_1_5088412
crossref_primary_10_1063_5_0010981
crossref_primary_10_1088_2058_9565_acf786
crossref_primary_10_1063_5_0055318
crossref_primary_10_1063_5_0056648
crossref_primary_10_1103_PhysRevApplied_12_044054
crossref_primary_10_1016_j_jmmm_2019_165566
crossref_primary_10_1109_ACCESS_2020_3039996
crossref_primary_10_3390_app9183823
crossref_primary_10_1016_j_mtquan_2025_100029
crossref_primary_10_1038_s41534_022_00576_6
crossref_primary_10_1039_D0NR05070A
crossref_primary_10_1063_1_5140994
crossref_primary_10_1103_PhysRevApplied_13_054018
crossref_primary_10_3390_electronics10141690
crossref_primary_10_1126_science_aar4054
crossref_primary_10_1038_s41928_019_0259_5
crossref_primary_10_1038_s41467_022_35510_z
crossref_primary_10_1038_s41534_022_00554_y
crossref_primary_10_1038_s41565_021_00925_0
crossref_primary_10_1088_1361_6463_aaee59
crossref_primary_10_1007_s11128_025_04759_w
crossref_primary_10_22331_q_2025_09_05_1848
crossref_primary_10_1002_adts_202100254
crossref_primary_10_1088_1361_648X_aacabc
crossref_primary_10_1103_PhysRevApplied_23_044055
crossref_primary_10_1016_j_flatc_2020_100171
crossref_primary_10_1063_1_5033447
crossref_primary_10_1063_5_0193621
crossref_primary_10_1103_PhysRevB_105_195305
crossref_primary_10_1038_s41534_019_0146_y
crossref_primary_10_1039_D4NH00651H
crossref_primary_10_1103_PhysRevApplied_17_024022
crossref_primary_10_1088_1367_2630_abb64a
crossref_primary_10_1103_PhysRevA_104_062415
crossref_primary_10_1038_s41467_021_23437_w
crossref_primary_10_1038_s41467_022_35458_0
crossref_primary_10_1088_2058_9565_abe568
crossref_primary_10_1103_PhysRevA_101_012338
crossref_primary_10_1038_s41467_019_13416_7
crossref_primary_10_1063_1_5075486
crossref_primary_10_1103_PhysRevX_10_011060
crossref_primary_10_3390_nano11102486
crossref_primary_10_1103_PhysRevApplied_14_064024
crossref_primary_10_1038_s41467_019_13548_w
crossref_primary_10_1002_adma_202201625
crossref_primary_10_1016_j_ssc_2019_113752
crossref_primary_10_1038_nature25769
crossref_primary_10_1002_qute_201900123
crossref_primary_10_1002_andp_202200360
crossref_primary_10_1103_PhysRevB_111_195302
crossref_primary_10_1103_PhysRevX_13_041015
crossref_primary_10_1088_2058_9565_ad3d06
crossref_primary_10_1038_s41467_019_10848_z
crossref_primary_10_1103_PhysRevResearch_6_013168
crossref_primary_10_1088_1674_4926_24050043
crossref_primary_10_1038_s41467_024_49182_4
crossref_primary_10_1038_s41598_022_19404_0
crossref_primary_10_1103_PhysRevB_104_235302
crossref_primary_10_1126_science_aao5965
crossref_primary_10_1103_PhysRevX_8_041018
crossref_primary_10_1088_2515_7639_acd1b7
crossref_primary_10_1103_PhysRevB_104_235411
crossref_primary_10_1103_PhysRevResearch_2_043180
crossref_primary_10_1039_D1NR02842A
Cites_doi 10.1038/ncomms13575
10.1038/nature13407
10.1038/nnano.2014.216
10.1103/PhysRevLett.110.146804
10.1038/nature13171
10.1038/nmat3182
10.1103/PhysRevLett.110.196803
10.1038/nature18648
10.1038/nature10900
10.1103/RevModPhys.85.961
10.1038/nnano.2014.211
10.1038/nphys1856
10.1103/PhysRevA.64.052312
10.1103/PhysRevLett.116.110402
10.1103/PhysRevA.57.120
10.1103/PhysRevA.77.012307
10.1103/PhysRevA.86.032324
10.1038/nnano.2014.153
10.1103/PhysRevB.83.235314
10.1126/science.1217692
10.1038/nature02693
10.1126/science.aao5965
10.1038/nature15263
10.1038/414883a
10.1038/nature01336
10.1038/ncomms3069
10.1038/nnano.2013.168
10.1098/rspa.1992.0167
10.1103/PhysRevB.72.134519
10.1038/s41565-017-0014-x
10.1103/PhysRevB.83.121403
10.1038/nphys1053
10.1103/PhysRevLett.116.116801
10.1038/nature08121
10.1126/science.1116955
10.1103/PhysRevLett.79.325
10.1073/pnas.1603251113
10.1038/s41534-017-0038-y
ContentType Journal Article
Copyright Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018
COPYRIGHT 2018 Nature Publishing Group
Copyright Nature Publishing Group Mar 29, 2018
Copyright_xml – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018
– notice: COPYRIGHT 2018 Nature Publishing Group
– notice: Copyright Nature Publishing Group Mar 29, 2018
CorporateAuthor Univ. of Wisconsin, Madison, WI (United States). Materials Research Science and Engineering Center (MRSEC)
CorporateAuthor_xml – name: Univ. of Wisconsin, Madison, WI (United States). Materials Research Science and Engineering Center (MRSEC)
DBID AAYXX
CITATION
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
OIOZB
OTOTI
DOI 10.1038/nature25766
DatabaseName CrossRef
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
eLibrary Curriculum
AUTh Library subscriptions: ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Psychology Database
ProQuest Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Agricultural Science Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PATMY
  name: Environmental Science Database
  url: http://search.proquest.com/environmentalscience
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 637
ExternalDocumentID 1460099
A532684498
29443962
10_1038_nature25766
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ABUFD
ACSTC
ADXHL
AFANA
AFFHD
AGSTI
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
TUS
NPM
ACMFV
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
PUEGO
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGFU
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADFPY
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AFNRJ
AGEZK
AGGBP
AGPPL
AHGBK
AJDOV
AMRJV
B-7
EBO
F20
I-U
OIOZB
OTOTI
P-O
U1R
XFK
ZA5
ID FETCH-LOGICAL-c686t-ff0d0be98633ad37b71b2058d9318c08bf0c2053f2bf14db62cf791bf70b6ec43
IEDL.DBID M2M
ISICitedReferencesCount 599
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428617600044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Wed Nov 29 06:10:36 EST 2023
Thu Oct 02 10:54:19 EDT 2025
Sat Nov 29 14:36:27 EST 2025
Tue Nov 11 10:24:44 EST 2025
Sat Nov 29 11:44:50 EST 2025
Tue Jun 10 15:33:54 EDT 2025
Tue Nov 04 17:18:47 EST 2025
Thu Nov 13 15:31:39 EST 2025
Thu Nov 13 14:56:02 EST 2025
Mon Jul 21 06:06:01 EDT 2025
Sat Nov 29 02:12:37 EST 2025
Tue Nov 18 22:02:33 EST 2025
Fri Feb 21 02:37:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7698
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c686t-ff0d0be98633ad37b71b2058d9318c08bf0c2053f2bf14db62cf791bf70b6ec43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Heiwa Nakajima Foundation
National Science Foundation (NSF)
FG02-03ER46028; W911NF-17-1-0274; W911NF-12-1-0607; DMR-1121288; 676108
USDOE Office of Science (SC), Basic Energy Sciences (BES)
European Union (EU)-European Commission (EC). Marie Skłodowska-Curie actions (MSCA)
US Army Research Office (ARO)
OpenAccessLink https://www.osti.gov/servlets/purl/1460099
PMID 29443962
PQID 2020725692
PQPubID 40569
PageCount 5
ParticipantIDs osti_scitechconnect_1460099
proquest_miscellaneous_2002484795
proquest_journals_2020725692
gale_infotracmisc_A532684498
gale_infotracgeneralonefile_A532684498
gale_infotraccpiq_532684498
gale_infotracacademiconefile_A532684498
gale_incontextgauss_ISR_A532684498
gale_incontextgauss_ATWCN_A532684498
pubmed_primary_29443962
crossref_primary_10_1038_nature25766
crossref_citationtrail_10_1038_nature25766
springer_journals_10_1038_nature25766
PublicationCentury 2000
PublicationDate 2018-03-29
PublicationDateYYYYMMDD 2018-03-29
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-29
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Kim (CR7) 2014; 511
Vandersypen (CR5) 2017; 3
van der Sar (CR13) 2012; 484
Fowler, Mariantoni, Martinis, Cleland (CR27) 2012; 86
Das Sarma, Wang, Yang (CR38) 2011; 83
Kawakami (CR20) 2016; 113
Kawakami (CR22) 2014; 9
Barends (CR1) 2014; 508
Dial (CR39) 2013; 110
Petta (CR15) 2005; 309
Elzerman (CR23) 2004; 430
Maurand (CR4) 2016; 7
Ithier (CR40) 2005; 72
Deutsch, Jozsa (CR30) 1992; 439
Gulde (CR12) 2003; 421
Srinivasa, Nowack, Shafiei, Vandersypen, Taylor (CR24) 2013; 110
Yang (CR36) 2013; 4
Grover (CR31) 1997; 79
Tyryshkin (CR17) 2012; 11
Debnath (CR2) 2016; 536
Pioro-Ladrière (CR25) 2008; 4
Zajac (CR29) 2018; 359
DiCarlo (CR11) 2009; 460
Meunier, Calado, Vandersypen (CR28) 2011; 83
Loss, DiVincenzo (CR3) 1998; 57
Medford (CR9) 2013; 8
Reed (CR32) 2016; 116
Martins (CR33) 2016; 116
Bluhm (CR14) 2011; 7
Yoneda (CR21) 2018; 13
Veldhorst (CR8) 2015; 526
Zwanenburg (CR16) 2013; 85
Shulman (CR6) 2012; 336
Vandersypen (CR10) 2001; 414
Veldhorst (CR18) 2014; 9
Muhonen (CR19) 2014; 9
Knill (CR26) 2008; 77
James, Kwiat, Munro, White (CR37) 2001; 64
MD Shulman (BFnature25766_CR6) 2012; 336
JR Petta (BFnature25766_CR15) 2005; 309
LMK Vandersypen (BFnature25766_CR5) 2017; 3
FA Zwanenburg (BFnature25766_CR16) 2013; 85
S Debnath (BFnature25766_CR2) 2016; 536
L DiCarlo (BFnature25766_CR11) 2009; 460
LMK Vandersypen (BFnature25766_CR10) 2001; 414
V Srinivasa (BFnature25766_CR24) 2013; 110
D Kim (BFnature25766_CR7) 2014; 511
M Pioro-Ladrière (BFnature25766_CR25) 2008; 4
E Kawakami (BFnature25766_CR22) 2014; 9
DFV James (BFnature25766_CR37) 2001; 64
D Loss (BFnature25766_CR3) 1998; 57
R Maurand (BFnature25766_CR4) 2016; 7
CH Yang (BFnature25766_CR36) 2013; 4
JT Muhonen (BFnature25766_CR19) 2014; 9
S Das Sarma (BFnature25766_CR38) 2011; 83
J Medford (BFnature25766_CR9) 2013; 8
H Bluhm (BFnature25766_CR14) 2011; 7
T Meunier (BFnature25766_CR28) 2011; 83
LK Grover (BFnature25766_CR31) 1997; 79
OE Dial (BFnature25766_CR39) 2013; 110
MD Reed (BFnature25766_CR32) 2016; 116
AM Tyryshkin (BFnature25766_CR17) 2012; 11
AG Fowler (BFnature25766_CR27) 2012; 86
M Veldhorst (BFnature25766_CR8) 2015; 526
E Kawakami (BFnature25766_CR20) 2016; 113
DM Zajac (BFnature25766_CR29) 2018; 359
E Knill (BFnature25766_CR26) 2008; 77
T van der Sar (BFnature25766_CR13) 2012; 484
S Gulde (BFnature25766_CR12) 2003; 421
D Deutsch (BFnature25766_CR30) 1992; 439
R Barends (BFnature25766_CR1) 2014; 508
M Veldhorst (BFnature25766_CR18) 2014; 9
J Yoneda (BFnature25766_CR21) 2018; 13
G Ithier (BFnature25766_CR40) 2005; 72
JM Elzerman (BFnature25766_CR23) 2004; 430
F Martins (BFnature25766_CR33) 2016; 116
References_xml – volume: 7
  start-page: 13575
  year: 2016
  ident: CR4
  article-title: A CMOS silicon spin qubit
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13575
– volume: 511
  start-page: 70
  year: 2014
  end-page: 74
  ident: CR7
  article-title: Quantum control and process tomography of a semiconductor quantum dot hybrid qubit
  publication-title: Nature
  doi: 10.1038/nature13407
– volume: 9
  start-page: 981
  year: 2014
  end-page: 985
  ident: CR18
  article-title: An addressable quantum dot qubit with fault-tolerant control-fidelity
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.216
– volume: 110
  start-page: 146804
  year: 2013
  ident: CR39
  article-title: Charge noise spectroscopy using coherent exchange oscillations in a singlet-triplet qubit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.146804
– volume: 508
  start-page: 500
  year: 2014
  end-page: 503
  ident: CR1
  article-title: Superconducting quantum circuits at the surface code threshold for fault tolerance
  publication-title: Nature
  doi: 10.1038/nature13171
– volume: 11
  start-page: 143
  year: 2012
  end-page: 147
  ident: CR17
  article-title: Electron spin coherence exceeding seconds in high-purity silicon
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3182
– volume: 110
  start-page: 196803
  year: 2013
  ident: CR24
  article-title: Simultaneous spin-charge relaxation in double quantum dots
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.196803
– volume: 536
  start-page: 63
  year: 2016
  end-page: 66
  ident: CR2
  article-title: Demonstration of a small programmable quantum computer with atomic qubits
  publication-title: Nature
  doi: 10.1038/nature18648
– volume: 484
  start-page: 82
  year: 2012
  end-page: 86
  ident: CR13
  article-title: Decoherence-protected quantum gates for a hybrid solid-state spin register
  publication-title: Nature
  doi: 10.1038/nature10900
– volume: 85
  start-page: 961
  year: 2013
  end-page: 1019
  ident: CR16
  article-title: Silicon quantum electronics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.961
– volume: 9
  start-page: 986
  year: 2014
  end-page: 991
  ident: CR19
  article-title: Storing quantum information for 30 seconds in a nanoelectronic device
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.211
– volume: 7
  start-page: 109
  year: 2011
  end-page: 113
  ident: CR14
  article-title: Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1856
– volume: 64
  start-page: 052312
  year: 2001
  ident: CR37
  article-title: Measurement of qubits
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.052312
– volume: 116
  start-page: 110402
  year: 2016
  ident: CR32
  article-title: Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.110402
– volume: 57
  start-page: 120
  year: 1998
  end-page: 126
  ident: CR3
  article-title: Quantum computation with quantum dots
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.57.120
– volume: 77
  start-page: 012307
  year: 2008
  ident: CR26
  article-title: Randomized benchmarking of quantum gates
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.012307
– volume: 86
  start-page: 032324
  year: 2012
  ident: CR27
  article-title: Surface codes: towards practical large-scale quantum computation
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.032324
– volume: 9
  start-page: 666
  year: 2014
  end-page: 670
  ident: CR22
  article-title: Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.153
– volume: 83
  start-page: 235314
  year: 2011
  ident: CR38
  article-title: Hubbard model description of silicon spin qubits: charge stability diagram and tunnel coupling in Si double quantum dots
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.235314
– volume: 336
  start-page: 202
  year: 2012
  end-page: 205
  ident: CR6
  article-title: Demonstration of entanglement of electrostatically coupled singlet-triplet qubits
  publication-title: Science
  doi: 10.1126/science.1217692
– volume: 430
  start-page: 431
  year: 2004
  end-page: 435
  ident: CR23
  article-title: Single-shot read-out of an individual electron spin in a quantum dot
  publication-title: Nature
  doi: 10.1038/nature02693
– volume: 359
  start-page: 439
  year: 2018
  end-page: 442
  ident: CR29
  article-title: Resonantly driven CNOT gate for electron spins
  publication-title: Science
  doi: 10.1126/science.aao5965
– volume: 526
  start-page: 410
  year: 2015
  end-page: 414
  ident: CR8
  article-title: A two-qubit logic gate in silicon
  publication-title: Nature
  doi: 10.1038/nature15263
– volume: 414
  start-page: 883
  year: 2001
  end-page: 887
  ident: CR10
  article-title: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance
  publication-title: Nature
  doi: 10.1038/414883a
– volume: 421
  start-page: 48
  year: 2003
  end-page: 50
  ident: CR12
  article-title: Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer
  publication-title: Nature
  doi: 10.1038/nature01336
– volume: 4
  start-page: 2069
  year: 2013
  ident: CR36
  article-title: Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3069
– volume: 8
  start-page: 654
  year: 2013
  end-page: 659
  ident: CR9
  article-title: Self-consistent measurement and state tomography of an exchange-only spin qubit
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.168
– volume: 439
  start-page: 553
  year: 1992
  end-page: 558
  ident: CR30
  article-title: Rapid solution of problems by quantum computation
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1992.0167
– volume: 72
  start-page: 134519
  year: 2005
  ident: CR40
  article-title: Decoherence in a superconducting quantum bit circuit
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.134519
– volume: 13
  start-page: 102
  year: 2018
  end-page: 106
  ident: CR21
  article-title: A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-017-0014-x
– volume: 83
  start-page: 121403
  year: 2011
  ident: CR28
  article-title: Efficient controlled-phase gate for single-spin qubits in quantum dots
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.121403
– volume: 4
  start-page: 776
  year: 2008
  end-page: 779
  ident: CR25
  article-title: Electrically driven single-electron spin resonance in a slanting Zeeman field
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1053
– volume: 116
  start-page: 116801
  year: 2016
  ident: CR33
  article-title: Noise suppression using symmetric exchange gates in spin qubits
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.116801
– volume: 460
  start-page: 240
  year: 2009
  end-page: 244
  ident: CR11
  article-title: Demonstration of two-qubit algorithms with a superconducting quantum processor
  publication-title: Nature
  doi: 10.1038/nature08121
– volume: 309
  start-page: 2180
  year: 2005
  end-page: 2184
  ident: CR15
  article-title: Coherent manipulation of coupled electron spins in semiconductor quantum dots
  publication-title: Science
  doi: 10.1126/science.1116955
– volume: 79
  start-page: 325
  year: 1997
  end-page: 328
  ident: CR31
  article-title: Quantum mechanics helps in searching for a needle in a haystack
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.325
– volume: 113
  start-page: 11738
  year: 2016
  end-page: 11743
  ident: CR20
  article-title: Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1603251113
– volume: 3
  start-page: 34
  year: 2017
  ident: CR5
  article-title: Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-017-0038-y
– volume: 7
  start-page: 13575
  year: 2016
  ident: BFnature25766_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13575
– volume: 116
  start-page: 110402
  year: 2016
  ident: BFnature25766_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.110402
– volume: 11
  start-page: 143
  year: 2012
  ident: BFnature25766_CR17
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3182
– volume: 83
  start-page: 121403
  year: 2011
  ident: BFnature25766_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.121403
– volume: 113
  start-page: 11738
  year: 2016
  ident: BFnature25766_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1603251113
– volume: 4
  start-page: 2069
  year: 2013
  ident: BFnature25766_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3069
– volume: 526
  start-page: 410
  year: 2015
  ident: BFnature25766_CR8
  publication-title: Nature
  doi: 10.1038/nature15263
– volume: 77
  start-page: 012307
  year: 2008
  ident: BFnature25766_CR26
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.012307
– volume: 116
  start-page: 116801
  year: 2016
  ident: BFnature25766_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.116801
– volume: 9
  start-page: 981
  year: 2014
  ident: BFnature25766_CR18
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.216
– volume: 4
  start-page: 776
  year: 2008
  ident: BFnature25766_CR25
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1053
– volume: 86
  start-page: 032324
  year: 2012
  ident: BFnature25766_CR27
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.032324
– volume: 57
  start-page: 120
  year: 1998
  ident: BFnature25766_CR3
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.57.120
– volume: 7
  start-page: 109
  year: 2011
  ident: BFnature25766_CR14
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1856
– volume: 110
  start-page: 146804
  year: 2013
  ident: BFnature25766_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.146804
– volume: 72
  start-page: 134519
  year: 2005
  ident: BFnature25766_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.134519
– volume: 536
  start-page: 63
  year: 2016
  ident: BFnature25766_CR2
  publication-title: Nature
  doi: 10.1038/nature18648
– volume: 511
  start-page: 70
  year: 2014
  ident: BFnature25766_CR7
  publication-title: Nature
  doi: 10.1038/nature13407
– volume: 8
  start-page: 654
  year: 2013
  ident: BFnature25766_CR9
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.168
– volume: 414
  start-page: 883
  year: 2001
  ident: BFnature25766_CR10
  publication-title: Nature
  doi: 10.1038/414883a
– volume: 9
  start-page: 666
  year: 2014
  ident: BFnature25766_CR22
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.153
– volume: 85
  start-page: 961
  year: 2013
  ident: BFnature25766_CR16
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.961
– volume: 430
  start-page: 431
  year: 2004
  ident: BFnature25766_CR23
  publication-title: Nature
  doi: 10.1038/nature02693
– volume: 13
  start-page: 102
  year: 2018
  ident: BFnature25766_CR21
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-017-0014-x
– volume: 64
  start-page: 052312
  year: 2001
  ident: BFnature25766_CR37
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.052312
– volume: 9
  start-page: 986
  year: 2014
  ident: BFnature25766_CR19
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.211
– volume: 83
  start-page: 235314
  year: 2011
  ident: BFnature25766_CR38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.235314
– volume: 460
  start-page: 240
  year: 2009
  ident: BFnature25766_CR11
  publication-title: Nature
  doi: 10.1038/nature08121
– volume: 421
  start-page: 48
  year: 2003
  ident: BFnature25766_CR12
  publication-title: Nature
  doi: 10.1038/nature01336
– volume: 484
  start-page: 82
  year: 2012
  ident: BFnature25766_CR13
  publication-title: Nature
  doi: 10.1038/nature10900
– volume: 439
  start-page: 553
  year: 1992
  ident: BFnature25766_CR30
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1992.0167
– volume: 359
  start-page: 439
  year: 2018
  ident: BFnature25766_CR29
  publication-title: Science
  doi: 10.1126/science.aao5965
– volume: 110
  start-page: 196803
  year: 2013
  ident: BFnature25766_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.196803
– volume: 508
  start-page: 500
  year: 2014
  ident: BFnature25766_CR1
  publication-title: Nature
  doi: 10.1038/nature13171
– volume: 3
  start-page: 34
  year: 2017
  ident: BFnature25766_CR5
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-017-0038-y
– volume: 336
  start-page: 202
  year: 2012
  ident: BFnature25766_CR6
  publication-title: Science
  doi: 10.1126/science.1217692
– volume: 79
  start-page: 325
  year: 1997
  ident: BFnature25766_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.325
– volume: 309
  start-page: 2180
  year: 2005
  ident: BFnature25766_CR15
  publication-title: Science
  doi: 10.1126/science.1116955
SSID ssj0005174
Score 2.7059479
Snippet A two-qubit quantum processor in a silicon device is demonstrated, which can perform the Deutsch–Josza algorithm and the Grover search algorithm. Taken for a...
Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention...
SourceID osti
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 633
SubjectTerms 639/766/119/1000/1017
639/766/483/2802
639/766/483/481
639/925/927/481
Algorithms
Computers
Crosstalk
Fault tolerance
Humanities and Social Sciences
letter
Magnetic fields
MATHEMATICS AND COMPUTING
Methods
Microprocessors
multidisciplinary
NANOSCIENCE AND NANOTECHNOLOGY
Noise
Quantum computers
Quantum computing
Quantum dots
Quantum entanglement
quantum information
Quantum theory
qubits
Qubits (quantum computing)
Scaling
Science
Search algorithms
Silicon
Silicon devices
Title A programmable two-qubit quantum processor in silicon
URI https://link.springer.com/article/10.1038/nature25766
https://www.ncbi.nlm.nih.gov/pubmed/29443962
https://www.proquest.com/docview/2020725692
https://www.proquest.com/docview/2002484795
https://www.osti.gov/servlets/purl/1460099
Volume 555
WOSCitedRecordID wos000428617600044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: Nature (UW-Madison Shared)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: P5Z
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M0K
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PCBAR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7S
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PATMY
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: KB.
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7RV
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2M
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2O
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYBxIvwMZX2agCGl-TAvm2_YS6ahNoaqm6AdVeotiJp0hb0jYJ_PvcJW67QOGFl1MiX5zEd2df4rvfEXLgsygBTzQwI4f5pmdTOOJcmR7oB-hQErmRqotN0NGITad8rH-4FTqscjkn1hN1nEv8R44f6RaF9Zk7H2dzE6tG4e6qLqGxRbbBUWZomENnuA7x-A2FWefnWS770MBmorcdtFYkPS93cjCwTU7nHxum9Tp0cv9_3-ABuac9UKPfqMwOuZVku-ROHQkqi12yo629MN5qSOp3D4nfN3Qg1zWmWhnlz9ycVyItjXkFoqmujVmTcJAvjDQzivQKFCx7RL6eHJ8PPpm64IIpAxaUplJWbImEs8B1o9ilgtrCsXwWc7B8aTGhLAnnrnKEsr1YBI5UlNtCUUsEifTcx6ST5VnylBiBDUpg2bGtaOSpOBGebyeCRbYjQP406pLD5aCHUqORY1GMq7DeFXdZeENCXXKwYp41IBx_YUPphQhrkWHczGVUFUXYP_8-GIV930VgG4-zLnm5ie3z2aTF9EYzqRyeS0Y6WwHeDgGzWpx7LU45S-fhjdbXrdbLRnKbutlvMYKVy_ZdUCVD8IsQ3FdiFJQs8cMNfXy4eKlyoZ6DinCtb13yYtWM_WJcXZbkFfIgpp1Hud8lTxoNX42wwz3wVgO4-tVS5dedbxj-Z_9-iD1yF5zNOp_T4fukUy6q5Dm5LX-UabHokS06-YZ0SmvKgLKB3SPbR8ej8QTOTo_eAx1ap73ayGv6paZjpLShZ0DH_sUvA_hUqg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGAcELsPFVNiCgjS8pInG-7AeEqsG0aaOgUcTeQuzYU6UtaZuEiX-Kv5G7xGkXKLztgbdGvriJ_bvzXXz3MyGbAUsUeKKhnVAW2L4bwS_Ote0DPgBDKvESXR82EQ2H7OiIf1ohP9taGEyrbG1ibajTXOI3cgzSnQjWZ07fTqY2nhqFu6vtERoNLPbVjzMI2Yo3e-9gfrco3Xk_2t61zakCtgxZWNpaO6kjFGeh5yWpF4nIFdQJWMoB3tJhQjsSrj1NhXb9VIRU6oi7QkeOCJX0Pej3ErnsYySEqYL04yKl5DfWZ1MP6HjsdUPTid592FkBzTrQy0Ghlzm5f2zQ1uvezs3_bcRukRvGw7YGjUqskhWVrZGrdaarLNbIqrFmhfXCUG6_vE2CgWUS1U6xlMwqz3J7WolxaU0rgF51ak2agop8Zo0zqxifgAJld8iXC3mRu6SX5Zm6T6zQBZA7burqKPF1qoQfuEqwxKUC8B0lffKqneRYGrZ1PPTjJK53_T0Wn0NEn2zOhScNychfxBAtMdJ2ZJgXdJxURREPRl-3h_Eg8JC4x-esT54uE9v7fNgRem6EdA7PJRNTjQFvh4RgHcn1jqScjKfxudZnndbjZuaWdbPREQQrJrv_gioQg9-H5MUSs7xkiYEpxjBwcwvx2NjYIl7gu0-ezJuxX8wbzFReoQxy9vkRD_rkXqNR8xGm3AdvPIS7t1oVW3S-ZPgf_PshHpNru6MPB_HB3nB_nVwHx7quXaV8g_TKWaUekivyezkuZo9qo2GRbxetc78ArcGmiw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6V8BAXoOVlWsCglpdk1e9dHxCKWiKioiiCVlRcFu_aW0Vq7SS2qfhr_Dpm7HVSQ-DWA7dEO97Yu9_MzsQz3xCyHbA4BU80tGKXBZbvUPgURcryAR-AoTT2YlU3m6CjETs-jsZr5GdbC4Npla1NrA11kkv8jxyDdJvC-Ry5u0qnRYz3B--mMws7SOGb1radRgORg_THOYRvxdvhPuz1jusO3h_ufbB0hwFLhiwsLaXsxBZpxELPixOPCuoI1w5YEgHUpc2EsiV895QrlOMnInSlopEjFLVFmErfg3mvkKsUYkxMJxwHX5fpJb8xQOvaQNtjuw1lJ3r6Yec01GdCLwflXuXw_vGytj4DB7f_59W7Q25pz9vsN6qyTtbSbINcrzNgZbFB1rWVK8xXmor79V0S9E2dwHaGJWZmeZ5bs0pMSnNWASSrM3PaFFrkc3OSmcXkFBQru0eOLuVB7pNelmfpQ2KGDoDfdhJH0dhXSSr8wEkFix1XAO5pbJA37YZzqVnYsRnIKa-zATzGL6DDINsL4WlDPvIXMUQORzqPDLf2JK6KgvcPv-yNeD_wkNDHj5hBnq8SG37-1BF6qYVUDvclY12lAU-HRGEdyc2OpJxOZvzC6IvO6Emzc6um2eoIgnWT3V9BdeDgDyKpscTsL1liwIqxDVzcwp1r21vwJdYN8mwxjPNiPmGW5hXKIJefT6PAIA8a7VqssBv54KWHcPVOq27LyVcs_6N_38RTcgNUjX8cjg42yU3wt-uSVjfaIr1yXqWPyTX5vZwU8ye1_TDJt8tWuV8JSa96
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+programmable+two-qubit+quantum+processor+in+silicon&rft.jtitle=Nature+%28London%29&rft.au=Watson%2C+T.+F&rft.au=Philips%2C+S.+G.+J&rft.au=Kawakami%2C+E&rft.au=Ward%2C+D.+R&rft.date=2018-03-29&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=555&rft.issue=7698&rft.spage=633&rft_id=info:doi/10.1038%2Fnature25766&rft.externalDocID=A532684498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon