A programmable two-qubit quantum processor in silicon
A two-qubit quantum processor in a silicon device is demonstrated, which can perform the Deutsch–Josza algorithm and the Grover search algorithm. Taken for a spin in silicon The development of platforms for spin-based quantum computing continues apace. The individual components of such a system have...
Saved in:
| Published in: | Nature (London) Vol. 555; no. 7698; pp. 633 - 637 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
29.03.2018
Nature Publishing Group |
| Subjects: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A two-qubit quantum processor in a silicon device is demonstrated, which can perform the Deutsch–Josza algorithm and the Grover search algorithm.
Taken for a spin in silicon
The development of platforms for spin-based quantum computing continues apace. The individual components of such a system have been the subject of much investigation, and they have been assembled to implement specific quantum-computational algorithms. Thomas Watson and colleagues have now taken such component integration and control to the next level. Using two single-electron-spin qubits in a silicon-based double quantum dot, they realize a system that can be simply programmed to perform different quantum algorithms on demand.
Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing
1
,
2
. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform
3
,
4
,
5
. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations
6
,
7
,
8
,
9
. However, as seen with small-scale demonstrations of quantum computers using other types of qubit
10
,
11
,
12
,
13
, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots. |
|---|---|
| AbstractList | Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots. Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots. A two-qubit quantum processor in a silicon device is demonstrated, which can perform the Deutsch–Josza algorithm and the Grover search algorithm. Taken for a spin in silicon The development of platforms for spin-based quantum computing continues apace. The individual components of such a system have been the subject of much investigation, and they have been assembled to implement specific quantum-computational algorithms. Thomas Watson and colleagues have now taken such component integration and control to the next level. Using two single-electron-spin qubits in a silicon-based double quantum dot, they realize a system that can be simply programmed to perform different quantum algorithms on demand. Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing 1 , 2 . In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform 3 , 4 , 5 . Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations 6 , 7 , 8 , 9 . However, as seen with small-scale demonstrations of quantum computers using other types of qubit 10 , 11 , 12 , 13 , combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots. Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing (1,2). In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform (3,4,5). Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations (6,7,8,9). However, as seen with small-scale demonstrations of quantum computers using other types of qubit (10,11,12,13), combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. We overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots. |
| Audience | Academic |
| Author | Friesen, Mark Philips, S. G. J. Kawakami, E. Eriksson, M. A. Watson, T. F. Veldhorst, M. Scarlino, P. Coppersmith, S. N. Vandersypen, L. M. K. Savage, D. E. Ward, D. R. Lagally, M. G. |
| Author_xml | – sequence: 1 givenname: T. F. surname: Watson fullname: Watson, T. F. organization: QuTech and the Kavli Institute of Nanoscience, Delft University of Technology – sequence: 2 givenname: S. G. J. surname: Philips fullname: Philips, S. G. J. organization: QuTech and the Kavli Institute of Nanoscience, Delft University of Technology – sequence: 3 givenname: E. surname: Kawakami fullname: Kawakami, E. organization: QuTech and the Kavli Institute of Nanoscience, Delft University of Technology – sequence: 4 givenname: D. R. surname: Ward fullname: Ward, D. R. organization: University of Wisconsin-Madison – sequence: 5 givenname: P. surname: Scarlino fullname: Scarlino, P. organization: QuTech and the Kavli Institute of Nanoscience, Delft University of Technology – sequence: 6 givenname: M. surname: Veldhorst fullname: Veldhorst, M. organization: QuTech and the Kavli Institute of Nanoscience, Delft University of Technology – sequence: 7 givenname: D. E. surname: Savage fullname: Savage, D. E. organization: University of Wisconsin-Madison – sequence: 8 givenname: M. G. surname: Lagally fullname: Lagally, M. G. organization: University of Wisconsin-Madison – sequence: 9 givenname: Mark surname: Friesen fullname: Friesen, Mark organization: University of Wisconsin-Madison – sequence: 10 givenname: S. N. surname: Coppersmith fullname: Coppersmith, S. N. organization: University of Wisconsin-Madison – sequence: 11 givenname: M. A. surname: Eriksson fullname: Eriksson, M. A. organization: University of Wisconsin-Madison – sequence: 12 givenname: L. M. K. surname: Vandersypen fullname: Vandersypen, L. M. K. email: l.m.k.vandersypen@tudelft.nl organization: QuTech and the Kavli Institute of Nanoscience, Delft University of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29443962$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1460099$$D View this record in Osti.gov |
| BookMark | eNp10t9v1CAcAHBiZtxt-uS7aeaLRjuBUgqPl4s_liya6IyPBChUlpbeAY3uvx-Xm95u6dIH0vL5fqHf7_cEHPnRGwBeIniOYMU-eJmmYHDdUPoELBBpaEkoa47AAkLMSsgqegxOYryGENaoIc_AMeaEVJziBaiXxTqMXZDDIFVvivRnLDeTcqnYTNKnadhuaxPjGArni-h6p0f_HDy1so_mxd16Cn5--ni1-lJefvt8sVpelpoymkprYQuV4YxWlWyrRjVIYVizlleIaciUhTq_VxYri0irKNa24UjZBipqNKlOwdku7xiTE1G7ZPTvfL43OglEKIScZ_Rmh_JNN5OJSQwuatP30ptxigLnMhBGGl5n-voBvR6n4PMvZIVhg2vK8V51sjfCeTumIPU2qVjWFaaMEM6yKmdUZ7wJss8dsi5_PvBnM16v3UbcR-czKD-tGbaFn8n69iAgm2T-pk5OMYqLH98P7bvH7fLq1-rroX51V6tJDaYV6-AGGW7Ev9nZp9NhjDEY-58gKLaTKe5NZtbogc7dlMnlOwTp-kdi3u9iYs7sOxP27Zrjt1qI78k |
| CitedBy_id | crossref_primary_10_1515_nanoph_2020_0484 crossref_primary_10_1140_epjqt_s40507_021_00119_6 crossref_primary_10_1103_PhysRevApplied_11_034030 crossref_primary_10_1038_s41467_025_57987_0 crossref_primary_10_1103_PhysRevApplied_19_044078 crossref_primary_10_1002_qute_202100104 crossref_primary_10_1038_s41534_022_00639_8 crossref_primary_10_1109_TCSII_2024_3470111 crossref_primary_10_1103_PhysRevApplied_9_054016 crossref_primary_10_1109_MNANO_2024_3475889 crossref_primary_10_1002_piuz_202501730 crossref_primary_10_1103_PhysRevApplied_14_024066 crossref_primary_10_3390_e27050479 crossref_primary_10_1063_5_0035300 crossref_primary_10_1088_1361_648X_ac49c6 crossref_primary_10_1088_2633_4356_acd743 crossref_primary_10_1103_PhysRevX_8_031084 crossref_primary_10_1038_s41467_020_20424_5 crossref_primary_10_1038_s41467_021_24693_6 crossref_primary_10_1063_5_0036520 crossref_primary_10_1038_s41586_019_1197_0 crossref_primary_10_1038_s41467_021_27880_7 crossref_primary_10_1038_s41534_020_00295_w crossref_primary_10_1109_TQE_2023_3290593 crossref_primary_10_1038_s41534_023_00679_8 crossref_primary_10_1088_1361_6455_ac489c crossref_primary_10_1038_s41467_022_28767_x crossref_primary_10_1063_5_0006075 crossref_primary_10_1088_2058_9565_ac2d39 crossref_primary_10_1557_s43577_021_00136_x crossref_primary_10_1016_j_sse_2024_108863 crossref_primary_10_1103_PhysRevResearch_6_043029 crossref_primary_10_1038_s41565_019_0426_x crossref_primary_10_1016_j_micpro_2019_02_006 crossref_primary_10_1063_5_0105635 crossref_primary_10_1109_LED_2020_2995645 crossref_primary_10_1016_j_micpro_2019_02_004 crossref_primary_10_1038_s41928_020_00499_0 crossref_primary_10_1063_5_0012883 crossref_primary_10_1002_aoc_5192 crossref_primary_10_1038_s41598_022_15734_1 crossref_primary_10_1038_s41534_019_0125_3 crossref_primary_10_1038_s41598_023_34966_3 crossref_primary_10_1038_s41534_019_0190_7 crossref_primary_10_1103_PhysRevX_9_041003 crossref_primary_10_1103_41jh_w6ft crossref_primary_10_1103_q418_pydy crossref_primary_10_1103_PhysRevB_106_045305 crossref_primary_10_1557_s43577_021_00147_8 crossref_primary_10_1088_1367_2630_ac430c crossref_primary_10_1038_s41534_019_0212_5 crossref_primary_10_1145_3624484 crossref_primary_10_1103_PhysRevApplied_22_024030 crossref_primary_10_1109_JSSC_2021_3115988 crossref_primary_10_1038_s41586_019_1381_2 crossref_primary_10_1103_PhysRevB_103_235314 crossref_primary_10_1038_s41598_021_98212_4 crossref_primary_10_1103_PhysRevB_108_L081303 crossref_primary_10_1126_science_abb2823 crossref_primary_10_1038_s41467_018_06039_x crossref_primary_10_1103_PhysRevX_11_041032 crossref_primary_10_3390_nano11102743 crossref_primary_10_1088_1742_6596_1283_1_012005 crossref_primary_10_1088_1367_2630_ab60f4 crossref_primary_10_1088_1674_1056_ad8db1 crossref_primary_10_1103_PhysRevApplied_20_054024 crossref_primary_10_1038_s41586_019_1867_y crossref_primary_10_1103_PhysRevApplied_12_064049 crossref_primary_10_1103_PRXQuantum_4_020305 crossref_primary_10_1109_TQE_2023_3272865 crossref_primary_10_1038_s41467_020_17211_7 crossref_primary_10_1038_s41586_022_04986_6 crossref_primary_10_1063_5_0059939 crossref_primary_10_1002_advs_202407442 crossref_primary_10_1002_aisy_202200079 crossref_primary_10_1109_TED_2018_2870115 crossref_primary_10_1063_5_0230605 crossref_primary_10_1039_D4NR04012K crossref_primary_10_1134_S106378341909004X crossref_primary_10_1103_PhysRevApplied_19_024015 crossref_primary_10_1134_S0021364021160050 crossref_primary_10_1002_adma_202003361 crossref_primary_10_1038_s41565_020_00828_6 crossref_primary_10_1007_s11128_021_03285_9 crossref_primary_10_1088_1674_1056_acf208 crossref_primary_10_1016_j_physleta_2024_129668 crossref_primary_10_1038_s41534_019_0225_0 crossref_primary_10_1038_s41534_022_00615_2 crossref_primary_10_1088_1367_2630_ab8ab0 crossref_primary_10_1038_s41467_024_45583_7 crossref_primary_10_1088_1674_1056_27_9_090308 crossref_primary_10_1103_qzn2_l71q crossref_primary_10_1103_PhysRevB_103_245303 crossref_primary_10_1145_3591254 crossref_primary_10_1038_s41565_019_0400_7 crossref_primary_10_1088_1367_2630_aba85a crossref_primary_10_1038_s41467_020_14560_1 crossref_primary_10_1063_1_5040474 crossref_primary_10_1103_xx7c_36f5 crossref_primary_10_1016_j_ijleo_2024_172181 crossref_primary_10_1088_2058_9565_ad7756 crossref_primary_10_1103_PRXQuantum_2_040306 crossref_primary_10_1088_1367_2630_ab7bf3 crossref_primary_10_1134_S1063782621010176 crossref_primary_10_1103_PhysRevApplied_23_054030 crossref_primary_10_1093_nsr_nwy153 crossref_primary_10_1063_5_0139670 crossref_primary_10_1088_1402_4896_addd6e crossref_primary_10_1103_PhysRevApplied_10_014018 crossref_primary_10_1557_s43577_021_00133_0 crossref_primary_10_1038_s41586_021_03332_6 crossref_primary_10_1103_PhysRevB_101_045202 crossref_primary_10_1103_PhysRevApplied_18_024053 crossref_primary_10_1103_PhysRevApplied_21_014019 crossref_primary_10_1088_1361_6463_acd8c7 crossref_primary_10_1103_PhysRevApplied_11_044063 crossref_primary_10_1103_PRXQuantum_2_040358 crossref_primary_10_1038_s41467_019_14053_w crossref_primary_10_1103_PhysRevB_106_L121402 crossref_primary_10_1038_s41467_022_28519_x crossref_primary_10_1038_s43246_022_00304_9 crossref_primary_10_1063_5_0040967 crossref_primary_10_1103_xhq3_4jxz crossref_primary_10_1038_s41534_019_0129_z crossref_primary_10_2478_qic_2025_0003 crossref_primary_10_1088_0256_307X_38_9_094203 crossref_primary_10_1103_PhysRevApplied_19_024068 crossref_primary_10_1038_s41565_020_00816_w crossref_primary_10_1038_s41578_020_00262_z crossref_primary_10_1016_j_bios_2022_114339 crossref_primary_10_1063_1_5038258 crossref_primary_10_1063_1_5121444 crossref_primary_10_1038_s41534_020_0274_4 crossref_primary_10_1038_s41534_025_01074_1 crossref_primary_10_1038_s41567_023_02297_9 crossref_primary_10_1103_PhysRevA_111_042616 crossref_primary_10_1103_PhysRevX_9_021028 crossref_primary_10_1016_j_physleta_2020_126352 crossref_primary_10_1038_s41467_024_52010_4 crossref_primary_10_1038_s41534_019_0182_7 crossref_primary_10_1098_rsos_180410 crossref_primary_10_1103_PRXQuantum_2_040338 crossref_primary_10_1109_TQE_2024_3429451 crossref_primary_10_1088_1402_4896_ada501 crossref_primary_10_1109_TED_2025_3570285 crossref_primary_10_1038_s41928_021_00681_y crossref_primary_10_1103_PhysRevX_8_011045 crossref_primary_10_1145_3474222 crossref_primary_10_1103_PhysRevX_10_021006 crossref_primary_10_3390_molecules29174222 crossref_primary_10_1039_D0NR08655J crossref_primary_10_1103_PhysRevX_9_021011 crossref_primary_10_1002_adfm_202307285 crossref_primary_10_1063_1_5144202 crossref_primary_10_1103_PhysRevA_111_052425 crossref_primary_10_1016_j_physe_2025_116319 crossref_primary_10_1103_PhysRevB_103_L081404 crossref_primary_10_1038_s41535_021_00344_3 crossref_primary_10_1038_s41928_022_00727_9 crossref_primary_10_1088_1367_2630_ad19ab crossref_primary_10_1038_s41567_020_0862_4 crossref_primary_10_1038_s41565_021_00846_y crossref_primary_10_1038_s41467_018_07522_1 crossref_primary_10_1038_s41565_024_01853_5 crossref_primary_10_1088_2632_2153_ad88d5 crossref_primary_10_1038_s41567_024_02481_5 crossref_primary_10_1103_PhysRevApplied_10_044036 crossref_primary_10_1021_acs_nanolett_4c05540 crossref_primary_10_1103_PhysRevResearch_4_013031 crossref_primary_10_1038_s41467_019_10798_6 crossref_primary_10_1016_j_ssc_2019_04_004 crossref_primary_10_1109_MMM_2020_3023271 crossref_primary_10_1109_TCAD_2022_3166107 crossref_primary_10_1063_5_0002013 crossref_primary_10_1038_s41467_023_36951_w crossref_primary_10_1088_1361_6528_abb559 crossref_primary_10_1016_j_jmapro_2024_07_127 crossref_primary_10_1038_s41565_020_0769_3 crossref_primary_10_1088_2058_9565_aaf3c4 crossref_primary_10_1007_s12034_021_02621_0 crossref_primary_10_1103_PhysRevApplied_17_054007 crossref_primary_10_1063_5_0151029 crossref_primary_10_1038_s41598_021_00859_6 crossref_primary_10_1002_andp_202100054 crossref_primary_10_1109_LED_2018_2835385 crossref_primary_10_1063_1_5031813 crossref_primary_10_1038_s41467_020_20280_3 crossref_primary_10_1002_qute_202100018 crossref_primary_10_1088_1361_6463_ac8430 crossref_primary_10_1088_1361_6528_adbb74 crossref_primary_10_1103_PhysRevResearch_4_033048 crossref_primary_10_1002_andp_201800393 crossref_primary_10_1038_s41534_018_0118_7 crossref_primary_10_1103_PhysRevApplied_15_044045 crossref_primary_10_1088_1674_1056_ac8919 crossref_primary_10_1103_PhysRevApplied_21_034022 crossref_primary_10_1038_s41567_024_02614_w crossref_primary_10_1088_2632_2153_ac34db crossref_primary_10_1103_PhysRevApplied_15_044042 crossref_primary_10_1038_s41598_018_36476_z crossref_primary_10_1002_qua_26688 crossref_primary_10_1038_s42005_019_0262_1 crossref_primary_10_1002_qute_202100162 crossref_primary_10_1063_5_0004777 crossref_primary_10_1103_PhysRevA_111_032408 crossref_primary_10_1103_PhysRevX_10_041010 crossref_primary_10_1063_5_0002112 crossref_primary_10_1103_PhysRevApplied_16_054020 crossref_primary_10_1209_0295_5075_130_27001 crossref_primary_10_1002_adma_202201064 crossref_primary_10_1016_j_jmatprotec_2025_118937 crossref_primary_10_1109_TQE_2023_3324841 crossref_primary_10_1038_s41586_022_05117_x crossref_primary_10_1088_1742_6596_2900_1_012009 crossref_primary_10_1016_j_mssp_2023_107477 crossref_primary_10_2320_matertrans_MT_M2024180 crossref_primary_10_1038_s41567_019_0673_7 crossref_primary_10_1088_2058_9565_aacad2 crossref_primary_10_3390_electronics10192404 crossref_primary_10_1103_PhysRevApplied_16_054034 crossref_primary_10_3390_s19184048 crossref_primary_10_1038_s41586_022_04603_6 crossref_primary_10_1103_PhysRevApplied_20_034066 crossref_primary_10_1016_j_apsusc_2021_149451 crossref_primary_10_1088_1361_6463_ac7366 crossref_primary_10_1039_D1NH00685A crossref_primary_10_1038_s41586_021_03469_4 crossref_primary_10_1007_s41745_022_00311_2 crossref_primary_10_1016_j_ijmecsci_2022_108020 crossref_primary_10_1016_j_heliyon_2023_e18593 crossref_primary_10_1088_1361_6641_abe42d crossref_primary_10_1109_TQE_2020_3034798 crossref_primary_10_1016_j_jmmm_2021_168284 crossref_primary_10_1007_s11467_022_1249_z crossref_primary_10_1038_s41467_020_16745_0 crossref_primary_10_1103_PhysRevResearch_3_023038 crossref_primary_10_1140_epjqt_s40507_023_00181_2 crossref_primary_10_1016_j_scib_2020_10_005 crossref_primary_10_1063_5_0097339 crossref_primary_10_1063_5_0108206 crossref_primary_10_1103_PhysRevB_111_205412 crossref_primary_10_1007_s11831_023_09973_2 crossref_primary_10_1038_s41467_024_51902_9 crossref_primary_10_1103_PhysRevApplied_12_014026 crossref_primary_10_1038_s41534_019_0163_x crossref_primary_10_1038_s41467_020_19835_1 crossref_primary_10_1002_qute_201900052 crossref_primary_10_1002_qute_202300367 crossref_primary_10_1140_epjqt_s40507_025_00405_7 crossref_primary_10_1038_s41467_025_58279_3 crossref_primary_10_1103_PhysRevApplied_10_054026 crossref_primary_10_1126_science_ady3799 crossref_primary_10_3390_e26050379 crossref_primary_10_3390_physics6030069 crossref_primary_10_1038_s41467_020_14818_8 crossref_primary_10_1103_PRXQuantum_2_020335 crossref_primary_10_1088_1367_2630_aad1ea crossref_primary_10_1109_JSSC_2020_3024678 crossref_primary_10_1088_2058_9565_ac1dfe crossref_primary_10_1038_s41467_018_05299_x crossref_primary_10_1103_PhysRevApplied_10_044017 crossref_primary_10_1088_1367_2630_adb174 crossref_primary_10_1109_TED_2022_3158628 crossref_primary_10_1038_s41586_021_04182_y crossref_primary_10_1038_s41534_018_0105_z crossref_primary_10_1088_1361_6463_acb55e crossref_primary_10_1038_s41534_022_00523_5 crossref_primary_10_1038_s41467_020_20388_6 crossref_primary_10_1038_s41467_019_09194_x crossref_primary_10_1038_s41534_022_00645_w crossref_primary_10_1063_5_0040234 crossref_primary_10_1063_5_0040241 crossref_primary_10_1103_PhysRevResearch_3_033086 crossref_primary_10_1038_s41534_024_00878_x crossref_primary_10_1088_1367_2630_ac22ea crossref_primary_10_1103_PRXQuantum_5_010347 crossref_primary_10_1088_1361_6528_ab061e crossref_primary_10_1103_PhysRevApplied_20_044058 crossref_primary_10_1038_s41598_024_79553_2 crossref_primary_10_1002_adfm_202419940 crossref_primary_10_1103_PRXQuantum_2_010348 crossref_primary_10_1103_PhysRevApplied_13_034075 crossref_primary_10_1103_PRXQuantum_2_010347 crossref_primary_10_1038_s41928_021_00687_6 crossref_primary_10_1088_1361_648X_ab613f crossref_primary_10_1109_TED_2018_2876355 crossref_primary_10_1088_0256_307X_37_2_020302 crossref_primary_10_1039_D5RA01109D crossref_primary_10_1038_s41535_020_0237_1 crossref_primary_10_1038_s41586_020_2171_6 crossref_primary_10_1103_PRXQuantum_6_020307 crossref_primary_10_1088_1361_6641_ab516a crossref_primary_10_1038_s41598_021_85231_4 crossref_primary_10_1103_PhysRevApplied_18_064040 crossref_primary_10_1038_s41467_021_24371_7 crossref_primary_10_1038_s41928_022_00722_0 crossref_primary_10_1103_PhysRevApplied_23_014072 crossref_primary_10_1103_PhysRevApplied_13_024019 crossref_primary_10_1038_s41534_020_0276_2 crossref_primary_10_1002_adma_202405916 crossref_primary_10_1063_5_0055908 crossref_primary_10_1007_s11128_023_04184_x crossref_primary_10_1088_2058_9565_ab8aa4 crossref_primary_10_1088_1674_1056_adb68b crossref_primary_10_1038_s41586_025_09157_x crossref_primary_10_1038_s41467_022_33453_z crossref_primary_10_1109_LED_2020_2984280 crossref_primary_10_1038_s41598_019_47806_0 crossref_primary_10_1103_PhysRevApplied_15_054025 crossref_primary_10_1103_PhysRevX_14_031003 crossref_primary_10_1038_s41565_021_00994_1 crossref_primary_10_1088_2515_7639_abb74e crossref_primary_10_1038_s41586_020_2170_7 crossref_primary_10_1038_s41598_018_34108_0 crossref_primary_10_1088_1367_2630_aae61f crossref_primary_10_1063_5_0016248 crossref_primary_10_1103_925y_b4s1 crossref_primary_10_1103_PRXQuantum_2_010353 crossref_primary_10_1088_2058_9565_acef54 crossref_primary_10_1103_PRXQuantum_4_030303 crossref_primary_10_1063_PT_3_3890 crossref_primary_10_3390_nano11113096 crossref_primary_10_1002_advs_202502789 crossref_primary_10_1063_5_0006442 crossref_primary_10_1088_2058_9565_abe989 crossref_primary_10_3390_app9030474 crossref_primary_10_1063_5_0097407 crossref_primary_10_1103_PhysRevApplied_13_034068 crossref_primary_10_1038_s41467_019_08970_z crossref_primary_10_1103_kp8s_py9m crossref_primary_10_1038_s41928_019_0234_1 crossref_primary_10_1002_pssa_202200145 crossref_primary_10_1038_s41534_020_00314_w crossref_primary_10_1038_s41534_021_00500_4 crossref_primary_10_1038_s41565_019_0443_9 crossref_primary_10_1063_PT_3_4270 crossref_primary_10_1103_PRXQuantum_5_010306 crossref_primary_10_1103_PhysRevX_11_011019 crossref_primary_10_1088_1361_6641_adfe12 crossref_primary_10_1103_PhysRevApplied_17_024068 crossref_primary_10_1103_PhysRevApplied_11_024063 crossref_primary_10_1063_5_0111221 crossref_primary_10_1016_j_radphyschem_2022_110369 crossref_primary_10_1016_j_mser_2025_100928 crossref_primary_10_1038_s41586_021_04273_w crossref_primary_10_1109_MMM_2020_2993477 crossref_primary_10_1103_PhysRevApplied_11_061006 crossref_primary_10_1103_PhysRevApplied_18_044064 crossref_primary_10_1007_s11128_024_04407_9 crossref_primary_10_1038_s41534_018_0112_0 crossref_primary_10_1038_s41565_019_0587_7 crossref_primary_10_1039_D5DT00749F crossref_primary_10_1063_5_0031231 crossref_primary_10_1103_PhysRevResearch_2_012006 crossref_primary_10_1038_s41567_022_01870_y crossref_primary_10_34133_icomputing_0115 crossref_primary_10_1038_s41586_024_07160_2 crossref_primary_10_1109_TCSI_2020_3019413 crossref_primary_10_1103_PhysRevResearch_3_043142 crossref_primary_10_1038_s41467_023_39568_1 crossref_primary_10_1557_s43577_023_00659_5 crossref_primary_10_1007_s43673_022_00058_z crossref_primary_10_1016_j_mssp_2021_106308 crossref_primary_10_1088_2632_2153_ac104c crossref_primary_10_1063_1_5088412 crossref_primary_10_1063_5_0010981 crossref_primary_10_1088_2058_9565_acf786 crossref_primary_10_1063_5_0055318 crossref_primary_10_1063_5_0056648 crossref_primary_10_1103_PhysRevApplied_12_044054 crossref_primary_10_1016_j_jmmm_2019_165566 crossref_primary_10_1109_ACCESS_2020_3039996 crossref_primary_10_3390_app9183823 crossref_primary_10_1016_j_mtquan_2025_100029 crossref_primary_10_1038_s41534_022_00576_6 crossref_primary_10_1039_D0NR05070A crossref_primary_10_1063_1_5140994 crossref_primary_10_1103_PhysRevApplied_13_054018 crossref_primary_10_3390_electronics10141690 crossref_primary_10_1126_science_aar4054 crossref_primary_10_1038_s41928_019_0259_5 crossref_primary_10_1038_s41467_022_35510_z crossref_primary_10_1038_s41534_022_00554_y crossref_primary_10_1038_s41565_021_00925_0 crossref_primary_10_1088_1361_6463_aaee59 crossref_primary_10_1007_s11128_025_04759_w crossref_primary_10_22331_q_2025_09_05_1848 crossref_primary_10_1002_adts_202100254 crossref_primary_10_1088_1361_648X_aacabc crossref_primary_10_1103_PhysRevApplied_23_044055 crossref_primary_10_1016_j_flatc_2020_100171 crossref_primary_10_1063_1_5033447 crossref_primary_10_1063_5_0193621 crossref_primary_10_1103_PhysRevB_105_195305 crossref_primary_10_1038_s41534_019_0146_y crossref_primary_10_1039_D4NH00651H crossref_primary_10_1103_PhysRevApplied_17_024022 crossref_primary_10_1088_1367_2630_abb64a crossref_primary_10_1103_PhysRevA_104_062415 crossref_primary_10_1038_s41467_021_23437_w crossref_primary_10_1038_s41467_022_35458_0 crossref_primary_10_1088_2058_9565_abe568 crossref_primary_10_1103_PhysRevA_101_012338 crossref_primary_10_1038_s41467_019_13416_7 crossref_primary_10_1063_1_5075486 crossref_primary_10_1103_PhysRevX_10_011060 crossref_primary_10_3390_nano11102486 crossref_primary_10_1103_PhysRevApplied_14_064024 crossref_primary_10_1038_s41467_019_13548_w crossref_primary_10_1002_adma_202201625 crossref_primary_10_1016_j_ssc_2019_113752 crossref_primary_10_1038_nature25769 crossref_primary_10_1002_qute_201900123 crossref_primary_10_1002_andp_202200360 crossref_primary_10_1103_PhysRevB_111_195302 crossref_primary_10_1103_PhysRevX_13_041015 crossref_primary_10_1088_2058_9565_ad3d06 crossref_primary_10_1038_s41467_019_10848_z crossref_primary_10_1103_PhysRevResearch_6_013168 crossref_primary_10_1088_1674_4926_24050043 crossref_primary_10_1038_s41467_024_49182_4 crossref_primary_10_1038_s41598_022_19404_0 crossref_primary_10_1103_PhysRevB_104_235302 crossref_primary_10_1126_science_aao5965 crossref_primary_10_1103_PhysRevX_8_041018 crossref_primary_10_1088_2515_7639_acd1b7 crossref_primary_10_1103_PhysRevB_104_235411 crossref_primary_10_1103_PhysRevResearch_2_043180 crossref_primary_10_1039_D1NR02842A |
| Cites_doi | 10.1038/ncomms13575 10.1038/nature13407 10.1038/nnano.2014.216 10.1103/PhysRevLett.110.146804 10.1038/nature13171 10.1038/nmat3182 10.1103/PhysRevLett.110.196803 10.1038/nature18648 10.1038/nature10900 10.1103/RevModPhys.85.961 10.1038/nnano.2014.211 10.1038/nphys1856 10.1103/PhysRevA.64.052312 10.1103/PhysRevLett.116.110402 10.1103/PhysRevA.57.120 10.1103/PhysRevA.77.012307 10.1103/PhysRevA.86.032324 10.1038/nnano.2014.153 10.1103/PhysRevB.83.235314 10.1126/science.1217692 10.1038/nature02693 10.1126/science.aao5965 10.1038/nature15263 10.1038/414883a 10.1038/nature01336 10.1038/ncomms3069 10.1038/nnano.2013.168 10.1098/rspa.1992.0167 10.1103/PhysRevB.72.134519 10.1038/s41565-017-0014-x 10.1103/PhysRevB.83.121403 10.1038/nphys1053 10.1103/PhysRevLett.116.116801 10.1038/nature08121 10.1126/science.1116955 10.1103/PhysRevLett.79.325 10.1073/pnas.1603251113 10.1038/s41534-017-0038-y |
| ContentType | Journal Article |
| Copyright | Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018 COPYRIGHT 2018 Nature Publishing Group Copyright Nature Publishing Group Mar 29, 2018 |
| Copyright_xml | – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018 – notice: COPYRIGHT 2018 Nature Publishing Group – notice: Copyright Nature Publishing Group Mar 29, 2018 |
| CorporateAuthor | Univ. of Wisconsin, Madison, WI (United States). Materials Research Science and Engineering Center (MRSEC) |
| CorporateAuthor_xml | – name: Univ. of Wisconsin, Madison, WI (United States). Materials Research Science and Engineering Center (MRSEC) |
| DBID | AAYXX CITATION NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 OIOZB OTOTI |
| DOI | 10.1038/nature25766 |
| DatabaseName | CrossRef PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database eLibrary Curriculum AUTh Library subscriptions: ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Psychology Database ProQuest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PATMY name: Environmental Science Database url: http://search.proquest.com/environmentalscience sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 637 |
| ExternalDocumentID | 1460099 A532684498 29443962 10_1038_nature25766 |
| Genre | Journal Article |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ABUFD ACSTC ADXHL AFANA AFFHD AGSTI ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB TUS NPM ACMFV AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 PUEGO AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGFU ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADFPY ADMDM ADQMX ADZGE AEDAW AEFTE AFNRJ AGEZK AGGBP AGPPL AHGBK AJDOV AMRJV B-7 EBO F20 I-U OIOZB OTOTI P-O U1R XFK ZA5 |
| ID | FETCH-LOGICAL-c686t-ff0d0be98633ad37b71b2058d9318c08bf0c2053f2bf14db62cf791bf70b6ec43 |
| IEDL.DBID | M2M |
| ISICitedReferencesCount | 599 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428617600044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Wed Nov 29 06:10:36 EST 2023 Thu Oct 02 10:54:19 EDT 2025 Sat Nov 29 14:36:27 EST 2025 Tue Nov 11 10:24:44 EST 2025 Sat Nov 29 11:44:50 EST 2025 Tue Jun 10 15:33:54 EDT 2025 Tue Nov 04 17:18:47 EST 2025 Thu Nov 13 15:31:39 EST 2025 Thu Nov 13 14:56:02 EST 2025 Mon Jul 21 06:06:01 EDT 2025 Sat Nov 29 02:12:37 EST 2025 Tue Nov 18 22:02:33 EST 2025 Fri Feb 21 02:37:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7698 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c686t-ff0d0be98633ad37b71b2058d9318c08bf0c2053f2bf14db62cf791bf70b6ec43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Heiwa Nakajima Foundation National Science Foundation (NSF) FG02-03ER46028; W911NF-17-1-0274; W911NF-12-1-0607; DMR-1121288; 676108 USDOE Office of Science (SC), Basic Energy Sciences (BES) European Union (EU)-European Commission (EC). Marie Skłodowska-Curie actions (MSCA) US Army Research Office (ARO) |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1460099 |
| PMID | 29443962 |
| PQID | 2020725692 |
| PQPubID | 40569 |
| PageCount | 5 |
| ParticipantIDs | osti_scitechconnect_1460099 proquest_miscellaneous_2002484795 proquest_journals_2020725692 gale_infotracmisc_A532684498 gale_infotracgeneralonefile_A532684498 gale_infotraccpiq_532684498 gale_infotracacademiconefile_A532684498 gale_incontextgauss_ISR_A532684498 gale_incontextgauss_ATWCN_A532684498 pubmed_primary_29443962 crossref_primary_10_1038_nature25766 crossref_citationtrail_10_1038_nature25766 springer_journals_10_1038_nature25766 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-29 |
| PublicationDateYYYYMMDD | 2018-03-29 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-29 day: 29 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: United States |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2018 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Kim (CR7) 2014; 511 Vandersypen (CR5) 2017; 3 van der Sar (CR13) 2012; 484 Fowler, Mariantoni, Martinis, Cleland (CR27) 2012; 86 Das Sarma, Wang, Yang (CR38) 2011; 83 Kawakami (CR20) 2016; 113 Kawakami (CR22) 2014; 9 Barends (CR1) 2014; 508 Dial (CR39) 2013; 110 Petta (CR15) 2005; 309 Elzerman (CR23) 2004; 430 Maurand (CR4) 2016; 7 Ithier (CR40) 2005; 72 Deutsch, Jozsa (CR30) 1992; 439 Gulde (CR12) 2003; 421 Srinivasa, Nowack, Shafiei, Vandersypen, Taylor (CR24) 2013; 110 Yang (CR36) 2013; 4 Grover (CR31) 1997; 79 Tyryshkin (CR17) 2012; 11 Debnath (CR2) 2016; 536 Pioro-Ladrière (CR25) 2008; 4 Zajac (CR29) 2018; 359 DiCarlo (CR11) 2009; 460 Meunier, Calado, Vandersypen (CR28) 2011; 83 Loss, DiVincenzo (CR3) 1998; 57 Medford (CR9) 2013; 8 Reed (CR32) 2016; 116 Martins (CR33) 2016; 116 Bluhm (CR14) 2011; 7 Yoneda (CR21) 2018; 13 Veldhorst (CR8) 2015; 526 Zwanenburg (CR16) 2013; 85 Shulman (CR6) 2012; 336 Vandersypen (CR10) 2001; 414 Veldhorst (CR18) 2014; 9 Muhonen (CR19) 2014; 9 Knill (CR26) 2008; 77 James, Kwiat, Munro, White (CR37) 2001; 64 MD Shulman (BFnature25766_CR6) 2012; 336 JR Petta (BFnature25766_CR15) 2005; 309 LMK Vandersypen (BFnature25766_CR5) 2017; 3 FA Zwanenburg (BFnature25766_CR16) 2013; 85 S Debnath (BFnature25766_CR2) 2016; 536 L DiCarlo (BFnature25766_CR11) 2009; 460 LMK Vandersypen (BFnature25766_CR10) 2001; 414 V Srinivasa (BFnature25766_CR24) 2013; 110 D Kim (BFnature25766_CR7) 2014; 511 M Pioro-Ladrière (BFnature25766_CR25) 2008; 4 E Kawakami (BFnature25766_CR22) 2014; 9 DFV James (BFnature25766_CR37) 2001; 64 D Loss (BFnature25766_CR3) 1998; 57 R Maurand (BFnature25766_CR4) 2016; 7 CH Yang (BFnature25766_CR36) 2013; 4 JT Muhonen (BFnature25766_CR19) 2014; 9 S Das Sarma (BFnature25766_CR38) 2011; 83 J Medford (BFnature25766_CR9) 2013; 8 H Bluhm (BFnature25766_CR14) 2011; 7 T Meunier (BFnature25766_CR28) 2011; 83 LK Grover (BFnature25766_CR31) 1997; 79 OE Dial (BFnature25766_CR39) 2013; 110 MD Reed (BFnature25766_CR32) 2016; 116 AM Tyryshkin (BFnature25766_CR17) 2012; 11 AG Fowler (BFnature25766_CR27) 2012; 86 M Veldhorst (BFnature25766_CR8) 2015; 526 E Kawakami (BFnature25766_CR20) 2016; 113 DM Zajac (BFnature25766_CR29) 2018; 359 E Knill (BFnature25766_CR26) 2008; 77 T van der Sar (BFnature25766_CR13) 2012; 484 S Gulde (BFnature25766_CR12) 2003; 421 D Deutsch (BFnature25766_CR30) 1992; 439 R Barends (BFnature25766_CR1) 2014; 508 M Veldhorst (BFnature25766_CR18) 2014; 9 J Yoneda (BFnature25766_CR21) 2018; 13 G Ithier (BFnature25766_CR40) 2005; 72 JM Elzerman (BFnature25766_CR23) 2004; 430 F Martins (BFnature25766_CR33) 2016; 116 |
| References_xml | – volume: 7 start-page: 13575 year: 2016 ident: CR4 article-title: A CMOS silicon spin qubit publication-title: Nat. Commun. doi: 10.1038/ncomms13575 – volume: 511 start-page: 70 year: 2014 end-page: 74 ident: CR7 article-title: Quantum control and process tomography of a semiconductor quantum dot hybrid qubit publication-title: Nature doi: 10.1038/nature13407 – volume: 9 start-page: 981 year: 2014 end-page: 985 ident: CR18 article-title: An addressable quantum dot qubit with fault-tolerant control-fidelity publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.216 – volume: 110 start-page: 146804 year: 2013 ident: CR39 article-title: Charge noise spectroscopy using coherent exchange oscillations in a singlet-triplet qubit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.146804 – volume: 508 start-page: 500 year: 2014 end-page: 503 ident: CR1 article-title: Superconducting quantum circuits at the surface code threshold for fault tolerance publication-title: Nature doi: 10.1038/nature13171 – volume: 11 start-page: 143 year: 2012 end-page: 147 ident: CR17 article-title: Electron spin coherence exceeding seconds in high-purity silicon publication-title: Nat. Mater. doi: 10.1038/nmat3182 – volume: 110 start-page: 196803 year: 2013 ident: CR24 article-title: Simultaneous spin-charge relaxation in double quantum dots publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.196803 – volume: 536 start-page: 63 year: 2016 end-page: 66 ident: CR2 article-title: Demonstration of a small programmable quantum computer with atomic qubits publication-title: Nature doi: 10.1038/nature18648 – volume: 484 start-page: 82 year: 2012 end-page: 86 ident: CR13 article-title: Decoherence-protected quantum gates for a hybrid solid-state spin register publication-title: Nature doi: 10.1038/nature10900 – volume: 85 start-page: 961 year: 2013 end-page: 1019 ident: CR16 article-title: Silicon quantum electronics publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.961 – volume: 9 start-page: 986 year: 2014 end-page: 991 ident: CR19 article-title: Storing quantum information for 30 seconds in a nanoelectronic device publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.211 – volume: 7 start-page: 109 year: 2011 end-page: 113 ident: CR14 article-title: Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs publication-title: Nat. Phys. doi: 10.1038/nphys1856 – volume: 64 start-page: 052312 year: 2001 ident: CR37 article-title: Measurement of qubits publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.052312 – volume: 116 start-page: 110402 year: 2016 ident: CR32 article-title: Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.110402 – volume: 57 start-page: 120 year: 1998 end-page: 126 ident: CR3 article-title: Quantum computation with quantum dots publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.57.120 – volume: 77 start-page: 012307 year: 2008 ident: CR26 article-title: Randomized benchmarking of quantum gates publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.77.012307 – volume: 86 start-page: 032324 year: 2012 ident: CR27 article-title: Surface codes: towards practical large-scale quantum computation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.032324 – volume: 9 start-page: 666 year: 2014 end-page: 670 ident: CR22 article-title: Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.153 – volume: 83 start-page: 235314 year: 2011 ident: CR38 article-title: Hubbard model description of silicon spin qubits: charge stability diagram and tunnel coupling in Si double quantum dots publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.235314 – volume: 336 start-page: 202 year: 2012 end-page: 205 ident: CR6 article-title: Demonstration of entanglement of electrostatically coupled singlet-triplet qubits publication-title: Science doi: 10.1126/science.1217692 – volume: 430 start-page: 431 year: 2004 end-page: 435 ident: CR23 article-title: Single-shot read-out of an individual electron spin in a quantum dot publication-title: Nature doi: 10.1038/nature02693 – volume: 359 start-page: 439 year: 2018 end-page: 442 ident: CR29 article-title: Resonantly driven CNOT gate for electron spins publication-title: Science doi: 10.1126/science.aao5965 – volume: 526 start-page: 410 year: 2015 end-page: 414 ident: CR8 article-title: A two-qubit logic gate in silicon publication-title: Nature doi: 10.1038/nature15263 – volume: 414 start-page: 883 year: 2001 end-page: 887 ident: CR10 article-title: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance publication-title: Nature doi: 10.1038/414883a – volume: 421 start-page: 48 year: 2003 end-page: 50 ident: CR12 article-title: Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer publication-title: Nature doi: 10.1038/nature01336 – volume: 4 start-page: 2069 year: 2013 ident: CR36 article-title: Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting publication-title: Nat. Commun. doi: 10.1038/ncomms3069 – volume: 8 start-page: 654 year: 2013 end-page: 659 ident: CR9 article-title: Self-consistent measurement and state tomography of an exchange-only spin qubit publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.168 – volume: 439 start-page: 553 year: 1992 end-page: 558 ident: CR30 article-title: Rapid solution of problems by quantum computation publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1992.0167 – volume: 72 start-page: 134519 year: 2005 ident: CR40 article-title: Decoherence in a superconducting quantum bit circuit publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.134519 – volume: 13 start-page: 102 year: 2018 end-page: 106 ident: CR21 article-title: A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0014-x – volume: 83 start-page: 121403 year: 2011 ident: CR28 article-title: Efficient controlled-phase gate for single-spin qubits in quantum dots publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.121403 – volume: 4 start-page: 776 year: 2008 end-page: 779 ident: CR25 article-title: Electrically driven single-electron spin resonance in a slanting Zeeman field publication-title: Nat. Phys. doi: 10.1038/nphys1053 – volume: 116 start-page: 116801 year: 2016 ident: CR33 article-title: Noise suppression using symmetric exchange gates in spin qubits publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.116801 – volume: 460 start-page: 240 year: 2009 end-page: 244 ident: CR11 article-title: Demonstration of two-qubit algorithms with a superconducting quantum processor publication-title: Nature doi: 10.1038/nature08121 – volume: 309 start-page: 2180 year: 2005 end-page: 2184 ident: CR15 article-title: Coherent manipulation of coupled electron spins in semiconductor quantum dots publication-title: Science doi: 10.1126/science.1116955 – volume: 79 start-page: 325 year: 1997 end-page: 328 ident: CR31 article-title: Quantum mechanics helps in searching for a needle in a haystack publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.325 – volume: 113 start-page: 11738 year: 2016 end-page: 11743 ident: CR20 article-title: Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1603251113 – volume: 3 start-page: 34 year: 2017 ident: CR5 article-title: Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent publication-title: npj Quantum Inf. doi: 10.1038/s41534-017-0038-y – volume: 7 start-page: 13575 year: 2016 ident: BFnature25766_CR4 publication-title: Nat. Commun. doi: 10.1038/ncomms13575 – volume: 116 start-page: 110402 year: 2016 ident: BFnature25766_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.110402 – volume: 11 start-page: 143 year: 2012 ident: BFnature25766_CR17 publication-title: Nat. Mater. doi: 10.1038/nmat3182 – volume: 83 start-page: 121403 year: 2011 ident: BFnature25766_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.121403 – volume: 113 start-page: 11738 year: 2016 ident: BFnature25766_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1603251113 – volume: 4 start-page: 2069 year: 2013 ident: BFnature25766_CR36 publication-title: Nat. Commun. doi: 10.1038/ncomms3069 – volume: 526 start-page: 410 year: 2015 ident: BFnature25766_CR8 publication-title: Nature doi: 10.1038/nature15263 – volume: 77 start-page: 012307 year: 2008 ident: BFnature25766_CR26 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.77.012307 – volume: 116 start-page: 116801 year: 2016 ident: BFnature25766_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.116801 – volume: 9 start-page: 981 year: 2014 ident: BFnature25766_CR18 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.216 – volume: 4 start-page: 776 year: 2008 ident: BFnature25766_CR25 publication-title: Nat. Phys. doi: 10.1038/nphys1053 – volume: 86 start-page: 032324 year: 2012 ident: BFnature25766_CR27 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.032324 – volume: 57 start-page: 120 year: 1998 ident: BFnature25766_CR3 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.57.120 – volume: 7 start-page: 109 year: 2011 ident: BFnature25766_CR14 publication-title: Nat. Phys. doi: 10.1038/nphys1856 – volume: 110 start-page: 146804 year: 2013 ident: BFnature25766_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.146804 – volume: 72 start-page: 134519 year: 2005 ident: BFnature25766_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.134519 – volume: 536 start-page: 63 year: 2016 ident: BFnature25766_CR2 publication-title: Nature doi: 10.1038/nature18648 – volume: 511 start-page: 70 year: 2014 ident: BFnature25766_CR7 publication-title: Nature doi: 10.1038/nature13407 – volume: 8 start-page: 654 year: 2013 ident: BFnature25766_CR9 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.168 – volume: 414 start-page: 883 year: 2001 ident: BFnature25766_CR10 publication-title: Nature doi: 10.1038/414883a – volume: 9 start-page: 666 year: 2014 ident: BFnature25766_CR22 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.153 – volume: 85 start-page: 961 year: 2013 ident: BFnature25766_CR16 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.961 – volume: 430 start-page: 431 year: 2004 ident: BFnature25766_CR23 publication-title: Nature doi: 10.1038/nature02693 – volume: 13 start-page: 102 year: 2018 ident: BFnature25766_CR21 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0014-x – volume: 64 start-page: 052312 year: 2001 ident: BFnature25766_CR37 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.052312 – volume: 9 start-page: 986 year: 2014 ident: BFnature25766_CR19 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.211 – volume: 83 start-page: 235314 year: 2011 ident: BFnature25766_CR38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.235314 – volume: 460 start-page: 240 year: 2009 ident: BFnature25766_CR11 publication-title: Nature doi: 10.1038/nature08121 – volume: 421 start-page: 48 year: 2003 ident: BFnature25766_CR12 publication-title: Nature doi: 10.1038/nature01336 – volume: 484 start-page: 82 year: 2012 ident: BFnature25766_CR13 publication-title: Nature doi: 10.1038/nature10900 – volume: 439 start-page: 553 year: 1992 ident: BFnature25766_CR30 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1992.0167 – volume: 359 start-page: 439 year: 2018 ident: BFnature25766_CR29 publication-title: Science doi: 10.1126/science.aao5965 – volume: 110 start-page: 196803 year: 2013 ident: BFnature25766_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.196803 – volume: 508 start-page: 500 year: 2014 ident: BFnature25766_CR1 publication-title: Nature doi: 10.1038/nature13171 – volume: 3 start-page: 34 year: 2017 ident: BFnature25766_CR5 publication-title: npj Quantum Inf. doi: 10.1038/s41534-017-0038-y – volume: 336 start-page: 202 year: 2012 ident: BFnature25766_CR6 publication-title: Science doi: 10.1126/science.1217692 – volume: 79 start-page: 325 year: 1997 ident: BFnature25766_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.325 – volume: 309 start-page: 2180 year: 2005 ident: BFnature25766_CR15 publication-title: Science doi: 10.1126/science.1116955 |
| SSID | ssj0005174 |
| Score | 2.7059479 |
| Snippet | A two-qubit quantum processor in a silicon device is demonstrated, which can perform the Deutsch–Josza algorithm and the Grover search algorithm.
Taken for a... Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention... |
| SourceID | osti proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 633 |
| SubjectTerms | 639/766/119/1000/1017 639/766/483/2802 639/766/483/481 639/925/927/481 Algorithms Computers Crosstalk Fault tolerance Humanities and Social Sciences letter Magnetic fields MATHEMATICS AND COMPUTING Methods Microprocessors multidisciplinary NANOSCIENCE AND NANOTECHNOLOGY Noise Quantum computers Quantum computing Quantum dots Quantum entanglement quantum information Quantum theory qubits Qubits (quantum computing) Scaling Science Search algorithms Silicon Silicon devices |
| Title | A programmable two-qubit quantum processor in silicon |
| URI | https://link.springer.com/article/10.1038/nature25766 https://www.ncbi.nlm.nih.gov/pubmed/29443962 https://www.proquest.com/docview/2020725692 https://www.proquest.com/docview/2002484795 https://www.osti.gov/servlets/purl/1460099 |
| Volume | 555 |
| WOSCitedRecordID | wos000428617600044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature (UW-Madison Shared) customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYBxIvwMZX2agCGl-TAvm2_YS6ahNoaqm6AdVeotiJp0hb0jYJ_PvcJW67QOGFl1MiX5zEd2df4rvfEXLgsygBTzQwI4f5pmdTOOJcmR7oB-hQErmRqotN0NGITad8rH-4FTqscjkn1hN1nEv8R44f6RaF9Zk7H2dzE6tG4e6qLqGxRbbBUWZomENnuA7x-A2FWefnWS770MBmorcdtFYkPS93cjCwTU7nHxum9Tp0cv9_3-ABuac9UKPfqMwOuZVku-ROHQkqi12yo629MN5qSOp3D4nfN3Qg1zWmWhnlz9ycVyItjXkFoqmujVmTcJAvjDQzivQKFCx7RL6eHJ8PPpm64IIpAxaUplJWbImEs8B1o9ilgtrCsXwWc7B8aTGhLAnnrnKEsr1YBI5UlNtCUUsEifTcx6ST5VnylBiBDUpg2bGtaOSpOBGebyeCRbYjQP406pLD5aCHUqORY1GMq7DeFXdZeENCXXKwYp41IBx_YUPphQhrkWHczGVUFUXYP_8-GIV930VgG4-zLnm5ie3z2aTF9EYzqRyeS0Y6WwHeDgGzWpx7LU45S-fhjdbXrdbLRnKbutlvMYKVy_ZdUCVD8IsQ3FdiFJQs8cMNfXy4eKlyoZ6DinCtb13yYtWM_WJcXZbkFfIgpp1Hud8lTxoNX42wwz3wVgO4-tVS5dedbxj-Z_9-iD1yF5zNOp_T4fukUy6q5Dm5LX-UabHokS06-YZ0SmvKgLKB3SPbR8ej8QTOTo_eAx1ap73ayGv6paZjpLShZ0DH_sUvA_hUqg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGAcELsPFVNiCgjS8pInG-7AeEqsG0aaOgUcTeQuzYU6UtaZuEiX-Kv5G7xGkXKLztgbdGvriJ_bvzXXz3MyGbAUsUeKKhnVAW2L4bwS_Ote0DPgBDKvESXR82EQ2H7OiIf1ohP9taGEyrbG1ibajTXOI3cgzSnQjWZ07fTqY2nhqFu6vtERoNLPbVjzMI2Yo3e-9gfrco3Xk_2t61zakCtgxZWNpaO6kjFGeh5yWpF4nIFdQJWMoB3tJhQjsSrj1NhXb9VIRU6oi7QkeOCJX0Pej3ErnsYySEqYL04yKl5DfWZ1MP6HjsdUPTid592FkBzTrQy0Ghlzm5f2zQ1uvezs3_bcRukRvGw7YGjUqskhWVrZGrdaarLNbIqrFmhfXCUG6_vE2CgWUS1U6xlMwqz3J7WolxaU0rgF51ak2agop8Zo0zqxifgAJld8iXC3mRu6SX5Zm6T6zQBZA7burqKPF1qoQfuEqwxKUC8B0lffKqneRYGrZ1PPTjJK53_T0Wn0NEn2zOhScNychfxBAtMdJ2ZJgXdJxURREPRl-3h_Eg8JC4x-esT54uE9v7fNgRem6EdA7PJRNTjQFvh4RgHcn1jqScjKfxudZnndbjZuaWdbPREQQrJrv_gioQg9-H5MUSs7xkiYEpxjBwcwvx2NjYIl7gu0-ezJuxX8wbzFReoQxy9vkRD_rkXqNR8xGm3AdvPIS7t1oVW3S-ZPgf_PshHpNru6MPB_HB3nB_nVwHx7quXaV8g_TKWaUekivyezkuZo9qo2GRbxetc78ArcGmiw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6V8BAXoOVlWsCglpdk1e9dHxCKWiKioiiCVlRcFu_aW0Vq7SS2qfhr_Dpm7HVSQ-DWA7dEO97Yu9_MzsQz3xCyHbA4BU80tGKXBZbvUPgURcryAR-AoTT2YlU3m6CjETs-jsZr5GdbC4Npla1NrA11kkv8jxyDdJvC-Ry5u0qnRYz3B--mMws7SOGb1radRgORg_THOYRvxdvhPuz1jusO3h_ufbB0hwFLhiwsLaXsxBZpxELPixOPCuoI1w5YEgHUpc2EsiV895QrlOMnInSlopEjFLVFmErfg3mvkKsUYkxMJxwHX5fpJb8xQOvaQNtjuw1lJ3r6Yec01GdCLwflXuXw_vGytj4DB7f_59W7Q25pz9vsN6qyTtbSbINcrzNgZbFB1rWVK8xXmor79V0S9E2dwHaGJWZmeZ5bs0pMSnNWASSrM3PaFFrkc3OSmcXkFBQru0eOLuVB7pNelmfpQ2KGDoDfdhJH0dhXSSr8wEkFix1XAO5pbJA37YZzqVnYsRnIKa-zATzGL6DDINsL4WlDPvIXMUQORzqPDLf2JK6KgvcPv-yNeD_wkNDHj5hBnq8SG37-1BF6qYVUDvclY12lAU-HRGEdyc2OpJxOZvzC6IvO6Emzc6um2eoIgnWT3V9BdeDgDyKpscTsL1liwIqxDVzcwp1r21vwJdYN8mwxjPNiPmGW5hXKIJefT6PAIA8a7VqssBv54KWHcPVOq27LyVcs_6N_38RTcgNUjX8cjg42yU3wt-uSVjfaIr1yXqWPyTX5vZwU8ye1_TDJt8tWuV8JSa96 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+programmable+two-qubit+quantum+processor+in+silicon&rft.jtitle=Nature+%28London%29&rft.au=Watson%2C+T.+F&rft.au=Philips%2C+S.+G.+J&rft.au=Kawakami%2C+E&rft.au=Ward%2C+D.+R&rft.date=2018-03-29&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=555&rft.issue=7698&rft.spage=633&rft_id=info:doi/10.1038%2Fnature25766&rft.externalDocID=A532684498 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |