TESS3: fast inference of spatial population structure and genome scans for selection

Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stoc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Molecular ecology resources Ročník 16; číslo 2; s. 540 - 548
Hlavní autori: Caye, Kevin, Deist, Timo M., Martins, Helena, Michel, Olivier, François, Olivier
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Blackwell Publishing Ltd 01.03.2016
Wiley Subscription Services, Inc
Wiley/Blackwell
Predmet:
ISSN:1755-098X, 1755-0998, 1755-0998
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high‐throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3, a major update of the spatial ancestry estimation program TESS. By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run‐times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana.
AbstractList Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer-intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high-throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3, a major update of the spatial ancestry estimation program TESS. By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run-times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana.Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer-intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high-throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3, a major update of the spatial ancestry estimation program TESS. By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run-times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana.
Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer-intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high-throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3 , a major update of the spatial ancestry estimation program TESS . By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run-times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana.
Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high‐throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3 , a major update of the spatial ancestry estimation program TESS . By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run‐times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana .
Author Caye, Kevin
Deist, Timo M.
Michel, Olivier
Martins, Helena
François, Olivier
Author_xml – sequence: 1
  givenname: Kevin
  surname: Caye
  fullname: Caye, Kevin
  organization: Centre National de la Recherche Scientifique, Université Grenoble-Alpes, TIMC-IMAG UMR 5525, 38042, Grenoble, France
– sequence: 2
  givenname: Timo M.
  surname: Deist
  fullname: Deist, Timo M.
  organization: Centre National de la Recherche Scientifique, Université Grenoble-Alpes, TIMC-IMAG UMR 5525, 38042, Grenoble, France
– sequence: 3
  givenname: Helena
  surname: Martins
  fullname: Martins, Helena
  organization: Centre National de la Recherche Scientifique, Université Grenoble-Alpes, TIMC-IMAG UMR 5525, 38042, Grenoble, France
– sequence: 4
  givenname: Olivier
  surname: Michel
  fullname: Michel, Olivier
  organization: Centre National de la Recherche Scientifique, Université Grenoble-Alpes, GIPSA-lab UMR 5216, 38042, Grenoble, France
– sequence: 5
  givenname: Olivier
  surname: François
  fullname: François, Olivier
  email: olivier.francois@imag.fr
  organization: Centre National de la Recherche Scientifique, Université Grenoble-Alpes, TIMC-IMAG UMR 5525, 38042, Grenoble, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26417651$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01462247$$DView record in HAL
BookMark eNqNkstv1DAQxi1URB9w5oYscYFDWjuJH-FWVtsWaSkSXURvluOMISVrp3ZC6X-P030cKqFiyfJo9Ptm5PnmEO057wCh15Qc03ROqGAsI1Ulj2leCvoMHewye7tYXu-jwxhvCOGkEuULtJ_zkgrO6AFaLudXV8UHbHUccOssBHAGsLc49npodYd7349dCr3DcQijGcYAWLsG_wDnV4Cj0S5i6wOO0IGZwJfoudVdhFeb9wh9O5svZxfZ4sv5p9npIjNccppRCRUxmpSNtrSmoq5ya1jOZCFs0wArockLMDm1llhSGTC2kmBNzaCpiwaKI_R-Xfen7lQf2pUO98rrVl2cLtSUI7TkeRrMb5rYd2u2D_52hDioVRsNdJ124MeoqCQFkVSWxdOoEJxzmrPqP1BOiZDJmoS-fYTe-DG4NJ-JIumm7ol6s6HGegXN7ldbxxLA1oAJPsYAVpl2eLBnCLrtFCVq2gw1ea-mPVAPm5F0J49029L_Vmw63bUd3D-Fq8_zy60uW-vaOMCfnU6HX4qLQjD1_fJckeuPXwVfVGpW_AV85dXi
CitedBy_id crossref_primary_10_1002_ps_7011
crossref_primary_10_1371_journal_pone_0190859
crossref_primary_10_7717_peerj_14389
crossref_primary_10_1007_s12686_017_0950_7
crossref_primary_10_1038_s41598_023_36002_w
crossref_primary_10_1111_mec_15879
crossref_primary_10_1111_mec_16727
crossref_primary_10_1186_s12864_021_08151_7
crossref_primary_10_1002_ece3_71160
crossref_primary_10_1038_s41467_021_27487_y
crossref_primary_10_1002_ece3_4594
crossref_primary_10_1093_jmammal_gyae151
crossref_primary_10_3389_fevo_2019_00309
crossref_primary_10_3390_ijms24098390
crossref_primary_10_1080_17429145_2024_2349623
crossref_primary_10_1007_s13355_020_00704_8
crossref_primary_10_1111_1755_0998_13884
crossref_primary_10_1111_mec_15633
crossref_primary_10_1007_s10530_021_02523_6
crossref_primary_10_1093_biolinnean_blad122
crossref_primary_10_3389_fpls_2021_706574
crossref_primary_10_1038_s41598_018_29395_6
crossref_primary_10_1111_mec_16040
crossref_primary_10_1007_s10592_021_01360_3
crossref_primary_10_1016_j_meegid_2021_105151
crossref_primary_10_1017_wsc_2020_73
crossref_primary_10_1038_s41437_024_00737_7
crossref_primary_10_1111_evo_14001
crossref_primary_10_1093_aob_mcy161
crossref_primary_10_3390_plants11111426
crossref_primary_10_1007_s11295_022_01578_3
crossref_primary_10_1186_s12862_023_02181_3
crossref_primary_10_1139_cjfas_2024_0369
crossref_primary_10_3389_fgene_2018_00068
crossref_primary_10_3390_plants14182858
crossref_primary_10_1002_ece3_11704
crossref_primary_10_1186_s13059_025_03500_1
crossref_primary_10_3390_d15050668
crossref_primary_10_1098_rsos_170879
crossref_primary_10_1002_ajb2_16216
crossref_primary_10_1007_s10592_025_01691_5
crossref_primary_10_1111_ecog_05600
crossref_primary_10_1111_mec_15622
crossref_primary_10_3389_fgene_2019_00954
crossref_primary_10_1093_molbev_msy004
crossref_primary_10_1111_1755_0998_12724
crossref_primary_10_1093_jmammal_gyz153
crossref_primary_10_1146_annurev_micro_090817_062753
crossref_primary_10_1111_mec_14808
crossref_primary_10_1007_s10592_021_01402_w
crossref_primary_10_1093_molbev_msx273
crossref_primary_10_1093_g3journal_jkab087
crossref_primary_10_1111_gcb_15639
crossref_primary_10_3389_fgene_2023_1206543
crossref_primary_10_3390_f12081125
crossref_primary_10_1093_molbev_msaf212
crossref_primary_10_1002_ece3_5187
crossref_primary_10_1111_eva_12600
crossref_primary_10_1016_j_isci_2023_107742
crossref_primary_10_1038_s41437_019_0249_4
crossref_primary_10_1111_mec_15572
crossref_primary_10_1016_j_ppees_2024_125794
crossref_primary_10_1111_1755_0998_12653
crossref_primary_10_7717_peerj_16302
crossref_primary_10_1093_biolinnean_blaf012
crossref_primary_10_1111_eva_13372
crossref_primary_10_3390_ani13030386
crossref_primary_10_1186_s13071_024_06158_z
crossref_primary_10_1093_aob_mcy221
crossref_primary_10_3389_fpls_2021_692661
crossref_primary_10_1186_s12870_018_1576_y
crossref_primary_10_1016_j_meegid_2018_09_029
crossref_primary_10_1093_sysbio_syab093
crossref_primary_10_1016_j_ympev_2022_107645
crossref_primary_10_1016_j_ympev_2025_108455
crossref_primary_10_1007_s10592_022_01475_1
crossref_primary_10_3389_fpls_2020_588354
crossref_primary_10_1016_j_biocon_2024_110448
crossref_primary_10_1007_s10592_021_01334_5
crossref_primary_10_1016_j_ympev_2021_107230
crossref_primary_10_1007_s10709_019_00052_8
crossref_primary_10_3389_fgene_2022_943445
crossref_primary_10_1002_ece3_7897
crossref_primary_10_1111_jbg_12495
crossref_primary_10_1007_s10592_024_01603_z
crossref_primary_10_1002_ajb2_1248
crossref_primary_10_1016_j_plantsci_2016_09_013
crossref_primary_10_1111_mec_13822
crossref_primary_10_1111_mec_14512
crossref_primary_10_1007_s00122_020_03727_5
crossref_primary_10_1111_2041_210X_13902
crossref_primary_10_3389_fpls_2017_02136
crossref_primary_10_1038_s41559_018_0643_y
crossref_primary_10_1093_ornithapp_duab019
crossref_primary_10_1038_s41437_018_0065_2
crossref_primary_10_1098_rsos_191545
crossref_primary_10_1146_annurev_genet_111523_102651
crossref_primary_10_1007_s11295_022_01567_6
crossref_primary_10_3389_fgene_2023_1103969
crossref_primary_10_1111_nph_19563
crossref_primary_10_1073_pnas_2001018117
crossref_primary_10_3390_d16020074
crossref_primary_10_1111_jzs_12541
crossref_primary_10_1007_s00122_021_03775_5
crossref_primary_10_3390_ijms21186700
crossref_primary_10_1111_mec_15315
crossref_primary_10_1111_nph_16619
crossref_primary_10_1002_ece3_70263
crossref_primary_10_1007_s11295_023_01606_w
crossref_primary_10_1093_g3journal_jkad113
crossref_primary_10_1002_ppp3_10424
crossref_primary_10_1080_14772000_2024_2366215
crossref_primary_10_1007_s10980_023_01725_8
crossref_primary_10_1038_s41437_022_00571_9
crossref_primary_10_1111_nph_19673
crossref_primary_10_1094_PDIS_10_19_2082_RE
crossref_primary_10_1038_s41598_024_67623_4
crossref_primary_10_1007_s00227_023_04307_z
crossref_primary_10_1016_j_foreco_2020_117965
crossref_primary_10_1007_s42991_025_00483_1
crossref_primary_10_1111_jeb_13990
crossref_primary_10_1111_jse_12821
crossref_primary_10_1007_s10592_025_01693_3
crossref_primary_10_1186_s12870_025_06944_6
crossref_primary_10_1007_s10592_024_01626_6
crossref_primary_10_1093_jhered_esad075
crossref_primary_10_1111_evo_13486
crossref_primary_10_1126_science_aav5427
crossref_primary_10_1038_s41598_021_95918_3
crossref_primary_10_1038_nbt_3943
crossref_primary_10_1002_ps_7621
crossref_primary_10_1007_s10530_021_02609_1
crossref_primary_10_1007_s10530_018_1849_2
crossref_primary_10_1002_ps_5683
crossref_primary_10_1007_s10592_023_01554_x
crossref_primary_10_1038_s41467_018_07669_x
crossref_primary_10_1111_mec_14849
crossref_primary_10_1007_s10592_017_0939_5
crossref_primary_10_1111_mec_15132
crossref_primary_10_3389_fpls_2021_618245
crossref_primary_10_1111_1755_0998_13145
crossref_primary_10_1111_mec_15894
crossref_primary_10_3389_fgene_2024_1453005
crossref_primary_10_1086_730262
crossref_primary_10_1111_1755_0998_13943
crossref_primary_10_1002_aqc_2791
crossref_primary_10_1038_s41588_024_01761_3
crossref_primary_10_1007_s10592_022_01454_6
crossref_primary_10_1038_s41437_023_00601_0
crossref_primary_10_1007_s10531_021_02256_x
crossref_primary_10_1007_s10592_024_01616_8
crossref_primary_10_1126_science_aay0988
crossref_primary_10_1371_journal_pone_0259124
crossref_primary_10_1093_biolinnean_bly185
crossref_primary_10_1038_s41562_024_01886_9
crossref_primary_10_1111_1749_4877_12486
crossref_primary_10_1111_eva_12914
crossref_primary_10_1111_een_13149
crossref_primary_10_1371_journal_pone_0193837
crossref_primary_10_1002_ajb2_1726
crossref_primary_10_1111_aab_12567
crossref_primary_10_3389_fmars_2020_617540
crossref_primary_10_1002_ajb2_1449
crossref_primary_10_3390_genes12050783
crossref_primary_10_1002_ece3_2563
crossref_primary_10_3390_languages10030049
crossref_primary_10_1111_ele_13420
crossref_primary_10_1111_jbi_14962
crossref_primary_10_1002_ajb2_16275
crossref_primary_10_1073_pnas_1707492115
crossref_primary_10_1016_j_egg_2022_100132
crossref_primary_10_1016_j_ympev_2023_107915
crossref_primary_10_1007_s11295_023_01619_5
crossref_primary_10_1038_s41598_021_99192_1
crossref_primary_10_1002_ppp3_10532
crossref_primary_10_1038_s41437_023_00635_4
crossref_primary_10_1111_ele_13706
crossref_primary_10_1093_jhered_esae029
Cites_doi 10.1109/TPAMI.2010.231
10.1093/molbev/msp106
10.1515/9781400835621
10.1137/110821172
10.1111/j.1365-294X.2004.02396.x
10.1111/j.1365-294X.2012.05541.x
10.1111/j.0006-341X.1999.00997.x
10.1111/j.1755-0998.2010.02868.x
10.1111/j.0014-3820.2005.tb00977.x
10.1093/bioinformatics/18.2.337
10.1534/genetics.113.160572
10.1111/j.2517-6161.1995.tb02031.x
10.1371/journal.pgen.1000075
10.1046/j.0173-9565.2003.00795.x
10.1534/genetics.109.112391
10.1007/s10592-009-0044-5
10.1186/1471-2105-12-246
10.1038/nrg2611
10.1534/genetics.114.164350
10.1162/089976603321780317
10.1111/j.1365-294X.2010.04717.x
10.1105/tpc.104.028530
10.1534/genetics.106.059923
10.1186/s13323-015-0019-x
10.1038/nature08800
10.1111/2041-210X.12382
10.1111/j.1471-8286.2007.01769.x
ContentType Journal Article
Copyright 2015 John Wiley & Sons Ltd
2015 John Wiley & Sons Ltd.
Copyright © 2016 John Wiley & Sons Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 John Wiley & Sons Ltd
– notice: 2015 John Wiley & Sons Ltd.
– notice: Copyright © 2016 John Wiley & Sons Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
1XC
DOI 10.1111/1755-0998.12471
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts
MEDLINE
AGRICOLA
Entomology Abstracts


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Geography
EISSN 1755-0998
EndPage 548
ExternalDocumentID oai:HAL:hal-01462247v1
3933377711
26417651
10_1111_1755_0998_12471
MEN12471
ark_67375_WNG_0XBR76L9_C
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: 'Ciências sem Fronteiras' scholarship program from the Brazilian government
– fundername: 'Agence Nationale de la Recherche'
  funderid: AFRICROP ANR‐13‐BSV7‐0017
– fundername: LabEx PERSYVAL‐Lab
  funderid: ANR‐11‐LABX‐0025‐01
– fundername: French program Investissement d'avenir
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ESX
WRC
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-c6861-18e90ca04daf1b17b92fc525837fdde54ed23ec21ff0f09cecf98efcb5edb3de3
IEDL.DBID DRFUL
ISICitedReferencesCount 231
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369137000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1755-098X
1755-0998
IngestDate Tue Oct 14 20:51:54 EDT 2025
Fri Jul 11 18:36:58 EDT 2025
Tue Oct 07 09:23:45 EDT 2025
Fri Jul 11 15:15:46 EDT 2025
Sun Jul 13 03:53:51 EDT 2025
Thu Apr 03 07:09:46 EDT 2025
Sat Nov 29 02:35:25 EST 2025
Tue Nov 18 21:42:07 EST 2025
Wed Jan 22 16:20:30 EST 2025
Tue Sep 09 05:32:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords genome scans for selection
geographic variation
inference of population structure
control of false discoveries
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 John Wiley & Sons Ltd.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6861-18e90ca04daf1b17b92fc525837fdde54ed23ec21ff0f09cecf98efcb5edb3de3
Notes ark:/67375/WNG-0XBR76L9-C
French program Investissement d'avenir
istex:C7AD0671F6C857F0BC1F5AC1209F0DCB9BACCD35
'Agence Nationale de la Recherche' - No. AFRICROP ANR-13-BSV7-0017
LabEx PERSYVAL-Lab - No. ANR-11-LABX-0025-01
'Ciências sem Fronteiras' scholarship program from the Brazilian government
ArticleID:MEN12471
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0890-0383
0000-0003-2402-2442
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1755-0998.12471
PMID 26417651
PQID 1760176818
PQPubID 1096410
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_01462247v1
proquest_miscellaneous_1803081843
proquest_miscellaneous_1776661259
proquest_miscellaneous_1761078471
proquest_journals_1760176818
pubmed_primary_26417651
crossref_citationtrail_10_1111_1755_0998_12471
crossref_primary_10_1111_1755_0998_12471
wiley_primary_10_1111_1755_0998_12471_MEN12471
istex_primary_ark_67375_WNG_0XBR76L9_C
PublicationCentury 2000
PublicationDate March 2016
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: March 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology resources
PublicationTitleAlternate Mol Ecol Resour
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Wiley/Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley/Blackwell
References Malécot G (1948) Les Mathématiques de l'Hérédité. Masson, Paris.
Kim J, Park H (2011) Fast nonnegative matrix factorization: an active-set-like method and comparisons. SIAM Journal on Scientific Computing, 33, 3261-3281.
Wright S (1943) Isolation by distance. Genetics, 28, 114.
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289-300.
Frichot E, François O (2015) LEA: an R package for Landscape and Ecological Association studies. Methods in Ecology and Evolution, 6, 925-929.
Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15, 1373-1396.
Wollstein A, Lao O (2015) Detecting individual ancestry in the human genome. Investigative Genetics, 6, 1-12.
Durand E, Jay F, Gaggiotti OE, François O (2009) Spatial inference of admixture proportions and secondary contact zones. Molecular Biology and Evolution, 26, 1963-1973.
Chung FR (1997) Spectral Graph Theory, Vol. 92 of Regional Conference Series in Mathematics. American Mathematical Society, Providence, Rhode Island.
Cai D, He X, Han J, Huang TS (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1548-1560.
Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Molecular Ecology Notes, 7, 747-756.
Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics, 55, 997-1004.
Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The History and Geography of Human Genes. Princeton University Press, Princeton, New Jersey.
François O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Molecular Ecology Resources, 10, 773-784.
François O, Ancelet S, Guillot G (2006) Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics, 174, 805-816.
Alexander DH, Lange K (2011) Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics, 12, 246.
Jay F, Manel S, Alvarez N, et al. (2012) Forecasting changes in population genetic structure of alpine plants in response to global warming. Molecular Ecology, 21, 2354-2368.
Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics, 197, 573-589.
Bazin E, Dawson KJ, Beaumont MA (2010) Likelihood-free inference of population structure and local adaptation in a Bayesian hierarchical model. Genetics, 185, 587-602.
Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561.
Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics, 18, 337-338.
François O, Blum MG, Jakobsson M, Rosenberg NA (2008) Demographic history of European populations of Arabidopsis thaliana. PLoS Genetics, 4, e1000075.
Mochizuki S, Harada A, Inada S, et al. (2005) The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli. The Plant Cell, 17, 537-547.
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
Manel S, Joost S, Epperson BK, et al. (2010) Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Molecular Ecology, 19, 3760-3772.
Atwell S, Huang YS, Vilhjálmsson BJ, et al. (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 465, 627-631.
Weir (1996) Genetic Data Analysis II. Sinauer Associates Inc., Sunderland, Massachusetts.
Epperson BK (2003) Geographical Genetics (MPB-38). Princeton University Press, Princeton, New Jersey.
Frichot E, Mathieu F, Trouillon T, Bouchard G, François O (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics, 196, 973-983.
Segelbacher G, Cushman SA, Epperson BK, et al. (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conservation Genetics, 11, 375-385.
Holsinger KE, Weir BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting FST. Nature Reviews Genetics, 10, 639-650.
2010; 11
2010; 10
2015; 6
2002; 18
2010; 19
1964; 49
1995; 57
2010; 465
2006; 174
1997
2010; 185
2003; 15
2011; 33
1996
1994
2011; 12
2003
2000; 155
2008; 4
2014; 196
2014; 197
2009; 26
2009; 10
1943; 28
1999; 55
2007; 7
2005; 17
1948
2012; 21
Weir (e_1_2_6_30_1) 1996
e_1_2_6_32_1
e_1_2_6_31_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
Benjamini Y (e_1_2_6_6_1) 1995; 57
Malécot G (e_1_2_6_24_1) 1948
e_1_2_6_9_1
Cavalli‐Sforza LL (e_1_2_6_8_1) 1994
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
Chung FR (e_1_2_6_10_1) 1997
e_1_2_6_25_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: François O, Ancelet S, Guillot G (2006) Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics, 174, 805-816.
– reference: Jay F, Manel S, Alvarez N, et al. (2012) Forecasting changes in population genetic structure of alpine plants in response to global warming. Molecular Ecology, 21, 2354-2368.
– reference: Atwell S, Huang YS, Vilhjálmsson BJ, et al. (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 465, 627-631.
– reference: Kim J, Park H (2011) Fast nonnegative matrix factorization: an active-set-like method and comparisons. SIAM Journal on Scientific Computing, 33, 3261-3281.
– reference: Bazin E, Dawson KJ, Beaumont MA (2010) Likelihood-free inference of population structure and local adaptation in a Bayesian hierarchical model. Genetics, 185, 587-602.
– reference: François O, Blum MG, Jakobsson M, Rosenberg NA (2008) Demographic history of European populations of Arabidopsis thaliana. PLoS Genetics, 4, e1000075.
– reference: Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289-300.
– reference: Frichot E, Mathieu F, Trouillon T, Bouchard G, François O (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics, 196, 973-983.
– reference: Wright S (1943) Isolation by distance. Genetics, 28, 114.
– reference: Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
– reference: Wollstein A, Lao O (2015) Detecting individual ancestry in the human genome. Investigative Genetics, 6, 1-12.
– reference: Alexander DH, Lange K (2011) Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics, 12, 246.
– reference: Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Molecular Ecology Notes, 7, 747-756.
– reference: Holsinger KE, Weir BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting FST. Nature Reviews Genetics, 10, 639-650.
– reference: Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics, 18, 337-338.
– reference: Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics, 197, 573-589.
– reference: François O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Molecular Ecology Resources, 10, 773-784.
– reference: Weir (1996) Genetic Data Analysis II. Sinauer Associates Inc., Sunderland, Massachusetts.
– reference: Cai D, He X, Han J, Huang TS (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1548-1560.
– reference: Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The History and Geography of Human Genes. Princeton University Press, Princeton, New Jersey.
– reference: Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561.
– reference: Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics, 55, 997-1004.
– reference: Chung FR (1997) Spectral Graph Theory, Vol. 92 of Regional Conference Series in Mathematics. American Mathematical Society, Providence, Rhode Island.
– reference: Epperson BK (2003) Geographical Genetics (MPB-38). Princeton University Press, Princeton, New Jersey.
– reference: Manel S, Joost S, Epperson BK, et al. (2010) Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Molecular Ecology, 19, 3760-3772.
– reference: Segelbacher G, Cushman SA, Epperson BK, et al. (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conservation Genetics, 11, 375-385.
– reference: Mochizuki S, Harada A, Inada S, et al. (2005) The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli. The Plant Cell, 17, 537-547.
– reference: Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15, 1373-1396.
– reference: Durand E, Jay F, Gaggiotti OE, François O (2009) Spatial inference of admixture proportions and secondary contact zones. Molecular Biology and Evolution, 26, 1963-1973.
– reference: Malécot G (1948) Les Mathématiques de l'Hérédité. Masson, Paris.
– reference: Frichot E, François O (2015) LEA: an R package for Landscape and Ecological Association studies. Methods in Ecology and Evolution, 6, 925-929.
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society
– volume: 21
  start-page: 2354
  year: 2012
  end-page: 2368
  article-title: Forecasting changes in population genetic structure of alpine plants in response to global warming
  publication-title: Molecular Ecology
– volume: 6
  start-page: 1
  year: 2015
  end-page: 12
  article-title: Detecting individual ancestry in the human genome
  publication-title: Investigative Genetics
– volume: 197
  start-page: 573
  year: 2014
  end-page: 589
  article-title: fastSTRUCTURE: variational inference of population structure in large SNP data sets
  publication-title: Genetics
– volume: 15
  start-page: 1373
  year: 2003
  end-page: 1396
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Computation
– volume: 6
  start-page: 925
  year: 2015
  end-page: 929
  article-title: LEA: an R package for Landscape and Ecological Association studies
  publication-title: Methods in Ecology and Evolution
– volume: 7
  start-page: 747
  year: 2007
  end-page: 756
  article-title: Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study
  publication-title: Molecular Ecology Notes
– volume: 196
  start-page: 973
  year: 2014
  end-page: 983
  article-title: Fast and efficient estimation of individual ancestry coefficients
  publication-title: Genetics
– volume: 33
  start-page: 1548
  year: 2011
  end-page: 1560
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2003
– volume: 4
  start-page: e1000075
  year: 2008
  article-title: Demographic history of European populations of
  publication-title: PLoS Genetics
– year: 1948
– year: 1996
– volume: 465
  start-page: 627
  year: 2010
  end-page: 631
  article-title: Genome‐wide association study of 107 phenotypes in inbred lines
  publication-title: Nature
– volume: 185
  start-page: 587
  year: 2010
  end-page: 602
  article-title: Likelihood‐free inference of population structure and local adaptation in a Bayesian hierarchical model
  publication-title: Genetics
– year: 1994
– volume: 49
  start-page: 561
  year: 1964
  article-title: The stepping stone model of population structure and the decrease of genetic correlation with distance
  publication-title: Genetics
– volume: 55
  start-page: 997
  year: 1999
  end-page: 1004
  article-title: Genomic control for association studies
  publication-title: Biometrics
– volume: 19
  start-page: 3760
  year: 2010
  end-page: 3772
  article-title: Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field
  publication-title: Molecular Ecology
– volume: 174
  start-page: 805
  year: 2006
  end-page: 816
  article-title: Bayesian clustering using hidden Markov random fields in spatial population genetics
  publication-title: Genetics
– volume: 18
  start-page: 337
  year: 2002
  end-page: 338
  article-title: Generating samples under a Wright–Fisher neutral model of genetic variation
  publication-title: Bioinformatics
– volume: 12
  start-page: 246
  year: 2011
  article-title: Enhancements to the ADMIXTURE algorithm for individual ancestry estimation
  publication-title: BMC Bioinformatics
– volume: 10
  start-page: 773
  year: 2010
  end-page: 784
  article-title: Spatially explicit Bayesian clustering models in population genetics
  publication-title: Molecular Ecology Resources
– volume: 28
  start-page: 114
  year: 1943
  article-title: Isolation by distance
  publication-title: Genetics
– volume: 155
  start-page: 945
  year: 2000
  end-page: 959
  article-title: Inference of population structure using multilocus genotype data
  publication-title: Genetics
– volume: 11
  start-page: 375
  year: 2010
  end-page: 385
  article-title: Applications of landscape genetics in conservation biology: concepts and challenges
  publication-title: Conservation Genetics
– year: 1997
– volume: 33
  start-page: 3261
  year: 2011
  end-page: 3281
  article-title: Fast nonnegative matrix factorization: an active‐set‐like method and comparisons
  publication-title: SIAM Journal on Scientific Computing
– volume: 17
  start-page: 537
  year: 2005
  end-page: 547
  article-title: The WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli
  publication-title: The Plant Cell
– volume: 26
  start-page: 1963
  year: 2009
  end-page: 1973
  article-title: Spatial inference of admixture proportions and secondary contact zones
  publication-title: Molecular Biology and Evolution
– volume: 10
  start-page: 639
  year: 2009
  end-page: 650
  article-title: Genetics in geographically structured populations: defining, estimating and interpreting
  publication-title: Nature Reviews Genetics
– ident: e_1_2_6_7_1
  doi: 10.1109/TPAMI.2010.231
– ident: e_1_2_6_12_1
  doi: 10.1093/molbev/msp106
– ident: e_1_2_6_13_1
  doi: 10.1515/9781400835621
– volume-title: The History and Geography of Human Genes
  year: 1994
  ident: e_1_2_6_8_1
– ident: e_1_2_6_22_1
  doi: 10.1137/110821172
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1365-294X.2004.02396.x
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1365-294X.2012.05541.x
– ident: e_1_2_6_11_1
  doi: 10.1111/j.0006-341X.1999.00997.x
– ident: e_1_2_6_14_1
  doi: 10.1111/j.1755-0998.2010.02868.x
– ident: e_1_2_6_32_1
  doi: 10.1111/j.0014-3820.2005.tb00977.x
– ident: e_1_2_6_20_1
  doi: 10.1093/bioinformatics/18.2.337
– ident: e_1_2_6_18_1
  doi: 10.1534/genetics.113.160572
– volume: 57
  start-page: 289
  year: 1995
  ident: e_1_2_6_6_1
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_6_16_1
  doi: 10.1371/journal.pgen.1000075
– ident: e_1_2_6_23_1
  doi: 10.1046/j.0173-9565.2003.00795.x
– ident: e_1_2_6_4_1
  doi: 10.1534/genetics.109.112391
– ident: e_1_2_6_29_1
  doi: 10.1007/s10592-009-0044-5
– ident: e_1_2_6_2_1
  doi: 10.1186/1471-2105-12-246
– ident: e_1_2_6_19_1
  doi: 10.1038/nrg2611
– volume-title: Les Mathématiques de l'Hérédité
  year: 1948
  ident: e_1_2_6_24_1
– ident: e_1_2_6_28_1
  doi: 10.1534/genetics.114.164350
– volume-title: Genetic Data Analysis II
  year: 1996
  ident: e_1_2_6_30_1
– ident: e_1_2_6_5_1
  doi: 10.1162/089976603321780317
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1365-294X.2010.04717.x
– ident: e_1_2_6_26_1
  doi: 10.1105/tpc.104.028530
– ident: e_1_2_6_15_1
  doi: 10.1534/genetics.106.059923
– ident: e_1_2_6_31_1
  doi: 10.1186/s13323-015-0019-x
– volume-title: Spectral Graph Theory, Vol. 92 of Regional Conference Series in Mathematics
  year: 1997
  ident: e_1_2_6_10_1
– ident: e_1_2_6_3_1
  doi: 10.1038/nature08800
– ident: e_1_2_6_17_1
  doi: 10.1111/2041-210X.12382
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1471-8286.2007.01769.x
SSID ssj0060974
Score 2.570778
Snippet Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to...
SourceID hal
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 540
SubjectTerms algorithms
ancestry
Arabidopsis
Arabidopsis - classification
Arabidopsis - genetics
Arabidopsis thaliana
Computational Biology
Computational Biology - methods
control of false discoveries
data collection
Europe
gene frequency
Genealogy
Genes
Genetic diversity
Genetic Variation
Genetics
Genetics, Population
Genetics, Population - methods
genome
genome scans for selection
Genome, Plant
Genomes
geographic variation
geographical variation
Geography
high-throughput nucleotide sequencing
inference of population structure
landscapes
Life Sciences
Natural populations
Phylogeography
Phylogeography - methods
Plant species
Population structure
Populations and Evolution
statistical analysis
Statistical methods
Title TESS3: fast inference of spatial population structure and genome scans for selection
URI https://api.istex.fr/ark:/67375/WNG-0XBR76L9-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1755-0998.12471
https://www.ncbi.nlm.nih.gov/pubmed/26417651
https://www.proquest.com/docview/1760176818
https://www.proquest.com/docview/1761078471
https://www.proquest.com/docview/1776661259
https://www.proquest.com/docview/1803081843
https://hal.science/hal-01462247
Volume 16
WOSCitedRecordID wos000369137000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1755-0998
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060974
  issn: 1755-098X
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9RADLboLkhceD8CpRoQQlxS5Z0ZbqXs0sOyQtUWchtN5iEqIFtt2gr-PfbkIYooCIlblHgyicce24n9GeB5Sa2LM12ESe5UmKGRCOs4LsI6TUwdW2NLX_X-YVEul7yqxPs-m5BqYTp8iPGDG2mG369JwVXd_qTkaPfyEP0bvosmiqrIpwlKbzaB6ZvD-dFi2I6LSHgo5p6cVz2-D6Xz_HKLC6Zp6xMlRk6J199-531edGa9NZrf_A_vcQtu9K4o2-tk5zZcsc0duDbzMNbf78JqhWuTvmJOtafseKgLZGvHWsrCxpEnY_Mv1sHQnm0sU41hBPz61bIWl61l6BWz1nfbQcJ7cDSfrfYPwr4HQ6gLXsRhzK2ItIoyo1xcx2UtEqfzJMe41uHOmGfWJKnVSexc5CKhrXaCW6fr3Jo6NTa9D5Nm3diHwKgq11md20SYzJaqFjjQucI4k-I1HcDuwH6pe4By6pPxRQ6BCrFKEqukZ1UAL8cBJx02x-Wkz3A9RyrC1D7YW0g6R-g5KKLlORK98Ms9kqnNZ8p7K3P5cflWRtXrw7JYCLkfwPYgD7JX-RZnxNgWg7eYB_B0vIzKSn9gVGPXZ54Gw23uH-hyGlQP8jvFH2g4wQxRq54AHnTyOD40erg4TY4zdGL3N9bId7OlP3j0rwMew3V0H4suI28bJihp9glc1eenx-1mB7bKiu_02vgDHxkucw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9RADLZgFwQX3o9AgQEh1EuqvCbJcCtll0Wke6i2sLdRMg9RtWSrTVvBv8eePNQiCkLiFiWeTOKxx3ZifwZ4nVHr4kSlfsRt6SdoJPwqDFO_iiNdhUabzFW9fy6y-TxfLsX5WpgWH2L44Eaa4fZrUnD6IH1Oy9HwcR8dnHwLbRSVkY8TFCY-gvH7vel-0e_HaSAcFnNHni87gB_K5_nlFhds09WvlBk5JmZ__537edGbdeZoevt_vMgduNU5o2y7lZ67cMXU9-D6xAFZ_7gPiwWuTvyW2bI5YQd9ZSBbWdZQHjaOPB7af7EWiPZ0bVhZa0bQr98Ma3DhGoZ-MWtcvx0kfAD708liZ-Z3XRh8leZp6Ie5EYEqg0SXNqzCrBKRVTziGNla3Bt5YnQUGxWF1gY2EMooK3JjVcWNrmJt4ocwqle1eQyM6nKtUdxEQicmKyuBA61NtdUxXlMebPX8l6qDKKdOGUeyD1WIVZJYJR2rPNgcBhy36ByXk77CBR2oCFV7tl1IOkf4OSik2RkSvXHrPZCV60PKfMu4_DL_IIPlu70sLYTc8WCjFwjZKX2DM2J0i-FbmHvwcriM6kr_YMrarE4dDQbcuXugy2lQQcjzFH-gyQloiJr1ePCoFcjhodHHxWk4ztDK3d9YI3cnc3fw5F8HvIAbs8VuIYuP809P4SY6k2mbn7cBI5Q68wyuqbOTg2b9vFPKnyLDMXs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDI9gB4gXvj8KAwJCiJdO_Urb8Da2O4YoFZpucG9RmzhiAnqn6zbBf4-dfmhDDITEW9U6TevYsd3aPzP2PKPWxYlO_UjYyk_QSPh1GKZ-HUemDsFA5qrePxZZWeaLhTxdC9PhQ4wf3Egz3H5NCg4rY09pORo-4aODk2-hjaIy8kkiZIrKOdndnx0Uw36cBtJhMffk-aIH-KF8nl9uccY2XfxMmZETYvb337mfZ71ZZ45m1__Hi9xg13pnlG930nOTXYDmFrs8dUDWP26z-RxXJ37FbdUe8cOhMpAvLW8pDxtHrsb2X7wDoj1eA68awwn69RvwFheu5egX89b120HCO-xgNp3v7Pl9FwZfp3ka-mEOMtBVkJjKhnWY1TKyWkQCI1uLe6NIwEQx6Ci0NrCB1KCtzMHqWoCpYwPxXbbRLBu4zzjV5VrQAiJpEsiqWuJAa1NjTYzXtMe2Bv4r3UOUU6eMr2oIVYhVililHKs89nIcsOrQOc4nfYYLOlIRqvbedqHoHOHnoJBmJ0j0wq33SFatv1DmWybUp_KNChav97O0kGrHY5uDQKhe6VucEaNbDN_C3GNPx8uorvQPpmpgeexoMODO3QOdT4MKQp6n_ANNTkBD1KzHY_c6gRwfGn1cnEbgDJ3c_Y016v20dAcP_nXAE3blw-5MFW_Ldw_ZVfQl0y49b5NtoNDBI3ZJnxwdtuvHvU7-BGIBMPY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TESS3%3A+fast+inference+of+spatial+population+structure+and+genome+scans+for+selection&rft.jtitle=Molecular+ecology+resources&rft.au=Caye%2C+Kevin&rft.au=Deist%2C+Timo+M.&rft.au=Martins%2C+Helena&rft.au=Michel%2C+Olivier&rft.date=2016-03-01&rft.issn=1755-098X&rft.eissn=1755-0998&rft.volume=16&rft.issue=2&rft.spage=540&rft.epage=548&rft_id=info:doi/10.1111%2F1755-0998.12471&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1755_0998_12471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-098X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-098X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-098X&client=summon