TESS3: fast inference of spatial population structure and genome scans for selection
Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stoc...
Uložené v:
| Vydané v: | Molecular ecology resources Ročník 16; číslo 2; s. 540 - 548 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Blackwell Publishing Ltd
01.03.2016
Wiley Subscription Services, Inc Wiley/Blackwell |
| Predmet: | |
| ISSN: | 1755-098X, 1755-0998, 1755-0998 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high‐throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3, a major update of the spatial ancestry estimation program TESS. By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run‐times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana. |
|---|---|
| AbstractList | Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer-intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high-throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3, a major update of the spatial ancestry estimation program TESS. By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run-times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana.Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer-intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high-throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3, a major update of the spatial ancestry estimation program TESS. By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run-times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana. Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer-intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high-throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3 , a major update of the spatial ancestry estimation program TESS . By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run-times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana. Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high‐throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3 , a major update of the spatial ancestry estimation program TESS . By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run‐times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana . |
| Author | Caye, Kevin Deist, Timo M. Michel, Olivier Martins, Helena François, Olivier |
| Author_xml | – sequence: 1 givenname: Kevin surname: Caye fullname: Caye, Kevin organization: Centre National de la Recherche Scientifique, Université Grenoble-Alpes, TIMC-IMAG UMR 5525, 38042, Grenoble, France – sequence: 2 givenname: Timo M. surname: Deist fullname: Deist, Timo M. organization: Centre National de la Recherche Scientifique, Université Grenoble-Alpes, TIMC-IMAG UMR 5525, 38042, Grenoble, France – sequence: 3 givenname: Helena surname: Martins fullname: Martins, Helena organization: Centre National de la Recherche Scientifique, Université Grenoble-Alpes, TIMC-IMAG UMR 5525, 38042, Grenoble, France – sequence: 4 givenname: Olivier surname: Michel fullname: Michel, Olivier organization: Centre National de la Recherche Scientifique, Université Grenoble-Alpes, GIPSA-lab UMR 5216, 38042, Grenoble, France – sequence: 5 givenname: Olivier surname: François fullname: François, Olivier email: olivier.francois@imag.fr organization: Centre National de la Recherche Scientifique, Université Grenoble-Alpes, TIMC-IMAG UMR 5525, 38042, Grenoble, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26417651$$D View this record in MEDLINE/PubMed https://hal.science/hal-01462247$$DView record in HAL |
| BookMark | eNqNkstv1DAQxi1URB9w5oYscYFDWjuJH-FWVtsWaSkSXURvluOMISVrp3ZC6X-P030cKqFiyfJo9Ptm5PnmEO057wCh15Qc03ROqGAsI1Ulj2leCvoMHewye7tYXu-jwxhvCOGkEuULtJ_zkgrO6AFaLudXV8UHbHUccOssBHAGsLc49npodYd7349dCr3DcQijGcYAWLsG_wDnV4Cj0S5i6wOO0IGZwJfoudVdhFeb9wh9O5svZxfZ4sv5p9npIjNccppRCRUxmpSNtrSmoq5ya1jOZCFs0wArockLMDm1llhSGTC2kmBNzaCpiwaKI_R-Xfen7lQf2pUO98rrVl2cLtSUI7TkeRrMb5rYd2u2D_52hDioVRsNdJ124MeoqCQFkVSWxdOoEJxzmrPqP1BOiZDJmoS-fYTe-DG4NJ-JIumm7ol6s6HGegXN7ldbxxLA1oAJPsYAVpl2eLBnCLrtFCVq2gw1ea-mPVAPm5F0J49029L_Vmw63bUd3D-Fq8_zy60uW-vaOMCfnU6HX4qLQjD1_fJckeuPXwVfVGpW_AV85dXi |
| CitedBy_id | crossref_primary_10_1002_ps_7011 crossref_primary_10_1371_journal_pone_0190859 crossref_primary_10_7717_peerj_14389 crossref_primary_10_1007_s12686_017_0950_7 crossref_primary_10_1038_s41598_023_36002_w crossref_primary_10_1111_mec_15879 crossref_primary_10_1111_mec_16727 crossref_primary_10_1186_s12864_021_08151_7 crossref_primary_10_1002_ece3_71160 crossref_primary_10_1038_s41467_021_27487_y crossref_primary_10_1002_ece3_4594 crossref_primary_10_1093_jmammal_gyae151 crossref_primary_10_3389_fevo_2019_00309 crossref_primary_10_3390_ijms24098390 crossref_primary_10_1080_17429145_2024_2349623 crossref_primary_10_1007_s13355_020_00704_8 crossref_primary_10_1111_1755_0998_13884 crossref_primary_10_1111_mec_15633 crossref_primary_10_1007_s10530_021_02523_6 crossref_primary_10_1093_biolinnean_blad122 crossref_primary_10_3389_fpls_2021_706574 crossref_primary_10_1038_s41598_018_29395_6 crossref_primary_10_1111_mec_16040 crossref_primary_10_1007_s10592_021_01360_3 crossref_primary_10_1016_j_meegid_2021_105151 crossref_primary_10_1017_wsc_2020_73 crossref_primary_10_1038_s41437_024_00737_7 crossref_primary_10_1111_evo_14001 crossref_primary_10_1093_aob_mcy161 crossref_primary_10_3390_plants11111426 crossref_primary_10_1007_s11295_022_01578_3 crossref_primary_10_1186_s12862_023_02181_3 crossref_primary_10_1139_cjfas_2024_0369 crossref_primary_10_3389_fgene_2018_00068 crossref_primary_10_3390_plants14182858 crossref_primary_10_1002_ece3_11704 crossref_primary_10_1186_s13059_025_03500_1 crossref_primary_10_3390_d15050668 crossref_primary_10_1098_rsos_170879 crossref_primary_10_1002_ajb2_16216 crossref_primary_10_1007_s10592_025_01691_5 crossref_primary_10_1111_ecog_05600 crossref_primary_10_1111_mec_15622 crossref_primary_10_3389_fgene_2019_00954 crossref_primary_10_1093_molbev_msy004 crossref_primary_10_1111_1755_0998_12724 crossref_primary_10_1093_jmammal_gyz153 crossref_primary_10_1146_annurev_micro_090817_062753 crossref_primary_10_1111_mec_14808 crossref_primary_10_1007_s10592_021_01402_w crossref_primary_10_1093_molbev_msx273 crossref_primary_10_1093_g3journal_jkab087 crossref_primary_10_1111_gcb_15639 crossref_primary_10_3389_fgene_2023_1206543 crossref_primary_10_3390_f12081125 crossref_primary_10_1093_molbev_msaf212 crossref_primary_10_1002_ece3_5187 crossref_primary_10_1111_eva_12600 crossref_primary_10_1016_j_isci_2023_107742 crossref_primary_10_1038_s41437_019_0249_4 crossref_primary_10_1111_mec_15572 crossref_primary_10_1016_j_ppees_2024_125794 crossref_primary_10_1111_1755_0998_12653 crossref_primary_10_7717_peerj_16302 crossref_primary_10_1093_biolinnean_blaf012 crossref_primary_10_1111_eva_13372 crossref_primary_10_3390_ani13030386 crossref_primary_10_1186_s13071_024_06158_z crossref_primary_10_1093_aob_mcy221 crossref_primary_10_3389_fpls_2021_692661 crossref_primary_10_1186_s12870_018_1576_y crossref_primary_10_1016_j_meegid_2018_09_029 crossref_primary_10_1093_sysbio_syab093 crossref_primary_10_1016_j_ympev_2022_107645 crossref_primary_10_1016_j_ympev_2025_108455 crossref_primary_10_1007_s10592_022_01475_1 crossref_primary_10_3389_fpls_2020_588354 crossref_primary_10_1016_j_biocon_2024_110448 crossref_primary_10_1007_s10592_021_01334_5 crossref_primary_10_1016_j_ympev_2021_107230 crossref_primary_10_1007_s10709_019_00052_8 crossref_primary_10_3389_fgene_2022_943445 crossref_primary_10_1002_ece3_7897 crossref_primary_10_1111_jbg_12495 crossref_primary_10_1007_s10592_024_01603_z crossref_primary_10_1002_ajb2_1248 crossref_primary_10_1016_j_plantsci_2016_09_013 crossref_primary_10_1111_mec_13822 crossref_primary_10_1111_mec_14512 crossref_primary_10_1007_s00122_020_03727_5 crossref_primary_10_1111_2041_210X_13902 crossref_primary_10_3389_fpls_2017_02136 crossref_primary_10_1038_s41559_018_0643_y crossref_primary_10_1093_ornithapp_duab019 crossref_primary_10_1038_s41437_018_0065_2 crossref_primary_10_1098_rsos_191545 crossref_primary_10_1146_annurev_genet_111523_102651 crossref_primary_10_1007_s11295_022_01567_6 crossref_primary_10_3389_fgene_2023_1103969 crossref_primary_10_1111_nph_19563 crossref_primary_10_1073_pnas_2001018117 crossref_primary_10_3390_d16020074 crossref_primary_10_1111_jzs_12541 crossref_primary_10_1007_s00122_021_03775_5 crossref_primary_10_3390_ijms21186700 crossref_primary_10_1111_mec_15315 crossref_primary_10_1111_nph_16619 crossref_primary_10_1002_ece3_70263 crossref_primary_10_1007_s11295_023_01606_w crossref_primary_10_1093_g3journal_jkad113 crossref_primary_10_1002_ppp3_10424 crossref_primary_10_1080_14772000_2024_2366215 crossref_primary_10_1007_s10980_023_01725_8 crossref_primary_10_1038_s41437_022_00571_9 crossref_primary_10_1111_nph_19673 crossref_primary_10_1094_PDIS_10_19_2082_RE crossref_primary_10_1038_s41598_024_67623_4 crossref_primary_10_1007_s00227_023_04307_z crossref_primary_10_1016_j_foreco_2020_117965 crossref_primary_10_1007_s42991_025_00483_1 crossref_primary_10_1111_jeb_13990 crossref_primary_10_1111_jse_12821 crossref_primary_10_1007_s10592_025_01693_3 crossref_primary_10_1186_s12870_025_06944_6 crossref_primary_10_1007_s10592_024_01626_6 crossref_primary_10_1093_jhered_esad075 crossref_primary_10_1111_evo_13486 crossref_primary_10_1126_science_aav5427 crossref_primary_10_1038_s41598_021_95918_3 crossref_primary_10_1038_nbt_3943 crossref_primary_10_1002_ps_7621 crossref_primary_10_1007_s10530_021_02609_1 crossref_primary_10_1007_s10530_018_1849_2 crossref_primary_10_1002_ps_5683 crossref_primary_10_1007_s10592_023_01554_x crossref_primary_10_1038_s41467_018_07669_x crossref_primary_10_1111_mec_14849 crossref_primary_10_1007_s10592_017_0939_5 crossref_primary_10_1111_mec_15132 crossref_primary_10_3389_fpls_2021_618245 crossref_primary_10_1111_1755_0998_13145 crossref_primary_10_1111_mec_15894 crossref_primary_10_3389_fgene_2024_1453005 crossref_primary_10_1086_730262 crossref_primary_10_1111_1755_0998_13943 crossref_primary_10_1002_aqc_2791 crossref_primary_10_1038_s41588_024_01761_3 crossref_primary_10_1007_s10592_022_01454_6 crossref_primary_10_1038_s41437_023_00601_0 crossref_primary_10_1007_s10531_021_02256_x crossref_primary_10_1007_s10592_024_01616_8 crossref_primary_10_1126_science_aay0988 crossref_primary_10_1371_journal_pone_0259124 crossref_primary_10_1093_biolinnean_bly185 crossref_primary_10_1038_s41562_024_01886_9 crossref_primary_10_1111_1749_4877_12486 crossref_primary_10_1111_eva_12914 crossref_primary_10_1111_een_13149 crossref_primary_10_1371_journal_pone_0193837 crossref_primary_10_1002_ajb2_1726 crossref_primary_10_1111_aab_12567 crossref_primary_10_3389_fmars_2020_617540 crossref_primary_10_1002_ajb2_1449 crossref_primary_10_3390_genes12050783 crossref_primary_10_1002_ece3_2563 crossref_primary_10_3390_languages10030049 crossref_primary_10_1111_ele_13420 crossref_primary_10_1111_jbi_14962 crossref_primary_10_1002_ajb2_16275 crossref_primary_10_1073_pnas_1707492115 crossref_primary_10_1016_j_egg_2022_100132 crossref_primary_10_1016_j_ympev_2023_107915 crossref_primary_10_1007_s11295_023_01619_5 crossref_primary_10_1038_s41598_021_99192_1 crossref_primary_10_1002_ppp3_10532 crossref_primary_10_1038_s41437_023_00635_4 crossref_primary_10_1111_ele_13706 crossref_primary_10_1093_jhered_esae029 |
| Cites_doi | 10.1109/TPAMI.2010.231 10.1093/molbev/msp106 10.1515/9781400835621 10.1137/110821172 10.1111/j.1365-294X.2004.02396.x 10.1111/j.1365-294X.2012.05541.x 10.1111/j.0006-341X.1999.00997.x 10.1111/j.1755-0998.2010.02868.x 10.1111/j.0014-3820.2005.tb00977.x 10.1093/bioinformatics/18.2.337 10.1534/genetics.113.160572 10.1111/j.2517-6161.1995.tb02031.x 10.1371/journal.pgen.1000075 10.1046/j.0173-9565.2003.00795.x 10.1534/genetics.109.112391 10.1007/s10592-009-0044-5 10.1186/1471-2105-12-246 10.1038/nrg2611 10.1534/genetics.114.164350 10.1162/089976603321780317 10.1111/j.1365-294X.2010.04717.x 10.1105/tpc.104.028530 10.1534/genetics.106.059923 10.1186/s13323-015-0019-x 10.1038/nature08800 10.1111/2041-210X.12382 10.1111/j.1471-8286.2007.01769.x |
| ContentType | Journal Article |
| Copyright | 2015 John Wiley & Sons Ltd 2015 John Wiley & Sons Ltd. Copyright © 2016 John Wiley & Sons Ltd Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2015 John Wiley & Sons Ltd – notice: 2015 John Wiley & Sons Ltd. – notice: Copyright © 2016 John Wiley & Sons Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 1XC |
| DOI | 10.1111/1755-0998.12471 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE AGRICOLA Entomology Abstracts CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology Geography |
| EISSN | 1755-0998 |
| EndPage | 548 |
| ExternalDocumentID | oai:HAL:hal-01462247v1 3933377711 26417651 10_1111_1755_0998_12471 MEN12471 ark_67375_WNG_0XBR76L9_C |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: 'Ciências sem Fronteiras' scholarship program from the Brazilian government – fundername: 'Agence Nationale de la Recherche' funderid: AFRICROP ANR‐13‐BSV7‐0017 – fundername: LabEx PERSYVAL‐Lab funderid: ANR‐11‐LABX‐0025‐01 – fundername: French program Investissement d'avenir |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ESX WRC AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 1XC |
| ID | FETCH-LOGICAL-c6861-18e90ca04daf1b17b92fc525837fdde54ed23ec21ff0f09cecf98efcb5edb3de3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 231 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369137000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1755-098X 1755-0998 |
| IngestDate | Tue Oct 14 20:51:54 EDT 2025 Fri Jul 11 18:36:58 EDT 2025 Tue Oct 07 09:23:45 EDT 2025 Fri Jul 11 15:15:46 EDT 2025 Sun Jul 13 03:53:51 EDT 2025 Thu Apr 03 07:09:46 EDT 2025 Sat Nov 29 02:35:25 EST 2025 Tue Nov 18 21:42:07 EST 2025 Wed Jan 22 16:20:30 EST 2025 Tue Sep 09 05:32:34 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | genome scans for selection geographic variation inference of population structure control of false discoveries |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 John Wiley & Sons Ltd. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6861-18e90ca04daf1b17b92fc525837fdde54ed23ec21ff0f09cecf98efcb5edb3de3 |
| Notes | ark:/67375/WNG-0XBR76L9-C French program Investissement d'avenir istex:C7AD0671F6C857F0BC1F5AC1209F0DCB9BACCD35 'Agence Nationale de la Recherche' - No. AFRICROP ANR-13-BSV7-0017 LabEx PERSYVAL-Lab - No. ANR-11-LABX-0025-01 'Ciências sem Fronteiras' scholarship program from the Brazilian government ArticleID:MEN12471 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0890-0383 0000-0003-2402-2442 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1755-0998.12471 |
| PMID | 26417651 |
| PQID | 1760176818 |
| PQPubID | 1096410 |
| PageCount | 9 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01462247v1 proquest_miscellaneous_1803081843 proquest_miscellaneous_1776661259 proquest_miscellaneous_1761078471 proquest_journals_1760176818 pubmed_primary_26417651 crossref_citationtrail_10_1111_1755_0998_12471 crossref_primary_10_1111_1755_0998_12471 wiley_primary_10_1111_1755_0998_12471_MEN12471 istex_primary_ark_67375_WNG_0XBR76L9_C |
| PublicationCentury | 2000 |
| PublicationDate | March 2016 |
| PublicationDateYYYYMMDD | 2016-03-01 |
| PublicationDate_xml | – month: 03 year: 2016 text: March 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Molecular ecology resources |
| PublicationTitleAlternate | Mol Ecol Resour |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc Wiley/Blackwell |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Wiley/Blackwell |
| References | Malécot G (1948) Les Mathématiques de l'Hérédité. Masson, Paris. Kim J, Park H (2011) Fast nonnegative matrix factorization: an active-set-like method and comparisons. SIAM Journal on Scientific Computing, 33, 3261-3281. Wright S (1943) Isolation by distance. Genetics, 28, 114. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289-300. Frichot E, François O (2015) LEA: an R package for Landscape and Ecological Association studies. Methods in Ecology and Evolution, 6, 925-929. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15, 1373-1396. Wollstein A, Lao O (2015) Detecting individual ancestry in the human genome. Investigative Genetics, 6, 1-12. Durand E, Jay F, Gaggiotti OE, François O (2009) Spatial inference of admixture proportions and secondary contact zones. Molecular Biology and Evolution, 26, 1963-1973. Chung FR (1997) Spectral Graph Theory, Vol. 92 of Regional Conference Series in Mathematics. American Mathematical Society, Providence, Rhode Island. Cai D, He X, Han J, Huang TS (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1548-1560. Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Molecular Ecology Notes, 7, 747-756. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics, 55, 997-1004. Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The History and Geography of Human Genes. Princeton University Press, Princeton, New Jersey. François O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Molecular Ecology Resources, 10, 773-784. François O, Ancelet S, Guillot G (2006) Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics, 174, 805-816. Alexander DH, Lange K (2011) Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics, 12, 246. Jay F, Manel S, Alvarez N, et al. (2012) Forecasting changes in population genetic structure of alpine plants in response to global warming. Molecular Ecology, 21, 2354-2368. Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics, 197, 573-589. Bazin E, Dawson KJ, Beaumont MA (2010) Likelihood-free inference of population structure and local adaptation in a Bayesian hierarchical model. Genetics, 185, 587-602. Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561. Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics, 18, 337-338. François O, Blum MG, Jakobsson M, Rosenberg NA (2008) Demographic history of European populations of Arabidopsis thaliana. PLoS Genetics, 4, e1000075. Mochizuki S, Harada A, Inada S, et al. (2005) The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli. The Plant Cell, 17, 537-547. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959. Manel S, Joost S, Epperson BK, et al. (2010) Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Molecular Ecology, 19, 3760-3772. Atwell S, Huang YS, Vilhjálmsson BJ, et al. (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 465, 627-631. Weir (1996) Genetic Data Analysis II. Sinauer Associates Inc., Sunderland, Massachusetts. Epperson BK (2003) Geographical Genetics (MPB-38). Princeton University Press, Princeton, New Jersey. Frichot E, Mathieu F, Trouillon T, Bouchard G, François O (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics, 196, 973-983. Segelbacher G, Cushman SA, Epperson BK, et al. (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conservation Genetics, 11, 375-385. Holsinger KE, Weir BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting FST. Nature Reviews Genetics, 10, 639-650. 2010; 11 2010; 10 2015; 6 2002; 18 2010; 19 1964; 49 1995; 57 2010; 465 2006; 174 1997 2010; 185 2003; 15 2011; 33 1996 1994 2011; 12 2003 2000; 155 2008; 4 2014; 196 2014; 197 2009; 26 2009; 10 1943; 28 1999; 55 2007; 7 2005; 17 1948 2012; 21 Weir (e_1_2_6_30_1) 1996 e_1_2_6_32_1 e_1_2_6_31_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 Benjamini Y (e_1_2_6_6_1) 1995; 57 Malécot G (e_1_2_6_24_1) 1948 e_1_2_6_9_1 Cavalli‐Sforza LL (e_1_2_6_8_1) 1994 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 Chung FR (e_1_2_6_10_1) 1997 e_1_2_6_25_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – reference: François O, Ancelet S, Guillot G (2006) Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics, 174, 805-816. – reference: Jay F, Manel S, Alvarez N, et al. (2012) Forecasting changes in population genetic structure of alpine plants in response to global warming. Molecular Ecology, 21, 2354-2368. – reference: Atwell S, Huang YS, Vilhjálmsson BJ, et al. (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 465, 627-631. – reference: Kim J, Park H (2011) Fast nonnegative matrix factorization: an active-set-like method and comparisons. SIAM Journal on Scientific Computing, 33, 3261-3281. – reference: Bazin E, Dawson KJ, Beaumont MA (2010) Likelihood-free inference of population structure and local adaptation in a Bayesian hierarchical model. Genetics, 185, 587-602. – reference: François O, Blum MG, Jakobsson M, Rosenberg NA (2008) Demographic history of European populations of Arabidopsis thaliana. PLoS Genetics, 4, e1000075. – reference: Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289-300. – reference: Frichot E, Mathieu F, Trouillon T, Bouchard G, François O (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics, 196, 973-983. – reference: Wright S (1943) Isolation by distance. Genetics, 28, 114. – reference: Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959. – reference: Wollstein A, Lao O (2015) Detecting individual ancestry in the human genome. Investigative Genetics, 6, 1-12. – reference: Alexander DH, Lange K (2011) Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics, 12, 246. – reference: Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Molecular Ecology Notes, 7, 747-756. – reference: Holsinger KE, Weir BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting FST. Nature Reviews Genetics, 10, 639-650. – reference: Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics, 18, 337-338. – reference: Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics, 197, 573-589. – reference: François O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Molecular Ecology Resources, 10, 773-784. – reference: Weir (1996) Genetic Data Analysis II. Sinauer Associates Inc., Sunderland, Massachusetts. – reference: Cai D, He X, Han J, Huang TS (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1548-1560. – reference: Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The History and Geography of Human Genes. Princeton University Press, Princeton, New Jersey. – reference: Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561. – reference: Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics, 55, 997-1004. – reference: Chung FR (1997) Spectral Graph Theory, Vol. 92 of Regional Conference Series in Mathematics. American Mathematical Society, Providence, Rhode Island. – reference: Epperson BK (2003) Geographical Genetics (MPB-38). Princeton University Press, Princeton, New Jersey. – reference: Manel S, Joost S, Epperson BK, et al. (2010) Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Molecular Ecology, 19, 3760-3772. – reference: Segelbacher G, Cushman SA, Epperson BK, et al. (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conservation Genetics, 11, 375-385. – reference: Mochizuki S, Harada A, Inada S, et al. (2005) The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli. The Plant Cell, 17, 537-547. – reference: Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15, 1373-1396. – reference: Durand E, Jay F, Gaggiotti OE, François O (2009) Spatial inference of admixture proportions and secondary contact zones. Molecular Biology and Evolution, 26, 1963-1973. – reference: Malécot G (1948) Les Mathématiques de l'Hérédité. Masson, Paris. – reference: Frichot E, François O (2015) LEA: an R package for Landscape and Ecological Association studies. Methods in Ecology and Evolution, 6, 925-929. – volume: 57 start-page: 289 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society – volume: 21 start-page: 2354 year: 2012 end-page: 2368 article-title: Forecasting changes in population genetic structure of alpine plants in response to global warming publication-title: Molecular Ecology – volume: 6 start-page: 1 year: 2015 end-page: 12 article-title: Detecting individual ancestry in the human genome publication-title: Investigative Genetics – volume: 197 start-page: 573 year: 2014 end-page: 589 article-title: fastSTRUCTURE: variational inference of population structure in large SNP data sets publication-title: Genetics – volume: 15 start-page: 1373 year: 2003 end-page: 1396 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural Computation – volume: 6 start-page: 925 year: 2015 end-page: 929 article-title: LEA: an R package for Landscape and Ecological Association studies publication-title: Methods in Ecology and Evolution – volume: 7 start-page: 747 year: 2007 end-page: 756 article-title: Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study publication-title: Molecular Ecology Notes – volume: 196 start-page: 973 year: 2014 end-page: 983 article-title: Fast and efficient estimation of individual ancestry coefficients publication-title: Genetics – volume: 33 start-page: 1548 year: 2011 end-page: 1560 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2003 – volume: 4 start-page: e1000075 year: 2008 article-title: Demographic history of European populations of publication-title: PLoS Genetics – year: 1948 – year: 1996 – volume: 465 start-page: 627 year: 2010 end-page: 631 article-title: Genome‐wide association study of 107 phenotypes in inbred lines publication-title: Nature – volume: 185 start-page: 587 year: 2010 end-page: 602 article-title: Likelihood‐free inference of population structure and local adaptation in a Bayesian hierarchical model publication-title: Genetics – year: 1994 – volume: 49 start-page: 561 year: 1964 article-title: The stepping stone model of population structure and the decrease of genetic correlation with distance publication-title: Genetics – volume: 55 start-page: 997 year: 1999 end-page: 1004 article-title: Genomic control for association studies publication-title: Biometrics – volume: 19 start-page: 3760 year: 2010 end-page: 3772 article-title: Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field publication-title: Molecular Ecology – volume: 174 start-page: 805 year: 2006 end-page: 816 article-title: Bayesian clustering using hidden Markov random fields in spatial population genetics publication-title: Genetics – volume: 18 start-page: 337 year: 2002 end-page: 338 article-title: Generating samples under a Wright–Fisher neutral model of genetic variation publication-title: Bioinformatics – volume: 12 start-page: 246 year: 2011 article-title: Enhancements to the ADMIXTURE algorithm for individual ancestry estimation publication-title: BMC Bioinformatics – volume: 10 start-page: 773 year: 2010 end-page: 784 article-title: Spatially explicit Bayesian clustering models in population genetics publication-title: Molecular Ecology Resources – volume: 28 start-page: 114 year: 1943 article-title: Isolation by distance publication-title: Genetics – volume: 155 start-page: 945 year: 2000 end-page: 959 article-title: Inference of population structure using multilocus genotype data publication-title: Genetics – volume: 11 start-page: 375 year: 2010 end-page: 385 article-title: Applications of landscape genetics in conservation biology: concepts and challenges publication-title: Conservation Genetics – year: 1997 – volume: 33 start-page: 3261 year: 2011 end-page: 3281 article-title: Fast nonnegative matrix factorization: an active‐set‐like method and comparisons publication-title: SIAM Journal on Scientific Computing – volume: 17 start-page: 537 year: 2005 end-page: 547 article-title: The WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli publication-title: The Plant Cell – volume: 26 start-page: 1963 year: 2009 end-page: 1973 article-title: Spatial inference of admixture proportions and secondary contact zones publication-title: Molecular Biology and Evolution – volume: 10 start-page: 639 year: 2009 end-page: 650 article-title: Genetics in geographically structured populations: defining, estimating and interpreting publication-title: Nature Reviews Genetics – ident: e_1_2_6_7_1 doi: 10.1109/TPAMI.2010.231 – ident: e_1_2_6_12_1 doi: 10.1093/molbev/msp106 – ident: e_1_2_6_13_1 doi: 10.1515/9781400835621 – volume-title: The History and Geography of Human Genes year: 1994 ident: e_1_2_6_8_1 – ident: e_1_2_6_22_1 doi: 10.1137/110821172 – ident: e_1_2_6_27_1 doi: 10.1111/j.1365-294X.2004.02396.x – ident: e_1_2_6_21_1 doi: 10.1111/j.1365-294X.2012.05541.x – ident: e_1_2_6_11_1 doi: 10.1111/j.0006-341X.1999.00997.x – ident: e_1_2_6_14_1 doi: 10.1111/j.1755-0998.2010.02868.x – ident: e_1_2_6_32_1 doi: 10.1111/j.0014-3820.2005.tb00977.x – ident: e_1_2_6_20_1 doi: 10.1093/bioinformatics/18.2.337 – ident: e_1_2_6_18_1 doi: 10.1534/genetics.113.160572 – volume: 57 start-page: 289 year: 1995 ident: e_1_2_6_6_1 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_6_16_1 doi: 10.1371/journal.pgen.1000075 – ident: e_1_2_6_23_1 doi: 10.1046/j.0173-9565.2003.00795.x – ident: e_1_2_6_4_1 doi: 10.1534/genetics.109.112391 – ident: e_1_2_6_29_1 doi: 10.1007/s10592-009-0044-5 – ident: e_1_2_6_2_1 doi: 10.1186/1471-2105-12-246 – ident: e_1_2_6_19_1 doi: 10.1038/nrg2611 – volume-title: Les Mathématiques de l'Hérédité year: 1948 ident: e_1_2_6_24_1 – ident: e_1_2_6_28_1 doi: 10.1534/genetics.114.164350 – volume-title: Genetic Data Analysis II year: 1996 ident: e_1_2_6_30_1 – ident: e_1_2_6_5_1 doi: 10.1162/089976603321780317 – ident: e_1_2_6_25_1 doi: 10.1111/j.1365-294X.2010.04717.x – ident: e_1_2_6_26_1 doi: 10.1105/tpc.104.028530 – ident: e_1_2_6_15_1 doi: 10.1534/genetics.106.059923 – ident: e_1_2_6_31_1 doi: 10.1186/s13323-015-0019-x – volume-title: Spectral Graph Theory, Vol. 92 of Regional Conference Series in Mathematics year: 1997 ident: e_1_2_6_10_1 – ident: e_1_2_6_3_1 doi: 10.1038/nature08800 – ident: e_1_2_6_17_1 doi: 10.1111/2041-210X.12382 – ident: e_1_2_6_9_1 doi: 10.1111/j.1471-8286.2007.01769.x |
| SSID | ssj0060974 |
| Score | 2.570778 |
| Snippet | Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to... |
| SourceID | hal proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 540 |
| SubjectTerms | algorithms ancestry Arabidopsis Arabidopsis - classification Arabidopsis - genetics Arabidopsis thaliana Computational Biology Computational Biology - methods control of false discoveries data collection Europe gene frequency Genealogy Genes Genetic diversity Genetic Variation Genetics Genetics, Population Genetics, Population - methods genome genome scans for selection Genome, Plant Genomes geographic variation geographical variation Geography high-throughput nucleotide sequencing inference of population structure landscapes Life Sciences Natural populations Phylogeography Phylogeography - methods Plant species Population structure Populations and Evolution statistical analysis Statistical methods |
| Title | TESS3: fast inference of spatial population structure and genome scans for selection |
| URI | https://api.istex.fr/ark:/67375/WNG-0XBR76L9-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1755-0998.12471 https://www.ncbi.nlm.nih.gov/pubmed/26417651 https://www.proquest.com/docview/1760176818 https://www.proquest.com/docview/1761078471 https://www.proquest.com/docview/1776661259 https://www.proquest.com/docview/1803081843 https://hal.science/hal-01462247 |
| Volume | 16 |
| WOSCitedRecordID | wos000369137000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1755-0998 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060974 issn: 1755-098X databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9RADLboLkhceD8CpRoQQlxS5Z0ZbqXs0sOyQtUWchtN5iEqIFtt2gr-PfbkIYooCIlblHgyicce24n9GeB5Sa2LM12ESe5UmKGRCOs4LsI6TUwdW2NLX_X-YVEul7yqxPs-m5BqYTp8iPGDG2mG369JwVXd_qTkaPfyEP0bvosmiqrIpwlKbzaB6ZvD-dFi2I6LSHgo5p6cVz2-D6Xz_HKLC6Zp6xMlRk6J199-531edGa9NZrf_A_vcQtu9K4o2-tk5zZcsc0duDbzMNbf78JqhWuTvmJOtafseKgLZGvHWsrCxpEnY_Mv1sHQnm0sU41hBPz61bIWl61l6BWz1nfbQcJ7cDSfrfYPwr4HQ6gLXsRhzK2ItIoyo1xcx2UtEqfzJMe41uHOmGfWJKnVSexc5CKhrXaCW6fr3Jo6NTa9D5Nm3diHwKgq11md20SYzJaqFjjQucI4k-I1HcDuwH6pe4By6pPxRQ6BCrFKEqukZ1UAL8cBJx02x-Wkz3A9RyrC1D7YW0g6R-g5KKLlORK98Ms9kqnNZ8p7K3P5cflWRtXrw7JYCLkfwPYgD7JX-RZnxNgWg7eYB_B0vIzKSn9gVGPXZ54Gw23uH-hyGlQP8jvFH2g4wQxRq54AHnTyOD40erg4TY4zdGL3N9bId7OlP3j0rwMew3V0H4suI28bJihp9glc1eenx-1mB7bKiu_02vgDHxkucw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9RADLZgFwQX3o9AgQEh1EuqvCbJcCtll0Wke6i2sLdRMg9RtWSrTVvBv8eePNQiCkLiFiWeTOKxx3ZifwZ4nVHr4kSlfsRt6SdoJPwqDFO_iiNdhUabzFW9fy6y-TxfLsX5WpgWH2L44Eaa4fZrUnD6IH1Oy9HwcR8dnHwLbRSVkY8TFCY-gvH7vel-0e_HaSAcFnNHni87gB_K5_nlFhds09WvlBk5JmZ__537edGbdeZoevt_vMgduNU5o2y7lZ67cMXU9-D6xAFZ_7gPiwWuTvyW2bI5YQd9ZSBbWdZQHjaOPB7af7EWiPZ0bVhZa0bQr98Ma3DhGoZ-MWtcvx0kfAD708liZ-Z3XRh8leZp6Ie5EYEqg0SXNqzCrBKRVTziGNla3Bt5YnQUGxWF1gY2EMooK3JjVcWNrmJt4ocwqle1eQyM6nKtUdxEQicmKyuBA61NtdUxXlMebPX8l6qDKKdOGUeyD1WIVZJYJR2rPNgcBhy36ByXk77CBR2oCFV7tl1IOkf4OSik2RkSvXHrPZCV60PKfMu4_DL_IIPlu70sLYTc8WCjFwjZKX2DM2J0i-FbmHvwcriM6kr_YMrarE4dDQbcuXugy2lQQcjzFH-gyQloiJr1ePCoFcjhodHHxWk4ztDK3d9YI3cnc3fw5F8HvIAbs8VuIYuP809P4SY6k2mbn7cBI5Q68wyuqbOTg2b9vFPKnyLDMXs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDI9gB4gXvj8KAwJCiJdO_Urb8Da2O4YoFZpucG9RmzhiAnqn6zbBf4-dfmhDDITEW9U6TevYsd3aPzP2PKPWxYlO_UjYyk_QSPh1GKZ-HUemDsFA5qrePxZZWeaLhTxdC9PhQ4wf3Egz3H5NCg4rY09pORo-4aODk2-hjaIy8kkiZIrKOdndnx0Uw36cBtJhMffk-aIH-KF8nl9uccY2XfxMmZETYvb337mfZ71ZZ45m1__Hi9xg13pnlG930nOTXYDmFrs8dUDWP26z-RxXJ37FbdUe8cOhMpAvLW8pDxtHrsb2X7wDoj1eA68awwn69RvwFheu5egX89b120HCO-xgNp3v7Pl9FwZfp3ka-mEOMtBVkJjKhnWY1TKyWkQCI1uLe6NIwEQx6Ci0NrCB1KCtzMHqWoCpYwPxXbbRLBu4zzjV5VrQAiJpEsiqWuJAa1NjTYzXtMe2Bv4r3UOUU6eMr2oIVYhVililHKs89nIcsOrQOc4nfYYLOlIRqvbedqHoHOHnoJBmJ0j0wq33SFatv1DmWybUp_KNChav97O0kGrHY5uDQKhe6VucEaNbDN_C3GNPx8uorvQPpmpgeexoMODO3QOdT4MKQp6n_ANNTkBD1KzHY_c6gRwfGn1cnEbgDJ3c_Y016v20dAcP_nXAE3blw-5MFW_Ldw_ZVfQl0y49b5NtoNDBI3ZJnxwdtuvHvU7-BGIBMPY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TESS3%3A+fast+inference+of+spatial+population+structure+and+genome+scans+for+selection&rft.jtitle=Molecular+ecology+resources&rft.au=Caye%2C+Kevin&rft.au=Deist%2C+Timo+M.&rft.au=Martins%2C+Helena&rft.au=Michel%2C+Olivier&rft.date=2016-03-01&rft.issn=1755-098X&rft.eissn=1755-0998&rft.volume=16&rft.issue=2&rft.spage=540&rft.epage=548&rft_id=info:doi/10.1111%2F1755-0998.12471&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1755_0998_12471 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-098X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-098X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-098X&client=summon |