CosinorPy: a python package for cosinor-based rhythmometry
Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages...
Uloženo v:
| Vydáno v: | BMC bioinformatics Ročník 21; číslo 1; s. 1 - 12 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
BioMed Central
29.10.2020
BioMed Central Ltd Springer Nature B.V BMC |
| Témata: | |
| ISSN: | 1471-2105, 1471-2105 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background
Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats.
Results
We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats.
Conclusion
CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from
https://github.com/mmoskon/CosinorPy
. CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1. |
|---|---|
| AbstractList | Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. Results We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. Conclusion CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from Keywords: Cosinor, Rhythmicity analysis, Circadian analysis, Regression, Python Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy. CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1. Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. Results We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. Conclusion CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy . CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1. Abstract Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. Results We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. Conclusion CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy . CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1. Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats.BACKGROUNDEven though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats.We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats.RESULTSWe present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats.CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy . CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1.CONCLUSIONCosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy . CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1. Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. Results We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. Conclusion CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy. CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1. |
| ArticleNumber | 485 |
| Audience | Academic |
| Author | Moškon, Miha |
| Author_xml | – sequence: 1 fullname: Moskon, Miha |
| BookMark | eNp9kktr3DAUhUVJaZJp_0BXhm6ahVPJsmQ5i0IY-hgIpPSxFtd6eDS1ralkN51_X00cmk4IwQsJ6TvnouNzio4GPxiEXhN8Tojg7yIpBKtzXOAcU0FxfvMMnZCyInlBMDv6b3-MTmPcYEwqgdkLdEwpKUhJyQm6WProBh--7C4yyLa7ce2HbAvqJ7Qmsz5kar7PG4hGZ2GdiN73Zgy7l-i5hS6aV3frAv34-OH78nN-df1ptby8yhUX5ZhXpa6Y1YxAIUpe48aoxmrAplBKaKsbKAlYWqm6saSqG1FX3ACkLQNb0YIu0Gr21R42chtcD2EnPTh5e-BDKyGMTnVGKguU1ZW1Cmx6OxaMN1hznQZwMJYnr_ez13ZqeqOVGcYA3YHp4c3g1rL1v2WVbDFlyeDtnUHwvyYTR9m7qEzXwWD8FGVRMl6m_5LSXaA3D9CNn8KQokoUJ4KRuhD3VAvpAW6wPs1Ve1N5yUtMMa0FSdT5I1T6tOmdSrWwLp0fCM4OBIkZzZ-xhSlGufr29ZAtZlYFH2Mw9l8eBMt90-TcNJmaJm-bJm-SSDwQKTfC6Pw-N9c9LaWzNKY5Q2vCfTBPqP4C-lroAg |
| CitedBy_id | crossref_primary_10_1109_JBHI_2024_3471254 crossref_primary_10_3390_antiox12081606 crossref_primary_10_1093_brain_awae065 crossref_primary_10_1111_jsr_13935 crossref_primary_10_1109_JBHI_2024_3509630 crossref_primary_10_3390_pathophysiology31010010 crossref_primary_10_1113_JP286449 crossref_primary_10_1038_s44323_024_00020_2 crossref_primary_10_1111_ggi_70110 crossref_primary_10_1016_j_cmpb_2021_106292 crossref_primary_10_1007_s00521_024_10316_w crossref_primary_10_1016_j_smhl_2022_100344 crossref_primary_10_3168_jds_2021_20691 crossref_primary_10_1111_febs_16095 crossref_primary_10_1016_j_nbscr_2024_100106 crossref_primary_10_1073_pnas_2519251122 crossref_primary_10_3390_microorganisms9040869 crossref_primary_10_1007_s10928_021_09748_x crossref_primary_10_3389_fpls_2024_1481682 crossref_primary_10_1126_sciadv_adv2643 crossref_primary_10_1177_07487304211054408 crossref_primary_10_2147_NSS_S377762 crossref_primary_10_3390_app122211794 crossref_primary_10_1016_j_iot_2024_101475 crossref_primary_10_1111_apha_14005 crossref_primary_10_1016_j_jneumeth_2024_110245 crossref_primary_10_1186_s12014_025_09551_7 crossref_primary_10_1038_s41598_024_67767_3 crossref_primary_10_1038_s41598_024_54490_2 crossref_primary_10_1161_JAHA_123_031627 crossref_primary_10_3390_s23208544 crossref_primary_10_1007_s00420_024_02060_4 crossref_primary_10_1073_pnas_2214636120 crossref_primary_10_3390_clockssleep5030033 crossref_primary_10_1126_scitranslmed_adg8464 crossref_primary_10_2196_51540 crossref_primary_10_3390_ijms26157658 crossref_primary_10_1111_pce_15466 crossref_primary_10_3390_nu14040774 crossref_primary_10_1016_j_ejsobi_2024_103687 crossref_primary_10_1093_sleep_zsaf256 crossref_primary_10_1080_23723556_2025_2561292 crossref_primary_10_3390_biom15071006 crossref_primary_10_3390_nu14112246 crossref_primary_10_1080_07420528_2024_2414045 crossref_primary_10_1038_s42003_024_06769_3 crossref_primary_10_1016_j_jocs_2022_101758 crossref_primary_10_1016_j_smallrumres_2021_106394 crossref_primary_10_1186_s10020_021_00361_9 crossref_primary_10_3390_ijerph20010764 crossref_primary_10_1016_j_compenvurbsys_2022_101805 crossref_primary_10_3758_s13428_025_02671_w crossref_primary_10_1016_j_smhl_2024_100459 crossref_primary_10_1038_s41591_024_03125_0 crossref_primary_10_1016_j_scitotenv_2024_171905 crossref_primary_10_1038_s41559_025_02819_z crossref_primary_10_3390_ijms26136130 |
| Cites_doi | 10.1371/journal.pcbi.1004094 10.1073/pnas.1619320114 10.1073/pnas.1909557116 10.1073/pnas.1408886111 10.1177/0748730417728663 10.1177/0748730410379711 10.1093/bioinformatics/btz834 10.1007/978-1-62703-637-5_19 10.1080/09291010600903692 10.1016/j.jsmc.2015.08.007 10.1093/bioinformatics/btz730 10.3389/fphys.2019.00682 10.1177/0748730418789536 10.1177/0748730418813785 10.1177/0748730414553029 10.15280/jlm.2019.9.1.1 10.1097/ALN.0000000000000596 10.1126/scitranslmed.aat8806 10.1186/1742-4682-11-16 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1186/s12859-020-03830-w |
| DatabaseName | Springer Nature OA/Free Journals CrossRef Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_cfa3597ffcaf4710856b0d6d1af6aef6 PMC7597035 A640303981 10_1186_s12859_020_03830_w |
| GeographicLocations | Slovenia |
| GeographicLocations_xml | – name: Slovenia |
| GrantInformation_xml | – fundername: Javna Agencija za Raziskovalno Dejavnost RS grantid: P2-0359; J1-9176 funderid: http://dx.doi.org/10.13039/501100004329 – fundername: Javna Agencija za Raziskovalno Dejavnost RS grantid: J5-1798 funderid: http://dx.doi.org/10.13039/501100004329 – fundername: ; grantid: P2-0359; J1-9176 – fundername: ; grantid: J5-1798 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c684t-74d75fd51a284690becbfda0e2cc8dfdba41af37c9bf179b8976eaa1795af7323 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 65 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000586166300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:53:39 EDT 2025 Tue Nov 04 01:46:13 EST 2025 Fri Sep 05 14:50:30 EDT 2025 Tue Oct 07 05:21:16 EDT 2025 Tue Nov 11 10:14:06 EST 2025 Tue Nov 04 17:24:45 EST 2025 Thu Nov 13 14:22:35 EST 2025 Tue Nov 18 20:58:03 EST 2025 Sat Nov 29 05:40:08 EST 2025 Sat Sep 06 07:27:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Rhythmicity analysis Regression Circadian analysis Cosinor Python |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c684t-74d75fd51a284690becbfda0e2cc8dfdba41af37c9bf179b8976eaa1795af7323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4600-1730 |
| OpenAccessLink | https://doaj.org/article/cfa3597ffcaf4710856b0d6d1af6aef6 |
| PMID | 33121431 |
| PQID | 2461851928 |
| PQPubID | 44065 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cfa3597ffcaf4710856b0d6d1af6aef6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7597035 proquest_miscellaneous_2456412814 proquest_journals_2461851928 gale_infotracmisc_A640303981 gale_infotracacademiconefile_A640303981 gale_incontextgauss_ISR_A640303981 crossref_primary_10_1186_s12859_020_03830_w crossref_citationtrail_10_1186_s12859_020_03830_w springer_journals_10_1186_s12859_020_03830_w |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-29 |
| PublicationDateYYYYMMDD | 2020-10-29 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationYear | 2020 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | R Zhang (3830_CR2) 2014; 111 ME Hughes (3830_CR20) 2017; 32 R Parsons (3830_CR23) 2020; 36 R Refinetti (3830_CR14) 2007; 38 3830_CR12 TS Andreani (3830_CR3) 2015; 10 C Bingham (3830_CR19) 1982; 9 AL Hutchison (3830_CR8) 2015; 11 PF Thaben (3830_CR10) 2014; 29 MD Ruben (3830_CR13) 2019; 116 G Cornelissen (3830_CR15) 2014; 11 3830_CR21 J Brainard (3830_CR4) 2015; 122 Y Xie (3830_CR5) 2019; 10 RC Anafi (3830_CR11) 2017; 114 A Seifalian (3830_CR6) 2019; 9 3830_CR1 3830_CR16 3830_CR17 3830_CR18 AL Hutchison (3830_CR9) 2018; 33 JM Singer (3830_CR22) 2019; 34 ME Hughes (3830_CR7) 2010; 25 |
| References_xml | – volume: 11 start-page: e1004094 issue: 3 year: 2015 ident: 3830_CR8 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004094 – volume: 114 start-page: 5312 issue: 20 year: 2017 ident: 3830_CR11 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.1619320114 – volume: 116 start-page: 20953 issue: 42 year: 2019 ident: 3830_CR13 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.1909557116 – volume: 111 start-page: 16219 issue: 45 year: 2014 ident: 3830_CR2 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.1408886111 – volume: 32 start-page: 380 issue: 5 year: 2017 ident: 3830_CR20 publication-title: J Biol Rhythms doi: 10.1177/0748730417728663 – volume: 25 start-page: 372 issue: 5 year: 2010 ident: 3830_CR7 publication-title: J Biol Rhythms doi: 10.1177/0748730410379711 – ident: 3830_CR18 doi: 10.1093/bioinformatics/btz834 – ident: 3830_CR1 doi: 10.1007/978-1-62703-637-5_19 – volume: 9 start-page: 397 issue: 4 year: 1982 ident: 3830_CR19 publication-title: Chronobiologia. – volume: 38 start-page: 275 issue: 4 year: 2007 ident: 3830_CR14 publication-title: Biol Rhythm Res doi: 10.1080/09291010600903692 – volume: 10 start-page: 413 issue: 4 year: 2015 ident: 3830_CR3 publication-title: Sleep Med Clin doi: 10.1016/j.jsmc.2015.08.007 – volume: 36 start-page: 1208 issue: 4 year: 2020 ident: 3830_CR23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz730 – volume: 10 start-page: 682 year: 2019 ident: 3830_CR5 publication-title: Frontin Physiol doi: 10.3389/fphys.2019.00682 – ident: 3830_CR17 – volume: 33 start-page: 339 issue: 4 year: 2018 ident: 3830_CR9 publication-title: J Biol Rhythms doi: 10.1177/0748730418789536 – volume: 34 start-page: 5 issue: 1 year: 2019 ident: 3830_CR22 publication-title: J Biol Rhythms doi: 10.1177/0748730418813785 – ident: 3830_CR16 – ident: 3830_CR21 – volume: 29 start-page: 391 issue: 6 year: 2014 ident: 3830_CR10 publication-title: J Biol Rhythms doi: 10.1177/0748730414553029 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 3830_CR6 publication-title: J Lifestyle Med doi: 10.15280/jlm.2019.9.1.1 – volume: 122 start-page: 1170 issue: 5 year: 2015 ident: 3830_CR4 publication-title: Anesthesiol doi: 10.1097/ALN.0000000000000596 – ident: 3830_CR12 doi: 10.1126/scitranslmed.aat8806 – volume: 11 start-page: 16 issue: 1 year: 2014 ident: 3830_CR15 publication-title: Theoret Biol Med Modell doi: 10.1186/1742-4682-11-16 |
| SSID | ssj0017805 |
| Score | 2.5823925 |
| Snippet | Background
Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical... Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric... Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical... Abstract Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years,... |
| SourceID | doaj pubmedcentral proquest gale crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Analysis and modelling of complex systems Applications software Bioinformatics Biological analysis Biological research Biomedical and Life Sciences Chronobiology Circadian analysis Circadian rhythm Circadian rhythms Computational biology Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer applications Computer programs Cosinor Data analysis Design of experiments Life Sciences Methods Microarrays Python Python (Programming language) Regression Regression analysis Regression models Rhythmicity analysis Rhythms Software Software packages Statistical analysis Time series |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFB60KvjivRitEkXwQUOTTDIz6YvUYlGQsniBvg1zbRdtsia7lv33njNJtsRiX3wLmROSmXPPnPkOIa80B_UrfZmY1DJIUIAXFcuzRFU502mmORXhoPBnfnQkjo-r2fDDrRvKKkebGAy1bQz-I99F3DOIDqpcvFv8SrBrFO6uDi00rpMbiJKQh9K92WYXAfH6x4Mygu12GaK1JZgwpZCYpcn5xBkFzP7LlvlyteRfW6bBEx3e_d853CN3hhg03u-F5j655uoH5FbflXL9kOwdNN28btrZei9W8WKN6AIxpNY_wPTEEOPGph9P0APauD0FirPmzC3b9SPy_fDDt4OPydBiITFMFMuEF5aX3paZAjcFiTJwVHurUpcbI6y3WhWZ8pSbSntQXS0genFKwWWpPKc53SZbdVO7xyRWNqeq1I4q4QqTMq14qgvjC-qA-aKKSDautTQD_ji2wfgpQx4imOz5I4E_MvBHnkfkzeaZRY--cSX1e2ThhhKRs8ONpj2RgyJK4xWFJMp7ozw4Zog4QSYtszBNppxnEXmJAiARG6PG4psTteo6-enrF7nPCjCJtBJZRF4PRL6BORg1nGWAlUA4rQnlzoQSlNdMh0dJkYPx6OSFmETkxWYYn8SCuNo1K6QpWYG7oEVE-EQ-J9OfjtTz0wAgzmEBUlpG5O0oyRcv__fyPrn6W5-S2zmqFvj1vNohW8t25Z6Rm-b3ct61z4Ni_gGsUUCa priority: 102 providerName: ProQuest – databaseName: SpringerLink Contemporary (1997 - Present) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFD_oVPDF-YnVTaoIPmhZ27RJurdtOBRkjE1lbyGf20XXjvZex_3vPUnbK91U0LfSnNDmfB9O8gvAa8XQ_EpXJjo1FAsUlEVF8yyRVU5VmilGeDgo_IkdHPCTk-pwOBTWjbvdx5Zk8NTBrDnd6jKPtZb4cifFsipNLm_CLQx33F_YcHT8ddU78Cj94_GY386bhKCA1H_dH1_fI3mlURriz_76__35fbg35JvxTq8gD-CGrR_Cnf4GyuUj2N5rulndtIfL7VjGF0uPJBBjGf0N3UyM-Wys-_HERzsTt2dIcd6c23m7fAxf9t9_3vuQDNcpJJryYp6wwrDSmTKTGJKwKEbpKWdkanOtuXFGySKTjjBdKYdmqjhmKlZKfCylYyQnT2Ctbmr7FGJpciJLZYnkttApVZKlqtCuIBYFzasIspHDQg9Y4_7Ki-8i1Bycip4nAnkiAk_EZQRvV3MueqSNv1LvesGtKD1KdnjRtKdiMDqhnSRYMDmnpcMgjNkl6p-hBpdJpXU0glde7MLjYNR-o82pXHSd-Hh8JHZoge6PVDyL4M1A5Bpcg5bDuQXkhIfOmlBuTCjRUPV0eNQuMTiKTng4P0x6q5xH8HI17Gf6zW-1bRaepqSF73gWEbCJVk6WPx2pZ2cBLJwhA1JSRvBu1M1fH_8ze5_9G_lzuJt79caYnlcbsDZvF3YTbusf81nXvgjm-RNkhTdt priority: 102 providerName: Springer Nature |
| Title | CosinorPy: a python package for cosinor-based rhythmometry |
| URI | https://link.springer.com/article/10.1186/s12859-020-03830-w https://www.proquest.com/docview/2461851928 https://www.proquest.com/docview/2456412814 https://pubmed.ncbi.nlm.nih.gov/PMC7597035 https://doaj.org/article/cfa3597ffcaf4710856b0d6d1af6aef6 |
| Volume | 21 |
| WOSCitedRecordID | wos000586166300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral Open Access customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BAIkXxKfIGFVASDxAtCRObGdv27SJCaiiDlDhxXIcm01syZS0TP3vOTtJIUzACy9W0ru0zX347uTzzwAvCobul5o0UGFJsUBBXWQ0jgKZxbQIo4IR7jYKv2PTKZ_Ps_yXo75sT1gHD9wJblsZSTDpNUZJgxMpZgj4HSUtI2mo1MaBbYcsG4qpfv3AIvUPW2Q43W4ji9MW2FIpxJIsDC5HYcih9V-dk6_2Sf62WOpi0OFduNMnj_5u96fvwTVd3Ydb3XGSqwews19j5V83-WrHl_7FysIC-FgTf8M5w8fk1FcdPbChq_SbE-Q4r8_1olk9hI-HBx_23wT92QiBojxZBCwpWWrKNJIYX7DCRVUUppShjpXipSkLmaCECFNZYdDnCo5ph5YSL1NpGInJI9io6ko_Bl-WMZFpoYnkOlEhLSQLi0SZhGjUGs88iAZRCdUDh9vzK86EKyA4FZ14BYpXOPGKSw9erZ-56GAz_sq9ZzWw5rSQ1-4DNATRG4L4lyF48NzqT1hQi8p2zXyVy7YVR8czsUsTnMtIxiMPXvZMpsZ3ULLfhICSsDhYI86tESd6nRqTBzMRvde3wmLzYQabxdyDZ2uyfdJ2slW6XlqelCZ2-TLxgI3Ma_T6Y0p1euKQvxkKICSpB68HQ_z5438W7-b_EO8TuB1b_8GwHWdbsLFolvop3FTfF6dtM4HrbM7cyCdwY-9gms8mziNxfMuCiW2pzXHM0y9Iz4_e55_xbnb86QfT-D0c |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamAYIX7ojAgIBAPEC0XG1nEkJjMK1qqSbYpL0Zx5etgiUlaan6p_iNnJNLpzCxtz3wVtUnamx_5_M5tf0dQl5mDNwvsYmnfE0hQYG5SGkYeDINaeYHGYt4fVF4xMZjfnSU7q-R391dGDxW2XFiTdS6UPgf-SbqnkF0kIb8_fSnh1WjcHe1K6HRwGJolgtI2ap3g48wv6_CcPfTwc6e11YV8BTl8cxjsWaJ1UkggZkhN4ROZFZL34RKcW11JuNA2oipNLOA1ozDgm2khI-JtCxCoQOg_CtxxBn61ZB5q10LrA_QXczhdLMKUB3OwwTNh0TQ9xa9xa-uEXB-JTh_OvOvLdp65du99b-N2W1ys42x3e3GKe6QNZPfJdeaqpvLe2Rrp6gmeVHuL7dc6U6XqJ7gTqX6DtTqQgzvqqbdwxVeu-UJWJwWp2ZWLu-Tw0t58QdkPS9y85C4UoeRTDITSW5i5dNMMj-LlY0jA-DmqUOCbm6FavXVsczHD1HnWZyKBg8C8CBqPIiFQ96snpk26iIXWn9AyKwsURm8_qIoj0VLNEJZGUGSaK2SFgIPiKjB5zTV0E0qjaUOeYGAE6j9kePhomM5ryox-PpFbNMYKD9KeeCQ162RLaAPSrZ3NWAkUC6sZ7nRswRyUv3mDpmiJcdKnMHSIc9XzfgkHvjLTTFHm4TGuMsbO4T1_KHX_X5LPjmpBdIZDIAfJQ5523nO2Y__e3gfXfyuz8j1vYPPIzEajIePyY0Q3RpimDDdIOuzcm6ekKvq12xSlU9rUnDJt8v2qD9eHaCN |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BOcQLNyJQICAkHiBqTsfpWymsqKhWKwqob5bjo121TVZJlmr_PTM5FkIBCfG2isdaefyNx6OZ-QzwMk_R_BKbeMrXDAMU3IuMhYEns5DlfpCnEW8bhffT6ZQfHmazn7r422r3ISXZ9TQQS1PRbC207Uycs606IN41j0IfH0Ms3zu_DFdiKqSneP3g6zqPQIz9Q6vMb-eN3FHL2n_xbL5YL_lL0rT1RZNb_7-K23Czv4e6Ox1w7sAlU9yFa93LlKt7sL1b1vOirGarbVe6ixUxDLgYXp_g8ePiPddV3bhHXlC71TFKnJVnpqlW9-HL5P3n3Q9e_8yCpxiPGy-NdZpYnQQSXRUGy7irudXSN6FSXFudyziQNkpVlls035zjDcZIiT8TadMojB7ARlEW5iG4UoeRTHITSW5i5bNcpn4eKxtHBgHAMweCQdtC9Rzk9BTGqWhjEc5EpxOBOhGtTsS5A6_XcxYdA8dfpd_SJq4liT27_VBWR6I3RqGsjDCQslZJi84ZYYO41EzjMpk0ljnwgiAgiB-joAKcI7msa7F38EnssBiPxSjjgQOveiFb4hqU7PsZUBNEqTWS3BxJogGr8fCANNEfILUgmj-8DGchd-D5ephmUlFcYcolySQspkxo7EA6Quho-eORYn7ckoinqAA_Shx4M-D0x5__Wb2P_k38GVyfvZuI_b3px8dwIySko9sPs03YaKqleQJX1bdmXldPW6v9Dms7QzU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CosinorPy%3A+a+python+package+for+cosinor-based+rhythmometry&rft.jtitle=BMC+bioinformatics&rft.au=Miha+Mo%C5%A1kon&rft.date=2020-10-29&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1186%2Fs12859-020-03830-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cfa3597ffcaf4710856b0d6d1af6aef6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |