MR Imaging in the 21st Century: Technical Innovation over the First Two Decades

Clinical MRI systems have continually improved over the years since their introduction in the 1980s. In MRI technical development, the developments in each MRI system component, including data acquisition, image reconstruction, and hardware systems, have impacted the others. Progress in each compone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic Resonance in Medical Sciences Jg. 21; H. 1; S. 71 - 82
1. Verfasser: Kabasawa, Hiroyuki
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Japan Japanese Society for Magnetic Resonance in Medicine 01.01.2022
Japan Science and Technology Agency
Schlagworte:
ISSN:1347-3182, 1880-2206, 1880-2206
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Clinical MRI systems have continually improved over the years since their introduction in the 1980s. In MRI technical development, the developments in each MRI system component, including data acquisition, image reconstruction, and hardware systems, have impacted the others. Progress in each component has induced new technology development opportunities in other components. New technologies outside of the MRI field, for example, computer science, data processing, and semiconductors, have been immediately incorporated into MRI development, which resulted in innovative applications. With high performance computing and MR technology innovations, MRI can now provide large volumes of functional and anatomical image datasets, which are important tools in various research fields. MRI systems are now combined with other modalities, such as positron emission tomography (PET) or therapeutic devices. These hybrid systems provide additional capabilities.In this review, MRI advances in the last two decades will be considered. We will discuss the progress of MRI systems, the enabling technology, established applications, current trends, and the future outlook.
AbstractList Clinical MRI systems have continually improved over the years since their introduction in the 1980s. In MRI technical development, the developments in each MRI system component, including data acquisition, image reconstruction, and hardware systems, have impacted the others. Progress in each component has induced new technology development opportunities in other components. New technologies outside of the MRI field, for example, computer science, data processing, and semiconductors, have been immediately incorporated into MRI development, which resulted in innovative applications. With high performance computing and MR technology innovations, MRI can now provide large volumes of functional and anatomical image datasets, which are important tools in various research fields. MRI systems are now combined with other modalities, such as positron emission tomography (PET) or therapeutic devices. These hybrid systems provide additional capabilities.In this review, MRI advances in the last two decades will be considered. We will discuss the progress of MRI systems, the enabling technology, established applications, current trends, and the future outlook.Clinical MRI systems have continually improved over the years since their introduction in the 1980s. In MRI technical development, the developments in each MRI system component, including data acquisition, image reconstruction, and hardware systems, have impacted the others. Progress in each component has induced new technology development opportunities in other components. New technologies outside of the MRI field, for example, computer science, data processing, and semiconductors, have been immediately incorporated into MRI development, which resulted in innovative applications. With high performance computing and MR technology innovations, MRI can now provide large volumes of functional and anatomical image datasets, which are important tools in various research fields. MRI systems are now combined with other modalities, such as positron emission tomography (PET) or therapeutic devices. These hybrid systems provide additional capabilities.In this review, MRI advances in the last two decades will be considered. We will discuss the progress of MRI systems, the enabling technology, established applications, current trends, and the future outlook.
Clinical MRI systems have continually improved over the years since their introduction in the 1980s. In MRI technical development, the developments in each MRI system component, including data acquisition, image reconstruction, and hardware systems, have impacted the others. Progress in each component has induced new technology development opportunities in other components. New technologies outside of the MRI field, for example, computer science, data processing, and semiconductors, have been immediately incorporated into MRI development, which resulted in innovative applications. With high performance computing and MR technology innovations, MRI can now provide large volumes of functional and anatomical image datasets, which are important tools in various research fields. MRI systems are now combined with other modalities, such as positron emission tomography (PET) or therapeutic devices. These hybrid systems provide additional capabilities. In this review, MRI advances in the last two decades will be considered. We will discuss the progress of MRI systems, the enabling technology, established applications, current trends, and the future outlook.
ArticleNumber rev.2021-0011
Author Kabasawa, Hiroyuki
Author_xml – sequence: 1
  fullname: Kabasawa, Hiroyuki
  organization: Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33867419$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9r3DAQxUVJaJJtvkAPxdBLL97on22ph0LYNs1CSqBszkJWxrtabCmV5C359pWz6dLk0IskmN-beaN3ho6cd4DQe4LnlNfsYghDnAfYzSmmpMSYkDfolAiBS0pxfZTfjDclI4KeoLMYtxgzkctv0Qljom44kafo9sfPYjnotXXrwroibaCgJKZiAS6N4fFzsQKzcdbovlg653c6We8Kv4PwxF7ZkOHVb198BaPvIb5Dx53uI5w_3zN0d_Vttbgub26_LxeXN6WpBU8l4RKElK3knHTCVJOvrm1lRYBy2QppqJGat5wR1tW0wiAwgKgMEQwMBTZDX_Z9H8Z2gHuT7Qbdq4dgBx0elddWvaw4u1Frv1OSSCkbnht8em4Q_K8RYlKDjQb6XjvwY1S0IhVusMwGZujjK3Trx-DyeorWjAvBGsoy9eFfRwcrf_86A3QPmOBjDNAdEILVFKiaAlU5UDUFqqZAs0i8EhmbnkLIW9n-_9LrvXQbk17DYZoOyZoe9pIMk-l4IT0gZqODAsf-AG0IwNs
CitedBy_id crossref_primary_10_32604_cmc_2024_049186
crossref_primary_10_3390_brainsci14121196
crossref_primary_10_7759_cureus_76185
crossref_primary_10_1016_j_jplph_2025_154502
crossref_primary_10_3390_diagnostics15080960
crossref_primary_10_1007_s40272_025_00683_9
crossref_primary_10_1016_j_heliyon_2024_e26674
crossref_primary_10_7759_cureus_67432
crossref_primary_10_7759_cureus_67553
crossref_primary_10_3390_brainsci13060912
crossref_primary_10_1002_EXP_20230063
crossref_primary_10_7759_cureus_67591
crossref_primary_10_3390_s25134021
crossref_primary_10_1007_s11547_023_01638_1
crossref_primary_10_1080_20415990_2024_2405456
crossref_primary_10_1177_15357597251328822
crossref_primary_10_1007_s10334_023_01115_w
crossref_primary_10_1016_j_ijrefrig_2025_06_037
crossref_primary_10_3390_s25061838
crossref_primary_10_1021_acschemneuro_5c00008
crossref_primary_10_3390_cancers16081478
crossref_primary_10_3390_pharmaceutics15071840
crossref_primary_10_1088_1742_6596_2877_1_012113
crossref_primary_10_1007_s00330_024_11105_8
crossref_primary_10_1002_jmrs_807
crossref_primary_10_1016_j_asmr_2024_101065
crossref_primary_10_1080_09553002_2025_2531903
crossref_primary_10_3390_diagnostics14151647
crossref_primary_10_3390_nano15070542
crossref_primary_10_1016_j_mric_2025_03_001
crossref_primary_10_1097_RLI_0000000000000962
crossref_primary_10_1016_j_yfrne_2024_101174
Cites_doi 10.2463/mrms.4.95
10.3174/ajnr.A5926
10.1007/s11604-007-0169-8
10.2463/mrms.tn.2016-0049
10.1002/jmri.23515
10.1002/jmri.20842
10.1007/s00330-020-06848-z
10.1016/j.mri.2014.08.038
10.1088/1361-6560/aac763
10.2463/mrms.rev.2019-0096
10.2463/mrms.mp.2018-0077
10.2463/mrms.8.149
10.2463/mrms.mp.2019-0137
10.2463/mrms.tn.2019-0172
10.2463/mrms.tn.2017-0103
10.1016/S0899-7071(03)00151-7
10.2463/mrms.11.243
10.2463/mrms.4.83
10.1002/mrm.25213
10.2463/mrms.2014-0004
10.1002/mrm.27134
10.1002/mrm.1910160203
10.2463/mrms.mp-2019-0122
10.1002/mp.14199
10.3174/ajnr.A4199
10.2463/mrms.bc.2020-0046
10.1016/j.ejrad.2016.07.018
10.2463/mrms.tn.2015-0152
10.1002/jmri.22789
10.1056/NEJMoa1600159
10.1038/srep38366
10.2463/mrms.mp.2019-0018
10.1002/1522-2586(200011)12:5<776::AID-JMRI17>3.0.CO;2-X
10.2463/mrms.3.45
10.2463/mrms.8.165
10.1016/j.ejrad.2018.05.033
10.1002/mrm.10171
10.1097/RLI.0000000000000744
10.1002/jmri.26211
10.2463/mrms.mp.2016-0047
10.2463/mrms.mp.2019-0030
10.2463/mrms.mp.2019-0195
10.2463/mrms.2.133
10.1148/ryai.2019180069
10.2463/mrms.2.37
10.2463/mrms.11.291
10.2463/mrms.3.177
10.1002/jmri.25770
10.2463/mrms.2012-0006
10.1002/hbm.25232
10.2463/mrms.rev.2019-0124
10.2463/mrms.tn.2018-0066
10.1007/s11604-016-0584-9
10.2463/mrms.2013-0008
10.1088/1361-6560/aab691
10.1016/j.mri.2009.02.004
10.2463/mrms.mp.2017-0132
10.2463/mrms.11.129
10.1002/jmri.1880010410
10.2463/mrms.mp.2018-0156
10.1002/jmri.25903
10.1002/mrm.25770
10.2463/mrms.2014-0147
10.1016/j.mri.2015.04.004
10.1097/RLI.0000000000000548
10.1002/mrm.24902
10.2463/mrms.mp.2016-0045
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.2463/mrms.2013-0127
10.2463/mrms.mp.2015-0137
10.2463/mrms.mp.2018-0174
10.2463/mrms.tn.2018-0168
10.1002/mrm.1910380414
10.1097/RLI.0b013e318271869c
10.1007/s11604-018-0787-3
10.2463/mrms.mp.2020-0021
10.2463/mrms.mp.2016-0062
10.2463/mrms.6.29
10.2463/mrms.tn.2016-0069
10.2463/mrms.11.221
10.1002/mrm.21391
10.1002/mrm.22176
10.1002/mrm.23097
10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
ContentType Journal Article
Copyright 2021 by Japanese Society for Magnetic Resonance in Medicine
2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Japanese Society for Magnetic Resonance in Medicine 2021
Copyright_xml – notice: 2021 by Japanese Society for Magnetic Resonance in Medicine
– notice: 2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Japanese Society for Magnetic Resonance in Medicine 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
DOI 10.2463/mrms.rev.2021-0011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Nursing & Allied Health Premium
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate H. Kabasawa
EISSN 1880-2206
EndPage 82
ExternalDocumentID PMC9199974
33867419
10_2463_mrms_rev_2021_0011
article_mrms_21_1_21_rev_2021_0011_article_char_en
Genre Journal Article
Review
GroupedDBID ---
.55
2WC
3O-
53G
5GY
7.U
ACIWK
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
CS3
DIK
F5P
GROUPED_DOAJ
HYE
JSF
JSH
KQ8
OK1
PGMZT
RJT
RPM
RZJ
TKC
TR2
X7M
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c684t-149e899b9441f8c58188fbb951e249b89c2c9a4b4313f6250e80ee85c183ec2e3
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000800623300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1347-3182
1880-2206
IngestDate Tue Sep 30 16:56:36 EDT 2025
Thu Jul 10 22:59:27 EDT 2025
Tue Oct 07 06:35:55 EDT 2025
Thu Jan 02 22:56:38 EST 2025
Sat Nov 29 03:23:13 EST 2025
Tue Nov 18 22:22:15 EST 2025
Wed Sep 03 06:30:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords magnetic resonance imaging
image acquisition
image reconstruction
magnetic resonance imaging system
magnetic resonance imaging applications
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c684t-149e899b9441f8c58188fbb951e249b89c2c9a4b4313f6250e80ee85c183ec2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink http://dx.doi.org/10.2463/mrms.rev.2021-0011
PMID 33867419
PQID 2634883723
PQPubID 1976395
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9199974
proquest_miscellaneous_2515070931
proquest_journals_2634883723
pubmed_primary_33867419
crossref_primary_10_2463_mrms_rev_2021_0011
crossref_citationtrail_10_2463_mrms_rev_2021_0011
jstage_primary_article_mrms_21_1_21_rev_2021_0011_article_char_en
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Magnetic Resonance in Medical Sciences
PublicationTitleAlternate MRMS
PublicationYear 2022
Publisher Japanese Society for Magnetic Resonance in Medicine
Japan Science and Technology Agency
Publisher_xml – name: Japanese Society for Magnetic Resonance in Medicine
– name: Japan Science and Technology Agency
References 82. Xue H, Inati S, Sørensen TS, Hansen MS, et al. Distributed MRI reconstruction using Gadgetron-based cloud computing. Magn Reson Med 2015; 73:1015–1025.
59. Goto T, Kabasawa H. Robust automated bolus tracker positioning for MRI liver scans. Magn Reson Imaging 2015; 33:63–71.
68. Hori M, Fukunaga I, Masutani Y, et al. Visualizing non-Gaussian diffusion: clinical application of q-space imaging and diffusional kurtosis imaging of the brain and spine. Magn Reson Med Sci 2012; 11:221–233.
32. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58:1182–1195.
39. Glover GH. Phase-offset multiplanar (POMP) volume imaging: a new technique. J Magn Reson Imaging 1991; 1:457–461.
70. Kabasawa H, Masutani Y, Aoki S, et al. 3T PROPELLER diffusion tensor fiber tractography: a feasibility study for cranial nerve fiber tracking. Radiat Med 2007; 25:462–466.
45. Ichikawa S, Motosugi U, Kromrey ML, et al. Utility of stack-of-stars acquisition for hepatobiliary phase imaging without breath-holding. Magn Reson Med Sci 2020; 19:99–107.
10. Harada T, Kudo K, Uwano I, et al. Breath-holding during the calibration scan improves the reproducibility of parallel transmission at 7T for human brain. Magn Reson Med Sci 2017; 16:23–31.
80. Fujita S, Buonincontri G, Cencini M, et al. Repeatability and reproducibility of human brain morphometry using three-dimensional magnetic resonance fingerprinting. Hum Brain Mapp 2021; 42:275–285.
8. Watanabe H. Investigation of the asymmetric distributions of RF transmission and reception fields at high static field. Magn Reson Med Sci 2012; 11:129–135.
66. Iima M. Perfusion-driven Intravoxel Incoherent Motion (IVIM) MRI in oncology: applications, challenges, and future trends. Magn Reson Med Sci 2021; 20:125–138.
46. Nakamura Y, Higaki T, Nishihara T, et al. Pseudo-random trajectory scanning suppresses motion artifacts on gadoxetic acid-enhanced hepatobiliary-phase magnetic resonance images. Magn Reson Med Sci 2020; 19:21–28.
81. Fujita S, Hagiwara A, Takei N, et al. Accelerated isotropic multiparametric imaging by high spatial resolution 3D-QALAS with compressed sensing: a phantom, volunteer, and patient study. Invest Radiol 2021; 56:292–300.
73. Kamimura K, Nakajo M, Yoneyama T, et al. Amide proton transfer imaging of tumors: theory, clinical applications, pitfalls, and future directions. Jpn J Radiol 2019; 37:109–116.
78. Kan H, Arai N, Takizawa M, et al. Improvement of signal inhomogeneity induced by radio-frequency transmit-related phase error for single-step quantitative susceptibility mapping reconstruction. Magn Reson Med Sci 2019; 18:276–285.
47. White N, Roddey C, Shankaranarayanan A, et al. PROMO: real-time prospective motion correction in MRI using image-based tracking. Magn Reson Med 2010; 63:91–105.
26. Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47:1202–1210.
83. Chelu RG, Wanambiro KW, Hsiao A, et al. Cloud-processed 4D CMR flow imaging for pulmonary flow quantification. Eur J Radiol 2016; 85:1849–1856.
36. Takeshima H, Saitoh K, Nitta S, et al. Estimation of spatiotemporal sensitivity using band-limited signals with no additional acquisitions for k-t parallel imaging. Magn Reson Med Sci 2019; 18:19–28.
35. Yoon JK, Kim MJ, Lee S. Compressed sensing and parallel imaging for double hepatic arterial phase acquisition in gadoxetate-enhanced dynamic liver magnetic resonance imaging. Invest Radiol 2019; 54:374–382.
21. Ichikawa S, Motosugi U, Omori M, et al. MR-guided focused ultrasound for uterine fibroids: a preliminary study of relationship between the treatment outcomes and factors of MR images including elastography. Magn Reson Med Sci 2019; 18:82–87.
53. Kiryu S, Sugano Y, Ohta T, et al. Deep learning-based adaptive noise reduction for improving image quality of 1.5T MR images. Proceedings of the 28th Annual Meeting of ISMRM, On-line, 2020; 3624.
51. Kidoh M, Shinoda K, Kitajima M, et al. Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers. Magn Reson Med Sci 2020; 19:195–206.
49. Kyme AZ, Aksoy M, Henry DL, et al. Marker-free optical stereo motion tracking for in-bore MRI and PET-MRI application. Med Phys 2020; 47:3321–3331.
56. Blansit K, Retson T, Masutani E, et al. Deep learning-based prescription of cardiac MRI planes. Radiol Artif Intell 2019; 1:e180069.
69. Maekawa T, Kamiya K, Murata K, et al. Time-dependent diffusion in transient splenial lesion: comparison between oscillating-gradient spin-echo measurements and Monte-Carlo simulation. Magn Reson Med Sci 2021; 20:227–230.
30. Kimura T, Kusahara H. Real-based Polarity-preserving Asymmetric Fourier Imaging (RepAFI). Magn Reson Med Sci 2017; 16:159–168.
61. Miyazaki M, Akahane M. Non-contrast enhanced MR angiography: established techniques. J Magn Reson Imaging 2012; 35:1–19.
74. Kanazawa Y, Fushimi Y, Sakashita N, et al. B1 power optimization for chemical exchange saturation transfer imaging: a phantom study using egg white for amide proton transfer imaging applications in the human brain. Magn Reson Med Sci 2018; 17:86–94.
24. Pruessmann KP, Weiger M, Scheidegger MB, et al. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42:952–962.
54. van Beek EJR, Kuhl C, Anzai Y, et al. Value of MRI in medicine: more than just another test?. J Magn Reson Imaging 2019; 49:e14-e25.
75. Ichikawa S, Motosugi U, Ichikawa T, et al. Magnetic resonance elastography for staging liver fibrosis in chronic hepatitis C. Magn Reson Med Sci 2012; 11:291–297.
71. Mori N, Mugikura S, Miyashita M, et al. Turbo spin-echo diffusion-weighted imaging compared with single-shot echo-planar diffusion-weighted imaging: image quality and diagnostic performance when differentiating between ductal carcinoma in situ and invasive ductal carcinoma. Magn Reson Med Sci 2021; 1:60–68.
65. Irie R, Suzuki M, Yamamoto M, et al. Assessing blood flow in an intracranial stent: a feasibility study of MR angiography using a silent scan after stent-assisted coil embolization for anterior circulation aneurysms. AJNR Am J Neuroradiol 2015; 36:967–970.
60. Miyazaki M, Sugiura S, Tateishi F, et al. Non-contrast-enhanced MR angiography using 3D ECG-synchronized half-Fourier fast spin echo. J Magn Reson Imaging 2000; 12:776–783.
86. Matsuo-Hagiyama C, Watanabe Y, Tanaka H, et al. Comparison of silent and conventional MR imaging for the evaluation of myelination in children. Magn Reson Med Sci 2017; 16:209–216.
63. Shibukawa S, Konta N, Niwa T, et al. Non-enhanced and Non-gated MR angiography for robust visualization of peripheral arteries using enhanced Acceleration-selective Arterial Spin Labeling (eAccASL). Magn Reson Med Sci 2021; 20:312–319.
41. Iwadate Y, Brau AC, Vasanawala SS, et al. Enhancement of respiratory navigator-gated three-dimensional spoiled gradient-recalled echo sequence with variable flip angle scheme. Magn Reson Med 2014; 72:172–177.
9. Bianciardi M, Fukunaga M, van Gelderen P, et al. Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study. Magn Reson Imaging 2009; 27:1019–1029.
11. Kameda H, Kudo K, Matsuda T, et al. Improvement of the repeatability of parallel transmission at 7T using interleaved acquisition in the calibration scan. J Magn Reson Imaging 2018; 48:94–101.
29. Mori H, Aoki S, Masumoto T, et al. Two-dimensional magnetic resonance digital subtraction angiography using array spatial sensitivity encoding techniques in the assessment of intracranial hemodynamics. Radiat Med 2002; 20:223–229.
42. Takizawa M, Ito T, Itagaki H, et al. Modified echo peak correction for radial acquisition regime (RADAR). Magn Reson Med Sci 2009; 8:149–158.
17. Gong K, Yang J, Kim K, et al. Attenuation correction for brain PET imaging using deep neural network based on Dixon and ZTE MR images. Phys Med Biol 2018; 63:125011.
67. Yamada K, Sakai K, Akazawa K, et al. MR tractography: a review of its clinical applications. Magn Reson Med Sci 2009; 8:165–174.
2. Sasaki M, Inoue T, Tohyama K, et al. High-field MRI of the central nervous system: current approaches to clinical and microscopic imaging. Magn Reson Med Sci 2003; 2:133–139.
18. Zeng F, Nogami M, Ueno YR, et al. Diagnostic performance of zero-TE lung MR imaging in FDG PET/MRI for pulmonary malignancies. Eur Radiol 2020; 30:4995–5003.
76. Yoshimitsu K, Shinagawa Y, Mitsufuji T, et al. Preliminary comparison of multi-scale and multi-model direct inversion algorithms for 3T MR elastography. Magn Reson Med Sci 2017; 16:73–77.
33. Ito S, Arai H, Yamada Y. Compressed sensing in magnetic resonance imaging using the multi-step Fresnel domain band split transformation. Magn Reson Med Sci 2012; 11:243–252.
13. Fujita H. New horizons in MR technology: RF coil designs and trends. Magn Reson Med Sci 2007; 6:29–42.
50. Tamada D, Kromrey ML, Ichikawa S, et al. Motion artifact reduction using a convolutional neural network for dynamic contrast enhanced MR imaging of the liver. Magn Reson Med Sci 2020; 19:64–76.
58. Goto T, Kabasawa H. Automated scan prescription for MR imaging of deformed and normal livers. Magn Reson Med Sci 2013; 12:11–20.
25. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997; 38:591–603.
20. Akram MSH, Obata T, Yamaya T. Microstrip transmission line RF coil for a PET/MRI insert. Magn Reson Med Sci 2020; 19:147–153.
52. Nakajima S, Fushimi Y, Yokota Y, et al. Application of deep learning reconstruction to compressed-sensing thin-slice fat-suppressed T2-weighted imaging of the orbit. Proceedings of the 28th Annual Meeting of ISMRM, On-line, 2020; 2024.
77. Sato R, Shirai T, Taniguchi Y, et al. Quantitative susceptibility mapping using the multiple dipole-inversion combination with k-space segmentation method. Magn Reson Med Sci 2017; 16:340–350.
85. Kodama N, Setoi A, Kose K. Spiral MRI on a 9.4T vertical-bore
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
65
22
66
23
67
24
68
25
69
26
27
28
29
70
71
72
73
30
74
31
75
32
76
33
77
34
78
35
79
36
37
38
39
80
81
82
83
40
84
41
85
42
86
43
87
References_xml – reference: 85. Kodama N, Setoi A, Kose K. Spiral MRI on a 9.4T vertical-bore superconducting magnet using unshielded and self-shielded gradient coils. Magn Reson Med Sci 2018; 17:174–183.
– reference: 1. Fukatsu H. 3T MR for clinical use: update. Magn Reson Med Sci 2003; 2:37–45.
– reference: 33. Ito S, Arai H, Yamada Y. Compressed sensing in magnetic resonance imaging using the multi-step Fresnel domain band split transformation. Magn Reson Med Sci 2012; 11:243–252.
– reference: 50. Tamada D, Kromrey ML, Ichikawa S, et al. Motion artifact reduction using a convolutional neural network for dynamic contrast enhanced MR imaging of the liver. Magn Reson Med Sci 2020; 19:64–76.
– reference: 58. Goto T, Kabasawa H. Automated scan prescription for MR imaging of deformed and normal livers. Magn Reson Med Sci 2013; 12:11–20.
– reference: 40. Setsompop K, Gagoski BA, Polimeni JR, et al. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 2012; 67:1210–1224.
– reference: 62. Takei N, Miyoshi M, Kabasawa H. Noncontrast MR angiography for supraaortic arteries using inflow enhanced inversion recovery fast spin echo imaging. J Magn Reson Imaging 2012; 35:957–962.
– reference: 57. Sreekumari A, Shanbhag D, Yeo D, et al. A deep learning-based approach to reduce rescan and recall rates in clinical MRI examinations. AJNR Am J Neuroradiol 2019; 40:217–223.
– reference: 78. Kan H, Arai N, Takizawa M, et al. Improvement of signal inhomogeneity induced by radio-frequency transmit-related phase error for single-step quantitative susceptibility mapping reconstruction. Magn Reson Med Sci 2019; 18:276–285.
– reference: 65. Irie R, Suzuki M, Yamamoto M, et al. Assessing blood flow in an intracranial stent: a feasibility study of MR angiography using a silent scan after stent-assisted coil embolization for anterior circulation aneurysms. AJNR Am J Neuroradiol 2015; 36:967–970.
– reference: 43. Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999; 42:963–969.
– reference: 79. Ikebe Y, Ishimaru H, Imai H, et al. Quantitative susceptibility mapping for carotid atherosclerotic plaques: a pilot study. Magn Reson Med Sci 2020; 19:135–140.
– reference: 32. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58:1182–1195.
– reference: 7. Uwano I, Metoki T, Sendai F, et al. Assessment of sensations experienced by subjects during MR imaging examination at 7T. Magn Reson Med Sci 2015; 14:35–41.
– reference: 75. Ichikawa S, Motosugi U, Ichikawa T, et al. Magnetic resonance elastography for staging liver fibrosis in chronic hepatitis C. Magn Reson Med Sci 2012; 11:291–297.
– reference: 13. Fujita H. New horizons in MR technology: RF coil designs and trends. Magn Reson Med Sci 2007; 6:29–42.
– reference: 28. Takizawa M, Shimoda T, Nonaka M, et al. Parallel imaging of head with a dedicated multi-coil on a 0.4T open MRI. Magn Reson Med Sci 2005; 4:95–101.
– reference: 17. Gong K, Yang J, Kim K, et al. Attenuation correction for brain PET imaging using deep neural network based on Dixon and ZTE MR images. Phys Med Biol 2018; 63:125011.
– reference: 36. Takeshima H, Saitoh K, Nitta S, et al. Estimation of spatiotemporal sensitivity using band-limited signals with no additional acquisitions for k-t parallel imaging. Magn Reson Med Sci 2019; 18:19–28.
– reference: 53. Kiryu S, Sugano Y, Ohta T, et al. Deep learning-based adaptive noise reduction for improving image quality of 1.5T MR images. Proceedings of the 28th Annual Meeting of ISMRM, On-line, 2020; 3624.
– reference: 21. Ichikawa S, Motosugi U, Omori M, et al. MR-guided focused ultrasound for uterine fibroids: a preliminary study of relationship between the treatment outcomes and factors of MR images including elastography. Magn Reson Med Sci 2019; 18:82–87.
– reference: 26. Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47:1202–1210.
– reference: 20. Akram MSH, Obata T, Yamaya T. Microstrip transmission line RF coil for a PET/MRI insert. Magn Reson Med Sci 2020; 19:147–153.
– reference: 5. Kataoka M, Kido A, Koyama T, et al. MRI of the female pelvis at 3T compared to 1.5T: evaluation on high-resolution T2-weighted and HASTE images. J Magn Reson Imaging 2007; 25:527–534.
– reference: 51. Kidoh M, Shinoda K, Kitajima M, et al. Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers. Magn Reson Med Sci 2020; 19:195–206.
– reference: 67. Yamada K, Sakai K, Akazawa K, et al. MR tractography: a review of its clinical applications. Magn Reson Med Sci 2009; 8:165–174.
– reference: 81. Fujita S, Hagiwara A, Takei N, et al. Accelerated isotropic multiparametric imaging by high spatial resolution 3D-QALAS with compressed sensing: a phantom, volunteer, and patient study. Invest Radiol 2021; 56:292–300.
– reference: 44. Chandarana H, Feng L, Block TK, et al. Free-breathing contrast-enhanced multiphase MRI of the liver using a combination of compressed sensing, parallel imaging, and golden-angle radial sampling. Invest Radiol 2013; 48:10–16.
– reference: 55. Yokoyama K, Ishimura R, Kariyasu T, et al. Clinical application of an automatic slice-alignment method for cardiac MR imaging. Magn Reson Med Sci 2014; 13:293–298.
– reference: 27. Takizawa M, Goto T, Mochizuki H, et al. Cardiac cine parallel imaging on a 0.7T open system. Magn Reson Med Sci 2004; 3:45–49.
– reference: 8. Watanabe H. Investigation of the asymmetric distributions of RF transmission and reception fields at high static field. Magn Reson Med Sci 2012; 11:129–135.
– reference: 82. Xue H, Inati S, Sørensen TS, Hansen MS, et al. Distributed MRI reconstruction using Gadgetron-based cloud computing. Magn Reson Med 2015; 73:1015–1025.
– reference: 30. Kimura T, Kusahara H. Real-based Polarity-preserving Asymmetric Fourier Imaging (RepAFI). Magn Reson Med Sci 2017; 16:159–168.
– reference: 59. Goto T, Kabasawa H. Robust automated bolus tracker positioning for MRI liver scans. Magn Reson Imaging 2015; 33:63–71.
– reference: 66. Iima M. Perfusion-driven Intravoxel Incoherent Motion (IVIM) MRI in oncology: applications, challenges, and future trends. Magn Reson Med Sci 2021; 20:125–138.
– reference: 9. Bianciardi M, Fukunaga M, van Gelderen P, et al. Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study. Magn Reson Imaging 2009; 27:1019–1029.
– reference: 76. Yoshimitsu K, Shinagawa Y, Mitsufuji T, et al. Preliminary comparison of multi-scale and multi-model direct inversion algorithms for 3T MR elastography. Magn Reson Med Sci 2017; 16:73–77.
– reference: 2. Sasaki M, Inoue T, Tohyama K, et al. High-field MRI of the central nervous system: current approaches to clinical and microscopic imaging. Magn Reson Med Sci 2003; 2:133–139.
– reference: 86. Matsuo-Hagiyama C, Watanabe Y, Tanaka H, et al. Comparison of silent and conventional MR imaging for the evaluation of myelination in children. Magn Reson Med Sci 2017; 16:209–216.
– reference: 69. Maekawa T, Kamiya K, Murata K, et al. Time-dependent diffusion in transient splenial lesion: comparison between oscillating-gradient spin-echo measurements and Monte-Carlo simulation. Magn Reson Med Sci 2021; 20:227–230.
– reference: 70. Kabasawa H, Masutani Y, Aoki S, et al. 3T PROPELLER diffusion tensor fiber tractography: a feasibility study for cranial nerve fiber tracking. Radiat Med 2007; 25:462–466.
– reference: 25. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997; 38:591–603.
– reference: 72. Kishimoto AO, Kataoka M, Iima M, et al. Evaluation of malignant breast lesions using high-resolution readout-segmented diffusion-weighted echo-planar imaging: comparison with pathology. Magn Reson Med Sci 2021; 20:204–215.
– reference: 73. Kamimura K, Nakajo M, Yoneyama T, et al. Amide proton transfer imaging of tumors: theory, clinical applications, pitfalls, and future directions. Jpn J Radiol 2019; 37:109–116.
– reference: 80. Fujita S, Buonincontri G, Cencini M, et al. Repeatability and reproducibility of human brain morphometry using three-dimensional magnetic resonance fingerprinting. Hum Brain Mapp 2021; 42:275–285.
– reference: 49. Kyme AZ, Aksoy M, Henry DL, et al. Marker-free optical stereo motion tracking for in-bore MRI and PET-MRI application. Med Phys 2020; 47:3321–3331.
– reference: 39. Glover GH. Phase-offset multiplanar (POMP) volume imaging: a new technique. J Magn Reson Imaging 1991; 1:457–461.
– reference: 61. Miyazaki M, Akahane M. Non-contrast enhanced MR angiography: established techniques. J Magn Reson Imaging 2012; 35:1–19.
– reference: 84. Dietrich BE, Brunner DO, Wilm BJ, et al. A field camera for MR sequence monitoring and system analysis. Magn Reson Med 2016; 75:1831–1840.
– reference: 3. Naganawa S, Kawai H, Fukatsu H, et al. High-speed imaging at 3 Tesla: a technical and clinical review with an emphasis on whole-brain 3D imaging. Magn Reson Med Sci 2004; 3:177–187.
– reference: 16. Wiesinger F, Bylund M, Yang J, et al. Zero TE-based pseudo-CT image conversion in the head and its application in PET/MR attenuation correction and MR-guided radiation therapy planning. Magn Reson Med 2018; 80:1440–1451.
– reference: 11. Kameda H, Kudo K, Matsuda T, et al. Improvement of the repeatability of parallel transmission at 7T using interleaved acquisition in the calibration scan. J Magn Reson Imaging 2018; 48:94–101.
– reference: 38. Sekine T, Amano Y, Takagi R, et al. Feasibility of 4D flow MR imaging of the brain with either Cartesian y-z radial sampling or k-t SENSE: comparison with 4D Flow MR imaging using SENSE. Magn Reson Med Sci 2014; 13:15–24.
– reference: 63. Shibukawa S, Konta N, Niwa T, et al. Non-enhanced and Non-gated MR angiography for robust visualization of peripheral arteries using enhanced Acceleration-selective Arterial Spin Labeling (eAccASL). Magn Reson Med Sci 2021; 20:312–319.
– reference: 23. Kuroda K. MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments. J Magn Reson Imaging 2018; 47:316–331.
– reference: 29. Mori H, Aoki S, Masumoto T, et al. Two-dimensional magnetic resonance digital subtraction angiography using array spatial sensitivity encoding techniques in the assessment of intracranial hemodynamics. Radiat Med 2002; 20:223–229.
– reference: 54. van Beek EJR, Kuhl C, Anzai Y, et al. Value of MRI in medicine: more than just another test?. J Magn Reson Imaging 2019; 49:e14-e25.
– reference: 15. Ishii S, Hara T, Nanbu T, et al. Optimized workflow and imaging protocols for whole-body oncologic PET/MRI. Jpn J Radiol 2016; 34:754–762.
– reference: 10. Harada T, Kudo K, Uwano I, et al. Breath-holding during the calibration scan improves the reproducibility of parallel transmission at 7T for human brain. Magn Reson Med Sci 2017; 16:23–31.
– reference: 71. Mori N, Mugikura S, Miyashita M, et al. Turbo spin-echo diffusion-weighted imaging compared with single-shot echo-planar diffusion-weighted imaging: image quality and diagnostic performance when differentiating between ductal carcinoma in situ and invasive ductal carcinoma. Magn Reson Med Sci 2021; 1:60–68.
– reference: 12. Roemer PB, Edelstein WA, Hayes CE, et al. The NMR phased array. Magn Reson Med 1990; 16:192–225.
– reference: 56. Blansit K, Retson T, Masutani E, et al. Deep learning-based prescription of cardiac MRI planes. Radiol Artif Intell 2019; 1:e180069.
– reference: 74. Kanazawa Y, Fushimi Y, Sakashita N, et al. B1 power optimization for chemical exchange saturation transfer imaging: a phantom study using egg white for amide proton transfer imaging applications in the human brain. Magn Reson Med Sci 2018; 17:86–94.
– reference: 60. Miyazaki M, Sugiura S, Tateishi F, et al. Non-contrast-enhanced MR angiography using 3D ECG-synchronized half-Fourier fast spin echo. J Magn Reson Imaging 2000; 12:776–783.
– reference: 64. Suzuki Y, Fujima N, van Osch MJP. Intracranial 3D and 4D MR angiography using arterial spin labeling: technical considerations. Magn Reson Med Sci 2020; 19:294–309.
– reference: 45. Ichikawa S, Motosugi U, Kromrey ML, et al. Utility of stack-of-stars acquisition for hepatobiliary phase imaging without breath-holding. Magn Reson Med Sci 2020; 19:99–107.
– reference: 52. Nakajima S, Fushimi Y, Yokota Y, et al. Application of deep learning reconstruction to compressed-sensing thin-slice fat-suppressed T2-weighted imaging of the orbit. Proceedings of the 28th Annual Meeting of ISMRM, On-line, 2020; 2024.
– reference: 87. Iwadate Y, Nozaki A, Nunokawa Y, et al. Comparison of silent navigator waveform generation methods. Magn Reson Med Sci 2020; 19:154–158.
– reference: 37. Okuda S, Yamada Y, Tanimoto A, et al. Three-dimensional cardiac cine imaging using the kat ARC acceleration: Initial experience in clinical adult patients at 3T. Magn Reson Imaging 2015; 33:911–917.
– reference: 18. Zeng F, Nogami M, Ueno YR, et al. Diagnostic performance of zero-TE lung MR imaging in FDG PET/MRI for pulmonary malignancies. Eur Radiol 2020; 30:4995–5003.
– reference: 35. Yoon JK, Kim MJ, Lee S. Compressed sensing and parallel imaging for double hepatic arterial phase acquisition in gadoxetate-enhanced dynamic liver magnetic resonance imaging. Invest Radiol 2019; 54:374–382.
– reference: 41. Iwadate Y, Brau AC, Vasanawala SS, et al. Enhancement of respiratory navigator-gated three-dimensional spoiled gradient-recalled echo sequence with variable flip angle scheme. Magn Reson Med 2014; 72:172–177.
– reference: 31. Kimura T, Shigeta T. Magnitude-based asymmetric fourier imaging (MagAFI). Magn Reson Med Sci 2016; 15:94–104.
– reference: 48. Watanabe K, Kakeda S, Igata N, et al. Utility of real-time prospective motion correction (PROMO) on 3D T1-weighted imaging in automated brain structure measurements. Sci Rep 2016; 6:38366.
– reference: 6. Nakada T, Nabetani A, Kabasawa H, et al. The passage to human MR microscopy: a progress report from Niigata on April 2005. Magn Reson Med Sci 2005; 4:83–87.
– reference: 34. Kromrey ML, Funayama S, Tamada D, et al. Clinical evaluation of respiratory-triggered 3D MRCP with navigator echoes compared to breath-hold acquisition using compressed sensing and/or parallel imaging. Magn Reson Med Sci 2020; 19:318–323.
– reference: 83. Chelu RG, Wanambiro KW, Hsiao A, et al. Cloud-processed 4D CMR flow imaging for pulmonary flow quantification. Eur J Radiol 2016; 85:1849–1856.
– reference: 68. Hori M, Fukunaga I, Masutani Y, et al. Visualizing non-Gaussian diffusion: clinical application of q-space imaging and diffusional kurtosis imaging of the brain and spine. Magn Reson Med Sci 2012; 11:221–233.
– reference: 46. Nakamura Y, Higaki T, Nishihara T, et al. Pseudo-random trajectory scanning suppresses motion artifacts on gadoxetic acid-enhanced hepatobiliary-phase magnetic resonance images. Magn Reson Med Sci 2020; 19:21–28.
– reference: 24. Pruessmann KP, Weiger M, Scheidegger MB, et al. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42:952–962.
– reference: 22. Elias WJ, Lipsman N, Ondo WG, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med 2016; 375:730–739.
– reference: 42. Takizawa M, Ito T, Itagaki H, et al. Modified echo peak correction for radial acquisition regime (RADAR). Magn Reson Med Sci 2009; 8:149–158.
– reference: 47. White N, Roddey C, Shankaranarayanan A, et al. PROMO: real-time prospective motion correction in MRI using image-based tracking. Magn Reson Med 2010; 63:91–105.
– reference: 77. Sato R, Shirai T, Taniguchi Y, et al. Quantitative susceptibility mapping using the multiple dipole-inversion combination with k-space segmentation method. Magn Reson Med Sci 2017; 16:340–350.
– reference: 4. Uematsu H, Takahashi M, Dougherty L, et al. High field body MR imaging: preliminary experiences. Clin Imaging 2004; 28:159–162.
– reference: 19. Okazawa H, Higashino Y, Tsujikawa T, et al. Noninvasive method for measurement of cerebral blood flow using O-15 water PET/MRI with ASL correlation. Eur J Radiol 2018; 105:102–109.
– reference: 14. McGee KP, Stormont RS, Lindsay SA, et al. Characterization and evaluation of a flexible MRI receive coil array for radiation therapy MR treatment planning using highly decoupled RF circuits. Phys Med Biol 2018; 63:08NT02.
– ident: 28
  doi: 10.2463/mrms.4.95
– ident: 57
  doi: 10.3174/ajnr.A5926
– ident: 70
  doi: 10.1007/s11604-007-0169-8
– ident: 85
  doi: 10.2463/mrms.tn.2016-0049
– ident: 62
  doi: 10.1002/jmri.23515
– ident: 5
  doi: 10.1002/jmri.20842
– ident: 18
  doi: 10.1007/s00330-020-06848-z
– ident: 59
  doi: 10.1016/j.mri.2014.08.038
– ident: 17
  doi: 10.1088/1361-6560/aac763
– ident: 64
  doi: 10.2463/mrms.rev.2019-0096
– ident: 79
  doi: 10.2463/mrms.mp.2018-0077
– ident: 42
  doi: 10.2463/mrms.8.149
– ident: 20
  doi: 10.2463/mrms.mp.2019-0137
– ident: 63
  doi: 10.2463/mrms.tn.2019-0172
– ident: 21
  doi: 10.2463/mrms.tn.2017-0103
– ident: 4
  doi: 10.1016/S0899-7071(03)00151-7
– ident: 33
  doi: 10.2463/mrms.11.243
– ident: 6
  doi: 10.2463/mrms.4.83
– ident: 82
  doi: 10.1002/mrm.25213
– ident: 7
  doi: 10.2463/mrms.2014-0004
– ident: 16
  doi: 10.1002/mrm.27134
– ident: 12
  doi: 10.1002/mrm.1910160203
– ident: 34
  doi: 10.2463/mrms.mp-2019-0122
– ident: 49
  doi: 10.1002/mp.14199
– ident: 65
  doi: 10.3174/ajnr.A4199
– ident: 69
  doi: 10.2463/mrms.bc.2020-0046
– ident: 83
  doi: 10.1016/j.ejrad.2016.07.018
– ident: 30
  doi: 10.2463/mrms.tn.2015-0152
– ident: 61
  doi: 10.1002/jmri.22789
– ident: 22
  doi: 10.1056/NEJMoa1600159
– ident: 48
  doi: 10.1038/srep38366
– ident: 51
  doi: 10.2463/mrms.mp.2019-0018
– ident: 60
  doi: 10.1002/1522-2586(200011)12:5<776::AID-JMRI17>3.0.CO;2-X
– ident: 27
  doi: 10.2463/mrms.3.45
– ident: 67
  doi: 10.2463/mrms.8.165
– ident: 19
  doi: 10.1016/j.ejrad.2018.05.033
– ident: 26
  doi: 10.1002/mrm.10171
– ident: 81
  doi: 10.1097/RLI.0000000000000744
– ident: 54
  doi: 10.1002/jmri.26211
– ident: 76
  doi: 10.2463/mrms.mp.2016-0047
– ident: 45
  doi: 10.2463/mrms.mp.2019-0030
– ident: 71
  doi: 10.2463/mrms.mp.2019-0195
– ident: 2
  doi: 10.2463/mrms.2.133
– ident: 56
  doi: 10.1148/ryai.2019180069
– ident: 1
  doi: 10.2463/mrms.2.37
– ident: 75
  doi: 10.2463/mrms.11.291
– ident: 3
  doi: 10.2463/mrms.3.177
– ident: 23
  doi: 10.1002/jmri.25770
– ident: 58
  doi: 10.2463/mrms.2012-0006
– ident: 80
  doi: 10.1002/hbm.25232
– ident: 66
  doi: 10.2463/mrms.rev.2019-0124
– ident: 78
  doi: 10.2463/mrms.tn.2018-0066
– ident: 15
  doi: 10.1007/s11604-016-0584-9
– ident: 38
  doi: 10.2463/mrms.2013-0008
– ident: 53
– ident: 14
  doi: 10.1088/1361-6560/aab691
– ident: 9
  doi: 10.1016/j.mri.2009.02.004
– ident: 36
  doi: 10.2463/mrms.mp.2017-0132
– ident: 8
  doi: 10.2463/mrms.11.129
– ident: 39
  doi: 10.1002/jmri.1880010410
– ident: 50
  doi: 10.2463/mrms.mp.2018-0156
– ident: 11
  doi: 10.1002/jmri.25903
– ident: 84
  doi: 10.1002/mrm.25770
– ident: 31
  doi: 10.2463/mrms.2014-0147
– ident: 37
  doi: 10.1016/j.mri.2015.04.004
– ident: 35
  doi: 10.1097/RLI.0000000000000548
– ident: 41
  doi: 10.1002/mrm.24902
– ident: 86
  doi: 10.2463/mrms.mp.2016-0045
– ident: 24
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: 55
  doi: 10.2463/mrms.2013-0127
– ident: 10
  doi: 10.2463/mrms.mp.2015-0137
– ident: 46
  doi: 10.2463/mrms.mp.2018-0174
– ident: 87
  doi: 10.2463/mrms.tn.2018-0168
– ident: 25
  doi: 10.1002/mrm.1910380414
– ident: 44
  doi: 10.1097/RLI.0b013e318271869c
– ident: 52
– ident: 73
  doi: 10.1007/s11604-018-0787-3
– ident: 72
  doi: 10.2463/mrms.mp.2020-0021
– ident: 29
– ident: 77
  doi: 10.2463/mrms.mp.2016-0062
– ident: 13
  doi: 10.2463/mrms.6.29
– ident: 74
  doi: 10.2463/mrms.tn.2016-0069
– ident: 68
  doi: 10.2463/mrms.11.221
– ident: 32
  doi: 10.1002/mrm.21391
– ident: 47
  doi: 10.1002/mrm.22176
– ident: 40
  doi: 10.1002/mrm.23097
– ident: 43
  doi: 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
SSID ssj0038188
Score 2.4184806
SecondaryResourceType review_article
Snippet Clinical MRI systems have continually improved over the years since their introduction in the 1980s. In MRI technical development, the developments in each MRI...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 71
SubjectTerms Data acquisition
Data processing
Electronics industry
Hybrid systems
Image acquisition
Image processing
Image Processing, Computer-Assisted - methods
Image reconstruction
Innovations
Inventions
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
magnetic resonance imaging applications
magnetic resonance imaging system
Medical imaging
New technology
Positron emission
Positron emission tomography
Review
Tomography
Title MR Imaging in the 21st Century: Technical Innovation over the First Two Decades
URI https://www.jstage.jst.go.jp/article/mrms/21/1/21_rev.2021-0011/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/33867419
https://www.proquest.com/docview/2634883723
https://www.proquest.com/docview/2515070931
https://pubmed.ncbi.nlm.nih.gov/PMC9199974
Volume 21
WOSCitedRecordID wos000800623300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Magnetic Resonance in Medical Sciences, 2022, Vol.21(1), pp.71-82
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1880-2206
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038188
  issn: 1347-3182
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYmBAviG8CYzIS4qUKJHY-bN4mtGqT1g5NmdS3KEmdLUDT0rRs_Pfc2U7abhMaD7xYlXOpo7vz-Xf2-Y6Q914WRtmY-64KS-UG-Vi5chxxF9bWMi9yViqV62IT8XAoRiP51VbpbHQ5gbiuxdWVnP1XUUMfCBuvzv6DuLs_hQ74DUKHFsQO7Z0EPzjtHU1M7SEbw8j8ZqG3cfHMvN1O18I56mqi9jCUU1P3KwCEveRyCrYIg-ebdfw6yM5rZdI-I4ZHqwCDTOxpj11OV-dDGSyS2aXGp4fVfPp7-b1a32ZgbG2bwVhGmOguY57NW31LnzWnzL-hNsY2mlIr1002CyJMHTGZT5qPWHWHYcwIAtXVAtUeyg9P0v7Z8XGaHIySD7OfLpYOwyN2W0dli9xncShF61eb5RgRib4P2X6ruTmFw366OegGOtn5BgD9XN3me1wPoV3DJMlj8sg6E3TfKMETck_VT8mDgQ2XeEZOBqfU6gKtagrSpagL1OrCZ9ppAl1pAkVN0LRaEyhoArWa8Jyc9Q-SL4euraDhFpEIFi64vwoc6lwC6C1FESIvyjwHVK3A7c6FLFghsyAHFMlL8IQ9JTylRFiAoVcFU_wF2a6ntXpFKDDMYzEbAwLnwVh6mSdidK45k-ADBMwhfsu5tLDp5bHKyY8U3EzkdorcToHbKXJbx1I6pNe9MzPJVf5KvW8E0tHaOWZogcrHZuOdjgTvMIJ1cMhuK8vUzll4M-KwjPGYcYe86x6DmcWzs6xW0yXQhOg5eZLDZ7w0ou8-g3MRATCXDok3lKIjwBTum0_q6kKncpeYBSQOXt9h3Dfk4Wpe7pLtxXyp3pKd4teiauZ7ZCseiT2t-X8A6su8pg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MR+Imaging+in+the+21st+Century%3A+Technical+Innovation+over+the+First+Two+Decades&rft.jtitle=Magnetic+resonance+in+medical+sciences&rft.au=Kabasawa%2C+Hiroyuki&rft.date=2022-01-01&rft.issn=1880-2206&rft.eissn=1880-2206&rft.volume=21&rft.issue=1&rft.spage=71&rft_id=info:doi/10.2463%2Fmrms.rev.2021-0011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-3182&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-3182&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-3182&client=summon