DPDDI: a deep predictor for drug-drug interactions

Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is h...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC bioinformatics Ročník 21; číslo 1; s. 1 - 15
Hlavní autori: Feng, Yue-Hua, Zhang, Shao-Wu, Shi, Jian-Yu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 24.09.2020
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1471-2105, 1471-2105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases. Results In this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs. Conclusion We proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination.
AbstractList The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases.BACKGROUNDThe treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases.In this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs.RESULTSIn this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs.We proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination.CONCLUSIONWe proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination.
Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases. Results In this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs. Conclusion We proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination. Keywords: Drug-drug interaction, DDI prediction, Graph convolution network (GCN), Feature extraction, Deep neural network
Abstract Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases. Results In this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs. Conclusion We proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination.
Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases. Results In this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs. Conclusion We proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination.
The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases. In this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs. We proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination.
Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases. Results In this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs. Conclusion We proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination.
ArticleNumber 419
Audience Academic
Author Zhang, Shao-Wu
Shi, Jian-Yu
Feng, Yue-Hua
Author_xml – sequence: 1
  givenname: Yue-Hua
  surname: Feng
  fullname: Feng, Yue-Hua
  organization: Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University
– sequence: 2
  givenname: Shao-Wu
  orcidid: 0000-0003-1305-7447
  surname: Zhang
  fullname: Zhang, Shao-Wu
  email: zhangsw@nwpu.edu.cn
  organization: Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University
– sequence: 3
  givenname: Jian-Yu
  surname: Shi
  fullname: Shi, Jian-Yu
  email: jianyushi@nwpu.edu.cn
  organization: School of Life Sciences, Northwestern Polytechnical University
BookMark eNp9kllv1DAUhSNURBf4AzyNxAs8pFwv8cIDUtVpYaRKIJZny3FugkeZeLATNPx7PE1RmQpVlhc53zm2b85pcTSEAYviJYFzQpR4mwhVlS6BQglMUl7unhQnhEtSUgLV0T_r4-I0pTUAkQqqZ8Uxo1pSJvhJQZefl8vVu4VdNIjbxTZi490Y4qLNvYlTV-6HhR9GjNaNPgzpefG0tX3CF3fzWfH9-urb5cfy5tOH1eXFTemE4mNJOCWCqFoTSRhFV9l8ZwtS19g6KWnNWunQAqu14laAQJDSATCtSYOOsrNiNfs2wa7NNvqNjb9NsN7cboTYGRtH73o0TDtVSSqzkeNaMVvrigACb2olONTZ6_3stZ3qDTYOhzHa_sD08Mvgf5gu_DKyIowrkg1e3xnE8HPCNJqNTw773g4YpmQo50II4Epl9NUDdB2mOORSZaoi-Zqg5D3V2fwAP7Qhn-v2puZCMKFBA2GZOv8PlVuDG-9yHFqf9w8Ebw4EmRlxN3Z2Ssmsvn45ZNXMuhhSitga50e7_8f5EN8bAmafMzPnzOScmducmV2W0gfSv6V8VMRmUcrw0GG8L8wjqj_yAOEH
CitedBy_id crossref_primary_10_1016_j_clinthera_2023_01_002
crossref_primary_10_7717_peerj_17975
crossref_primary_10_1038_s41598_025_12936_1
crossref_primary_10_1016_j_eswa_2025_126408
crossref_primary_10_1016_j_isci_2024_109943
crossref_primary_10_1016_j_isci_2024_109148
crossref_primary_10_1016_j_compbiolchem_2025_108491
crossref_primary_10_1186_s12859_024_05643_7
crossref_primary_10_1093_bib_bbab133
crossref_primary_10_1093_bib_bbad397
crossref_primary_10_1109_ACCESS_2024_3514163
crossref_primary_10_1109_JBHI_2021_3120933
crossref_primary_10_3389_fphar_2024_1354540
crossref_primary_10_1016_j_heliyon_2023_e16819
crossref_primary_10_1093_bib_bbaa357
crossref_primary_10_1016_j_compbiomed_2023_107246
crossref_primary_10_2174_1574893618666230707123817
crossref_primary_10_1371_journal_pcbi_1010812
crossref_primary_10_1109_TETCI_2024_3502414
crossref_primary_10_1016_j_jpha_2024_101159
crossref_primary_10_1093_bib_bbad184
crossref_primary_10_1016_j_ins_2023_119139
crossref_primary_10_1007_s12539_025_00687_6
crossref_primary_10_1007_s12539_024_00684_1
crossref_primary_10_3389_frai_2024_1408843
crossref_primary_10_1007_s00530_024_01325_9
crossref_primary_10_1109_JBHI_2024_3453956
crossref_primary_10_3389_fmats_2022_994265
crossref_primary_10_1016_j_csbj_2022_04_021
crossref_primary_10_1093_bib_bbac576
crossref_primary_10_1093_bib_bbab441
crossref_primary_10_3389_fphar_2024_1393415
crossref_primary_10_1093_bib_bbad385
crossref_primary_10_3390_molecules25225277
crossref_primary_10_1002_gch2_202300163
crossref_primary_10_1186_s12859_022_04763_2
crossref_primary_10_1007_s12539_023_00550_6
crossref_primary_10_1016_j_compbiolchem_2023_108001
crossref_primary_10_1109_TCBB_2024_3385796
crossref_primary_10_1016_j_ymeth_2024_10_012
crossref_primary_10_1093_bib_bbab513
crossref_primary_10_1093_gigascience_giad011
crossref_primary_10_1109_JBHI_2024_3349570
crossref_primary_10_1002_minf_202100200
crossref_primary_10_1093_bib_bbab511
crossref_primary_10_1093_bib_bbad215
crossref_primary_10_1016_j_artmed_2025_103185
crossref_primary_10_1038_s41598_024_82981_9
crossref_primary_10_1016_j_compbiomed_2023_107492
crossref_primary_10_3390_biology11050758
crossref_primary_10_3390_molecules27093004
crossref_primary_10_1109_TCBB_2021_3081268
crossref_primary_10_1016_j_compbiomed_2024_109496
crossref_primary_10_1109_ACCESS_2024_3483993
crossref_primary_10_3390_math11183990
crossref_primary_10_1038_s41598_025_93952_z
crossref_primary_10_3390_app131910750
crossref_primary_10_1007_s10462_022_10306_1
crossref_primary_10_1007_s12539_022_00524_0
crossref_primary_10_1109_TNNLS_2023_3261860
crossref_primary_10_1186_s12967_024_05372_8
crossref_primary_10_2174_1574893617666220513114917
crossref_primary_10_1016_j_jbi_2025_104772
crossref_primary_10_1038_s41598_024_54409_x
crossref_primary_10_1089_cmb_2023_0076
crossref_primary_10_1007_s11814_023_1377_3
crossref_primary_10_1038_s41598_022_19999_4
crossref_primary_10_1016_j_compbiomed_2023_107900
crossref_primary_10_1186_s12859_021_04398_9
crossref_primary_10_1038_s41598_025_05853_w
crossref_primary_10_2174_1574893616666211119093100
crossref_primary_10_3390_bioengineering11111096
crossref_primary_10_3390_ijms26146799
crossref_primary_10_3390_molecules28031490
crossref_primary_10_1016_j_compbiomed_2023_107340
crossref_primary_10_1038_s41598_022_05132_y
crossref_primary_10_1089_cmb_2022_0113
crossref_primary_10_1039_D2SC02023H
crossref_primary_10_1093_bib_bbad041
crossref_primary_10_3389_fphar_2021_814858
crossref_primary_10_1186_s13321_025_01093_2
crossref_primary_10_1016_j_ymeth_2024_01_009
crossref_primary_10_3389_fphar_2022_1021329
crossref_primary_10_1109_TCBB_2022_3219883
crossref_primary_10_1093_bib_bbad324
crossref_primary_10_1093_bib_bbab421
crossref_primary_10_3897_pharmacia_71_e123313
crossref_primary_10_1186_s12859_021_04241_1
crossref_primary_10_1016_j_ymeth_2023_10_007
crossref_primary_10_1016_j_imu_2023_101429
crossref_primary_10_2174_2212798412666220620104809
crossref_primary_10_1093_bib_bbac151
crossref_primary_10_1093_bfgp_elae052
crossref_primary_10_3389_fphar_2021_794205
crossref_primary_10_1016_j_ins_2021_09_008
crossref_primary_10_1093_bioadv_vbad110
Cites_doi 10.1093/nar/gkx1037
10.1186/s12859-016-1415-9
10.1016/j.ymeth.2020.05.007
10.1093/bib/bbx010
10.3109/10409239509083488
10.1093/bib/bbz042
10.1186/s12859-019-3214-6
10.1371/journal.pone.0058321
10.1136/amiajnl-2013-002512
10.1109/ICPR.2018.8545246
10.2174/1389203718666161108101118
10.1038/msb.2012.26
10.1016/j.neucom.2019.08.084
10.1093/bioinformatics/btv055
10.1093/bioinformatics/btw342
10.1186/s12918-018-0532-7
10.1038/nbt.3834
10.1136/amiajnl-2012-000935
10.1016/j.jtbi.2010.12.024
10.1038/srep12339
10.1093/bioinformatics/btz718
10.1093/bioinformatics/bty294
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-020-03724-x
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 15
ExternalDocumentID oai_doaj_org_article_39c8572784ac4983ab9510e04db8640b
PMC7513481
A636909013
10_1186_s12859_020_03724_x
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No. 61873202; No. 61872297
– fundername: Shaanxi Provincial key R&D Program(CN)
  grantid: NO. 2020KW-063
– fundername: ;
  grantid: NO. 2020KW-063
– fundername: ;
  grantid: No. 61873202; No. 61872297
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c684t-1421618b917132ec5a186a079befc772b3f7cea03b984a606e077c003991dec23
IEDL.DBID DOA
ISICitedReferencesCount 130
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576215500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Tue Oct 14 19:02:59 EDT 2025
Tue Nov 04 01:59:44 EST 2025
Thu Oct 02 09:46:27 EDT 2025
Tue Oct 07 05:24:59 EDT 2025
Tue Nov 11 10:19:30 EST 2025
Tue Nov 04 17:48:31 EST 2025
Thu Nov 13 14:41:22 EST 2025
Sat Nov 29 05:40:07 EST 2025
Tue Nov 18 21:11:07 EST 2025
Sat Sep 06 07:27:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Feature extraction
Deep neural network
DDI prediction
Graph convolution network (GCN)
Drug-drug interaction
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c684t-1421618b917132ec5a186a079befc772b3f7cea03b984a606e077c003991dec23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1305-7447
OpenAccessLink https://doaj.org/article/39c8572784ac4983ab9510e04db8640b
PMID 32972364
PQID 2451727087
PQPubID 44065
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_39c8572784ac4983ab9510e04db8640b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7513481
proquest_miscellaneous_2446660488
proquest_journals_2451727087
gale_infotracmisc_A636909013
gale_infotracacademiconefile_A636909013
gale_incontextgauss_ISR_A636909013
crossref_citationtrail_10_1186_s12859_020_03724_x
crossref_primary_10_1186_s12859_020_03724_x
springer_journals_10_1186_s12859_020_03724_x
PublicationCentury 2000
PublicationDate 2020-09-24
PublicationDateYYYYMMDD 2020-09-24
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 3724_CR19
S Vilar (3724_CR5) 2018; 19
DS Wishart (3724_CR33) 2017; 46
T Takeda (3724_CR2) 2017; 9
Z Liu (3724_CR35) 2015; 31
JY Shi (3724_CR16) 2019; 11
M Zitnik (3724_CR22) 2018; 34
J Pathak (3724_CR3) 2013; 192
XY Yan (3724_CR27) 2018; 19
Y Zheng (3724_CR29) 2019; 20
L Vivian (3724_CR32) 2013; 42
JD Duke (3724_CR4) 2012; 8
W Zhang (3724_CR11) 2017; 18
X Yue (3724_CR17) 2020; 36
XN Fan (3724_CR26) 2019; 370
D Sridhar (3724_CR9) 2016; 32
3724_CR31
M Defferrard (3724_CR38) 2016; 29
3724_CR36
H Yu (3724_CR14) 2018; 12
3724_CR37
F Cheng (3724_CR10) 2014; 21
3724_CR18
S Vilar (3724_CR7) 2013; 8
KC Chou (3724_CR25) 2011; 273
KC Chou (3724_CR24) 2008; 30
KY Gao (3724_CR23) 2018
A Gottlieb (3724_CR8) 2012; 8
Y Zhang (3724_CR28) 2020; 179
M Sun (3724_CR20) 2020; 21
K Andrej (3724_CR12) 2018; 13
K Han (3724_CR1) 2017; 35
3724_CR21
K Park (3724_CR15) 2015; 10
T Mikolov (3724_CR30) 2013; 26
S Vilar (3724_CR6) 2012; 19
P Zhang (3724_CR13) 2015; 5
A Skrbo (3724_CR34) 2004; 58
References_xml – ident: 3724_CR31
– volume: 9
  start-page: 16
  year: 2017
  ident: 3724_CR2
  publication-title: Aust J Chem
– volume: 46
  start-page: D1074
  issue: D1
  year: 2017
  ident: 3724_CR33
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1037
– volume: 192
  start-page: 682
  year: 2013
  ident: 3724_CR3
  publication-title: Stud Health Technol Inform
– volume: 18
  start-page: 18
  issue: 1
  year: 2017
  ident: 3724_CR11
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1415-9
– volume: 179
  start-page: 37
  year: 2020
  ident: 3724_CR28
  publication-title: Methods.
  doi: 10.1016/j.ymeth.2020.05.007
– volume: 19
  start-page: 863
  issue: 5
  year: 2018
  ident: 3724_CR5
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx010
– volume: 30
  start-page: 275
  issue: 4
  year: 2008
  ident: 3724_CR24
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.3109/10409239509083488
– volume: 26
  start-page: 3111
  year: 2013
  ident: 3724_CR30
  publication-title: Adv Neural Inf Proces Syst
– volume: 13
  issue: 5
  year: 2018
  ident: 3724_CR12
  publication-title: PLoS One
– ident: 3724_CR18
– start-page: 3371
  volume-title: Twenty-Seventh International Joint Conference on Artificial Intelligence IJCAI-18
  year: 2018
  ident: 3724_CR23
– volume: 21
  start-page: 919
  issue: 3
  year: 2020
  ident: 3724_CR20
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz042
– volume: 29
  start-page: 3844
  year: 2016
  ident: 3724_CR38
  publication-title: Adv Neural Inf Proces Syst
– volume: 20
  start-page: 661
  issue: Suppl 19
  year: 2019
  ident: 3724_CR29
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-3214-6
– volume: 58
  start-page: 138
  issue: 1 Suppl 2
  year: 2004
  ident: 3724_CR34
  publication-title: Med Arh
– ident: 3724_CR37
– volume: 8
  issue: 3
  year: 2013
  ident: 3724_CR7
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0058321
– volume: 21
  start-page: e278
  issue: e2
  year: 2014
  ident: 3724_CR10
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2013-002512
– ident: 3724_CR21
  doi: 10.1109/ICPR.2018.8545246
– volume: 42
  start-page: D1091
  issue: D1
  year: 2013
  ident: 3724_CR32
  publication-title: Nucleic Acids Res
– volume: 10
  issue: 10
  year: 2015
  ident: 3724_CR15
  publication-title: PLoS One
– volume: 19
  start-page: 498
  issue: 5
  year: 2018
  ident: 3724_CR27
  publication-title: Curr Protein Pept Sc
  doi: 10.2174/1389203718666161108101118
– volume: 8
  start-page: 592
  year: 2012
  ident: 3724_CR8
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2012.26
– volume: 370
  start-page: 88
  year: 2019
  ident: 3724_CR26
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2019.08.084
– volume: 31
  start-page: 1788
  issue: 11
  year: 2015
  ident: 3724_CR35
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btv055
– volume: 32
  start-page: 3175
  issue: 20
  year: 2016
  ident: 3724_CR9
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btw342
– volume: 11
  start-page: 28
  issue: 1
  year: 2019
  ident: 3724_CR16
  publication-title: Aust J Chem
– volume: 12
  start-page: 14
  issue: 1
  year: 2018
  ident: 3724_CR14
  publication-title: BMC Syst Biol
  doi: 10.1186/s12918-018-0532-7
– volume: 35
  start-page: 463
  issue: 5
  year: 2017
  ident: 3724_CR1
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3834
– volume: 19
  start-page: 1066
  issue: 6
  year: 2012
  ident: 3724_CR6
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2012-000935
– ident: 3724_CR19
– volume: 273
  start-page: 236
  issue: 1
  year: 2011
  ident: 3724_CR25
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2010.12.024
– volume: 8
  issue: 8
  year: 2012
  ident: 3724_CR4
  publication-title: PLoS Comput Biol
– volume: 5
  start-page: 12339
  issue: 1
  year: 2015
  ident: 3724_CR13
  publication-title: Sci Rep
  doi: 10.1038/srep12339
– volume: 36
  start-page: 1241
  issue: 4
  year: 2020
  ident: 3724_CR17
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btz718
– ident: 3724_CR36
– volume: 34
  start-page: i457
  issue: 13
  year: 2018
  ident: 3724_CR22
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bty294
SSID ssj0017805
Score 2.6478038
Snippet Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the...
The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of...
Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the...
Abstract Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give...
SourceID doaj
pubmedcentral
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Agglomeration
Algorithms
Analysis
Artificial neural networks
Bioinformatics
Biological properties
Biomedical and Life Sciences
Case studies
Combination drug therapy
Complications and side effects
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer applications
Convolution
Datasets
DDI prediction
Deep neural network
Drug interactions
Drug-drug interaction
Drugs
Feature extraction
Graph convolution network (GCN)
Life Sciences
Machine learning
Machine Learning and Artificial Intelligence in Bioinformatics
Machine learning for computational and systems biology
Methodology
Methodology Article
Methods
Microarrays
Neural networks
Performance prediction
Propagation
Side effects
Toxicity
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkLb0SgoICQOEBUJ3ZihwsqLBWVULXipd4sv3aphJIl2UXl3-NxnK1CRS9c9rCeaNf2zHi-jOcbgOdUV7TgC29phFoPUDxm1cp6qIJUL6pSyoXaqm8f-dGROD6u5_GFWx-vVY4-MThq2xp8R75XsBLPWiL4m9XPDLtGYXY1ttC4DFeQJYGGq3vzbRYB-frHQhlR7fU5srVlCJgI5QXLTieHUeDsP--Zz9-W_CtlGk6ig5v_O4dbcCPGoOn-oDS34ZJr7sC1oSvl77tQzOaz2eHrVKXWuVW66jCX46F56uPb1HabZYYfKRJNdENZRH8Pvh68__LuQxZbK2SmEmyd5axApnztwZqHo86Uyi-QIrzWbmF8wK3pghunCNW1YMqDHEc4N1jIW-fWmYLeh52mbdwDSEtX-BhFaKORG45Q5cG2dXVpFceqWJZAPq6xNJF3HNtf_JABf4hKDvsi_b7IsC_yNIGX22dWA-vGhdJvceu2ksiYHb5ou6WMBihpbUTJMc2qDKsFVRpjS0eY1aJiRCfwDDdeIidGg5dulmrT9_Lw8ye5X9GqJj5wogm8iEKL1s_BqFjD4FcCabQmkrsTSW-0Zjo8aoiMTqOXZ-qRwNPtMD6JF-Ea125QhnnAiW43AT7Ry8n0pyPNyfdAHM7LHOuuE3g1avDZj_97eR9e_F8fwfUimBRm6nZhZ91t3GO4an6tT_ruSTDIP7GSON0
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VpUhcgPIhAgUFhMQBIpzYiR1uhW3VSqiqWqh6s2zHu1RC2VWyi-DfM-Mki0JLJXrJIR4r8XjGnqfxPAO85rbgmZyipzFeIUBBzGpNhVCFqF5MYYwPtVVnn-XRkTo_L4_7orB2OO0-pCTDSh3cWhXv25S41hKCO4zLTCQYOd7C7U6RO56cnq1zB8TSP5THXNlvtAUFpv7L6_HlM5J_JUrD_rN_72Z_fh_u9vFmvNsZyDZs-PoB3O5uoPz1ELLJ8WRy-CE2ceX9Il40lLdBGB5jLBtXzWqW0CMmUommK4FoH8HX_b0vnw6S_hqFxBVKLJNUZMSKbxGYIfT0Ljf4U4bJ0vqpw-Da8ql03jBuSyUMAhrPpHRUtFumlXcZfwyb9bz2TyDOfYbxiLLOEg8c4waBdeXLvDKSKmBFBOmgWe16jnG66uK7DlhDFbrThUZd6KAL_TOCt-s-i45h41rpjzRha0lixw4v5s1M986meelULimlapwoFTeW4kjPRGVVIZiN4BVNtyb-i5oO2MzMqm314emJ3i14UTIMkngEb3qh6RzH4Exfr4CaIMqskeTOSBId1I2bB6vS_QLR6kzkFDoyJSN4uW6mnnTorfbzFckIBJe0xEYgR9Y4Gv64pb74FkjCZZ5SjXUE7wab_PPxf6v36f-JP4M7WTBrytLtwOayWfnnsOV-LC_a5kVwy9-AEy_C
  priority: 102
  providerName: Springer Nature
Title DPDDI: a deep predictor for drug-drug interactions
URI https://link.springer.com/article/10.1186/s12859-020-03724-x
https://www.proquest.com/docview/2451727087
https://www.proquest.com/docview/2446660488
https://pubmed.ncbi.nlm.nih.gov/PMC7513481
https://doaj.org/article/39c8572784ac4983ab9510e04db8640b
Volume 21
WOSCitedRecordID wos000576215500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BAIkXxE8tMKqAkHiAaEmcxA5vG91EBVRRB1PhxbIdd0xCaZW0aPz33DlJIUzACy-WGl-U-Hrn3Ke7-wzwjOmMxXyBnhayEgEKYlatSoQqRPWiMqWs6606fcenUzGf58UvR31RTVhLD9wqbp_lRqSc0mPKJLlgSlNMYMOk1CJLQk27L0Y9PZjq8gfE1N-3yIhsv4mIpy0gqBQyHifBxeAz5Nj6L-_Jl-skf0uWum_Q8W241QWP_kH70nfgiq3uwo32OMnv9yAeF-Px5JWv_NLalb-qKQmDmNrHwNQv681ZQINPDBF128_Q3IePx0cfXr8JujMRApOJZB1ESUwU9xpRFuJIa1KF61Mhz7VdGIyUNVtwY1XIdI4aQ3RiQ84NdeDmUWlNzB7ATrWs7C74qY0xuBDaaCJ1C5lClFzaPC0Vp3bWxIOoV5E0HWE4nVvxVTrgIDLZqlWiWqVTq7zw4MX2nlVLl_FX6UPS_FaSqK7dBTQA2RmA_JcBePCU_jdJZBYVVcucqU3TyMnJTB5kDME_RjzMg-ed0GKJazCqaz5ATRD_1UBybyCJ3maG0715yM7bGxknKcWBoeAePNlO051UwVbZ5YZkEkSKtF96wAdmNVj-cKY6_-IYv3kaUcO0By97A_z58D-r9-H_UO8juBk7v6FE3B7srOuNfQzXzbf1eVOP4CqfczeKEVw7PJoWs5HzRBzf8mBEpbQFjkX6GeeLyfviE_6anZz-AFpYMsM
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH-aBohd-EYEBgQE4gDRktiJHSSEBmVa1VJNMNBuxnbcbhJKStLC9k_xN-LnJJ3CxG47cOmhflET5339-vx-D-AZUSmJ2dRaWkhyC1AsZlUyt1AFqV5kKqVxvVVfx2wy4QcH2d4a_O56YfBYZecTnaPOS43_kW_FNMFYG3L2dv4jwKlRWF3tRmg0ajEyJ78sZKvfDAf2_T6P450P--93g3aqQKBTThdBRGMkiVcWp1gkZnQiI57KkGXKTLXNNRWZMm1kSFTGqbT5vQkZ09jDmkW50Uh0YF3-JUo4Q67-EQtWVQucD9A15vB0q46QHS5AgBYSFtPguBf83IyAs5Hg7OnMv0q0LvLtXP_f9uwGXGtzbH-7MYqbsGaKW3Clmbp5chviwd5gMHztSz83Zu7PK6xVLcrKt_m7n1fLWYAfPhJpVE3bR30HvlzIDd-F9aIszD3wExPbHIwrrZD7LiSS0Tg3WZJLhl2_1IOoe6dCt7zqON7ju3D4iqei0QNh9UA4PRDHHrxcXTNvWEXOlX6HqrKSREZw90VZzUTrYATJNE8YlpGlphknUmHubEKaK57SUHnwFBVNIOdHgYeKZnJZ12L4-ZPYTkmahTYxJB68aIWmpX0GLdseDbsTSBPWk9zsSVqnpPvLnUaK1inW4lQdPXiyWsYr8aBfYcolylALqDGseMB6dtB7_P5KcXToiNFZEmFfuQevOos5_fF_b-_98-_1MVzd3f84FuPhZPQANmJnzliV3IT1RbU0D-Gy_rk4qqtHzhn48O2iLekPXaCTew
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6h8UN74fdEYEBASDxANCd24oS3QamomKqKwbQ3y3acMmlKq6RF8N9z56SFMEBCvPShPqv15c65T-fvM8AzbjKeyAozjfESAQpiVqNLhCok9aIzrZ3nVp0cyek0Pz0tZj-x-P1p901LsuM0kEpTvTpYllWX4nl20MakuxYR9GFcJiLCKvKyoEuDCK8fn2z7CKTYv6HK_Hbe4HXkVfsv7s0Xz0v-0jT176Lxjf9fxU243teh4WEXOLfgkqtvw9XuZspvdyAZzUajyatQh6Vzy3DZUD8H4XmINW5YNut5RB8hiU00HTWivQufxm8_vnkX9dcrRDbLxSqKRUJq-QYBG0JSZ1ONf0ozWRhXWSy6Da-kdZpxU-RCI9BxTEpLZN4iLp1N-B7s1Iva3YMwdQnWKbmxhvThGNcIuEtXpKWWxIwVAcQbLyvba4_TFRjnymOQPFOdLxT6QnlfqK8BvNjOWXbKG3-1fk0Pb2tJqtn-i0UzV30SKl7YPJXUatVWFDnXhupLx0Rp8kwwE8BTevSKdDFqOngz1-u2VZPjD-ow41nBsHjiATzvjaoFrsHqnseAniAprYHl_sASE9cOhzcRpvqNo1WJSKmkZLkM4Ml2mGbSYbjaLdZkIxB00tYbgBxE5mD5w5H67LMXD5dpTNzrAF5u4vPHj__Zvff_zfwxXJuNxupoMn3_AHYTH-HUyNuHnVWzdg_hiv2yOmubRz5bvwPu9DuK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DPDDI%3A+a+deep+predictor+for+drug-drug+interactions&rft.jtitle=BMC+bioinformatics&rft.au=Yue-Hua+Feng&rft.au=Shao-Wu+Zhang&rft.au=Jian-Yu+Shi&rft.date=2020-09-24&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1186%2Fs12859-020-03724-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_39c8572784ac4983ab9510e04db8640b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon