DPDDI: a deep predictor for drug-drug interactions
Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is h...
Uložené v:
| Vydané v: | BMC bioinformatics Ročník 21; číslo 1; s. 1 - 15 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
BioMed Central
24.09.2020
BioMed Central Ltd Springer Nature B.V BMC |
| Predmet: | |
| ISSN: | 1471-2105, 1471-2105 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Background
The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases.
Results
In this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs.
Conclusion
We proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination. |
|---|---|
| AbstractList | The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases.BACKGROUNDThe treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases.In this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs.RESULTSIn this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs.We proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination.CONCLUSIONWe proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination. Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases. Results In this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs. Conclusion We proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination. Keywords: Drug-drug interaction, DDI prediction, Graph convolution network (GCN), Feature extraction, Deep neural network Abstract Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases. Results In this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs. Conclusion We proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination. Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases. Results In this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs. Conclusion We proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination. The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases. In this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs. We proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination. Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases. Results In this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs. Conclusion We proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination. |
| ArticleNumber | 419 |
| Audience | Academic |
| Author | Zhang, Shao-Wu Shi, Jian-Yu Feng, Yue-Hua |
| Author_xml | – sequence: 1 givenname: Yue-Hua surname: Feng fullname: Feng, Yue-Hua organization: Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University – sequence: 2 givenname: Shao-Wu orcidid: 0000-0003-1305-7447 surname: Zhang fullname: Zhang, Shao-Wu email: zhangsw@nwpu.edu.cn organization: Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University – sequence: 3 givenname: Jian-Yu surname: Shi fullname: Shi, Jian-Yu email: jianyushi@nwpu.edu.cn organization: School of Life Sciences, Northwestern Polytechnical University |
| BookMark | eNp9kllv1DAUhSNURBf4AzyNxAs8pFwv8cIDUtVpYaRKIJZny3FugkeZeLATNPx7PE1RmQpVlhc53zm2b85pcTSEAYviJYFzQpR4mwhVlS6BQglMUl7unhQnhEtSUgLV0T_r4-I0pTUAkQqqZ8Uxo1pSJvhJQZefl8vVu4VdNIjbxTZi490Y4qLNvYlTV-6HhR9GjNaNPgzpefG0tX3CF3fzWfH9-urb5cfy5tOH1eXFTemE4mNJOCWCqFoTSRhFV9l8ZwtS19g6KWnNWunQAqu14laAQJDSATCtSYOOsrNiNfs2wa7NNvqNjb9NsN7cboTYGRtH73o0TDtVSSqzkeNaMVvrigACb2olONTZ6_3stZ3qDTYOhzHa_sD08Mvgf5gu_DKyIowrkg1e3xnE8HPCNJqNTw773g4YpmQo50II4Epl9NUDdB2mOORSZaoi-Zqg5D3V2fwAP7Qhn-v2puZCMKFBA2GZOv8PlVuDG-9yHFqf9w8Ebw4EmRlxN3Z2Ssmsvn45ZNXMuhhSitga50e7_8f5EN8bAmafMzPnzOScmducmV2W0gfSv6V8VMRmUcrw0GG8L8wjqj_yAOEH |
| CitedBy_id | crossref_primary_10_1016_j_clinthera_2023_01_002 crossref_primary_10_7717_peerj_17975 crossref_primary_10_1038_s41598_025_12936_1 crossref_primary_10_1016_j_eswa_2025_126408 crossref_primary_10_1016_j_isci_2024_109943 crossref_primary_10_1016_j_isci_2024_109148 crossref_primary_10_1016_j_compbiolchem_2025_108491 crossref_primary_10_1186_s12859_024_05643_7 crossref_primary_10_1093_bib_bbab133 crossref_primary_10_1093_bib_bbad397 crossref_primary_10_1109_ACCESS_2024_3514163 crossref_primary_10_1109_JBHI_2021_3120933 crossref_primary_10_3389_fphar_2024_1354540 crossref_primary_10_1016_j_heliyon_2023_e16819 crossref_primary_10_1093_bib_bbaa357 crossref_primary_10_1016_j_compbiomed_2023_107246 crossref_primary_10_2174_1574893618666230707123817 crossref_primary_10_1371_journal_pcbi_1010812 crossref_primary_10_1109_TETCI_2024_3502414 crossref_primary_10_1016_j_jpha_2024_101159 crossref_primary_10_1093_bib_bbad184 crossref_primary_10_1016_j_ins_2023_119139 crossref_primary_10_1007_s12539_025_00687_6 crossref_primary_10_1007_s12539_024_00684_1 crossref_primary_10_3389_frai_2024_1408843 crossref_primary_10_1007_s00530_024_01325_9 crossref_primary_10_1109_JBHI_2024_3453956 crossref_primary_10_3389_fmats_2022_994265 crossref_primary_10_1016_j_csbj_2022_04_021 crossref_primary_10_1093_bib_bbac576 crossref_primary_10_1093_bib_bbab441 crossref_primary_10_3389_fphar_2024_1393415 crossref_primary_10_1093_bib_bbad385 crossref_primary_10_3390_molecules25225277 crossref_primary_10_1002_gch2_202300163 crossref_primary_10_1186_s12859_022_04763_2 crossref_primary_10_1007_s12539_023_00550_6 crossref_primary_10_1016_j_compbiolchem_2023_108001 crossref_primary_10_1109_TCBB_2024_3385796 crossref_primary_10_1016_j_ymeth_2024_10_012 crossref_primary_10_1093_bib_bbab513 crossref_primary_10_1093_gigascience_giad011 crossref_primary_10_1109_JBHI_2024_3349570 crossref_primary_10_1002_minf_202100200 crossref_primary_10_1093_bib_bbab511 crossref_primary_10_1093_bib_bbad215 crossref_primary_10_1016_j_artmed_2025_103185 crossref_primary_10_1038_s41598_024_82981_9 crossref_primary_10_1016_j_compbiomed_2023_107492 crossref_primary_10_3390_biology11050758 crossref_primary_10_3390_molecules27093004 crossref_primary_10_1109_TCBB_2021_3081268 crossref_primary_10_1016_j_compbiomed_2024_109496 crossref_primary_10_1109_ACCESS_2024_3483993 crossref_primary_10_3390_math11183990 crossref_primary_10_1038_s41598_025_93952_z crossref_primary_10_3390_app131910750 crossref_primary_10_1007_s10462_022_10306_1 crossref_primary_10_1007_s12539_022_00524_0 crossref_primary_10_1109_TNNLS_2023_3261860 crossref_primary_10_1186_s12967_024_05372_8 crossref_primary_10_2174_1574893617666220513114917 crossref_primary_10_1016_j_jbi_2025_104772 crossref_primary_10_1038_s41598_024_54409_x crossref_primary_10_1089_cmb_2023_0076 crossref_primary_10_1007_s11814_023_1377_3 crossref_primary_10_1038_s41598_022_19999_4 crossref_primary_10_1016_j_compbiomed_2023_107900 crossref_primary_10_1186_s12859_021_04398_9 crossref_primary_10_1038_s41598_025_05853_w crossref_primary_10_2174_1574893616666211119093100 crossref_primary_10_3390_bioengineering11111096 crossref_primary_10_3390_ijms26146799 crossref_primary_10_3390_molecules28031490 crossref_primary_10_1016_j_compbiomed_2023_107340 crossref_primary_10_1038_s41598_022_05132_y crossref_primary_10_1089_cmb_2022_0113 crossref_primary_10_1039_D2SC02023H crossref_primary_10_1093_bib_bbad041 crossref_primary_10_3389_fphar_2021_814858 crossref_primary_10_1186_s13321_025_01093_2 crossref_primary_10_1016_j_ymeth_2024_01_009 crossref_primary_10_3389_fphar_2022_1021329 crossref_primary_10_1109_TCBB_2022_3219883 crossref_primary_10_1093_bib_bbad324 crossref_primary_10_1093_bib_bbab421 crossref_primary_10_3897_pharmacia_71_e123313 crossref_primary_10_1186_s12859_021_04241_1 crossref_primary_10_1016_j_ymeth_2023_10_007 crossref_primary_10_1016_j_imu_2023_101429 crossref_primary_10_2174_2212798412666220620104809 crossref_primary_10_1093_bib_bbac151 crossref_primary_10_1093_bfgp_elae052 crossref_primary_10_3389_fphar_2021_794205 crossref_primary_10_1016_j_ins_2021_09_008 crossref_primary_10_1093_bioadv_vbad110 |
| Cites_doi | 10.1093/nar/gkx1037 10.1186/s12859-016-1415-9 10.1016/j.ymeth.2020.05.007 10.1093/bib/bbx010 10.3109/10409239509083488 10.1093/bib/bbz042 10.1186/s12859-019-3214-6 10.1371/journal.pone.0058321 10.1136/amiajnl-2013-002512 10.1109/ICPR.2018.8545246 10.2174/1389203718666161108101118 10.1038/msb.2012.26 10.1016/j.neucom.2019.08.084 10.1093/bioinformatics/btv055 10.1093/bioinformatics/btw342 10.1186/s12918-018-0532-7 10.1038/nbt.3834 10.1136/amiajnl-2012-000935 10.1016/j.jtbi.2010.12.024 10.1038/srep12339 10.1093/bioinformatics/btz718 10.1093/bioinformatics/bty294 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1186/s12859-020-03724-x |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_39c8572784ac4983ab9510e04db8640b PMC7513481 A636909013 10_1186_s12859_020_03724_x |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: No. 61873202; No. 61872297 – fundername: Shaanxi Provincial key R&D Program(CN) grantid: NO. 2020KW-063 – fundername: ; grantid: NO. 2020KW-063 – fundername: ; grantid: No. 61873202; No. 61872297 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c684t-1421618b917132ec5a186a079befc772b3f7cea03b984a606e077c003991dec23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 130 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576215500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Tue Oct 14 19:02:59 EDT 2025 Tue Nov 04 01:59:44 EST 2025 Thu Oct 02 09:46:27 EDT 2025 Tue Oct 07 05:24:59 EDT 2025 Tue Nov 11 10:19:30 EST 2025 Tue Nov 04 17:48:31 EST 2025 Thu Nov 13 14:41:22 EST 2025 Sat Nov 29 05:40:07 EST 2025 Tue Nov 18 21:11:07 EST 2025 Sat Sep 06 07:27:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Feature extraction Deep neural network DDI prediction Graph convolution network (GCN) Drug-drug interaction |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c684t-1421618b917132ec5a186a079befc772b3f7cea03b984a606e077c003991dec23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1305-7447 |
| OpenAccessLink | https://doaj.org/article/39c8572784ac4983ab9510e04db8640b |
| PMID | 32972364 |
| PQID | 2451727087 |
| PQPubID | 44065 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_39c8572784ac4983ab9510e04db8640b pubmedcentral_primary_oai_pubmedcentral_nih_gov_7513481 proquest_miscellaneous_2446660488 proquest_journals_2451727087 gale_infotracmisc_A636909013 gale_infotracacademiconefile_A636909013 gale_incontextgauss_ISR_A636909013 crossref_citationtrail_10_1186_s12859_020_03724_x crossref_primary_10_1186_s12859_020_03724_x springer_journals_10_1186_s12859_020_03724_x |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-24 |
| PublicationDateYYYYMMDD | 2020-09-24 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationYear | 2020 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | 3724_CR19 S Vilar (3724_CR5) 2018; 19 DS Wishart (3724_CR33) 2017; 46 T Takeda (3724_CR2) 2017; 9 Z Liu (3724_CR35) 2015; 31 JY Shi (3724_CR16) 2019; 11 M Zitnik (3724_CR22) 2018; 34 J Pathak (3724_CR3) 2013; 192 XY Yan (3724_CR27) 2018; 19 Y Zheng (3724_CR29) 2019; 20 L Vivian (3724_CR32) 2013; 42 JD Duke (3724_CR4) 2012; 8 W Zhang (3724_CR11) 2017; 18 X Yue (3724_CR17) 2020; 36 XN Fan (3724_CR26) 2019; 370 D Sridhar (3724_CR9) 2016; 32 3724_CR31 M Defferrard (3724_CR38) 2016; 29 3724_CR36 H Yu (3724_CR14) 2018; 12 3724_CR37 F Cheng (3724_CR10) 2014; 21 3724_CR18 S Vilar (3724_CR7) 2013; 8 KC Chou (3724_CR25) 2011; 273 KC Chou (3724_CR24) 2008; 30 KY Gao (3724_CR23) 2018 A Gottlieb (3724_CR8) 2012; 8 Y Zhang (3724_CR28) 2020; 179 M Sun (3724_CR20) 2020; 21 K Andrej (3724_CR12) 2018; 13 K Han (3724_CR1) 2017; 35 3724_CR21 K Park (3724_CR15) 2015; 10 T Mikolov (3724_CR30) 2013; 26 S Vilar (3724_CR6) 2012; 19 P Zhang (3724_CR13) 2015; 5 A Skrbo (3724_CR34) 2004; 58 |
| References_xml | – ident: 3724_CR31 – volume: 9 start-page: 16 year: 2017 ident: 3724_CR2 publication-title: Aust J Chem – volume: 46 start-page: D1074 issue: D1 year: 2017 ident: 3724_CR33 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1037 – volume: 192 start-page: 682 year: 2013 ident: 3724_CR3 publication-title: Stud Health Technol Inform – volume: 18 start-page: 18 issue: 1 year: 2017 ident: 3724_CR11 publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1415-9 – volume: 179 start-page: 37 year: 2020 ident: 3724_CR28 publication-title: Methods. doi: 10.1016/j.ymeth.2020.05.007 – volume: 19 start-page: 863 issue: 5 year: 2018 ident: 3724_CR5 publication-title: Brief Bioinform doi: 10.1093/bib/bbx010 – volume: 30 start-page: 275 issue: 4 year: 2008 ident: 3724_CR24 publication-title: Crit Rev Biochem Mol Biol doi: 10.3109/10409239509083488 – volume: 26 start-page: 3111 year: 2013 ident: 3724_CR30 publication-title: Adv Neural Inf Proces Syst – volume: 13 issue: 5 year: 2018 ident: 3724_CR12 publication-title: PLoS One – ident: 3724_CR18 – start-page: 3371 volume-title: Twenty-Seventh International Joint Conference on Artificial Intelligence IJCAI-18 year: 2018 ident: 3724_CR23 – volume: 21 start-page: 919 issue: 3 year: 2020 ident: 3724_CR20 publication-title: Brief Bioinform doi: 10.1093/bib/bbz042 – volume: 29 start-page: 3844 year: 2016 ident: 3724_CR38 publication-title: Adv Neural Inf Proces Syst – volume: 20 start-page: 661 issue: Suppl 19 year: 2019 ident: 3724_CR29 publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-3214-6 – volume: 58 start-page: 138 issue: 1 Suppl 2 year: 2004 ident: 3724_CR34 publication-title: Med Arh – ident: 3724_CR37 – volume: 8 issue: 3 year: 2013 ident: 3724_CR7 publication-title: PLoS One doi: 10.1371/journal.pone.0058321 – volume: 21 start-page: e278 issue: e2 year: 2014 ident: 3724_CR10 publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2013-002512 – ident: 3724_CR21 doi: 10.1109/ICPR.2018.8545246 – volume: 42 start-page: D1091 issue: D1 year: 2013 ident: 3724_CR32 publication-title: Nucleic Acids Res – volume: 10 issue: 10 year: 2015 ident: 3724_CR15 publication-title: PLoS One – volume: 19 start-page: 498 issue: 5 year: 2018 ident: 3724_CR27 publication-title: Curr Protein Pept Sc doi: 10.2174/1389203718666161108101118 – volume: 8 start-page: 592 year: 2012 ident: 3724_CR8 publication-title: Mol Syst Biol doi: 10.1038/msb.2012.26 – volume: 370 start-page: 88 year: 2019 ident: 3724_CR26 publication-title: Neurocomputing. doi: 10.1016/j.neucom.2019.08.084 – volume: 31 start-page: 1788 issue: 11 year: 2015 ident: 3724_CR35 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btv055 – volume: 32 start-page: 3175 issue: 20 year: 2016 ident: 3724_CR9 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btw342 – volume: 11 start-page: 28 issue: 1 year: 2019 ident: 3724_CR16 publication-title: Aust J Chem – volume: 12 start-page: 14 issue: 1 year: 2018 ident: 3724_CR14 publication-title: BMC Syst Biol doi: 10.1186/s12918-018-0532-7 – volume: 35 start-page: 463 issue: 5 year: 2017 ident: 3724_CR1 publication-title: Nat Biotechnol doi: 10.1038/nbt.3834 – volume: 19 start-page: 1066 issue: 6 year: 2012 ident: 3724_CR6 publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2012-000935 – ident: 3724_CR19 – volume: 273 start-page: 236 issue: 1 year: 2011 ident: 3724_CR25 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2010.12.024 – volume: 8 issue: 8 year: 2012 ident: 3724_CR4 publication-title: PLoS Comput Biol – volume: 5 start-page: 12339 issue: 1 year: 2015 ident: 3724_CR13 publication-title: Sci Rep doi: 10.1038/srep12339 – volume: 36 start-page: 1241 issue: 4 year: 2020 ident: 3724_CR17 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btz718 – ident: 3724_CR36 – volume: 34 start-page: i457 issue: 13 year: 2018 ident: 3724_CR22 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bty294 |
| SSID | ssj0017805 |
| Score | 2.6478038 |
| Snippet | Background
The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the... The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of... Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the... Abstract Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give... |
| SourceID | doaj pubmedcentral proquest gale crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Agglomeration Algorithms Analysis Artificial neural networks Bioinformatics Biological properties Biomedical and Life Sciences Case studies Combination drug therapy Complications and side effects Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer applications Convolution Datasets DDI prediction Deep neural network Drug interactions Drug-drug interaction Drugs Feature extraction Graph convolution network (GCN) Life Sciences Machine learning Machine Learning and Artificial Intelligence in Bioinformatics Machine learning for computational and systems biology Methodology Methodology Article Methods Microarrays Neural networks Performance prediction Propagation Side effects Toxicity |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkLb0SgoICQOEBUJ3ZihwsqLBWVULXipd4sv3aphJIl2UXl3-NxnK1CRS9c9rCeaNf2zHi-jOcbgOdUV7TgC29phFoPUDxm1cp6qIJUL6pSyoXaqm8f-dGROD6u5_GFWx-vVY4-MThq2xp8R75XsBLPWiL4m9XPDLtGYXY1ttC4DFeQJYGGq3vzbRYB-frHQhlR7fU5srVlCJgI5QXLTieHUeDsP--Zz9-W_CtlGk6ig5v_O4dbcCPGoOn-oDS34ZJr7sC1oSvl77tQzOaz2eHrVKXWuVW66jCX46F56uPb1HabZYYfKRJNdENZRH8Pvh68__LuQxZbK2SmEmyd5axApnztwZqHo86Uyi-QIrzWbmF8wK3pghunCNW1YMqDHEc4N1jIW-fWmYLeh52mbdwDSEtX-BhFaKORG45Q5cG2dXVpFceqWJZAPq6xNJF3HNtf_JABf4hKDvsi_b7IsC_yNIGX22dWA-vGhdJvceu2ksiYHb5ou6WMBihpbUTJMc2qDKsFVRpjS0eY1aJiRCfwDDdeIidGg5dulmrT9_Lw8ye5X9GqJj5wogm8iEKL1s_BqFjD4FcCabQmkrsTSW-0Zjo8aoiMTqOXZ-qRwNPtMD6JF-Ea125QhnnAiW43AT7Ry8n0pyPNyfdAHM7LHOuuE3g1avDZj_97eR9e_F8fwfUimBRm6nZhZ91t3GO4an6tT_ruSTDIP7GSON0 priority: 102 providerName: ProQuest – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VpUhcgPIhAgUFhMQBIpzYiR1uhW3VSqiqWqh6s2zHu1RC2VWyi-DfM-Mki0JLJXrJIR4r8XjGnqfxPAO85rbgmZyipzFeIUBBzGpNhVCFqF5MYYwPtVVnn-XRkTo_L4_7orB2OO0-pCTDSh3cWhXv25S41hKCO4zLTCQYOd7C7U6RO56cnq1zB8TSP5THXNlvtAUFpv7L6_HlM5J_JUrD_rN_72Z_fh_u9vFmvNsZyDZs-PoB3O5uoPz1ELLJ8WRy-CE2ceX9Il40lLdBGB5jLBtXzWqW0CMmUommK4FoH8HX_b0vnw6S_hqFxBVKLJNUZMSKbxGYIfT0Ljf4U4bJ0vqpw-Da8ql03jBuSyUMAhrPpHRUtFumlXcZfwyb9bz2TyDOfYbxiLLOEg8c4waBdeXLvDKSKmBFBOmgWe16jnG66uK7DlhDFbrThUZd6KAL_TOCt-s-i45h41rpjzRha0lixw4v5s1M986meelULimlapwoFTeW4kjPRGVVIZiN4BVNtyb-i5oO2MzMqm314emJ3i14UTIMkngEb3qh6RzH4Exfr4CaIMqskeTOSBId1I2bB6vS_QLR6kzkFDoyJSN4uW6mnnTorfbzFckIBJe0xEYgR9Y4Gv64pb74FkjCZZ5SjXUE7wab_PPxf6v36f-JP4M7WTBrytLtwOayWfnnsOV-LC_a5kVwy9-AEy_C priority: 102 providerName: Springer Nature |
| Title | DPDDI: a deep predictor for drug-drug interactions |
| URI | https://link.springer.com/article/10.1186/s12859-020-03724-x https://www.proquest.com/docview/2451727087 https://www.proquest.com/docview/2446660488 https://pubmed.ncbi.nlm.nih.gov/PMC7513481 https://doaj.org/article/39c8572784ac4983ab9510e04db8640b |
| Volume | 21 |
| WOSCitedRecordID | wos000576215500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BAIkXxE8tMKqAkHiAaEmcxA5vG91EBVRRB1PhxbIdd0xCaZW0aPz33DlJIUzACy-WGl-U-Hrn3Ke7-wzwjOmMxXyBnhayEgEKYlatSoQqRPWiMqWs6606fcenUzGf58UvR31RTVhLD9wqbp_lRqSc0mPKJLlgSlNMYMOk1CJLQk27L0Y9PZjq8gfE1N-3yIhsv4mIpy0gqBQyHifBxeAz5Nj6L-_Jl-skf0uWum_Q8W241QWP_kH70nfgiq3uwo32OMnv9yAeF-Px5JWv_NLalb-qKQmDmNrHwNQv681ZQINPDBF128_Q3IePx0cfXr8JujMRApOJZB1ESUwU9xpRFuJIa1KF61Mhz7VdGIyUNVtwY1XIdI4aQ3RiQ84NdeDmUWlNzB7ATrWs7C74qY0xuBDaaCJ1C5lClFzaPC0Vp3bWxIOoV5E0HWE4nVvxVTrgIDLZqlWiWqVTq7zw4MX2nlVLl_FX6UPS_FaSqK7dBTQA2RmA_JcBePCU_jdJZBYVVcucqU3TyMnJTB5kDME_RjzMg-ed0GKJazCqaz5ATRD_1UBybyCJ3maG0715yM7bGxknKcWBoeAePNlO051UwVbZ5YZkEkSKtF96wAdmNVj-cKY6_-IYv3kaUcO0By97A_z58D-r9-H_UO8juBk7v6FE3B7srOuNfQzXzbf1eVOP4CqfczeKEVw7PJoWs5HzRBzf8mBEpbQFjkX6GeeLyfviE_6anZz-AFpYMsM |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH-aBohd-EYEBgQE4gDRktiJHSSEBmVa1VJNMNBuxnbcbhJKStLC9k_xN-LnJJ3CxG47cOmhflET5339-vx-D-AZUSmJ2dRaWkhyC1AsZlUyt1AFqV5kKqVxvVVfx2wy4QcH2d4a_O56YfBYZecTnaPOS43_kW_FNMFYG3L2dv4jwKlRWF3tRmg0ajEyJ78sZKvfDAf2_T6P450P--93g3aqQKBTThdBRGMkiVcWp1gkZnQiI57KkGXKTLXNNRWZMm1kSFTGqbT5vQkZ09jDmkW50Uh0YF3-JUo4Q67-EQtWVQucD9A15vB0q46QHS5AgBYSFtPguBf83IyAs5Hg7OnMv0q0LvLtXP_f9uwGXGtzbH-7MYqbsGaKW3Clmbp5chviwd5gMHztSz83Zu7PK6xVLcrKt_m7n1fLWYAfPhJpVE3bR30HvlzIDd-F9aIszD3wExPbHIwrrZD7LiSS0Tg3WZJLhl2_1IOoe6dCt7zqON7ju3D4iqei0QNh9UA4PRDHHrxcXTNvWEXOlX6HqrKSREZw90VZzUTrYATJNE8YlpGlphknUmHubEKaK57SUHnwFBVNIOdHgYeKZnJZ12L4-ZPYTkmahTYxJB68aIWmpX0GLdseDbsTSBPWk9zsSVqnpPvLnUaK1inW4lQdPXiyWsYr8aBfYcolylALqDGseMB6dtB7_P5KcXToiNFZEmFfuQevOos5_fF_b-_98-_1MVzd3f84FuPhZPQANmJnzliV3IT1RbU0D-Gy_rk4qqtHzhn48O2iLekPXaCTew |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6h8UN74fdEYEBASDxANCd24oS3QamomKqKwbQ3y3acMmlKq6RF8N9z56SFMEBCvPShPqv15c65T-fvM8AzbjKeyAozjfESAQpiVqNLhCok9aIzrZ3nVp0cyek0Pz0tZj-x-P1p901LsuM0kEpTvTpYllWX4nl20MakuxYR9GFcJiLCKvKyoEuDCK8fn2z7CKTYv6HK_Hbe4HXkVfsv7s0Xz0v-0jT176Lxjf9fxU243teh4WEXOLfgkqtvw9XuZspvdyAZzUajyatQh6Vzy3DZUD8H4XmINW5YNut5RB8hiU00HTWivQufxm8_vnkX9dcrRDbLxSqKRUJq-QYBG0JSZ1ONf0ozWRhXWSy6Da-kdZpxU-RCI9BxTEpLZN4iLp1N-B7s1Iva3YMwdQnWKbmxhvThGNcIuEtXpKWWxIwVAcQbLyvba4_TFRjnymOQPFOdLxT6QnlfqK8BvNjOWXbKG3-1fk0Pb2tJqtn-i0UzV30SKl7YPJXUatVWFDnXhupLx0Rp8kwwE8BTevSKdDFqOngz1-u2VZPjD-ow41nBsHjiATzvjaoFrsHqnseAniAprYHl_sASE9cOhzcRpvqNo1WJSKmkZLkM4Ml2mGbSYbjaLdZkIxB00tYbgBxE5mD5w5H67LMXD5dpTNzrAF5u4vPHj__Zvff_zfwxXJuNxupoMn3_AHYTH-HUyNuHnVWzdg_hiv2yOmubRz5bvwPu9DuK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DPDDI%3A+a+deep+predictor+for+drug-drug+interactions&rft.jtitle=BMC+bioinformatics&rft.au=Yue-Hua+Feng&rft.au=Shao-Wu+Zhang&rft.au=Jian-Yu+Shi&rft.date=2020-09-24&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1186%2Fs12859-020-03724-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_39c8572784ac4983ab9510e04db8640b |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |