The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy

DNA damaging agents such as radiotherapy and gemcitabine are frequently used for the treatment of pancreatic cancer. However, these treatments typically provide only modest benefit. Improving the low survival rate for pancreatic cancer patients therefore remains a major challenge in oncology. Inhibi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cancer biology & therapy Ročník 13; číslo 11; s. 1072 - 1081
Hlavní autoři: Prevo, Remko, Fokas, Emmanouil, Reaper, Philip M., Charlton, Peter A., Pollard, John R., McKenna, W. Gillies, Muschel, Ruth J., Brunner, Thomas B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Taylor & Francis 01.09.2012
Landes Bioscience
Témata:
ISSN:1538-4047, 1555-8576, 1555-8576
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract DNA damaging agents such as radiotherapy and gemcitabine are frequently used for the treatment of pancreatic cancer. However, these treatments typically provide only modest benefit. Improving the low survival rate for pancreatic cancer patients therefore remains a major challenge in oncology. Inhibition of the key DNA damage response kinase ATR has been suggested as an attractive approach for sensitization of tumor cells to DNA damaging agents, but specific ATR inhibitors have remained elusive. Here we investigated the sensitization potential of the first highly selective and potent ATR inhibitor, VE-821, in vitro. VE-821 inhibited radiation- and gemcitabine-induced phosphorylation of Chk1, confirming inhibition of ATR signaling. Consistently, VE-821 significantly enhanced the sensitivity of PSN-1, MiaPaCa-2 and primary PancM pancreatic cancer cells to radiation and gemcitabine under both normoxic and hypoxic conditions. ATR inhibition by VE-821 led to inhibition of radiation-induced G 2 /M arrest in cancer cells. Reduced cancer cell radiosurvival following treatment with VE-821 was also accompanied by increased DNA damage and inhibition of homologous recombination repair, as evidenced by persistence of γH2AX and 53BP1 foci and inhibition of Rad51 foci, respectively. These findings support ATR inhibition as a novel approach to improve the efficacy and therapeutic index of standard cancer treatments across a large proportion of pancreatic cancer patients.
AbstractList DNA damaging agents such as radiotherapy and gemcitabine are frequently used for the treatment of pancreatic cancer. However, these treatments typically provide only modest benefit. Improving the low survival rate for pancreatic cancer patients therefore remains a major challenge in oncology. Inhibition of the key DNA damage response kinase ATR has been suggested as an attractive approach for sensitization of tumor cells to DNA damaging agents, but specific ATR inhibitors have remained elusive. Here we investigated the sensitization potential of the first highly selective and potent ATR inhibitor, VE-821, in vitro. VE-821 inhibited radiation- and gemcitabine-induced phosphorylation of Chk1, confirming inhibition of ATR signaling. Consistently, VE-821 significantly enhanced the sensitivity of PSN-1, MiaPaCa-2 and primary PancM pancreatic cancer cells to radiation and gemcitabine under both normoxic and hypoxic conditions. ATR inhibition by VE-821 led to inhibition of radiation-induced G 2/M arrest in cancer cells. Reduced cancer cell radiosurvival following treatment with VE-821 was also accompanied by increased DNA damage and inhibition of homologous recombination repair, as evidenced by persistence of γH2AX and 53BP1 foci and inhibition of Rad51 foci, respectively. These findings support ATR inhibition as a novel approach to improve the efficacy and therapeutic index of standard cancer treatments across a large proportion of pancreatic cancer patients.
DNA damaging agents such as radiotherapy and gemcitabine are frequently used for the treatment of pancreatic cancer. However, these treatments typically provide only modest benefit. Improving the low survival rate for pancreatic cancer patients therefore remains a major challenge in oncology. Inhibition of the key DNA damage response kinase ATR has been suggested as an attractive approach for sensitization of tumor cells to DNA damaging agents, but specific ATR inhibitors have remained elusive. Here we investigated the sensitization potential of the first highly selective and potent ATR inhibitor, VE-821, in vitro. VE-821 inhibited radiation- and gemcitabine-induced phosphorylation of Chk1, confirming inhibition of ATR signaling. Consistently, VE-821 significantly enhanced the sensitivity of PSN-1, MiaPaCa-2 and primary PancM pancreatic cancer cells to radiation and gemcitabine under both normoxic and hypoxic conditions. ATR inhibition by VE-821 led to inhibition of radiation-induced G 2/M arrest in cancer cells. Reduced cancer cell radiosurvival following treatment with VE-821 was also accompanied by increased DNA damage and inhibition of homologous recombination repair, as evidenced by persistence of γH2AX and 53BP1 foci and inhibition of Rad51 foci, respectively. These findings support ATR inhibition as a novel approach to improve the efficacy and therapeutic index of standard cancer treatments across a large proportion of pancreatic cancer patients.DNA damaging agents such as radiotherapy and gemcitabine are frequently used for the treatment of pancreatic cancer. However, these treatments typically provide only modest benefit. Improving the low survival rate for pancreatic cancer patients therefore remains a major challenge in oncology. Inhibition of the key DNA damage response kinase ATR has been suggested as an attractive approach for sensitization of tumor cells to DNA damaging agents, but specific ATR inhibitors have remained elusive. Here we investigated the sensitization potential of the first highly selective and potent ATR inhibitor, VE-821, in vitro. VE-821 inhibited radiation- and gemcitabine-induced phosphorylation of Chk1, confirming inhibition of ATR signaling. Consistently, VE-821 significantly enhanced the sensitivity of PSN-1, MiaPaCa-2 and primary PancM pancreatic cancer cells to radiation and gemcitabine under both normoxic and hypoxic conditions. ATR inhibition by VE-821 led to inhibition of radiation-induced G 2/M arrest in cancer cells. Reduced cancer cell radiosurvival following treatment with VE-821 was also accompanied by increased DNA damage and inhibition of homologous recombination repair, as evidenced by persistence of γH2AX and 53BP1 foci and inhibition of Rad51 foci, respectively. These findings support ATR inhibition as a novel approach to improve the efficacy and therapeutic index of standard cancer treatments across a large proportion of pancreatic cancer patients.
DNA damaging agents such as radiotherapy and gemcitabine are frequently used for the treatment of pancreatic cancer. However, these treatments typically provide only modest benefit. Improving the low survival rate for pancreatic cancer patients therefore remains a major challenge in oncology. Inhibition of the key DNA damage response kinase ATR has been suggested as an attractive approach for sensitization of tumor cells to DNA damaging agents, but specific ATR inhibitors have remained elusive. Here we investigated the sensitization potential of the first highly selective and potent ATR inhibitor, VE-821, in vitro. VE-821 inhibited radiation- and gemcitabine-induced phosphorylation of Chk1, confirming inhibition of ATR signaling. Consistently, VE-821 significantly enhanced the sensitivity of PSN-1, MiaPaCa-2 and primary PancM pancreatic cancer cells to radiation and gemcitabine under both normoxic and hypoxic conditions. ATR inhibition by VE-821 led to inhibition of radiation-induced G2/M arrest in cancer cells. Reduced cancer cell radiosurvival following treatment with VE-821 was also accompanied by increased DNA damage and inhibition of homologous recombination repair, as evidenced by persistence of γH2AX and 53BP1 foci and inhibition of Rad51 foci, respectively. These findings support ATR inhibition as a novel approach to improve the efficacy and therapeutic index of standard cancer treatments across a large proportion of pancreatic cancer patients.
DNA damaging agents such as radiotherapy and gemcitabine are frequently used for the treatment of pancreatic cancer. However, these treatments typically provide only modest benefit. Improving the low survival rate for pancreatic cancer patients therefore remains a major challenge in oncology. Inhibition of the key DNA damage response kinase ATR has been suggested as an attractive approach for sensitization of tumor cells to DNA damaging agents, but specific ATR inhibitors have remained elusive. Here we investigated the sensitization potential of the first highly selective and potent ATR inhibitor, VE-821, in vitro. VE-821 inhibited radiation- and gemcitabine-induced phosphorylation of Chk1, confirming inhibition of ATR signaling. Consistently, VE-821 significantly enhanced the sensitivity of PSN-1, MiaPaCa-2 and primary PancM pancreatic cancer cells to radiation and gemcitabine under both normoxic and hypoxic conditions. ATR inhibition by VE-821 led to inhibition of radiation-induced G 2 /M arrest in cancer cells. Reduced cancer cell radiosurvival following treatment with VE-821 was also accompanied by increased DNA damage and inhibition of homologous recombination repair, as evidenced by persistence of γH2AX and 53BP1 foci and inhibition of Rad51 foci, respectively. These findings support ATR inhibition as a novel approach to improve the efficacy and therapeutic index of standard cancer treatments across a large proportion of pancreatic cancer patients.
Author Reaper, Philip M.
McKenna, W. Gillies
Muschel, Ruth J.
Fokas, Emmanouil
Pollard, John R.
Brunner, Thomas B.
Prevo, Remko
Charlton, Peter A.
AuthorAffiliation Vertex Pharmaceuticals (Europe) Ltd.; Abingdon, UK
Gray Institute for Radiation Oncology and Biology; Oxford University; Oxford, UK
AuthorAffiliation_xml – name: Vertex Pharmaceuticals (Europe) Ltd.; Abingdon, UK
– name: Gray Institute for Radiation Oncology and Biology; Oxford University; Oxford, UK
Author_xml – sequence: 1
  givenname: Remko
  surname: Prevo
  fullname: Prevo, Remko
– sequence: 2
  givenname: Emmanouil
  surname: Fokas
  fullname: Fokas, Emmanouil
– sequence: 3
  givenname: Philip M.
  surname: Reaper
  fullname: Reaper, Philip M.
– sequence: 4
  givenname: Peter A.
  surname: Charlton
  fullname: Charlton, Peter A.
– sequence: 5
  givenname: John R.
  surname: Pollard
  fullname: Pollard, John R.
– sequence: 6
  givenname: W. Gillies
  surname: McKenna
  fullname: McKenna, W. Gillies
– sequence: 7
  givenname: Ruth J.
  surname: Muschel
  fullname: Muschel, Ruth J.
– sequence: 8
  givenname: Thomas B.
  surname: Brunner
  fullname: Brunner, Thomas B.
  email: thomas.brunner@uniklinikfreiburg.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22825331$$D View this record in MEDLINE/PubMed
BookMark eNqdUktv1DAQtlARfcCBP4B8hEPaOHYS-4JUVm1BqgRCC1fLsSesUWIH27to_z3ObpdnJQQnjzzfwzOfT9GR8w4QekrKc0YacqG7dF6RUtAH6ITUdV3wum2O5prygpWsPUanMX4uy6qtGvEIHVcVr2pKyQkalyvAzm9gwJfL99i6le1s8gF_vCp4RfKFDqAiRBzBRZvsxqYt9j2e1K6TrMY6lxCwhmGIOHkclLG54R1WzmC9gtGnFQQ1bR-jh70aIjy5O8_Qh-ur5eJ1cfv25s3i8rbQDaepaEVnhOGG6VoZwfued1QoImpS606QGhoiWk00b1vgilGtGdOCQp6XUKZ6eoZe7nWndTeC0eBSUIOcgh1V2EqvrPy14-xKfvIbSVlDOGFZ4PmdQPBf1hCTHG2cB1QO_DpKUlJBGWO8ytBnP3t9NznsOAMu9gAdfIwBeqlt2u0nW9sha8k5RZlTlLsUM-PFb4yD6H1YtsfmpxmInfVRW8iB_OBU8l2AjV-8WhIqCZGTmTck_kKbLVTI-Q6wtzqYZy75V27mLP7X775hret9GNVXHwYjk9oOPvQhf0MbJf2T9g0J5AEG
CitedBy_id crossref_primary_10_1038_ncomms13272
crossref_primary_10_1016_j_bbrc_2016_03_128
crossref_primary_10_1080_13543784_2017_1389895
crossref_primary_10_1080_14756366_2025_2489720
crossref_primary_10_1016_j_molonc_2014_09_012
crossref_primary_10_1016_j_clon_2014_01_009
crossref_primary_10_1016_j_pharmthera_2016_02_007
crossref_primary_10_1158_0008_5472_CAN_13_3369
crossref_primary_10_1038_s41568_024_00737_z
crossref_primary_10_3390_cancers13143604
crossref_primary_10_1007_s43440_022_00441_5
crossref_primary_10_1016_j_pharmthera_2016_02_003
crossref_primary_10_1002_cbin_10922
crossref_primary_10_14712_fb2016062040167
crossref_primary_10_1016_j_molcel_2016_12_007
crossref_primary_10_3389_fcell_2020_00281
crossref_primary_10_1016_j_critrevonc_2020_103060
crossref_primary_10_1172_JCI96519
crossref_primary_10_1242_jcs_161596
crossref_primary_10_1016_j_drup_2025_101287
crossref_primary_10_1007_s42764_021_00049_8
crossref_primary_10_3390_ijms150712007
crossref_primary_10_1002_mco2_103
crossref_primary_10_1038_s41467_020_16643_5
crossref_primary_10_3390_ijms21197365
crossref_primary_10_1182_bloodadvances_2017015214
crossref_primary_10_1016_j_pharmthera_2014_12_001
crossref_primary_10_1074_jbc_M113_533752
crossref_primary_10_1259_bjr_20140649
crossref_primary_10_1016_j_ctrv_2014_12_012
crossref_primary_10_1016_j_dnarep_2021_103116
crossref_primary_10_1159_000507113
crossref_primary_10_26508_lsa_202000671
crossref_primary_10_1016_j_neo_2019_09_002
crossref_primary_10_1002_jcp_29960
crossref_primary_10_1158_1078_0432_CCR_16_2411
crossref_primary_10_1074_jbc_M116_719740
crossref_primary_10_1016_j_pharmthera_2019_107450
crossref_primary_10_1080_14737140_2024_2357802
crossref_primary_10_3390_ijms24032315
crossref_primary_10_1038_nsmb_3072
crossref_primary_10_1038_s41417_021_00302_y
crossref_primary_10_1002_gcc_22115
crossref_primary_10_3389_fgene_2015_00096
crossref_primary_10_1007_s00280_020_04184_z
crossref_primary_10_1016_j_radonc_2017_09_043
crossref_primary_10_1074_jbc_M115_671404
crossref_primary_10_4155_fmc_15_33
crossref_primary_10_1038_srep41892
crossref_primary_10_1017_erm_2022_14
crossref_primary_10_1038_s41416_024_02904_3
crossref_primary_10_31482_mmsl_2012_025
crossref_primary_10_3389_fpubh_2021_675095
crossref_primary_10_1016_j_jab_2015_07_001
crossref_primary_10_1016_j_ijrobp_2017_02_225
crossref_primary_10_1038_ncomms6691
crossref_primary_10_1093_nar_gkaa224
crossref_primary_10_1158_1078_0432_CCR_15_0479
crossref_primary_10_1097_CM9_0000000000002869
crossref_primary_10_3390_ijms21186684
crossref_primary_10_1016_j_canlet_2025_218009
crossref_primary_10_1080_09553002_2021_1913529
crossref_primary_10_4161_15384101_2014_960729
crossref_primary_10_4161_cc_29214
crossref_primary_10_7554_eLife_02443
crossref_primary_10_1093_nar_gkae031
crossref_primary_10_4155_fmc_2023_0216
crossref_primary_10_3389_fonc_2018_00245
crossref_primary_10_3390_ijms161125991
crossref_primary_10_1016_j_bbrc_2025_152556
crossref_primary_10_1038_s41416_020_0931_6
crossref_primary_10_3390_v11100938
crossref_primary_10_1002_1878_0261_13224
crossref_primary_10_1016_j_ygyno_2014_12_035
crossref_primary_10_1016_j_cej_2021_131725
crossref_primary_10_1080_17512433_2024_2319340
crossref_primary_10_1016_j_ctrv_2017_08_013
crossref_primary_10_26508_lsa_202302279
crossref_primary_10_1039_C6MD00439C
crossref_primary_10_1128_spectrum_01881_21
crossref_primary_10_1186_s12885_017_3319_0
crossref_primary_10_1186_s13014_019_1345_6
crossref_primary_10_1177_1758835920974201
crossref_primary_10_4161_15384101_2014_967070
crossref_primary_10_1016_j_bcp_2019_04_022
crossref_primary_10_1016_j_tranon_2023_101743
crossref_primary_10_2217_fon_15_292
crossref_primary_10_1016_j_ctro_2022_10_004
crossref_primary_10_1016_j_pan_2022_07_010
crossref_primary_10_1016_j_dnarep_2016_02_004
crossref_primary_10_1016_j_pharmthera_2020_107518
crossref_primary_10_1016_j_jpba_2017_01_055
crossref_primary_10_1016_j_ctrv_2013_03_002
crossref_primary_10_1016_j_bioorg_2021_104802
crossref_primary_10_1016_j_ijrobp_2025_09_013
crossref_primary_10_3390_ijms241411684
crossref_primary_10_1007_s00411_013_0486_5
crossref_primary_10_1016_j_bbcan_2017_02_003
crossref_primary_10_1039_C5RA22889A
crossref_primary_10_2174_0929867325666180117102233
crossref_primary_10_1016_j_bmcl_2017_01_045
crossref_primary_10_1007_s12032_020_01372_y
crossref_primary_10_1016_j_ijrobp_2021_07_1708
crossref_primary_10_1016_j_jpba_2017_08_037
crossref_primary_10_1128_JVI_02504_12
crossref_primary_10_2217_fon_12_185
crossref_primary_10_1007_s10555_021_09993_z
crossref_primary_10_1016_j_bbcan_2024_189185
crossref_primary_10_3390_biom5043204
crossref_primary_10_1016_j_bbcan_2014_12_001
crossref_primary_10_3748_wjg_v27_i15_1616
crossref_primary_10_1016_j_molcel_2017_05_001
crossref_primary_10_1007_s00411_013_0497_2
crossref_primary_10_1016_j_pharmthera_2018_03_005
crossref_primary_10_1038_cddis_2012_181
crossref_primary_10_1002_mc_23384
crossref_primary_10_1186_s13578_020_0376_x
crossref_primary_10_1002_1878_0261_12497
crossref_primary_10_1111_cas_12366
crossref_primary_10_1016_j_bbcan_2014_04_002
crossref_primary_10_1042_BST20220681
crossref_primary_10_4161_cc_24740
crossref_primary_10_1016_j_cellsig_2020_109602
crossref_primary_10_1016_j_ctro_2018_06_001
crossref_primary_10_3390_biom5031912
crossref_primary_10_1038_nrd4553
crossref_primary_10_1007_s10555_021_09981_3
crossref_primary_10_1038_s41568_018_0034_3
crossref_primary_10_1080_15384101_2017_1404206
crossref_primary_10_7554_eLife_83870
crossref_primary_10_1002_1878_0261_12402
crossref_primary_10_1016_j_jmb_2017_04_006
crossref_primary_10_1007_s12010_025_05344_8
crossref_primary_10_1016_j_phrs_2020_104740
crossref_primary_10_1016_j_nucmedbio_2017_01_002
crossref_primary_10_1016_j_ctarc_2018_04_001
crossref_primary_10_1007_s11010_017_3075_0
crossref_primary_10_1016_j_oraloncology_2019_05_028
crossref_primary_10_1038_s41467_018_06287_x
crossref_primary_10_1038_s41388_018_0606_4
crossref_primary_10_1016_j_ejmech_2022_114580
crossref_primary_10_1083_jcb_202011014
crossref_primary_10_1186_s13045_019_0725_6
crossref_primary_10_3390_cancers13051118
crossref_primary_10_3748_wjg_v22_i32_7275
crossref_primary_10_1186_s13058_022_01586_0
crossref_primary_10_1016_j_bioorg_2023_106535
crossref_primary_10_3390_genes7080051
crossref_primary_10_1016_j_bbrc_2020_05_005
crossref_primary_10_1007_s42764_020_00026_7
crossref_primary_10_1186_s13045_017_0443_x
crossref_primary_10_1016_j_semradonc_2015_05_003
crossref_primary_10_1016_j_cell_2024_05_018
crossref_primary_10_1016_j_currproblcancer_2017_05_002
crossref_primary_10_1016_j_molcel_2016_03_006
crossref_primary_10_1007_s10495_017_1402_2
crossref_primary_10_1038_cddis_2017_383
crossref_primary_10_1101_gad_290957_116
crossref_primary_10_3892_or_2017_5580
crossref_primary_10_1016_j_ejmech_2024_116167
crossref_primary_10_1038_s41416_018_0286_4
crossref_primary_10_1186_s13014_015_0464_y
crossref_primary_10_3109_1354750X_2014_898099
crossref_primary_10_1158_1541_7786_MCR_24_0151
Cites_doi 10.1200/JCO.2006.07.5663
10.1172/JCI58928
10.1038/nsmb.2076
10.1056/NEJMra0901557
10.1200/JCO.2001.19.15.3447
10.1016/S1470-2045(11)70004-3
10.1200/JCO.2004.10.112
10.1200/JCO.2005.04.4206
10.4161/cc.8.8.8203
10.1016/S0360-3016(00)00803-8
10.1158/1535-7163.MCT-06-0005
10.1200/JCO.2003.02.098
10.1038/nrclinonc.2009.236
10.1200/JCO.2005.01.9661
10.1038/nrc2342
10.1158/1078-0432.CCR-07-1520
10.1186/1748-717X-5-64
10.1038/nsmb.2189
10.1200/JCO.2006.07.9525
10.1016/j.dnarep.2010.09.012
10.1038/nchembio.573
10.1038/ng.441
10.1038/bjc.2011.243
10.1158/0008-5472.CAN-10-2286
10.1111/j.1349-7006.2011.01880.x
10.1158/1078-0432.CCR-04-0248
10.1126/science.1164368
10.1158/1078-0432.CCR-03-0488
10.3390/ph3051311
10.1038/nrc3007
10.1016/j.molonc.2011.07.002
10.1038/nrgastro.2009.177
10.1158/0008-5472.CAN-09-3573
10.1158/0008-5472.CAN-08-0757
10.1200/JCO.2009.25.7550
10.1038/nature08467
ContentType Journal Article
Copyright Copyright © 2012 Landes Bioscience 2012
Copyright_xml – notice: Copyright © 2012 Landes Bioscience 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.4161/cbt.21093
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1555-8576
EndPage 1081
ExternalDocumentID PMC3461814
22825331
10_4161_cbt_21093
10921093
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0700730
– fundername: Cancer Research UK
  grantid: 11563
GroupedDBID ---
00X
0VX
0YH
29B
30N
53G
5GY
6J9
AAFWJ
ABCCY
ABEIZ
ABFIM
ACGFO
ACGFS
ACTIO
ADBBV
ADCVX
AECIN
AEISY
AENEX
AFPKN
AGYJP
AIJEM
AIYEW
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AQTUD
AVBZW
BABNJ
BAWUL
BLEHA
C1A
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EMOBN
F5P
H13
HYE
IH2
KSSTO
KYCEM
M4Z
O9-
OK1
P2P
P6G
RPM
SJN
TDBHL
TFL
TFW
TR2
TTHFI
-
0R
AAAVI
ABJVF
ACENM
AEGYZ
AGCAB
AIRBT
AIRXU
AWQZV
RNANH
ROSJB
RTWRZ
TFT
TQWBC
4.4
AAYXX
ACKZS
ADFZZ
AURDB
BFWEY
CITATION
CWRZV
EJD
GROUPED_DOAJ
IPNFZ
LJTGL
PCLFJ
RIG
UDS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c683t-79bd9d8d4c5ad98ff8b39a19515cb915e6197c1c877e8a43cc44c93e153134af3
IEDL.DBID TFW
ISICitedReferencesCount 199
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000308694300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1538-4047
1555-8576
IngestDate Tue Nov 04 01:58:49 EST 2025
Thu Jul 10 17:18:28 EDT 2025
Mon Jul 21 05:50:36 EDT 2025
Sat Nov 29 05:34:29 EST 2025
Tue Nov 18 22:01:40 EST 2025
Fri Jan 15 03:37:24 EST 2021
Fri Jan 15 03:36:02 EST 2021
Fri Jan 15 03:37:23 EST 2021
Tue May 21 11:32:49 EDT 2019
Mon Oct 20 23:44:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c683t-79bd9d8d4c5ad98ff8b39a19515cb915e6197c1c877e8a43cc44c93e153134af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.4161/cbt.21093?needAccess=true
PMID 22825331
PQID 1039344482
PQPubID 23479
PageCount 10
ParticipantIDs crossref_citationtrail_10_4161_cbt_21093
crossref_primary_10_4161_cbt_21093
landesbioscience_primary_cbt_article_21093
landesbioscience_primary_cbt_article_21093_10_4161_cbt_21093
pubmed_primary_22825331
informaworld_taylorfrancis_310_4161_cbt_21093
landesbioscience_primary_cbt_article_21093_10_4161
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3461814
proquest_miscellaneous_1039344482
PublicationCentury 2000
PublicationDate 9/1/2012
2012/09/01
2012-09-00
2012-Sep
20120901
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 9/1/2012
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer biology & therapy
PublicationTitleAlternate Cancer Biol Ther
PublicationYear 2012
Publisher Taylor & Francis
Landes Bioscience
Publisher_xml – name: Taylor & Francis
– name: Landes Bioscience
References Han H (R29) 2002; 62
Bramhall SR (R5) 2001; 19
R21
R20
R23
R22
R25
R24
R27
R26
R28
R1
R2
R3
R4
R6
R7
R8
R9
R30
R10
R32
R31
R12
R34
R11
R33
R14
R36
R13
R35
R16
R38
R15
R37
R18
R17
R19
References_xml – ident: R26
  doi: 10.1200/JCO.2006.07.5663
– ident: R32
  doi: 10.1172/JCI58928
– ident: R33
  doi: 10.1038/nsmb.2076
– ident: R2
  doi: 10.1056/NEJMra0901557
– volume: 19
  start-page: 3447
  year: 2001
  ident: R5
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2001.19.15.3447
– ident: R7
  doi: 10.1016/S1470-2045(11)70004-3
– ident: R4
  doi: 10.1200/JCO.2004.10.112
– ident: R15
  doi: 10.1200/JCO.2005.04.4206
– ident: R21
  doi: 10.4161/cc.8.8.8203
– ident: R23
  doi: 10.1016/S0360-3016(00)00803-8
– ident: R27
  doi: 10.1158/1535-7163.MCT-06-0005
– ident: R8
  doi: 10.1200/JCO.2003.02.098
– ident: R11
  doi: 10.1038/nrclinonc.2009.236
– ident: R6
  doi: 10.1200/JCO.2005.01.9661
– ident: R13
  doi: 10.1038/nrc2342
– ident: R16
  doi: 10.1158/1078-0432.CCR-07-1520
– ident: R3
  doi: 10.1186/1748-717X-5-64
– ident: R31
  doi: 10.1038/nsmb.2189
– ident: R10
  doi: 10.1200/JCO.2006.07.9525
– ident: R30
  doi: 10.1016/j.dnarep.2010.09.012
– ident: R19
  doi: 10.1038/nchembio.573
– ident: R18
  doi: 10.1016/j.dnarep.2010.09.012
– ident: R20
  doi: 10.1038/ng.441
– ident: R35
  doi: 10.1038/bjc.2011.243
– ident: R28
  doi: 10.1158/0008-5472.CAN-10-2286
– ident: R24
  doi: 10.1111/j.1349-7006.2011.01880.x
– ident: R37
  doi: 10.1158/1078-0432.CCR-04-0248
– ident: R14
  doi: 10.1126/science.1164368
– ident: R25
  doi: 10.1158/1078-0432.CCR-03-0488
– ident: R36
  doi: 10.3390/ph3051311
– ident: R12
  doi: 10.1038/nrc3007
– ident: R22
  doi: 10.1016/j.molonc.2011.07.002
– ident: R1
  doi: 10.1038/nrgastro.2009.177
– ident: R34
  doi: 10.1158/0008-5472.CAN-09-3573
– ident: R38
  doi: 10.1158/0008-5472.CAN-08-0757
– ident: R9
  doi: 10.1200/JCO.2009.25.7550
– volume: 62
  start-page: 2890
  year: 2002
  ident: R29
  publication-title: Cancer Res
– ident: R17
  doi: 10.1038/nature08467
SSID ssj0027269
Score 2.4647272
Snippet DNA damaging agents such as radiotherapy and gemcitabine are frequently used for the treatment of pancreatic cancer. However, these treatments typically...
SourceID pubmedcentral
proquest
pubmed
crossref
landesbioscience
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1072
SubjectTerms Antineoplastic Combined Chemotherapy Protocols - pharmacology
Ataxia Telangiectasia Mutated Proteins
ATR
Binding
Biology
Bioscience
Calcium
Cancer
Cell
Cell Cycle Checkpoints - drug effects
Cell Cycle Checkpoints - radiation effects
Cell Cycle Proteins - antagonists & inhibitors
Cell Hypoxia - physiology
Cell Line, Tumor
chemotherapy
Combined Modality Therapy
Cycle
Deoxycytidine - administration & dosage
Deoxycytidine - analogs & derivatives
Deoxycytidine - pharmacology
DNA Damage
DNA Repair
Gemcitabine
Humans
hypoxia
inhibitor
Landes
Organogenesis
Pancreatic Neoplasms - drug therapy
Pancreatic Neoplasms - enzymology
Pancreatic Neoplasms - pathology
Pancreatic Neoplasms - radiotherapy
Phosphorylation
Protein Serine-Threonine Kinases - antagonists & inhibitors
Proteins
Pyrazines - administration & dosage
Pyrazines - pharmacology
Radiation-Sensitizing Agents - pharmacology
radiosensitivity
Research Paper
Signal Transduction
Sulfones - administration & dosage
Sulfones - pharmacology
Title The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy
URI https://www.tandfonline.com/doi/abs/10.4161/cbt.21093
http://www.landesbioscience.com/journals/cbt/article/21093/10.4161/cbt.21093
http://www.landesbioscience.com/journals/cbt/article/21093/10.4161/
http://www.landesbioscience.com/journals/cbt/article/21093/
https://www.ncbi.nlm.nih.gov/pubmed/22825331
https://www.proquest.com/docview/1039344482
https://pubmed.ncbi.nlm.nih.gov/PMC3461814
Volume 13
WOSCitedRecordID wos000308694300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1555-8576
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027269
  issn: 1538-4047
  databaseCode: TFW
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKhRAcWr4bPiqDOCCkQGM7a1viAlVXHKBCaIG9WbbjqCvRpNqklfj3zDjJdlMtEuW6mThrz7PzJh6_IeSV06xUduLT4ITFbUaZOiYPUmmtDjpy3ujpz_L4WM3n-usWyYezMJhWiTF02QlFxLUaJ7d1sQIJ0vF33rVvGcogwcoLbB5xPZv-vAyzWCxkF6eyOBCy0xMa3zl6C400Su-QXUwpxN2ZXk0ybCKfV3Mo115K093_7M5dstOzUPqhg809shWq--TWl36f_QE5BfTQqr4IYDP7RhfVycLB1F_SH0epYhn8gGSzCQ1tMAG-q0BB65LC2tLRUE894mlJcWegoW1Nl6iCgDCg8E8pYOW0P_z1-yH5Pj2aHX5K-8IMqZ8o3qZSu0IXqhA-t4VWZakc1zYDspZ7p7M8QFQmfeaVlEFZwb0XwmsewCUZF7bkj8h2VVdhj9DJRGesyAVEpU44gI1W3oGlzYA4KO0T8npwlPG9ajkWz_hlIHrB4TMwfCYOX0JerkzPOqmOTUbpurdNG7-LlF0RE8M32V-Fw2XjzKDOVn34cZZxCKXMWVEm5M1f7bHRfj0YGmf_bjz0JSHvr3_TeodeDGA2sJIgCGwV6vPGYFIAB0colpDHHbhXDTM84sw5PFyOYL8yQJXy8ZVqcRLVyrkAR2biyTUH_im5DdyUdel8z8h2uzwPz8lNf9EumuU-uSHnaj_O-z8qZ2Bp
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-Ngfh4YHxTPg3iASEFFtuJbYkXmFYN0VUIFbY3K3YcrRJLpiabxH_PXZJ27VQkxmtycWLf7-y7-Pw7gDfO8EJnqY-CkxltM6rIcbUdqSwzwbQ-b6vpkRqP9eGh-bYB6fwsDKVVUgxddEQR7VxNxk0_o8nCyR__4F3znhMP0hW4muD6Sql8k-HBeaDF21J2rTHLbak6RqHVR1fWoRWW0luwRUmFtD_T80mGde7nxSzKpWVpuPW_HboDt3tHlH3qkHMXNkJ5D67v91vt9-EYAcTK6iygzOQ7m5ZHU4fWP2M_dyPNY7xA_mYdalZTDnxXhIJVBcPppfNEPfMEqRmjzYGaNRWbERECIYHhpzKEy3F__uv3A_gx3J3s7EV9bYbIp1o0kTIuN7nOpU-y3Oii0E6YLEZ_LfHOxEnAwEz52Gulgs6k8F5Kb0RAncRCZoV4CJtlVYbHwNLUxDxPJAamTjpEjtHeoWQWo--gjR_A27mmrO-Jy6l-xi-LAQwNn8Xhs-3wDeD1QvSkY-tYJxQtq9s27a-RoqtjYsU6-Yt4OG-cW6LaqnY-T2KB0ZQ9yYsBvPurPDXaTwnzxvm_C8_7MoCPl39ouUOv5mi2OJkQCLIyVKe1pbwAgYrQfACPOnQvGuZ0ylkIfLlawf1CgIjKV--U06OWsFxIVGQsn1xy4F_Cjb3J_siOvoy_PoWb6KryLrvvGWw2s9PwHK75s2Zaz1605v8HoBpjog
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VgqpyoLwK4WkQB4QUaGxnY0tcoHQFoqwqtNDerNhx1JVoUiVpJf49M3lsd6tFolyTsRN7vnFm4vE3AK-s5rlKRy70Vqa0zZiElic7YZKm2uvW5201vZ9MJuroSB-sQTychaG0Soqh844ool2rybhPs5wMnNzxd842bznRIF2D6y0hFsJ4Oj68iLN4W8mutWW5I5OOUGi56dJnaImk9CZsUU4hbc_0dJJ-lfd5OYly4as03vrP8dyGW70byj50uLkDa764Cxvf-o32e3CC8GFFee5RZvqdzYrjmUXbr9jPvVDxCC-Qt1n7mtWUAd-VoGBlznBx6fxQxxwBqmK0NVCzpmQV0SAQDhi-KUOwnPSnv37fhx_jvenu57CvzBC6kRJNmGib6Uxl0sVpplWeKyt0GqG3Fjuro9hjWJa4yKkk8SqVwjkpnRYeVRIJmeZiG9aLsvAPgY1GOuJZLDEstdIibrRyFiXTCD0HpV0ArwdFGdfTllP1jF8GwxeaPoPTZ9rpC-DlXPS04-pYJRQuats07Y-RvKtiYsQq-ctwuOicGyLaKnc_TiOBsZRBrQbw5q_y1Gm_IAyd838XHsYSwPurN1oc0IsBzAaXEgJBWvjyrDaUFSBQEYoH8KAD97xjTmechcCHJ0uwnwsQTfnynWJ23NKVC4mKjOSjK078c9g4-DQ2-18mXx_DJvqpvEvtewLrTXXmn8INd97M6upZa_x_ABDaYkY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+novel+ATR+inhibitor+VE-821+increases+sensitivity+of+pancreatic+cancer+cells+to+radiation+and+chemotherapy&rft.jtitle=Cancer+biology+%26+therapy&rft.au=Prevo%2C+Remko&rft.au=Fokas%2C+Emmanouil&rft.au=Reaper%2C+Philip+M.&rft.au=Charlton%2C+Peter+A.&rft.date=2012-09-01&rft.pub=Landes+Bioscience&rft.issn=1538-4047&rft.eissn=1555-8576&rft.volume=13&rft.issue=11&rft.spage=1072&rft.epage=1081&rft_id=info:doi/10.4161%2Fcbt.21093&rft_id=info%3Apmid%2F22825331&rft.externalDocID=PMC3461814
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-4047&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-4047&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-4047&client=summon