Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study

By 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of sight-threatening complications such as myopic macular degeneration. These are diagnoses that typically require specialist assessment or measurement...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Lancet Digital Health Ročník 3; číslo 5; s. e317 - e329
Hlavní autoři: Tan, Tien-En, Anees, Ayesha, Chen, Cheng, Li, Shaohua, Xu, Xinxing, Li, Zengxiang, Xiao, Zhe, Yang, Yechao, Lei, Xiaofeng, Ang, Marcus, Chia, Audrey, Lee, Shu Yen, Wong, Edmund Yick Mun, Yeo, Ian Yew San, Wong, Yee Ling, Hoang, Quan V, Wang, Ya Xing, Bikbov, Mukharram M, Nangia, Vinay, Jonas, Jost B, Chen, Yen-Po, Wu, Wei-Chi, Ohno-Matsui, Kyoko, Rim, Tyler Hyungtaek, Tham, Yih-Chung, Goh, Rick Siow Mong, Lin, Haotian, Liu, Hanruo, Wang, Ningli, Yu, Weihong, Tan, Donald Tiang Hwee, Schmetterer, Leopold, Cheng, Ching-Yu, Chen, Youxin, Wong, Chee Wai, Cheung, Gemmy Chui Ming, Saw, Seang-Mei, Wong, Tien Yin, Liu, Yong, Ting, Daniel Shu Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.05.2021
Elsevier BV
Elsevier
Témata:
ISSN:2589-7500, 2589-7500
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract By 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of sight-threatening complications such as myopic macular degeneration. These are diagnoses that typically require specialist assessment or measurement with multiple unconnected pieces of equipment. Artificial intelligence (AI) approaches might be effective for risk stratification and to identify individuals at highest risk of visual loss. However, unresolved challenges for AI medical studies remain, including paucity of transparency, auditability, and traceability. In this retrospective multicohort study, we developed and tested retinal photograph-based deep learning algorithms for detection of myopic macular degeneration and high myopia, using a total of 226 686 retinal images. First we trained and internally validated the algorithms on datasets from Singapore, and then externally tested them on datasets from China, Taiwan, India, Russia, and the UK. We also compared the performance of the deep learning algorithms against six human experts in the grading of a randomly selected dataset of 400 images from the external datasets. As proof of concept, we used a blockchain-based AI platform to demonstrate the real-world application of secure data transfer, model transfer, and model testing across three sites in Singapore and China. The deep learning algorithms showed robust diagnostic performance with areas under the receiver operating characteristic curves [AUC] of 0·969 (95% CI 0·959–0·977) or higher for myopic macular degeneration and 0·913 (0·906–0·920) or higher for high myopia across the external testing datasets with available data. In the randomly selected dataset, the deep learning algorithms outperformed all six expert graders in detection of each condition (AUC of 0·978 [0·957–0·994] for myopic macular degeneration and 0·973 [0·941–0·995] for high myopia). We also successfully used blockchain technology for data transfer, model transfer, and model testing between sites and across two countries. Deep learning algorithms can be effective tools for risk stratification and screening of myopic macular degeneration and high myopia among the large global population with myopia. The blockchain platform developed here could potentially serve as a trusted platform for performance testing of future AI models in medicine. None.
AbstractList By 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of sight-threatening complications such as myopic macular degeneration. These are diagnoses that typically require specialist assessment or measurement with multiple unconnected pieces of equipment. Artificial intelligence (AI) approaches might be effective for risk stratification and to identify individuals at highest risk of visual loss. However, unresolved challenges for AI medical studies remain, including paucity of transparency, auditability, and traceability. In this retrospective multicohort study, we developed and tested retinal photograph-based deep learning algorithms for detection of myopic macular degeneration and high myopia, using a total of 226 686 retinal images. First we trained and internally validated the algorithms on datasets from Singapore, and then externally tested them on datasets from China, Taiwan, India, Russia, and the UK. We also compared the performance of the deep learning algorithms against six human experts in the grading of a randomly selected dataset of 400 images from the external datasets. As proof of concept, we used a blockchain-based AI platform to demonstrate the real-world application of secure data transfer, model transfer, and model testing across three sites in Singapore and China. The deep learning algorithms showed robust diagnostic performance with areas under the receiver operating characteristic curves [AUC] of 0·969 (95% CI 0·959-0·977) or higher for myopic macular degeneration and 0·913 (0·906-0·920) or higher for high myopia across the external testing datasets with available data. In the randomly selected dataset, the deep learning algorithms outperformed all six expert graders in detection of each condition (AUC of 0·978 [0·957-0·994] for myopic macular degeneration and 0·973 [0·941-0·995] for high myopia). We also successfully used blockchain technology for data transfer, model transfer, and model testing between sites and across two countries. Deep learning algorithms can be effective tools for risk stratification and screening of myopic macular degeneration and high myopia among the large global population with myopia. The blockchain platform developed here could potentially serve as a trusted platform for performance testing of future AI models in medicine. None.
Background: By 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of sight-threatening complications such as myopic macular degeneration. These are diagnoses that typically require specialist assessment or measurement with multiple unconnected pieces of equipment. Artificial intelligence (AI) approaches might be effective for risk stratification and to identify individuals at highest risk of visual loss. However, unresolved challenges for AI medical studies remain, including paucity of transparency, auditability, and traceability. Methods: In this retrospective multicohort study, we developed and tested retinal photograph-based deep learning algorithms for detection of myopic macular degeneration and high myopia, using a total of 226 686 retinal images. First we trained and internally validated the algorithms on datasets from Singapore, and then externally tested them on datasets from China, Taiwan, India, Russia, and the UK. We also compared the performance of the deep learning algorithms against six human experts in the grading of a randomly selected dataset of 400 images from the external datasets. As proof of concept, we used a blockchain-based AI platform to demonstrate the real-world application of secure data transfer, model transfer, and model testing across three sites in Singapore and China. Findings: The deep learning algorithms showed robust diagnostic performance with areas under the receiver operating characteristic curves [AUC] of 0·969 (95% CI 0·959–0·977) or higher for myopic macular degeneration and 0·913 (0·906–0·920) or higher for high myopia across the external testing datasets with available data. In the randomly selected dataset, the deep learning algorithms outperformed all six expert graders in detection of each condition (AUC of 0·978 [0·957–0·994] for myopic macular degeneration and 0·973 [0·941–0·995] for high myopia). We also successfully used blockchain technology for data transfer, model transfer, and model testing between sites and across two countries. Interpretation: Deep learning algorithms can be effective tools for risk stratification and screening of myopic macular degeneration and high myopia among the large global population with myopia. The blockchain platform developed here could potentially serve as a trusted platform for performance testing of future AI models in medicine. Funding: None.
By 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of sight-threatening complications such as myopic macular degeneration. These are diagnoses that typically require specialist assessment or measurement with multiple unconnected pieces of equipment. Artificial intelligence (AI) approaches might be effective for risk stratification and to identify individuals at highest risk of visual loss. However, unresolved challenges for AI medical studies remain, including paucity of transparency, auditability, and traceability.BACKGROUNDBy 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of sight-threatening complications such as myopic macular degeneration. These are diagnoses that typically require specialist assessment or measurement with multiple unconnected pieces of equipment. Artificial intelligence (AI) approaches might be effective for risk stratification and to identify individuals at highest risk of visual loss. However, unresolved challenges for AI medical studies remain, including paucity of transparency, auditability, and traceability.In this retrospective multicohort study, we developed and tested retinal photograph-based deep learning algorithms for detection of myopic macular degeneration and high myopia, using a total of 226 686 retinal images. First we trained and internally validated the algorithms on datasets from Singapore, and then externally tested them on datasets from China, Taiwan, India, Russia, and the UK. We also compared the performance of the deep learning algorithms against six human experts in the grading of a randomly selected dataset of 400 images from the external datasets. As proof of concept, we used a blockchain-based AI platform to demonstrate the real-world application of secure data transfer, model transfer, and model testing across three sites in Singapore and China.METHODSIn this retrospective multicohort study, we developed and tested retinal photograph-based deep learning algorithms for detection of myopic macular degeneration and high myopia, using a total of 226 686 retinal images. First we trained and internally validated the algorithms on datasets from Singapore, and then externally tested them on datasets from China, Taiwan, India, Russia, and the UK. We also compared the performance of the deep learning algorithms against six human experts in the grading of a randomly selected dataset of 400 images from the external datasets. As proof of concept, we used a blockchain-based AI platform to demonstrate the real-world application of secure data transfer, model transfer, and model testing across three sites in Singapore and China.The deep learning algorithms showed robust diagnostic performance with areas under the receiver operating characteristic curves [AUC] of 0·969 (95% CI 0·959-0·977) or higher for myopic macular degeneration and 0·913 (0·906-0·920) or higher for high myopia across the external testing datasets with available data. In the randomly selected dataset, the deep learning algorithms outperformed all six expert graders in detection of each condition (AUC of 0·978 [0·957-0·994] for myopic macular degeneration and 0·973 [0·941-0·995] for high myopia). We also successfully used blockchain technology for data transfer, model transfer, and model testing between sites and across two countries.FINDINGSThe deep learning algorithms showed robust diagnostic performance with areas under the receiver operating characteristic curves [AUC] of 0·969 (95% CI 0·959-0·977) or higher for myopic macular degeneration and 0·913 (0·906-0·920) or higher for high myopia across the external testing datasets with available data. In the randomly selected dataset, the deep learning algorithms outperformed all six expert graders in detection of each condition (AUC of 0·978 [0·957-0·994] for myopic macular degeneration and 0·973 [0·941-0·995] for high myopia). We also successfully used blockchain technology for data transfer, model transfer, and model testing between sites and across two countries.Deep learning algorithms can be effective tools for risk stratification and screening of myopic macular degeneration and high myopia among the large global population with myopia. The blockchain platform developed here could potentially serve as a trusted platform for performance testing of future AI models in medicine.INTERPRETATIONDeep learning algorithms can be effective tools for risk stratification and screening of myopic macular degeneration and high myopia among the large global population with myopia. The blockchain platform developed here could potentially serve as a trusted platform for performance testing of future AI models in medicine.None.FUNDINGNone.
SummaryBackgroundBy 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of sight-threatening complications such as myopic macular degeneration. These are diagnoses that typically require specialist assessment or measurement with multiple unconnected pieces of equipment. Artificial intelligence (AI) approaches might be effective for risk stratification and to identify individuals at highest risk of visual loss. However, unresolved challenges for AI medical studies remain, including paucity of transparency, auditability, and traceability. MethodsIn this retrospective multicohort study, we developed and tested retinal photograph-based deep learning algorithms for detection of myopic macular degeneration and high myopia, using a total of 226 686 retinal images. First we trained and internally validated the algorithms on datasets from Singapore, and then externally tested them on datasets from China, Taiwan, India, Russia, and the UK. We also compared the performance of the deep learning algorithms against six human experts in the grading of a randomly selected dataset of 400 images from the external datasets. As proof of concept, we used a blockchain-based AI platform to demonstrate the real-world application of secure data transfer, model transfer, and model testing across three sites in Singapore and China. FindingsThe deep learning algorithms showed robust diagnostic performance with areas under the receiver operating characteristic curves [AUC] of 0·969 (95% CI 0·959–0·977) or higher for myopic macular degeneration and 0·913 (0·906–0·920) or higher for high myopia across the external testing datasets with available data. In the randomly selected dataset, the deep learning algorithms outperformed all six expert graders in detection of each condition (AUC of 0·978 [0·957–0·994] for myopic macular degeneration and 0·973 [0·941–0·995] for high myopia). We also successfully used blockchain technology for data transfer, model transfer, and model testing between sites and across two countries. InterpretationDeep learning algorithms can be effective tools for risk stratification and screening of myopic macular degeneration and high myopia among the large global population with myopia. The blockchain platform developed here could potentially serve as a trusted platform for performance testing of future AI models in medicine. FundingNone.
Author Tan, Tien-En
Yu, Weihong
Cheung, Gemmy Chui Ming
Ohno-Matsui, Kyoko
Lei, Xiaofeng
Wang, Ya Xing
Wang, Ningli
Xiao, Zhe
Chen, Yen-Po
Lin, Haotian
Wong, Chee Wai
Ting, Daniel Shu Wei
Yang, Yechao
Rim, Tyler Hyungtaek
Liu, Hanruo
Nangia, Vinay
Anees, Ayesha
Li, Shaohua
Lee, Shu Yen
Chen, Youxin
Wong, Yee Ling
Chen, Cheng
Xu, Xinxing
Schmetterer, Leopold
Chia, Audrey
Hoang, Quan V
Ang, Marcus
Bikbov, Mukharram M
Jonas, Jost B
Wu, Wei-Chi
Cheng, Ching-Yu
Wong, Edmund Yick Mun
Goh, Rick Siow Mong
Yeo, Ian Yew San
Li, Zengxiang
Tan, Donald Tiang Hwee
Tham, Yih-Chung
Saw, Seang-Mei
Liu, Yong
Wong, Tien Yin
Author_xml – sequence: 1
  givenname: Tien-En
  surname: Tan
  fullname: Tan, Tien-En
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
– sequence: 2
  givenname: Ayesha
  surname: Anees
  fullname: Anees, Ayesha
  organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore
– sequence: 3
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
  organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore
– sequence: 4
  givenname: Shaohua
  surname: Li
  fullname: Li, Shaohua
  organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore
– sequence: 5
  givenname: Xinxing
  surname: Xu
  fullname: Xu, Xinxing
  organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore
– sequence: 6
  givenname: Zengxiang
  surname: Li
  fullname: Li, Zengxiang
  organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore
– sequence: 7
  givenname: Zhe
  surname: Xiao
  fullname: Xiao, Zhe
  organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore
– sequence: 8
  givenname: Yechao
  surname: Yang
  fullname: Yang, Yechao
  organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore
– sequence: 9
  givenname: Xiaofeng
  surname: Lei
  fullname: Lei, Xiaofeng
  organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore
– sequence: 10
  givenname: Marcus
  surname: Ang
  fullname: Ang, Marcus
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
– sequence: 11
  givenname: Audrey
  surname: Chia
  fullname: Chia, Audrey
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
– sequence: 12
  givenname: Shu Yen
  surname: Lee
  fullname: Lee, Shu Yen
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
– sequence: 13
  givenname: Edmund Yick Mun
  surname: Wong
  fullname: Wong, Edmund Yick Mun
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
– sequence: 14
  givenname: Ian Yew San
  surname: Yeo
  fullname: Yeo, Ian Yew San
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
– sequence: 15
  givenname: Yee Ling
  surname: Wong
  fullname: Wong, Yee Ling
  organization: Saw Swee Hock School of Public Health, National University of Singapore, Singapore
– sequence: 16
  givenname: Quan V
  surname: Hoang
  fullname: Hoang, Quan V
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
– sequence: 17
  givenname: Ya Xing
  surname: Wang
  fullname: Wang, Ya Xing
  organization: Ufa Eye Research Institute, Ufa, Bashkortostan, Russia
– sequence: 18
  givenname: Mukharram M
  surname: Bikbov
  fullname: Bikbov, Mukharram M
  organization: Ufa Eye Research Institute, Ufa, Bashkortostan, Russia
– sequence: 19
  givenname: Vinay
  surname: Nangia
  fullname: Nangia, Vinay
  organization: Suraj Eye Institute, Nagpur, India
– sequence: 20
  givenname: Jost B
  surname: Jonas
  fullname: Jonas, Jost B
  organization: Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Germany
– sequence: 21
  givenname: Yen-Po
  surname: Chen
  fullname: Chen, Yen-Po
  organization: Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
– sequence: 22
  givenname: Wei-Chi
  surname: Wu
  fullname: Wu, Wei-Chi
  organization: Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
– sequence: 23
  givenname: Kyoko
  surname: Ohno-Matsui
  fullname: Ohno-Matsui, Kyoko
  organization: Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
– sequence: 24
  givenname: Tyler Hyungtaek
  surname: Rim
  fullname: Rim, Tyler Hyungtaek
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
– sequence: 25
  givenname: Yih-Chung
  surname: Tham
  fullname: Tham, Yih-Chung
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
– sequence: 26
  givenname: Rick Siow Mong
  surname: Goh
  fullname: Goh, Rick Siow Mong
  organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore
– sequence: 27
  givenname: Haotian
  surname: Lin
  fullname: Lin, Haotian
  organization: Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
– sequence: 28
  givenname: Hanruo
  surname: Liu
  fullname: Liu, Hanruo
  organization: Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
– sequence: 29
  givenname: Ningli
  surname: Wang
  fullname: Wang, Ningli
  organization: Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
– sequence: 30
  givenname: Weihong
  surname: Yu
  fullname: Yu, Weihong
  organization: Peking Union Medical College Hospital, Beijing, China
– sequence: 31
  givenname: Donald Tiang Hwee
  surname: Tan
  fullname: Tan, Donald Tiang Hwee
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
– sequence: 32
  givenname: Leopold
  surname: Schmetterer
  fullname: Schmetterer, Leopold
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
– sequence: 33
  givenname: Ching-Yu
  surname: Cheng
  fullname: Cheng, Ching-Yu
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
– sequence: 34
  givenname: Youxin
  surname: Chen
  fullname: Chen, Youxin
  organization: Peking Union Medical College Hospital, Beijing, China
– sequence: 35
  givenname: Chee Wai
  surname: Wong
  fullname: Wong, Chee Wai
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
– sequence: 36
  givenname: Gemmy Chui Ming
  surname: Cheung
  fullname: Cheung, Gemmy Chui Ming
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
– sequence: 37
  givenname: Seang-Mei
  surname: Saw
  fullname: Saw, Seang-Mei
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
– sequence: 38
  givenname: Tien Yin
  surname: Wong
  fullname: Wong, Tien Yin
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
– sequence: 39
  givenname: Yong
  surname: Liu
  fullname: Liu, Yong
  organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore
– sequence: 40
  givenname: Daniel Shu Wei
  surname: Ting
  fullname: Ting, Daniel Shu Wei
  email: daniel.ting.s.w@singhealth.com.sg
  organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore
BackLink https://cir.nii.ac.jp/crid/1872835442338597632$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/33890579$$D View this record in MEDLINE/PubMed
BookMark eNqNUttu1DAUjFARLaWfAPIDD-VhwZc4TkCAUMWlUiUkLs-W1znePVtvHGxvpf0rPhFnt61QJVRekuhkzow9M4-rgyEMUFVPGX3JKGtefeey7WZKUnrK2QtKqZSz9kF1dDs--Ov7sDpJaVVAnDOhlHpUHQrRdlSq7qj6_Q0yDsaTcRlyWEQzLmdzk6AnPcBIPJg44LAgxi9CxLxcJ-JCJOttGNEQM_TEkLkP9tIuDQ5k9CaX_2uSA3HGosdsMhATMzq0WHRwyOA9LmCwQNbQoy3DCKkI2eXrwhYhx5BGsBmvCmLjM9qwDDGTlDf99kn10Bmf4OT6fVz9_PTxx9mX2cXXz-dnHy5mtml5nvUts9JR5epWWuqUMMI5yxi4OagarO2ka9paCuGklEoJC8rWvAEAybuGi-PqfM_bB7PSY8S1iVsdDOrdIMSFnm5lPWjVU65M7QRIW0ugxireNBIEq9uuKBau0z3XGMOvDaSs15hsscEMEDZJc8laznnb1QX67Bq6mRd3boVvEiuAN3uALS6lCE7byWMMQ44GvWZUTxXRu4roKX_Nmd5VRLdlW97ZvhG4b-_5fm9ALILTk7WKt0LWNS9nk51qxGTa-z0MSjJXCFEni1PSPcYSaLEO7xV6d4fB-iJXSnIJW0irsImlrUkznbime5KJg7Mdw0Tw9t8E_3GAP6nZCQo
CitedBy_id crossref_primary_10_3390_app13085127
crossref_primary_10_1007_s00521_024_09851_3
crossref_primary_10_1097_APO_0000000000000515
crossref_primary_10_1038_s41433_021_01795_5
crossref_primary_10_1080_17469899_2024_2328620
crossref_primary_10_1111_opo_13206
crossref_primary_10_1016_j_apjo_2025_100161
crossref_primary_10_1038_s41433_023_02551_7
crossref_primary_10_1016_j_eswa_2024_124704
crossref_primary_10_1097_ICU_0000000000001087
crossref_primary_10_3389_frai_2023_1323924
crossref_primary_10_1016_j_apjo_2024_100086
crossref_primary_10_1097_ICU_0000000000000791
crossref_primary_10_1016_j_apjo_2025_100241
crossref_primary_10_1007_s11596_021_2485_0
crossref_primary_10_3389_fmed_2025_1580583
crossref_primary_10_1016_j_compbiomed_2023_106556
crossref_primary_10_1136_bjo_2023_324188
crossref_primary_10_1016_j_cjca_2021_11_011
crossref_primary_10_1038_s41598_024_80090_1
crossref_primary_10_1001_jamanetworkopen_2022_9960
crossref_primary_10_1007_s10207_023_00733_8
crossref_primary_10_1016_j_survophthal_2025_09_014
crossref_primary_10_1097_APO_0000000000000399
crossref_primary_10_1097_ICU_0000000000000878
crossref_primary_10_1186_s12886_024_03722_0
crossref_primary_10_1007_s00068_025_02793_y
crossref_primary_10_1016_j_imed_2024_09_002
crossref_primary_10_1016_j_lanwpc_2023_100837
crossref_primary_10_47102_annals_acadmedsg_2022452
crossref_primary_10_1038_s41416_023_02320_z
crossref_primary_10_1016_j_survophthal_2024_03_008
crossref_primary_10_1177_11206721251318384
crossref_primary_10_1016_j_health_2023_100159
crossref_primary_10_1016_j_yaoo_2025_03_006
crossref_primary_10_1136_bmjopen_2023_076418
crossref_primary_10_1186_s12938_023_01110_1
crossref_primary_10_1186_s12960_021_00699_5
crossref_primary_10_3390_diagnostics12112835
crossref_primary_10_1186_s40662_022_00285_3
crossref_primary_10_3389_fmed_2025_1572750
crossref_primary_10_4103_ijo_IJO_2286_22
crossref_primary_10_1007_s40123_024_00981_4
crossref_primary_10_4103_ijo_IJO_1802_22
crossref_primary_10_1097_ICU_0000000000000886
crossref_primary_10_3390_electronics12030750
crossref_primary_10_3390_pharmaceutics16020260
crossref_primary_10_3389_fmed_2022_842680
crossref_primary_10_1007_s43657_023_00155_5
crossref_primary_10_1097_APO_0000000000000421
crossref_primary_10_1097_ICU_0000000000000846
crossref_primary_10_1016_j_oret_2024_01_018
crossref_primary_10_1016_j_clindermatol_2023_12_013
crossref_primary_10_1111_ceo_14498
crossref_primary_10_1016_j_aopr_2025_07_004
crossref_primary_10_3389_fmed_2022_808402
crossref_primary_10_3390_healthcare11010081
crossref_primary_10_7759_cureus_83136
crossref_primary_10_1016_j_oret_2024_01_013
crossref_primary_10_1007_s11227_023_05705_2
crossref_primary_10_1016_j_compbiomed_2024_109537
crossref_primary_10_2196_57644
crossref_primary_10_1002_jbmr_4879
crossref_primary_10_4103_tjo_TJO_D_23_00032
crossref_primary_10_1038_s41746_024_01204_7
crossref_primary_10_1136_bjophthalmol_2021_320926
crossref_primary_10_1007_s10462_024_10873_5
crossref_primary_10_1038_s41598_022_20698_3
crossref_primary_10_1109_JIOT_2022_3232793
crossref_primary_10_1007_s00371_024_03391_6
crossref_primary_10_1097_APO_0000000000000410
crossref_primary_10_1001_jamaophthalmol_2025_1513
crossref_primary_10_1038_s41746_025_01959_7
crossref_primary_10_1097_APO_0000000000000533
crossref_primary_10_1186_s40942_024_00554_4
crossref_primary_10_3389_fmed_2025_1567440
crossref_primary_10_1167_iovs_66_9_7
crossref_primary_10_3390_diagnostics13172810
crossref_primary_10_1007_s00438_023_02036_y
crossref_primary_10_3389_fcell_2023_1124005
crossref_primary_10_1016_j_procs_2024_10_090
crossref_primary_10_3389_fgene_2022_861164
crossref_primary_10_3389_fmed_2025_1555380
crossref_primary_10_1111_opo_13492
crossref_primary_10_1016_j_artmed_2024_102926
crossref_primary_10_1001_jamaophthalmol_2024_3707
crossref_primary_10_1097_ICU_0000000000000984
crossref_primary_10_3390_app142411926
crossref_primary_10_1016_j_aopr_2022_100078
crossref_primary_10_1136_bmjophth_2024_001873
crossref_primary_10_1038_s41433_023_02680_z
crossref_primary_10_1055_a_2652_0081
crossref_primary_10_1515_biol_2022_0773
crossref_primary_10_1007_s13139_023_00821_6
crossref_primary_10_1002_ett_4884
Cites_doi 10.1001/jama.2016.17216
10.1016/S0140-6736(12)60272-4
10.1167/iovs.16-20742
10.1167/iovs.61.4.49
10.1001/jamaophthalmol.2016.4009
10.1001/jama.2017.18152
10.1093/jamia/ocy185
10.1109/MC.2018.3620971
10.1016/j.cmpb.2020.105920
10.1080/09286580600878844
10.1016/j.ajo.2013.08.010
10.1016/S2214-109X(17)30393-5
10.1038/s41598-018-30004-9
10.1038/nature21056
10.1016/j.preteyeres.2017.09.004
10.12688/f1000research.10531.4
10.1097/IAE.0000000000002233
10.1038/s41591-018-0107-6
10.1167/iovs.11-8343
10.1038/d41586-019-00447-9
10.1016/j.ophtha.2017.04.028
10.1016/j.ophtha.2016.01.006
10.1001/jama.2015.10803
10.1016/j.ophtha.2006.01.035
10.3109/09286580903144738
10.1016/j.ophtha.2009.11.003
10.1016/S1470-2045(19)30291-8
10.1016/j.ajo.2015.01.022
10.1148/radiol.2017162326
10.1167/iovs.18-24032
10.1167/iovs.18-23887
10.1016/j.preteyeres.2015.12.001
10.1136/bjo.87.5.570
10.1038/nature14539
10.1080/10739680902975222
10.1136/bjophthalmol-2017-311266
10.1016/j.molmed.2019.05.002
10.1016/S0140-6736(19)30948-1
10.1016/j.ajo.2011.01.052
10.1016/j.ajo.2013.01.016
10.1038/s41746-018-0040-6
10.1016/S0140-6736(19)31401-1
ContentType Journal Article
Contributor OPHTHALMOLOGY
DEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL)
DUKE-NUS MEDICAL SCHOOL
Contributor_xml – sequence: 1
  fullname: DEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL)
– sequence: 2
  fullname: DUKE-NUS MEDICAL SCHOOL
– sequence: 3
  fullname: OPHTHALMOLOGY
Copyright 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license
The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license
Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license
– notice: The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license
– notice: Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/S2589-7500(21)00055-8
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2589-7500
EndPage e329
ExternalDocumentID oai_doaj_org_article_7d027a4f3e5c45e0ac72665e314891ef
33890579
10_1016_S2589_7500_21_00055_8
S2589750021000558
1_s2_0_S2589750021000558
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation None.
GroupedDBID .1-
.FO
0R~
53G
AAEDW
AALRI
AAMRU
AAXUO
ACLIJ
ACVFH
ADCNI
AEUPX
AEXQZ
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
APXCP
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
W2D
Z5R
NCXOZ
0SF
6I.
AAFTH
RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c682t-d81c5f07f485c0f73a3ffc11efbe74ecc95f684533f555773ce7c426eee529623
IEDL.DBID DOA
ISICitedReferencesCount 110
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642286500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2589-7500
IngestDate Fri Oct 03 12:40:42 EDT 2025
Thu Oct 02 06:52:35 EDT 2025
Thu Apr 03 07:02:16 EDT 2025
Thu Nov 13 04:34:37 EST 2025
Tue Nov 18 21:44:59 EST 2025
Fri Jun 27 00:49:36 EDT 2025
Wed May 17 00:09:09 EDT 2023
Sun Feb 23 10:19:02 EST 2025
Tue Aug 26 20:17:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c682t-d81c5f07f485c0f73a3ffc11efbe74ecc95f684533f555773ce7c426eee529623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8448-1264
0000-0001-9290-9198
0000-0002-7189-1707
0000-0002-2622-4075
OpenAccessLink https://doaj.org/article/7d027a4f3e5c45e0ac72665e314891ef
PMID 33890579
PQID 2518222894
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_7d027a4f3e5c45e0ac72665e314891ef
proquest_miscellaneous_2518222894
pubmed_primary_33890579
crossref_citationtrail_10_1016_S2589_7500_21_00055_8
crossref_primary_10_1016_S2589_7500_21_00055_8
nii_cinii_1872835442338597632
elsevier_sciencedirect_doi_10_1016_S2589_7500_21_00055_8
elsevier_clinicalkeyesjournals_1_s2_0_S2589750021000558
elsevier_clinicalkey_doi_10_1016_S2589_7500_21_00055_8
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The Lancet Digital Health
PublicationTitleAlternate Lancet Digit Health
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Fricke, Jong, Naidoo (bib11) 2018; 102
Cheung, Arnold, Holz (bib33) 2017; 124
Morgan, French, Ashby (bib5) 2018; 62
Tham, Lim, Shi (bib10) 2018; 8
Weng, Weng, Zhang, Li, Zhang, Luo (bib48) Nov 8, 2019
Foong, Saw, Loo (bib27) 2007; 14
Haarman, Enthoven, Tideman, Tedja, Verhoeven, Klaver (bib36) 2020; 61
Ohno-Matsui, Kawasaki, Jonas (bib8) 2015; 159
De Fauw, Ledsam, Romera-Paredes (bib18) 2018; 24
Ohno-Matsui, Yoshida, Futagami (bib32) 2003; 87
Zhavoronkov, Church (bib39) 2019; 25
Ohno-Matsui, Lai, Lai, Cheung (bib6) 2016; 52
Tideman, Snabel, Tedja (bib22) 2016; 134
Benniche (bib44) 2019; 20
Varadarajan, Poplin, Blumer (bib37) 2018; 59
Holden, Fricke, Wilson (bib2) 2016; 123
Wong, Teo, Tsai (bib29) 2019; 39
Burki (bib43) 2019; 393
Sun, Zhou, Zhao (bib30) 2012; 53
Chen, Ji, Luo, Liao, Li (bib47) 2018
Flaxman, Bourne, Resnikoff (bib1) 2017; 5
Abràmoff, Lavin, Birch, Shah, Folk (bib17) 2018; 1
Lakhani, Sundaram (bib13) 2017; 284
Li, Liu, Sui (bib25) 2019
Leeming, Ainsworth, Clifton (bib42) 2019; 393
Hemelings, Elen, Blaschko, Jacob, Stalmans, De Boever (bib38) 2021; 199
Gulshan, Peng, Coram (bib16) 2016; 316
Haq, Muselemu (bib40) 2018; 180
Wong, Ferreira, Hughes, Carter, Mitchell (bib34) 2014; 157
Ting, Cheung, Lim (bib15) 2017; 318
LeCun, Bengio, Hinton (bib12) 2015; 521
Benchoufi, Porcher, Ravaud (bib41) 2017; 6
Wong, Sabanayagam, Ding (bib23) 2018; 59
Ohno-Matsui, Shimada, Yasuzumi (bib7) 2011; 152
Kuo, Ohno-Machado (bib46) 2018
He, Xiang, Zeng (bib3) 2015; 314
Esteva, Kuprel, Novoa (bib14) 2017; 542
Morgan, Ohno-Matsui, Saw (bib4) 2012; 379
Chang, Pan, Ohno-Matsui (bib21) 2013; 155
Lavanya, Jeganathan, Zheng (bib28) 2009; 16
Heaven (bib20) 2019; 566
Jeganathan, Sabanayagam, Tai (bib31) 2009; 16
Hayashi, Ohno-Matsui, Shimada (bib35) 2010; 117
Kuo, Zavaleta Rojas, Ohno-Machado (bib45) 2019; 26
Xu, Wang, Li (bib9) 2006; 113
Wong, Phua, Lee, Wong, Cheung (bib24) 2017; 58
Shrikumar, Greenside, Kundaje (bib26) 2017
Dinh, Thai (bib19) 2018; 51
Morgan (10.1016/S2589-7500(21)00055-8_bib4) 2012; 379
Wong (10.1016/S2589-7500(21)00055-8_bib24) 2017; 58
Ohno-Matsui (10.1016/S2589-7500(21)00055-8_bib7) 2011; 152
Weng (10.1016/S2589-7500(21)00055-8_bib48) 2019
Cheung (10.1016/S2589-7500(21)00055-8_bib33) 2017; 124
Foong (10.1016/S2589-7500(21)00055-8_bib27) 2007; 14
Varadarajan (10.1016/S2589-7500(21)00055-8_bib37) 2018; 59
Li (10.1016/S2589-7500(21)00055-8_bib25) 2019
Lakhani (10.1016/S2589-7500(21)00055-8_bib13) 2017; 284
LeCun (10.1016/S2589-7500(21)00055-8_bib12) 2015; 521
Wong (10.1016/S2589-7500(21)00055-8_bib34) 2014; 157
Kuo (10.1016/S2589-7500(21)00055-8_bib45) 2019; 26
Morgan (10.1016/S2589-7500(21)00055-8_bib5) 2018; 62
Gulshan (10.1016/S2589-7500(21)00055-8_bib16) 2016; 316
Leeming (10.1016/S2589-7500(21)00055-8_bib42) 2019; 393
Holden (10.1016/S2589-7500(21)00055-8_bib2) 2016; 123
Esteva (10.1016/S2589-7500(21)00055-8_bib14) 2017; 542
Heaven (10.1016/S2589-7500(21)00055-8_bib20) 2019; 566
Zhavoronkov (10.1016/S2589-7500(21)00055-8_bib39) 2019; 25
Ohno-Matsui (10.1016/S2589-7500(21)00055-8_bib6) 2016; 52
Tham (10.1016/S2589-7500(21)00055-8_bib10) 2018; 8
Flaxman (10.1016/S2589-7500(21)00055-8_bib1) 2017; 5
Dinh (10.1016/S2589-7500(21)00055-8_bib19) 2018; 51
Lavanya (10.1016/S2589-7500(21)00055-8_bib28) 2009; 16
Benchoufi (10.1016/S2589-7500(21)00055-8_bib41) 2017; 6
Hemelings (10.1016/S2589-7500(21)00055-8_bib38) 2021; 199
Burki (10.1016/S2589-7500(21)00055-8_bib43) 2019; 393
Sun (10.1016/S2589-7500(21)00055-8_bib30) 2012; 53
Hayashi (10.1016/S2589-7500(21)00055-8_bib35) 2010; 117
Ohno-Matsui (10.1016/S2589-7500(21)00055-8_bib8) 2015; 159
Xu (10.1016/S2589-7500(21)00055-8_bib9) 2006; 113
Fricke (10.1016/S2589-7500(21)00055-8_bib11) 2018; 102
Wong (10.1016/S2589-7500(21)00055-8_bib23) 2018; 59
Abràmoff (10.1016/S2589-7500(21)00055-8_bib17) 2018; 1
Ohno-Matsui (10.1016/S2589-7500(21)00055-8_bib32) 2003; 87
Haarman (10.1016/S2589-7500(21)00055-8_bib36) 2020; 61
Shrikumar (10.1016/S2589-7500(21)00055-8_bib26) 2017
He (10.1016/S2589-7500(21)00055-8_bib3) 2015; 314
Kuo (10.1016/S2589-7500(21)00055-8_bib46) 2018
Benniche (10.1016/S2589-7500(21)00055-8_bib44) 2019; 20
Wong (10.1016/S2589-7500(21)00055-8_bib29) 2019; 39
Chen (10.1016/S2589-7500(21)00055-8_bib47) 2018
Haq (10.1016/S2589-7500(21)00055-8_bib40) 2018; 180
De Fauw (10.1016/S2589-7500(21)00055-8_bib18) 2018; 24
Tideman (10.1016/S2589-7500(21)00055-8_bib22) 2016; 134
Chang (10.1016/S2589-7500(21)00055-8_bib21) 2013; 155
Jeganathan (10.1016/S2589-7500(21)00055-8_bib31) 2009; 16
Ting (10.1016/S2589-7500(21)00055-8_bib15) 2017; 318
References_xml – volume: 102
  start-page: 855
  year: 2018
  end-page: 862
  ident: bib11
  article-title: Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling
  publication-title: Br J Ophthalmol
– volume: 62
  start-page: 134
  year: 2018
  end-page: 149
  ident: bib5
  article-title: The epidemics of myopia: aetiology and prevention
  publication-title: Prog Retin Eye Res
– volume: 124
  start-page: 1690
  year: 2017
  end-page: 1711
  ident: bib33
  article-title: Myopic choroidal neovascularization: review, guidance, and consensus statement on management
  publication-title: Ophthalmology
– year: 2018
  ident: bib46
  article-title: ModelChain: decentralized privacy-preserving healthcare predictive modeling framework on private blockchain networks
  publication-title: ArXiv
– volume: 52
  start-page: 156
  year: 2016
  end-page: 187
  ident: bib6
  article-title: Updates of pathologic myopia
  publication-title: Prog Retin Eye Res
– volume: 152
  start-page: 256
  year: 2011
  end-page: 265
  ident: bib7
  article-title: Long-term development of significant visual field defects in highly myopic eyes
  publication-title: Am J Ophthalmol
– volume: 87
  start-page: 570
  year: 2003
  end-page: 573
  ident: bib32
  article-title: Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia
  publication-title: Br J Ophthalmol
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib12
  article-title: Deep learning
  publication-title: Nature
– volume: 318
  start-page: 2211
  year: 2017
  end-page: 2223
  ident: bib15
  article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
  publication-title: JAMA
– volume: 59
  start-page: 4603
  year: 2018
  end-page: 4613
  ident: bib23
  article-title: Prevalence, risk factors, and impact of myopic macular degeneration on visual impairment and functioning among adults in Singapore
  publication-title: Invest Ophthalmol Vis Sci
– volume: 25
  start-page: 566
  year: 2019
  end-page: 570
  ident: bib39
  article-title: The advent of human life data economics
  publication-title: Trends Mol Med
– volume: 5
  start-page: e1221
  year: 2017
  end-page: e1234
  ident: bib1
  article-title: Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis
  publication-title: Lancet Glob Health
– volume: 113
  year: 2006
  ident: bib9
  article-title: Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study
  publication-title: Ophthalmology
– volume: 393
  start-page: 2476
  year: 2019
  end-page: 2477
  ident: bib42
  article-title: Blockchain in health care: hype, trust, and digital health
  publication-title: Lancet
– volume: 14
  start-page: 25
  year: 2007
  end-page: 35
  ident: bib27
  article-title: Rationale and methodology for a population-based study of eye diseases in Malay people: the Singapore Malay eye study (SiMES)
  publication-title: Ophthalmic Epidemiol
– volume: 59
  start-page: 2861
  year: 2018
  end-page: 2868
  ident: bib37
  article-title: Deep learning for predicting refractive error from retinal fundus images
  publication-title: Invest Ophthalmol Vis Sci
– volume: 6
  start-page: 66
  year: 2017
  ident: bib41
  article-title: Blockchain protocols in clinical trials: transparency and traceability of consent
  publication-title: F1000 Res
– start-page: 531
  year: 2019
  end-page: 539
  ident: bib25
  article-title: Multi-instance multi-scale CNN for medical image classification
  publication-title: Medical image computing and computer assisted intervention - MICCAI 2019
– volume: 393
  year: 2019
  ident: bib43
  article-title: Pharma blockchains AI for drug development
  publication-title: Lancet
– volume: 180
  start-page: 8
  year: 2018
  end-page: 12
  ident: bib40
  article-title: Blockchain technology in pharmaceutical industry to prevent counterfeit drugs
  publication-title: Int J Comput Appl
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib14
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 58
  start-page: 907
  year: 2017
  end-page: 913
  ident: bib24
  article-title: Is choroidal or scleral thickness related to myopic macular degeneration?
  publication-title: Invest Ophthalmol Vis Sci
– volume: 26
  start-page: 462
  year: 2019
  end-page: 478
  ident: bib45
  article-title: Comparison of blockchain platforms: a systematic review and healthcare examples
  publication-title: J Am Med Inform Assoc
– volume: 134
  start-page: 1355
  year: 2016
  end-page: 1363
  ident: bib22
  article-title: Association of axial length with risk of uncorrectable visual impairment for Europeans with myopia
  publication-title: JAMA Ophthalmol
– start-page: 3145
  year: 2017
  end-page: 3153
  ident: bib26
  article-title: Learning important features through propagating activation differences
  publication-title: Proceedings of the 34th International Conference on Machine Learning - Volume 70. Proceedings of Machine Learning Research
– volume: 53
  start-page: 7504
  year: 2012
  end-page: 7509
  ident: bib30
  article-title: High prevalence of myopia and high myopia in 5060 Chinese university students in Shanghai
  publication-title: Invest Ophthalmol Vis Sci
– volume: 51
  start-page: 48
  year: 2018
  end-page: 53
  ident: bib19
  article-title: AI and blockchain: a disruptive integration
  publication-title: Computer
– start-page: 1178
  year: 2018
  end-page: 1187
  ident: bib47
  article-title: When machine learning meets blockchain: a decentralized, privacy-preserving and secure design
  publication-title: 2018 IEEE International Conference on Big Data (Big Data)
– volume: 24
  start-page: 1342
  year: 2018
  end-page: 1350
  ident: bib18
  article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease
  publication-title: Nat Med
– volume: 123
  start-page: 1036
  year: 2016
  end-page: 1042
  ident: bib2
  article-title: Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050
  publication-title: Ophthalmology
– volume: 155
  start-page: 991
  year: 2013
  end-page: 999
  ident: bib21
  article-title: Myopia-related fundus changes in Singapore adults with high myopia
  publication-title: Am J Ophthalmol
– volume: 379
  start-page: 1739
  year: 2012
  end-page: 1748
  ident: bib4
  article-title: Myopia
  publication-title: Lancet
– volume: 1
  start-page: 39
  year: 2018
  ident: bib17
  article-title: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices
  publication-title: NPJ Digit Med
– volume: 566
  start-page: 141
  year: 2019
  end-page: 142
  ident: bib20
  article-title: Bitcoin for the biological literature
  publication-title: Nature
– volume: 8
  year: 2018
  ident: bib10
  article-title: Trends of visual impairment and blindness in the Singapore Chinese population over a decade
  publication-title: Sci Rep
– volume: 16
  start-page: 534
  year: 2009
  end-page: 543
  ident: bib31
  article-title: Retinal vascular caliber and diabetes in a multiethnic Asian population
  publication-title: Microcirculation
– volume: 199
  year: 2021
  ident: bib38
  article-title: Pathological myopia classification with simultaneous lesion segmentation using deep learning
  publication-title: Comput Methods Programs Biomed
– volume: 159
  start-page: 877
  year: 2015
  end-page: 883
  ident: bib8
  article-title: International photographic classification and grading system for myopic maculopathy
  publication-title: Am J Ophthalmol
– volume: 16
  start-page: 325
  year: 2009
  end-page: 336
  ident: bib28
  article-title: Methodology of the Singapore Indian Chinese Cohort (SICC) eye study: quantifying ethnic variations in the epidemiology of eye diseases in Asians
  publication-title: Ophthalmic Epidemiol
– volume: 284
  start-page: 574
  year: 2017
  end-page: 582
  ident: bib13
  article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
  publication-title: Radiology
– volume: 20
  start-page: e300
  year: 2019
  ident: bib44
  article-title: Using blockchain technology to recycle cancer drugs
  publication-title: Lancet Oncol
– volume: 314
  start-page: 1142
  year: 2015
  end-page: 1148
  ident: bib3
  article-title: Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial
  publication-title: JAMA
– year: Nov 8, 2019
  ident: bib48
  article-title: DeepChain: auditable and privacy-preserving deep learning with blockchain-based incentive
  publication-title: IEEE Transactions on Dependable and Secure Computing
– volume: 117
  start-page: 1595
  year: 2010
  end-page: 1611
  ident: bib35
  article-title: Long-term pattern of progression of myopic maculopathy: a natural history study
  publication-title: Ophthalmology
– volume: 39
  start-page: 1742
  year: 2019
  end-page: 1750
  ident: bib29
  article-title: Characterization of the choroidal vasculature in myopic maculopathy with optical coherence tomographic angiography
  publication-title: Retina
– volume: 157
  start-page: 9
  year: 2014
  end-page: 25
  ident: bib34
  article-title: Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review
  publication-title: Am J Ophthalmol
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: bib16
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– volume: 61
  start-page: 49
  year: 2020
  ident: bib36
  article-title: The complications of myopia: a review and meta-analysis
  publication-title: Invest Ophthalmol Vis Sci
– volume: 316
  start-page: 2402
  year: 2016
  ident: 10.1016/S2589-7500(21)00055-8_bib16
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– start-page: 3145
  year: 2017
  ident: 10.1016/S2589-7500(21)00055-8_bib26
  article-title: Learning important features through propagating activation differences
– volume: 379
  start-page: 1739
  year: 2012
  ident: 10.1016/S2589-7500(21)00055-8_bib4
  article-title: Myopia
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60272-4
– volume: 58
  start-page: 907
  year: 2017
  ident: 10.1016/S2589-7500(21)00055-8_bib24
  article-title: Is choroidal or scleral thickness related to myopic macular degeneration?
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.16-20742
– start-page: 531
  year: 2019
  ident: 10.1016/S2589-7500(21)00055-8_bib25
  article-title: Multi-instance multi-scale CNN for medical image classification
– volume: 61
  start-page: 49
  year: 2020
  ident: 10.1016/S2589-7500(21)00055-8_bib36
  article-title: The complications of myopia: a review and meta-analysis
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.61.4.49
– volume: 134
  start-page: 1355
  year: 2016
  ident: 10.1016/S2589-7500(21)00055-8_bib22
  article-title: Association of axial length with risk of uncorrectable visual impairment for Europeans with myopia
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2016.4009
– volume: 318
  start-page: 2211
  year: 2017
  ident: 10.1016/S2589-7500(21)00055-8_bib15
  article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
  publication-title: JAMA
  doi: 10.1001/jama.2017.18152
– volume: 26
  start-page: 462
  year: 2019
  ident: 10.1016/S2589-7500(21)00055-8_bib45
  article-title: Comparison of blockchain platforms: a systematic review and healthcare examples
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocy185
– volume: 51
  start-page: 48
  year: 2018
  ident: 10.1016/S2589-7500(21)00055-8_bib19
  article-title: AI and blockchain: a disruptive integration
  publication-title: Computer
  doi: 10.1109/MC.2018.3620971
– volume: 199
  year: 2021
  ident: 10.1016/S2589-7500(21)00055-8_bib38
  article-title: Pathological myopia classification with simultaneous lesion segmentation using deep learning
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105920
– volume: 14
  start-page: 25
  year: 2007
  ident: 10.1016/S2589-7500(21)00055-8_bib27
  article-title: Rationale and methodology for a population-based study of eye diseases in Malay people: the Singapore Malay eye study (SiMES)
  publication-title: Ophthalmic Epidemiol
  doi: 10.1080/09286580600878844
– year: 2019
  ident: 10.1016/S2589-7500(21)00055-8_bib48
  article-title: DeepChain: auditable and privacy-preserving deep learning with blockchain-based incentive
– volume: 157
  start-page: 9
  year: 2014
  ident: 10.1016/S2589-7500(21)00055-8_bib34
  article-title: Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2013.08.010
– volume: 5
  start-page: e1221
  year: 2017
  ident: 10.1016/S2589-7500(21)00055-8_bib1
  article-title: Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis
  publication-title: Lancet Glob Health
  doi: 10.1016/S2214-109X(17)30393-5
– volume: 8
  year: 2018
  ident: 10.1016/S2589-7500(21)00055-8_bib10
  article-title: Trends of visual impairment and blindness in the Singapore Chinese population over a decade
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-30004-9
– volume: 542
  start-page: 115
  year: 2017
  ident: 10.1016/S2589-7500(21)00055-8_bib14
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 62
  start-page: 134
  year: 2018
  ident: 10.1016/S2589-7500(21)00055-8_bib5
  article-title: The epidemics of myopia: aetiology and prevention
  publication-title: Prog Retin Eye Res
  doi: 10.1016/j.preteyeres.2017.09.004
– volume: 6
  start-page: 66
  year: 2017
  ident: 10.1016/S2589-7500(21)00055-8_bib41
  article-title: Blockchain protocols in clinical trials: transparency and traceability of consent
  publication-title: F1000 Res
  doi: 10.12688/f1000research.10531.4
– volume: 39
  start-page: 1742
  year: 2019
  ident: 10.1016/S2589-7500(21)00055-8_bib29
  article-title: Characterization of the choroidal vasculature in myopic maculopathy with optical coherence tomographic angiography
  publication-title: Retina
  doi: 10.1097/IAE.0000000000002233
– volume: 24
  start-page: 1342
  year: 2018
  ident: 10.1016/S2589-7500(21)00055-8_bib18
  article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0107-6
– volume: 53
  start-page: 7504
  year: 2012
  ident: 10.1016/S2589-7500(21)00055-8_bib30
  article-title: High prevalence of myopia and high myopia in 5060 Chinese university students in Shanghai
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.11-8343
– volume: 566
  start-page: 141
  year: 2019
  ident: 10.1016/S2589-7500(21)00055-8_bib20
  article-title: Bitcoin for the biological literature
  publication-title: Nature
  doi: 10.1038/d41586-019-00447-9
– volume: 124
  start-page: 1690
  year: 2017
  ident: 10.1016/S2589-7500(21)00055-8_bib33
  article-title: Myopic choroidal neovascularization: review, guidance, and consensus statement on management
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.04.028
– volume: 180
  start-page: 8
  year: 2018
  ident: 10.1016/S2589-7500(21)00055-8_bib40
  article-title: Blockchain technology in pharmaceutical industry to prevent counterfeit drugs
  publication-title: Int J Comput Appl
– volume: 123
  start-page: 1036
  year: 2016
  ident: 10.1016/S2589-7500(21)00055-8_bib2
  article-title: Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2016.01.006
– volume: 314
  start-page: 1142
  year: 2015
  ident: 10.1016/S2589-7500(21)00055-8_bib3
  article-title: Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial
  publication-title: JAMA
  doi: 10.1001/jama.2015.10803
– volume: 113
  year: 2006
  ident: 10.1016/S2589-7500(21)00055-8_bib9
  article-title: Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2006.01.035
– volume: 16
  start-page: 325
  year: 2009
  ident: 10.1016/S2589-7500(21)00055-8_bib28
  article-title: Methodology of the Singapore Indian Chinese Cohort (SICC) eye study: quantifying ethnic variations in the epidemiology of eye diseases in Asians
  publication-title: Ophthalmic Epidemiol
  doi: 10.3109/09286580903144738
– volume: 117
  start-page: 1595
  year: 2010
  ident: 10.1016/S2589-7500(21)00055-8_bib35
  article-title: Long-term pattern of progression of myopic maculopathy: a natural history study
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2009.11.003
– year: 2018
  ident: 10.1016/S2589-7500(21)00055-8_bib46
  article-title: ModelChain: decentralized privacy-preserving healthcare predictive modeling framework on private blockchain networks
  publication-title: ArXiv
– volume: 20
  start-page: e300
  year: 2019
  ident: 10.1016/S2589-7500(21)00055-8_bib44
  article-title: Using blockchain technology to recycle cancer drugs
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30291-8
– volume: 159
  start-page: 877
  year: 2015
  ident: 10.1016/S2589-7500(21)00055-8_bib8
  article-title: International photographic classification and grading system for myopic maculopathy
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2015.01.022
– volume: 284
  start-page: 574
  year: 2017
  ident: 10.1016/S2589-7500(21)00055-8_bib13
  article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
  publication-title: Radiology
  doi: 10.1148/radiol.2017162326
– volume: 59
  start-page: 4603
  year: 2018
  ident: 10.1016/S2589-7500(21)00055-8_bib23
  article-title: Prevalence, risk factors, and impact of myopic macular degeneration on visual impairment and functioning among adults in Singapore
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.18-24032
– volume: 59
  start-page: 2861
  year: 2018
  ident: 10.1016/S2589-7500(21)00055-8_bib37
  article-title: Deep learning for predicting refractive error from retinal fundus images
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.18-23887
– volume: 52
  start-page: 156
  year: 2016
  ident: 10.1016/S2589-7500(21)00055-8_bib6
  article-title: Updates of pathologic myopia
  publication-title: Prog Retin Eye Res
  doi: 10.1016/j.preteyeres.2015.12.001
– volume: 87
  start-page: 570
  year: 2003
  ident: 10.1016/S2589-7500(21)00055-8_bib32
  article-title: Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.87.5.570
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/S2589-7500(21)00055-8_bib12
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 16
  start-page: 534
  year: 2009
  ident: 10.1016/S2589-7500(21)00055-8_bib31
  article-title: Retinal vascular caliber and diabetes in a multiethnic Asian population
  publication-title: Microcirculation
  doi: 10.1080/10739680902975222
– volume: 102
  start-page: 855
  year: 2018
  ident: 10.1016/S2589-7500(21)00055-8_bib11
  article-title: Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2017-311266
– volume: 25
  start-page: 566
  year: 2019
  ident: 10.1016/S2589-7500(21)00055-8_bib39
  article-title: The advent of human life data economics
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2019.05.002
– volume: 393
  start-page: 2476
  year: 2019
  ident: 10.1016/S2589-7500(21)00055-8_bib42
  article-title: Blockchain in health care: hype, trust, and digital health
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)30948-1
– volume: 152
  start-page: 256
  year: 2011
  ident: 10.1016/S2589-7500(21)00055-8_bib7
  article-title: Long-term development of significant visual field defects in highly myopic eyes
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2011.01.052
– volume: 155
  start-page: 991
  year: 2013
  ident: 10.1016/S2589-7500(21)00055-8_bib21
  article-title: Myopia-related fundus changes in Singapore adults with high myopia
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2013.01.016
– volume: 1
  start-page: 39
  year: 2018
  ident: 10.1016/S2589-7500(21)00055-8_bib17
  article-title: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-018-0040-6
– volume: 393
  year: 2019
  ident: 10.1016/S2589-7500(21)00055-8_bib43
  article-title: Pharma blockchains AI for drug development
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)31401-1
– start-page: 1178
  year: 2018
  ident: 10.1016/S2589-7500(21)00055-8_bib47
  article-title: When machine learning meets blockchain: a decentralized, privacy-preserving and secure design
SSID ssj0002213777
ssib039781509
Score 2.5325525
Snippet By 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of...
SummaryBackgroundBy 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant...
Background: By 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk...
SourceID doaj
proquest
pubmed
crossref
nii
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e317
SubjectTerms Algorithms
Area Under Curve
Artificial Intelligence
Biomedical Research
Biomedical Research - instrumentation
Biomedical Research - methods
Blockchain
Cohort Studies
Computer applications to medicine. Medical informatics
Datasets as Topic
Deep Learning
Humans
Informatics
Internal Medicine
Macular Degeneration
Macular Degeneration - diagnosis
Myopia
Myopia - diagnosis
Proof of Concept Study
Public Health
R858-859.7
Reproducibility of Results
Retina
Retina - diagnostic imaging
Retrospective Studies
ROC Curve
Title Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2589750021000558
https://www.clinicalkey.es/playcontent/1-s2.0-S2589750021000558
https://dx.doi.org/10.1016/S2589-7500(21)00055-8
https://cir.nii.ac.jp/crid/1872835442338597632
https://www.ncbi.nlm.nih.gov/pubmed/33890579
https://www.proquest.com/docview/2518222894
https://doaj.org/article/7d027a4f3e5c45e0ac72665e314891ef
Volume 3
WOSCitedRecordID wos000642286500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 2589-7500
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002213777
  issn: 2589-7500
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2589-7500
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002213777
  issn: 2589-7500
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELa4EwUNAvFa4E5GooAiXGLHsUMH6E40nBAPaTvLcezbwG4SJTkkGn4TP5GZOBv2JNBS0KSwMkk0M5n5LM98Q8jTLHFpypWPeKaKKBWcRbnKyqjITAZo38OmohyHTcjzc7Vc5u93Rn1hTVigBw6KO5ElbJxM6rkTNhUuNlZCThGOA47PE-cx-sYy39lMfRlJXZBJD3ulmVB5BGkx_t2-c_JxXnzGkucIW0SkriSmkb__Sn46qKvq7yh0zEZnt8jNCUbSV-Hzb5Nrrr5Dfn7A_mVYblfNEKioI8xSJS2da-k0IOKCmvVF01XDatNTgKx0871pK0NNXVJDC0huX-3KVDVt12ZASEuHhnpjA523o6iyQDtBqx0-T7oJRz50og9avYSndW7omm0zJx2LF3EibzfQkdb2Lvl8dvrpzdtomsgQ2UyxISpVYoWPpU-VsLGX3HDvbQJmKJxMwRty4TMFFudeCCElt05awADOOTzfZfweOayb2j0gtMilcMx6BlEgzV1RQDZlPi6tLKUtVbkg6dYc2k505Tg1Y63nujS0okYrapbo0YpaLciLWawNfB37BF6jreebkW57XAAn1JMT6n1OuCDZ1lP0tqMVYjA8qNr3dvknQddPkaTXie6ZjoM0CrNkFAVJNUtOYCmAoH956RE4M2gVr4mSSLmXAqzmCnaXGWcL8mTr5hqCDZ4gmdo1l70GMIyAUuXpgtwP_j8rDsRz7Gx--D8U-ojcYFg8NFaWPiaHQ3fpjsh1-22o-u6YHMilOh7_eLi--3H6C03OUpA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retinal+photograph-based+deep+learning+algorithms+for+myopia+and+a+blockchain+platform+to+facilitate+artificial+intelligence+medical+research%3A+a+retrospective+multicohort+study&rft.jtitle=The+Lancet.+Digital+health&rft.au=Tan%2C+Tien-En&rft.au=Anees%2C+Ayesha&rft.au=Chen%2C+Cheng&rft.au=Li%2C+Shaohua&rft.date=2021-05-01&rft.pub=Elsevier+Ltd&rft.issn=2589-7500&rft.eissn=2589-7500&rft.volume=3&rft.issue=5&rft.spage=e317&rft.epage=e329&rft_id=info:doi/10.1016%2FS2589-7500%2821%2900055-8&rft.externalDocID=S2589750021000558
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F25897500%2FS2589750021X00052%2Fcov150h.gif