Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study
By 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of sight-threatening complications such as myopic macular degeneration. These are diagnoses that typically require specialist assessment or measurement...
Gespeichert in:
| Veröffentlicht in: | The Lancet Digital Health Jg. 3; H. 5; S. e317 - e329 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Elsevier Ltd
01.05.2021
Elsevier BV Elsevier |
| Schlagworte: | |
| ISSN: | 2589-7500, 2589-7500 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | By 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of sight-threatening complications such as myopic macular degeneration. These are diagnoses that typically require specialist assessment or measurement with multiple unconnected pieces of equipment. Artificial intelligence (AI) approaches might be effective for risk stratification and to identify individuals at highest risk of visual loss. However, unresolved challenges for AI medical studies remain, including paucity of transparency, auditability, and traceability.
In this retrospective multicohort study, we developed and tested retinal photograph-based deep learning algorithms for detection of myopic macular degeneration and high myopia, using a total of 226 686 retinal images. First we trained and internally validated the algorithms on datasets from Singapore, and then externally tested them on datasets from China, Taiwan, India, Russia, and the UK. We also compared the performance of the deep learning algorithms against six human experts in the grading of a randomly selected dataset of 400 images from the external datasets. As proof of concept, we used a blockchain-based AI platform to demonstrate the real-world application of secure data transfer, model transfer, and model testing across three sites in Singapore and China.
The deep learning algorithms showed robust diagnostic performance with areas under the receiver operating characteristic curves [AUC] of 0·969 (95% CI 0·959–0·977) or higher for myopic macular degeneration and 0·913 (0·906–0·920) or higher for high myopia across the external testing datasets with available data. In the randomly selected dataset, the deep learning algorithms outperformed all six expert graders in detection of each condition (AUC of 0·978 [0·957–0·994] for myopic macular degeneration and 0·973 [0·941–0·995] for high myopia). We also successfully used blockchain technology for data transfer, model transfer, and model testing between sites and across two countries.
Deep learning algorithms can be effective tools for risk stratification and screening of myopic macular degeneration and high myopia among the large global population with myopia. The blockchain platform developed here could potentially serve as a trusted platform for performance testing of future AI models in medicine.
None. |
|---|---|
| AbstractList | By 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of sight-threatening complications such as myopic macular degeneration. These are diagnoses that typically require specialist assessment or measurement with multiple unconnected pieces of equipment. Artificial intelligence (AI) approaches might be effective for risk stratification and to identify individuals at highest risk of visual loss. However, unresolved challenges for AI medical studies remain, including paucity of transparency, auditability, and traceability.
In this retrospective multicohort study, we developed and tested retinal photograph-based deep learning algorithms for detection of myopic macular degeneration and high myopia, using a total of 226 686 retinal images. First we trained and internally validated the algorithms on datasets from Singapore, and then externally tested them on datasets from China, Taiwan, India, Russia, and the UK. We also compared the performance of the deep learning algorithms against six human experts in the grading of a randomly selected dataset of 400 images from the external datasets. As proof of concept, we used a blockchain-based AI platform to demonstrate the real-world application of secure data transfer, model transfer, and model testing across three sites in Singapore and China.
The deep learning algorithms showed robust diagnostic performance with areas under the receiver operating characteristic curves [AUC] of 0·969 (95% CI 0·959-0·977) or higher for myopic macular degeneration and 0·913 (0·906-0·920) or higher for high myopia across the external testing datasets with available data. In the randomly selected dataset, the deep learning algorithms outperformed all six expert graders in detection of each condition (AUC of 0·978 [0·957-0·994] for myopic macular degeneration and 0·973 [0·941-0·995] for high myopia). We also successfully used blockchain technology for data transfer, model transfer, and model testing between sites and across two countries.
Deep learning algorithms can be effective tools for risk stratification and screening of myopic macular degeneration and high myopia among the large global population with myopia. The blockchain platform developed here could potentially serve as a trusted platform for performance testing of future AI models in medicine.
None. Background: By 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of sight-threatening complications such as myopic macular degeneration. These are diagnoses that typically require specialist assessment or measurement with multiple unconnected pieces of equipment. Artificial intelligence (AI) approaches might be effective for risk stratification and to identify individuals at highest risk of visual loss. However, unresolved challenges for AI medical studies remain, including paucity of transparency, auditability, and traceability. Methods: In this retrospective multicohort study, we developed and tested retinal photograph-based deep learning algorithms for detection of myopic macular degeneration and high myopia, using a total of 226 686 retinal images. First we trained and internally validated the algorithms on datasets from Singapore, and then externally tested them on datasets from China, Taiwan, India, Russia, and the UK. We also compared the performance of the deep learning algorithms against six human experts in the grading of a randomly selected dataset of 400 images from the external datasets. As proof of concept, we used a blockchain-based AI platform to demonstrate the real-world application of secure data transfer, model transfer, and model testing across three sites in Singapore and China. Findings: The deep learning algorithms showed robust diagnostic performance with areas under the receiver operating characteristic curves [AUC] of 0·969 (95% CI 0·959–0·977) or higher for myopic macular degeneration and 0·913 (0·906–0·920) or higher for high myopia across the external testing datasets with available data. In the randomly selected dataset, the deep learning algorithms outperformed all six expert graders in detection of each condition (AUC of 0·978 [0·957–0·994] for myopic macular degeneration and 0·973 [0·941–0·995] for high myopia). We also successfully used blockchain technology for data transfer, model transfer, and model testing between sites and across two countries. Interpretation: Deep learning algorithms can be effective tools for risk stratification and screening of myopic macular degeneration and high myopia among the large global population with myopia. The blockchain platform developed here could potentially serve as a trusted platform for performance testing of future AI models in medicine. Funding: None. By 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of sight-threatening complications such as myopic macular degeneration. These are diagnoses that typically require specialist assessment or measurement with multiple unconnected pieces of equipment. Artificial intelligence (AI) approaches might be effective for risk stratification and to identify individuals at highest risk of visual loss. However, unresolved challenges for AI medical studies remain, including paucity of transparency, auditability, and traceability.BACKGROUNDBy 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of sight-threatening complications such as myopic macular degeneration. These are diagnoses that typically require specialist assessment or measurement with multiple unconnected pieces of equipment. Artificial intelligence (AI) approaches might be effective for risk stratification and to identify individuals at highest risk of visual loss. However, unresolved challenges for AI medical studies remain, including paucity of transparency, auditability, and traceability.In this retrospective multicohort study, we developed and tested retinal photograph-based deep learning algorithms for detection of myopic macular degeneration and high myopia, using a total of 226 686 retinal images. First we trained and internally validated the algorithms on datasets from Singapore, and then externally tested them on datasets from China, Taiwan, India, Russia, and the UK. We also compared the performance of the deep learning algorithms against six human experts in the grading of a randomly selected dataset of 400 images from the external datasets. As proof of concept, we used a blockchain-based AI platform to demonstrate the real-world application of secure data transfer, model transfer, and model testing across three sites in Singapore and China.METHODSIn this retrospective multicohort study, we developed and tested retinal photograph-based deep learning algorithms for detection of myopic macular degeneration and high myopia, using a total of 226 686 retinal images. First we trained and internally validated the algorithms on datasets from Singapore, and then externally tested them on datasets from China, Taiwan, India, Russia, and the UK. We also compared the performance of the deep learning algorithms against six human experts in the grading of a randomly selected dataset of 400 images from the external datasets. As proof of concept, we used a blockchain-based AI platform to demonstrate the real-world application of secure data transfer, model transfer, and model testing across three sites in Singapore and China.The deep learning algorithms showed robust diagnostic performance with areas under the receiver operating characteristic curves [AUC] of 0·969 (95% CI 0·959-0·977) or higher for myopic macular degeneration and 0·913 (0·906-0·920) or higher for high myopia across the external testing datasets with available data. In the randomly selected dataset, the deep learning algorithms outperformed all six expert graders in detection of each condition (AUC of 0·978 [0·957-0·994] for myopic macular degeneration and 0·973 [0·941-0·995] for high myopia). We also successfully used blockchain technology for data transfer, model transfer, and model testing between sites and across two countries.FINDINGSThe deep learning algorithms showed robust diagnostic performance with areas under the receiver operating characteristic curves [AUC] of 0·969 (95% CI 0·959-0·977) or higher for myopic macular degeneration and 0·913 (0·906-0·920) or higher for high myopia across the external testing datasets with available data. In the randomly selected dataset, the deep learning algorithms outperformed all six expert graders in detection of each condition (AUC of 0·978 [0·957-0·994] for myopic macular degeneration and 0·973 [0·941-0·995] for high myopia). We also successfully used blockchain technology for data transfer, model transfer, and model testing between sites and across two countries.Deep learning algorithms can be effective tools for risk stratification and screening of myopic macular degeneration and high myopia among the large global population with myopia. The blockchain platform developed here could potentially serve as a trusted platform for performance testing of future AI models in medicine.INTERPRETATIONDeep learning algorithms can be effective tools for risk stratification and screening of myopic macular degeneration and high myopia among the large global population with myopia. The blockchain platform developed here could potentially serve as a trusted platform for performance testing of future AI models in medicine.None.FUNDINGNone. SummaryBackgroundBy 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of sight-threatening complications such as myopic macular degeneration. These are diagnoses that typically require specialist assessment or measurement with multiple unconnected pieces of equipment. Artificial intelligence (AI) approaches might be effective for risk stratification and to identify individuals at highest risk of visual loss. However, unresolved challenges for AI medical studies remain, including paucity of transparency, auditability, and traceability. MethodsIn this retrospective multicohort study, we developed and tested retinal photograph-based deep learning algorithms for detection of myopic macular degeneration and high myopia, using a total of 226 686 retinal images. First we trained and internally validated the algorithms on datasets from Singapore, and then externally tested them on datasets from China, Taiwan, India, Russia, and the UK. We also compared the performance of the deep learning algorithms against six human experts in the grading of a randomly selected dataset of 400 images from the external datasets. As proof of concept, we used a blockchain-based AI platform to demonstrate the real-world application of secure data transfer, model transfer, and model testing across three sites in Singapore and China. FindingsThe deep learning algorithms showed robust diagnostic performance with areas under the receiver operating characteristic curves [AUC] of 0·969 (95% CI 0·959–0·977) or higher for myopic macular degeneration and 0·913 (0·906–0·920) or higher for high myopia across the external testing datasets with available data. In the randomly selected dataset, the deep learning algorithms outperformed all six expert graders in detection of each condition (AUC of 0·978 [0·957–0·994] for myopic macular degeneration and 0·973 [0·941–0·995] for high myopia). We also successfully used blockchain technology for data transfer, model transfer, and model testing between sites and across two countries. InterpretationDeep learning algorithms can be effective tools for risk stratification and screening of myopic macular degeneration and high myopia among the large global population with myopia. The blockchain platform developed here could potentially serve as a trusted platform for performance testing of future AI models in medicine. FundingNone. |
| Author | Tan, Tien-En Yu, Weihong Cheung, Gemmy Chui Ming Ohno-Matsui, Kyoko Lei, Xiaofeng Wang, Ya Xing Wang, Ningli Xiao, Zhe Chen, Yen-Po Lin, Haotian Wong, Chee Wai Ting, Daniel Shu Wei Yang, Yechao Rim, Tyler Hyungtaek Liu, Hanruo Nangia, Vinay Anees, Ayesha Li, Shaohua Lee, Shu Yen Chen, Youxin Wong, Yee Ling Chen, Cheng Xu, Xinxing Schmetterer, Leopold Chia, Audrey Hoang, Quan V Ang, Marcus Bikbov, Mukharram M Jonas, Jost B Wu, Wei-Chi Cheng, Ching-Yu Wong, Edmund Yick Mun Goh, Rick Siow Mong Yeo, Ian Yew San Li, Zengxiang Tan, Donald Tiang Hwee Tham, Yih-Chung Saw, Seang-Mei Liu, Yong Wong, Tien Yin |
| Author_xml | – sequence: 1 givenname: Tien-En surname: Tan fullname: Tan, Tien-En organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore – sequence: 2 givenname: Ayesha surname: Anees fullname: Anees, Ayesha organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore – sequence: 3 givenname: Cheng surname: Chen fullname: Chen, Cheng organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore – sequence: 4 givenname: Shaohua surname: Li fullname: Li, Shaohua organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore – sequence: 5 givenname: Xinxing surname: Xu fullname: Xu, Xinxing organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore – sequence: 6 givenname: Zengxiang surname: Li fullname: Li, Zengxiang organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore – sequence: 7 givenname: Zhe surname: Xiao fullname: Xiao, Zhe organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore – sequence: 8 givenname: Yechao surname: Yang fullname: Yang, Yechao organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore – sequence: 9 givenname: Xiaofeng surname: Lei fullname: Lei, Xiaofeng organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore – sequence: 10 givenname: Marcus surname: Ang fullname: Ang, Marcus organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore – sequence: 11 givenname: Audrey surname: Chia fullname: Chia, Audrey organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore – sequence: 12 givenname: Shu Yen surname: Lee fullname: Lee, Shu Yen organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore – sequence: 13 givenname: Edmund Yick Mun surname: Wong fullname: Wong, Edmund Yick Mun organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore – sequence: 14 givenname: Ian Yew San surname: Yeo fullname: Yeo, Ian Yew San organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore – sequence: 15 givenname: Yee Ling surname: Wong fullname: Wong, Yee Ling organization: Saw Swee Hock School of Public Health, National University of Singapore, Singapore – sequence: 16 givenname: Quan V surname: Hoang fullname: Hoang, Quan V organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore – sequence: 17 givenname: Ya Xing surname: Wang fullname: Wang, Ya Xing organization: Ufa Eye Research Institute, Ufa, Bashkortostan, Russia – sequence: 18 givenname: Mukharram M surname: Bikbov fullname: Bikbov, Mukharram M organization: Ufa Eye Research Institute, Ufa, Bashkortostan, Russia – sequence: 19 givenname: Vinay surname: Nangia fullname: Nangia, Vinay organization: Suraj Eye Institute, Nagpur, India – sequence: 20 givenname: Jost B surname: Jonas fullname: Jonas, Jost B organization: Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Germany – sequence: 21 givenname: Yen-Po surname: Chen fullname: Chen, Yen-Po organization: Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan – sequence: 22 givenname: Wei-Chi surname: Wu fullname: Wu, Wei-Chi organization: Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan – sequence: 23 givenname: Kyoko surname: Ohno-Matsui fullname: Ohno-Matsui, Kyoko organization: Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan – sequence: 24 givenname: Tyler Hyungtaek surname: Rim fullname: Rim, Tyler Hyungtaek organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore – sequence: 25 givenname: Yih-Chung surname: Tham fullname: Tham, Yih-Chung organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore – sequence: 26 givenname: Rick Siow Mong surname: Goh fullname: Goh, Rick Siow Mong organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore – sequence: 27 givenname: Haotian surname: Lin fullname: Lin, Haotian organization: Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China – sequence: 28 givenname: Hanruo surname: Liu fullname: Liu, Hanruo organization: Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China – sequence: 29 givenname: Ningli surname: Wang fullname: Wang, Ningli organization: Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China – sequence: 30 givenname: Weihong surname: Yu fullname: Yu, Weihong organization: Peking Union Medical College Hospital, Beijing, China – sequence: 31 givenname: Donald Tiang Hwee surname: Tan fullname: Tan, Donald Tiang Hwee organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore – sequence: 32 givenname: Leopold surname: Schmetterer fullname: Schmetterer, Leopold organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore – sequence: 33 givenname: Ching-Yu surname: Cheng fullname: Cheng, Ching-Yu organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore – sequence: 34 givenname: Youxin surname: Chen fullname: Chen, Youxin organization: Peking Union Medical College Hospital, Beijing, China – sequence: 35 givenname: Chee Wai surname: Wong fullname: Wong, Chee Wai organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore – sequence: 36 givenname: Gemmy Chui Ming surname: Cheung fullname: Cheung, Gemmy Chui Ming organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore – sequence: 37 givenname: Seang-Mei surname: Saw fullname: Saw, Seang-Mei organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore – sequence: 38 givenname: Tien Yin surname: Wong fullname: Wong, Tien Yin organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore – sequence: 39 givenname: Yong surname: Liu fullname: Liu, Yong organization: Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore – sequence: 40 givenname: Daniel Shu Wei surname: Ting fullname: Ting, Daniel Shu Wei email: daniel.ting.s.w@singhealth.com.sg organization: Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore |
| BackLink | https://cir.nii.ac.jp/crid/1872835442338597632$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/33890579$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUttu1DAUjFARLaWfAPIDD-VhwZc4TkCAUMWlUiUkLs-W1znePVtvHGxvpf0rPhFnt61QJVRekuhkzow9M4-rgyEMUFVPGX3JKGtefeey7WZKUnrK2QtKqZSz9kF1dDs--Ov7sDpJaVVAnDOhlHpUHQrRdlSq7qj6_Q0yDsaTcRlyWEQzLmdzk6AnPcBIPJg44LAgxi9CxLxcJ-JCJOttGNEQM_TEkLkP9tIuDQ5k9CaX_2uSA3HGosdsMhATMzq0WHRwyOA9LmCwQNbQoy3DCKkI2eXrwhYhx5BGsBmvCmLjM9qwDDGTlDf99kn10Bmf4OT6fVz9_PTxx9mX2cXXz-dnHy5mtml5nvUts9JR5epWWuqUMMI5yxi4OagarO2ka9paCuGklEoJC8rWvAEAybuGi-PqfM_bB7PSY8S1iVsdDOrdIMSFnm5lPWjVU65M7QRIW0ugxireNBIEq9uuKBau0z3XGMOvDaSs15hsscEMEDZJc8laznnb1QX67Bq6mRd3boVvEiuAN3uALS6lCE7byWMMQ44GvWZUTxXRu4roKX_Nmd5VRLdlW97ZvhG4b-_5fm9ALILTk7WKt0LWNS9nk51qxGTa-z0MSjJXCFEni1PSPcYSaLEO7xV6d4fB-iJXSnIJW0irsImlrUkznbime5KJg7Mdw0Tw9t8E_3GAP6nZCQo |
| CitedBy_id | crossref_primary_10_3390_app13085127 crossref_primary_10_1007_s00521_024_09851_3 crossref_primary_10_1097_APO_0000000000000515 crossref_primary_10_1038_s41433_021_01795_5 crossref_primary_10_1080_17469899_2024_2328620 crossref_primary_10_1111_opo_13206 crossref_primary_10_1016_j_apjo_2025_100161 crossref_primary_10_1038_s41433_023_02551_7 crossref_primary_10_1016_j_eswa_2024_124704 crossref_primary_10_1097_ICU_0000000000001087 crossref_primary_10_3389_frai_2023_1323924 crossref_primary_10_1016_j_apjo_2024_100086 crossref_primary_10_1097_ICU_0000000000000791 crossref_primary_10_1016_j_apjo_2025_100241 crossref_primary_10_1007_s11596_021_2485_0 crossref_primary_10_3389_fmed_2025_1580583 crossref_primary_10_1016_j_compbiomed_2023_106556 crossref_primary_10_1136_bjo_2023_324188 crossref_primary_10_1016_j_cjca_2021_11_011 crossref_primary_10_1038_s41598_024_80090_1 crossref_primary_10_1001_jamanetworkopen_2022_9960 crossref_primary_10_1007_s10207_023_00733_8 crossref_primary_10_1016_j_survophthal_2025_09_014 crossref_primary_10_1097_APO_0000000000000399 crossref_primary_10_1097_ICU_0000000000000878 crossref_primary_10_1186_s12886_024_03722_0 crossref_primary_10_1007_s00068_025_02793_y crossref_primary_10_1016_j_imed_2024_09_002 crossref_primary_10_1016_j_lanwpc_2023_100837 crossref_primary_10_47102_annals_acadmedsg_2022452 crossref_primary_10_1038_s41416_023_02320_z crossref_primary_10_1016_j_survophthal_2024_03_008 crossref_primary_10_1177_11206721251318384 crossref_primary_10_1016_j_health_2023_100159 crossref_primary_10_1016_j_yaoo_2025_03_006 crossref_primary_10_1136_bmjopen_2023_076418 crossref_primary_10_1186_s12938_023_01110_1 crossref_primary_10_1186_s12960_021_00699_5 crossref_primary_10_3390_diagnostics12112835 crossref_primary_10_1186_s40662_022_00285_3 crossref_primary_10_3389_fmed_2025_1572750 crossref_primary_10_4103_ijo_IJO_2286_22 crossref_primary_10_1007_s40123_024_00981_4 crossref_primary_10_4103_ijo_IJO_1802_22 crossref_primary_10_1097_ICU_0000000000000886 crossref_primary_10_3390_electronics12030750 crossref_primary_10_3390_pharmaceutics16020260 crossref_primary_10_3389_fmed_2022_842680 crossref_primary_10_1007_s43657_023_00155_5 crossref_primary_10_1097_APO_0000000000000421 crossref_primary_10_1097_ICU_0000000000000846 crossref_primary_10_1016_j_oret_2024_01_018 crossref_primary_10_1016_j_clindermatol_2023_12_013 crossref_primary_10_1111_ceo_14498 crossref_primary_10_1016_j_aopr_2025_07_004 crossref_primary_10_3389_fmed_2022_808402 crossref_primary_10_3390_healthcare11010081 crossref_primary_10_7759_cureus_83136 crossref_primary_10_1016_j_oret_2024_01_013 crossref_primary_10_1007_s11227_023_05705_2 crossref_primary_10_1016_j_compbiomed_2024_109537 crossref_primary_10_2196_57644 crossref_primary_10_1002_jbmr_4879 crossref_primary_10_4103_tjo_TJO_D_23_00032 crossref_primary_10_1038_s41746_024_01204_7 crossref_primary_10_1136_bjophthalmol_2021_320926 crossref_primary_10_1007_s10462_024_10873_5 crossref_primary_10_1038_s41598_022_20698_3 crossref_primary_10_1109_JIOT_2022_3232793 crossref_primary_10_1007_s00371_024_03391_6 crossref_primary_10_1097_APO_0000000000000410 crossref_primary_10_1001_jamaophthalmol_2025_1513 crossref_primary_10_1038_s41746_025_01959_7 crossref_primary_10_1097_APO_0000000000000533 crossref_primary_10_1186_s40942_024_00554_4 crossref_primary_10_3389_fmed_2025_1567440 crossref_primary_10_1167_iovs_66_9_7 crossref_primary_10_3390_diagnostics13172810 crossref_primary_10_1007_s00438_023_02036_y crossref_primary_10_3389_fcell_2023_1124005 crossref_primary_10_1016_j_procs_2024_10_090 crossref_primary_10_3389_fgene_2022_861164 crossref_primary_10_3389_fmed_2025_1555380 crossref_primary_10_1111_opo_13492 crossref_primary_10_1016_j_artmed_2024_102926 crossref_primary_10_1001_jamaophthalmol_2024_3707 crossref_primary_10_1097_ICU_0000000000000984 crossref_primary_10_3390_app142411926 crossref_primary_10_1016_j_aopr_2022_100078 crossref_primary_10_1136_bmjophth_2024_001873 crossref_primary_10_1038_s41433_023_02680_z crossref_primary_10_1055_a_2652_0081 crossref_primary_10_1515_biol_2022_0773 crossref_primary_10_1007_s13139_023_00821_6 crossref_primary_10_1002_ett_4884 |
| Cites_doi | 10.1001/jama.2016.17216 10.1016/S0140-6736(12)60272-4 10.1167/iovs.16-20742 10.1167/iovs.61.4.49 10.1001/jamaophthalmol.2016.4009 10.1001/jama.2017.18152 10.1093/jamia/ocy185 10.1109/MC.2018.3620971 10.1016/j.cmpb.2020.105920 10.1080/09286580600878844 10.1016/j.ajo.2013.08.010 10.1016/S2214-109X(17)30393-5 10.1038/s41598-018-30004-9 10.1038/nature21056 10.1016/j.preteyeres.2017.09.004 10.12688/f1000research.10531.4 10.1097/IAE.0000000000002233 10.1038/s41591-018-0107-6 10.1167/iovs.11-8343 10.1038/d41586-019-00447-9 10.1016/j.ophtha.2017.04.028 10.1016/j.ophtha.2016.01.006 10.1001/jama.2015.10803 10.1016/j.ophtha.2006.01.035 10.3109/09286580903144738 10.1016/j.ophtha.2009.11.003 10.1016/S1470-2045(19)30291-8 10.1016/j.ajo.2015.01.022 10.1148/radiol.2017162326 10.1167/iovs.18-24032 10.1167/iovs.18-23887 10.1016/j.preteyeres.2015.12.001 10.1136/bjo.87.5.570 10.1038/nature14539 10.1080/10739680902975222 10.1136/bjophthalmol-2017-311266 10.1016/j.molmed.2019.05.002 10.1016/S0140-6736(19)30948-1 10.1016/j.ajo.2011.01.052 10.1016/j.ajo.2013.01.016 10.1038/s41746-018-0040-6 10.1016/S0140-6736(19)31401-1 |
| ContentType | Journal Article |
| Contributor | OPHTHALMOLOGY DEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL) DUKE-NUS MEDICAL SCHOOL |
| Contributor_xml | – sequence: 1 fullname: DEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL) – sequence: 2 fullname: DUKE-NUS MEDICAL SCHOOL – sequence: 3 fullname: OPHTHALMOLOGY |
| Copyright | 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved. |
| Copyright_xml | – notice: 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license – notice: The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license – notice: Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved. |
| DBID | 6I. AAFTH RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
| DOI | 10.1016/S2589-7500(21)00055-8 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health |
| EISSN | 2589-7500 |
| EndPage | e329 |
| ExternalDocumentID | oai_doaj_org_article_7d027a4f3e5c45e0ac72665e314891ef 33890579 10_1016_S2589_7500_21_00055_8 S2589750021000558 1_s2_0_S2589750021000558 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation | None. |
| GroupedDBID | .1- .FO 0R~ 53G AAEDW AALRI AAMRU AAXUO ACLIJ ACVFH ADCNI AEUPX AEXQZ AFPUW AFRHN AIGII AITUG AJUYK AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS APXCP EBS EJD FDB GROUPED_DOAJ M41 M~E OK1 ROL W2D Z5R NCXOZ 0SF 6I. AAFTH RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c682t-d81c5f07f485c0f73a3ffc11efbe74ecc95f684533f555773ce7c426eee529623 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 110 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642286500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2589-7500 |
| IngestDate | Fri Oct 03 12:40:42 EDT 2025 Thu Oct 02 06:52:35 EDT 2025 Thu Apr 03 07:02:16 EDT 2025 Thu Nov 13 04:34:37 EST 2025 Tue Nov 18 21:44:59 EST 2025 Fri Jun 27 00:49:36 EDT 2025 Wed May 17 00:09:09 EDT 2023 Sun Feb 23 10:19:02 EST 2025 Tue Aug 26 20:17:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c682t-d81c5f07f485c0f73a3ffc11efbe74ecc95f684533f555773ce7c426eee529623 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8448-1264 0000-0001-9290-9198 0000-0002-7189-1707 0000-0002-2622-4075 |
| OpenAccessLink | https://doaj.org/article/7d027a4f3e5c45e0ac72665e314891ef |
| PMID | 33890579 |
| PQID | 2518222894 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7d027a4f3e5c45e0ac72665e314891ef proquest_miscellaneous_2518222894 pubmed_primary_33890579 crossref_citationtrail_10_1016_S2589_7500_21_00055_8 crossref_primary_10_1016_S2589_7500_21_00055_8 nii_cinii_1872835442338597632 elsevier_sciencedirect_doi_10_1016_S2589_7500_21_00055_8 elsevier_clinicalkeyesjournals_1_s2_0_S2589750021000558 elsevier_clinicalkey_doi_10_1016_S2589_7500_21_00055_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | The Lancet Digital Health |
| PublicationTitleAlternate | Lancet Digit Health |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
| References | Fricke, Jong, Naidoo (bib11) 2018; 102 Cheung, Arnold, Holz (bib33) 2017; 124 Morgan, French, Ashby (bib5) 2018; 62 Tham, Lim, Shi (bib10) 2018; 8 Weng, Weng, Zhang, Li, Zhang, Luo (bib48) Nov 8, 2019 Foong, Saw, Loo (bib27) 2007; 14 Haarman, Enthoven, Tideman, Tedja, Verhoeven, Klaver (bib36) 2020; 61 Ohno-Matsui, Kawasaki, Jonas (bib8) 2015; 159 De Fauw, Ledsam, Romera-Paredes (bib18) 2018; 24 Ohno-Matsui, Yoshida, Futagami (bib32) 2003; 87 Zhavoronkov, Church (bib39) 2019; 25 Ohno-Matsui, Lai, Lai, Cheung (bib6) 2016; 52 Tideman, Snabel, Tedja (bib22) 2016; 134 Benniche (bib44) 2019; 20 Varadarajan, Poplin, Blumer (bib37) 2018; 59 Holden, Fricke, Wilson (bib2) 2016; 123 Wong, Teo, Tsai (bib29) 2019; 39 Burki (bib43) 2019; 393 Sun, Zhou, Zhao (bib30) 2012; 53 Chen, Ji, Luo, Liao, Li (bib47) 2018 Flaxman, Bourne, Resnikoff (bib1) 2017; 5 Abràmoff, Lavin, Birch, Shah, Folk (bib17) 2018; 1 Lakhani, Sundaram (bib13) 2017; 284 Li, Liu, Sui (bib25) 2019 Leeming, Ainsworth, Clifton (bib42) 2019; 393 Hemelings, Elen, Blaschko, Jacob, Stalmans, De Boever (bib38) 2021; 199 Gulshan, Peng, Coram (bib16) 2016; 316 Haq, Muselemu (bib40) 2018; 180 Wong, Ferreira, Hughes, Carter, Mitchell (bib34) 2014; 157 Ting, Cheung, Lim (bib15) 2017; 318 LeCun, Bengio, Hinton (bib12) 2015; 521 Benchoufi, Porcher, Ravaud (bib41) 2017; 6 Wong, Sabanayagam, Ding (bib23) 2018; 59 Ohno-Matsui, Shimada, Yasuzumi (bib7) 2011; 152 Kuo, Ohno-Machado (bib46) 2018 He, Xiang, Zeng (bib3) 2015; 314 Esteva, Kuprel, Novoa (bib14) 2017; 542 Morgan, Ohno-Matsui, Saw (bib4) 2012; 379 Chang, Pan, Ohno-Matsui (bib21) 2013; 155 Lavanya, Jeganathan, Zheng (bib28) 2009; 16 Heaven (bib20) 2019; 566 Jeganathan, Sabanayagam, Tai (bib31) 2009; 16 Hayashi, Ohno-Matsui, Shimada (bib35) 2010; 117 Kuo, Zavaleta Rojas, Ohno-Machado (bib45) 2019; 26 Xu, Wang, Li (bib9) 2006; 113 Wong, Phua, Lee, Wong, Cheung (bib24) 2017; 58 Shrikumar, Greenside, Kundaje (bib26) 2017 Dinh, Thai (bib19) 2018; 51 Morgan (10.1016/S2589-7500(21)00055-8_bib4) 2012; 379 Wong (10.1016/S2589-7500(21)00055-8_bib24) 2017; 58 Ohno-Matsui (10.1016/S2589-7500(21)00055-8_bib7) 2011; 152 Weng (10.1016/S2589-7500(21)00055-8_bib48) 2019 Cheung (10.1016/S2589-7500(21)00055-8_bib33) 2017; 124 Foong (10.1016/S2589-7500(21)00055-8_bib27) 2007; 14 Varadarajan (10.1016/S2589-7500(21)00055-8_bib37) 2018; 59 Li (10.1016/S2589-7500(21)00055-8_bib25) 2019 Lakhani (10.1016/S2589-7500(21)00055-8_bib13) 2017; 284 LeCun (10.1016/S2589-7500(21)00055-8_bib12) 2015; 521 Wong (10.1016/S2589-7500(21)00055-8_bib34) 2014; 157 Kuo (10.1016/S2589-7500(21)00055-8_bib45) 2019; 26 Morgan (10.1016/S2589-7500(21)00055-8_bib5) 2018; 62 Gulshan (10.1016/S2589-7500(21)00055-8_bib16) 2016; 316 Leeming (10.1016/S2589-7500(21)00055-8_bib42) 2019; 393 Holden (10.1016/S2589-7500(21)00055-8_bib2) 2016; 123 Esteva (10.1016/S2589-7500(21)00055-8_bib14) 2017; 542 Heaven (10.1016/S2589-7500(21)00055-8_bib20) 2019; 566 Zhavoronkov (10.1016/S2589-7500(21)00055-8_bib39) 2019; 25 Ohno-Matsui (10.1016/S2589-7500(21)00055-8_bib6) 2016; 52 Tham (10.1016/S2589-7500(21)00055-8_bib10) 2018; 8 Flaxman (10.1016/S2589-7500(21)00055-8_bib1) 2017; 5 Dinh (10.1016/S2589-7500(21)00055-8_bib19) 2018; 51 Lavanya (10.1016/S2589-7500(21)00055-8_bib28) 2009; 16 Benchoufi (10.1016/S2589-7500(21)00055-8_bib41) 2017; 6 Hemelings (10.1016/S2589-7500(21)00055-8_bib38) 2021; 199 Burki (10.1016/S2589-7500(21)00055-8_bib43) 2019; 393 Sun (10.1016/S2589-7500(21)00055-8_bib30) 2012; 53 Hayashi (10.1016/S2589-7500(21)00055-8_bib35) 2010; 117 Ohno-Matsui (10.1016/S2589-7500(21)00055-8_bib8) 2015; 159 Xu (10.1016/S2589-7500(21)00055-8_bib9) 2006; 113 Fricke (10.1016/S2589-7500(21)00055-8_bib11) 2018; 102 Wong (10.1016/S2589-7500(21)00055-8_bib23) 2018; 59 Abràmoff (10.1016/S2589-7500(21)00055-8_bib17) 2018; 1 Ohno-Matsui (10.1016/S2589-7500(21)00055-8_bib32) 2003; 87 Haarman (10.1016/S2589-7500(21)00055-8_bib36) 2020; 61 Shrikumar (10.1016/S2589-7500(21)00055-8_bib26) 2017 He (10.1016/S2589-7500(21)00055-8_bib3) 2015; 314 Kuo (10.1016/S2589-7500(21)00055-8_bib46) 2018 Benniche (10.1016/S2589-7500(21)00055-8_bib44) 2019; 20 Wong (10.1016/S2589-7500(21)00055-8_bib29) 2019; 39 Chen (10.1016/S2589-7500(21)00055-8_bib47) 2018 Haq (10.1016/S2589-7500(21)00055-8_bib40) 2018; 180 De Fauw (10.1016/S2589-7500(21)00055-8_bib18) 2018; 24 Tideman (10.1016/S2589-7500(21)00055-8_bib22) 2016; 134 Chang (10.1016/S2589-7500(21)00055-8_bib21) 2013; 155 Jeganathan (10.1016/S2589-7500(21)00055-8_bib31) 2009; 16 Ting (10.1016/S2589-7500(21)00055-8_bib15) 2017; 318 |
| References_xml | – volume: 102 start-page: 855 year: 2018 end-page: 862 ident: bib11 article-title: Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling publication-title: Br J Ophthalmol – volume: 62 start-page: 134 year: 2018 end-page: 149 ident: bib5 article-title: The epidemics of myopia: aetiology and prevention publication-title: Prog Retin Eye Res – volume: 124 start-page: 1690 year: 2017 end-page: 1711 ident: bib33 article-title: Myopic choroidal neovascularization: review, guidance, and consensus statement on management publication-title: Ophthalmology – year: 2018 ident: bib46 article-title: ModelChain: decentralized privacy-preserving healthcare predictive modeling framework on private blockchain networks publication-title: ArXiv – volume: 52 start-page: 156 year: 2016 end-page: 187 ident: bib6 article-title: Updates of pathologic myopia publication-title: Prog Retin Eye Res – volume: 152 start-page: 256 year: 2011 end-page: 265 ident: bib7 article-title: Long-term development of significant visual field defects in highly myopic eyes publication-title: Am J Ophthalmol – volume: 87 start-page: 570 year: 2003 end-page: 573 ident: bib32 article-title: Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia publication-title: Br J Ophthalmol – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib12 article-title: Deep learning publication-title: Nature – volume: 318 start-page: 2211 year: 2017 end-page: 2223 ident: bib15 article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes publication-title: JAMA – volume: 59 start-page: 4603 year: 2018 end-page: 4613 ident: bib23 article-title: Prevalence, risk factors, and impact of myopic macular degeneration on visual impairment and functioning among adults in Singapore publication-title: Invest Ophthalmol Vis Sci – volume: 25 start-page: 566 year: 2019 end-page: 570 ident: bib39 article-title: The advent of human life data economics publication-title: Trends Mol Med – volume: 5 start-page: e1221 year: 2017 end-page: e1234 ident: bib1 article-title: Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis publication-title: Lancet Glob Health – volume: 113 year: 2006 ident: bib9 article-title: Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study publication-title: Ophthalmology – volume: 393 start-page: 2476 year: 2019 end-page: 2477 ident: bib42 article-title: Blockchain in health care: hype, trust, and digital health publication-title: Lancet – volume: 14 start-page: 25 year: 2007 end-page: 35 ident: bib27 article-title: Rationale and methodology for a population-based study of eye diseases in Malay people: the Singapore Malay eye study (SiMES) publication-title: Ophthalmic Epidemiol – volume: 59 start-page: 2861 year: 2018 end-page: 2868 ident: bib37 article-title: Deep learning for predicting refractive error from retinal fundus images publication-title: Invest Ophthalmol Vis Sci – volume: 6 start-page: 66 year: 2017 ident: bib41 article-title: Blockchain protocols in clinical trials: transparency and traceability of consent publication-title: F1000 Res – start-page: 531 year: 2019 end-page: 539 ident: bib25 article-title: Multi-instance multi-scale CNN for medical image classification publication-title: Medical image computing and computer assisted intervention - MICCAI 2019 – volume: 393 year: 2019 ident: bib43 article-title: Pharma blockchains AI for drug development publication-title: Lancet – volume: 180 start-page: 8 year: 2018 end-page: 12 ident: bib40 article-title: Blockchain technology in pharmaceutical industry to prevent counterfeit drugs publication-title: Int J Comput Appl – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: bib14 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – volume: 58 start-page: 907 year: 2017 end-page: 913 ident: bib24 article-title: Is choroidal or scleral thickness related to myopic macular degeneration? publication-title: Invest Ophthalmol Vis Sci – volume: 26 start-page: 462 year: 2019 end-page: 478 ident: bib45 article-title: Comparison of blockchain platforms: a systematic review and healthcare examples publication-title: J Am Med Inform Assoc – volume: 134 start-page: 1355 year: 2016 end-page: 1363 ident: bib22 article-title: Association of axial length with risk of uncorrectable visual impairment for Europeans with myopia publication-title: JAMA Ophthalmol – start-page: 3145 year: 2017 end-page: 3153 ident: bib26 article-title: Learning important features through propagating activation differences publication-title: Proceedings of the 34th International Conference on Machine Learning - Volume 70. Proceedings of Machine Learning Research – volume: 53 start-page: 7504 year: 2012 end-page: 7509 ident: bib30 article-title: High prevalence of myopia and high myopia in 5060 Chinese university students in Shanghai publication-title: Invest Ophthalmol Vis Sci – volume: 51 start-page: 48 year: 2018 end-page: 53 ident: bib19 article-title: AI and blockchain: a disruptive integration publication-title: Computer – start-page: 1178 year: 2018 end-page: 1187 ident: bib47 article-title: When machine learning meets blockchain: a decentralized, privacy-preserving and secure design publication-title: 2018 IEEE International Conference on Big Data (Big Data) – volume: 24 start-page: 1342 year: 2018 end-page: 1350 ident: bib18 article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease publication-title: Nat Med – volume: 123 start-page: 1036 year: 2016 end-page: 1042 ident: bib2 article-title: Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050 publication-title: Ophthalmology – volume: 155 start-page: 991 year: 2013 end-page: 999 ident: bib21 article-title: Myopia-related fundus changes in Singapore adults with high myopia publication-title: Am J Ophthalmol – volume: 379 start-page: 1739 year: 2012 end-page: 1748 ident: bib4 article-title: Myopia publication-title: Lancet – volume: 1 start-page: 39 year: 2018 ident: bib17 article-title: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices publication-title: NPJ Digit Med – volume: 566 start-page: 141 year: 2019 end-page: 142 ident: bib20 article-title: Bitcoin for the biological literature publication-title: Nature – volume: 8 year: 2018 ident: bib10 article-title: Trends of visual impairment and blindness in the Singapore Chinese population over a decade publication-title: Sci Rep – volume: 16 start-page: 534 year: 2009 end-page: 543 ident: bib31 article-title: Retinal vascular caliber and diabetes in a multiethnic Asian population publication-title: Microcirculation – volume: 199 year: 2021 ident: bib38 article-title: Pathological myopia classification with simultaneous lesion segmentation using deep learning publication-title: Comput Methods Programs Biomed – volume: 159 start-page: 877 year: 2015 end-page: 883 ident: bib8 article-title: International photographic classification and grading system for myopic maculopathy publication-title: Am J Ophthalmol – volume: 16 start-page: 325 year: 2009 end-page: 336 ident: bib28 article-title: Methodology of the Singapore Indian Chinese Cohort (SICC) eye study: quantifying ethnic variations in the epidemiology of eye diseases in Asians publication-title: Ophthalmic Epidemiol – volume: 284 start-page: 574 year: 2017 end-page: 582 ident: bib13 article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks publication-title: Radiology – volume: 20 start-page: e300 year: 2019 ident: bib44 article-title: Using blockchain technology to recycle cancer drugs publication-title: Lancet Oncol – volume: 314 start-page: 1142 year: 2015 end-page: 1148 ident: bib3 article-title: Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial publication-title: JAMA – year: Nov 8, 2019 ident: bib48 article-title: DeepChain: auditable and privacy-preserving deep learning with blockchain-based incentive publication-title: IEEE Transactions on Dependable and Secure Computing – volume: 117 start-page: 1595 year: 2010 end-page: 1611 ident: bib35 article-title: Long-term pattern of progression of myopic maculopathy: a natural history study publication-title: Ophthalmology – volume: 39 start-page: 1742 year: 2019 end-page: 1750 ident: bib29 article-title: Characterization of the choroidal vasculature in myopic maculopathy with optical coherence tomographic angiography publication-title: Retina – volume: 157 start-page: 9 year: 2014 end-page: 25 ident: bib34 article-title: Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review publication-title: Am J Ophthalmol – volume: 316 start-page: 2402 year: 2016 end-page: 2410 ident: bib16 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA – volume: 61 start-page: 49 year: 2020 ident: bib36 article-title: The complications of myopia: a review and meta-analysis publication-title: Invest Ophthalmol Vis Sci – volume: 316 start-page: 2402 year: 2016 ident: 10.1016/S2589-7500(21)00055-8_bib16 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – start-page: 3145 year: 2017 ident: 10.1016/S2589-7500(21)00055-8_bib26 article-title: Learning important features through propagating activation differences – volume: 379 start-page: 1739 year: 2012 ident: 10.1016/S2589-7500(21)00055-8_bib4 article-title: Myopia publication-title: Lancet doi: 10.1016/S0140-6736(12)60272-4 – volume: 58 start-page: 907 year: 2017 ident: 10.1016/S2589-7500(21)00055-8_bib24 article-title: Is choroidal or scleral thickness related to myopic macular degeneration? publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.16-20742 – start-page: 531 year: 2019 ident: 10.1016/S2589-7500(21)00055-8_bib25 article-title: Multi-instance multi-scale CNN for medical image classification – volume: 61 start-page: 49 year: 2020 ident: 10.1016/S2589-7500(21)00055-8_bib36 article-title: The complications of myopia: a review and meta-analysis publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.61.4.49 – volume: 134 start-page: 1355 year: 2016 ident: 10.1016/S2589-7500(21)00055-8_bib22 article-title: Association of axial length with risk of uncorrectable visual impairment for Europeans with myopia publication-title: JAMA Ophthalmol doi: 10.1001/jamaophthalmol.2016.4009 – volume: 318 start-page: 2211 year: 2017 ident: 10.1016/S2589-7500(21)00055-8_bib15 article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes publication-title: JAMA doi: 10.1001/jama.2017.18152 – volume: 26 start-page: 462 year: 2019 ident: 10.1016/S2589-7500(21)00055-8_bib45 article-title: Comparison of blockchain platforms: a systematic review and healthcare examples publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocy185 – volume: 51 start-page: 48 year: 2018 ident: 10.1016/S2589-7500(21)00055-8_bib19 article-title: AI and blockchain: a disruptive integration publication-title: Computer doi: 10.1109/MC.2018.3620971 – volume: 199 year: 2021 ident: 10.1016/S2589-7500(21)00055-8_bib38 article-title: Pathological myopia classification with simultaneous lesion segmentation using deep learning publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105920 – volume: 14 start-page: 25 year: 2007 ident: 10.1016/S2589-7500(21)00055-8_bib27 article-title: Rationale and methodology for a population-based study of eye diseases in Malay people: the Singapore Malay eye study (SiMES) publication-title: Ophthalmic Epidemiol doi: 10.1080/09286580600878844 – year: 2019 ident: 10.1016/S2589-7500(21)00055-8_bib48 article-title: DeepChain: auditable and privacy-preserving deep learning with blockchain-based incentive – volume: 157 start-page: 9 year: 2014 ident: 10.1016/S2589-7500(21)00055-8_bib34 article-title: Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2013.08.010 – volume: 5 start-page: e1221 year: 2017 ident: 10.1016/S2589-7500(21)00055-8_bib1 article-title: Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis publication-title: Lancet Glob Health doi: 10.1016/S2214-109X(17)30393-5 – volume: 8 year: 2018 ident: 10.1016/S2589-7500(21)00055-8_bib10 article-title: Trends of visual impairment and blindness in the Singapore Chinese population over a decade publication-title: Sci Rep doi: 10.1038/s41598-018-30004-9 – volume: 542 start-page: 115 year: 2017 ident: 10.1016/S2589-7500(21)00055-8_bib14 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 62 start-page: 134 year: 2018 ident: 10.1016/S2589-7500(21)00055-8_bib5 article-title: The epidemics of myopia: aetiology and prevention publication-title: Prog Retin Eye Res doi: 10.1016/j.preteyeres.2017.09.004 – volume: 6 start-page: 66 year: 2017 ident: 10.1016/S2589-7500(21)00055-8_bib41 article-title: Blockchain protocols in clinical trials: transparency and traceability of consent publication-title: F1000 Res doi: 10.12688/f1000research.10531.4 – volume: 39 start-page: 1742 year: 2019 ident: 10.1016/S2589-7500(21)00055-8_bib29 article-title: Characterization of the choroidal vasculature in myopic maculopathy with optical coherence tomographic angiography publication-title: Retina doi: 10.1097/IAE.0000000000002233 – volume: 24 start-page: 1342 year: 2018 ident: 10.1016/S2589-7500(21)00055-8_bib18 article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease publication-title: Nat Med doi: 10.1038/s41591-018-0107-6 – volume: 53 start-page: 7504 year: 2012 ident: 10.1016/S2589-7500(21)00055-8_bib30 article-title: High prevalence of myopia and high myopia in 5060 Chinese university students in Shanghai publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.11-8343 – volume: 566 start-page: 141 year: 2019 ident: 10.1016/S2589-7500(21)00055-8_bib20 article-title: Bitcoin for the biological literature publication-title: Nature doi: 10.1038/d41586-019-00447-9 – volume: 124 start-page: 1690 year: 2017 ident: 10.1016/S2589-7500(21)00055-8_bib33 article-title: Myopic choroidal neovascularization: review, guidance, and consensus statement on management publication-title: Ophthalmology doi: 10.1016/j.ophtha.2017.04.028 – volume: 180 start-page: 8 year: 2018 ident: 10.1016/S2589-7500(21)00055-8_bib40 article-title: Blockchain technology in pharmaceutical industry to prevent counterfeit drugs publication-title: Int J Comput Appl – volume: 123 start-page: 1036 year: 2016 ident: 10.1016/S2589-7500(21)00055-8_bib2 article-title: Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2016.01.006 – volume: 314 start-page: 1142 year: 2015 ident: 10.1016/S2589-7500(21)00055-8_bib3 article-title: Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2015.10803 – volume: 113 year: 2006 ident: 10.1016/S2589-7500(21)00055-8_bib9 article-title: Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study publication-title: Ophthalmology doi: 10.1016/j.ophtha.2006.01.035 – volume: 16 start-page: 325 year: 2009 ident: 10.1016/S2589-7500(21)00055-8_bib28 article-title: Methodology of the Singapore Indian Chinese Cohort (SICC) eye study: quantifying ethnic variations in the epidemiology of eye diseases in Asians publication-title: Ophthalmic Epidemiol doi: 10.3109/09286580903144738 – volume: 117 start-page: 1595 year: 2010 ident: 10.1016/S2589-7500(21)00055-8_bib35 article-title: Long-term pattern of progression of myopic maculopathy: a natural history study publication-title: Ophthalmology doi: 10.1016/j.ophtha.2009.11.003 – year: 2018 ident: 10.1016/S2589-7500(21)00055-8_bib46 article-title: ModelChain: decentralized privacy-preserving healthcare predictive modeling framework on private blockchain networks publication-title: ArXiv – volume: 20 start-page: e300 year: 2019 ident: 10.1016/S2589-7500(21)00055-8_bib44 article-title: Using blockchain technology to recycle cancer drugs publication-title: Lancet Oncol doi: 10.1016/S1470-2045(19)30291-8 – volume: 159 start-page: 877 year: 2015 ident: 10.1016/S2589-7500(21)00055-8_bib8 article-title: International photographic classification and grading system for myopic maculopathy publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2015.01.022 – volume: 284 start-page: 574 year: 2017 ident: 10.1016/S2589-7500(21)00055-8_bib13 article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks publication-title: Radiology doi: 10.1148/radiol.2017162326 – volume: 59 start-page: 4603 year: 2018 ident: 10.1016/S2589-7500(21)00055-8_bib23 article-title: Prevalence, risk factors, and impact of myopic macular degeneration on visual impairment and functioning among adults in Singapore publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.18-24032 – volume: 59 start-page: 2861 year: 2018 ident: 10.1016/S2589-7500(21)00055-8_bib37 article-title: Deep learning for predicting refractive error from retinal fundus images publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.18-23887 – volume: 52 start-page: 156 year: 2016 ident: 10.1016/S2589-7500(21)00055-8_bib6 article-title: Updates of pathologic myopia publication-title: Prog Retin Eye Res doi: 10.1016/j.preteyeres.2015.12.001 – volume: 87 start-page: 570 year: 2003 ident: 10.1016/S2589-7500(21)00055-8_bib32 article-title: Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia publication-title: Br J Ophthalmol doi: 10.1136/bjo.87.5.570 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/S2589-7500(21)00055-8_bib12 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 16 start-page: 534 year: 2009 ident: 10.1016/S2589-7500(21)00055-8_bib31 article-title: Retinal vascular caliber and diabetes in a multiethnic Asian population publication-title: Microcirculation doi: 10.1080/10739680902975222 – volume: 102 start-page: 855 year: 2018 ident: 10.1016/S2589-7500(21)00055-8_bib11 article-title: Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling publication-title: Br J Ophthalmol doi: 10.1136/bjophthalmol-2017-311266 – volume: 25 start-page: 566 year: 2019 ident: 10.1016/S2589-7500(21)00055-8_bib39 article-title: The advent of human life data economics publication-title: Trends Mol Med doi: 10.1016/j.molmed.2019.05.002 – volume: 393 start-page: 2476 year: 2019 ident: 10.1016/S2589-7500(21)00055-8_bib42 article-title: Blockchain in health care: hype, trust, and digital health publication-title: Lancet doi: 10.1016/S0140-6736(19)30948-1 – volume: 152 start-page: 256 year: 2011 ident: 10.1016/S2589-7500(21)00055-8_bib7 article-title: Long-term development of significant visual field defects in highly myopic eyes publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2011.01.052 – volume: 155 start-page: 991 year: 2013 ident: 10.1016/S2589-7500(21)00055-8_bib21 article-title: Myopia-related fundus changes in Singapore adults with high myopia publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2013.01.016 – volume: 1 start-page: 39 year: 2018 ident: 10.1016/S2589-7500(21)00055-8_bib17 article-title: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices publication-title: NPJ Digit Med doi: 10.1038/s41746-018-0040-6 – volume: 393 year: 2019 ident: 10.1016/S2589-7500(21)00055-8_bib43 article-title: Pharma blockchains AI for drug development publication-title: Lancet doi: 10.1016/S0140-6736(19)31401-1 – start-page: 1178 year: 2018 ident: 10.1016/S2589-7500(21)00055-8_bib47 article-title: When machine learning meets blockchain: a decentralized, privacy-preserving and secure design |
| SSID | ssj0002213777 ssib039781509 |
| Score | 2.5325525 |
| Snippet | By 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of... SummaryBackgroundBy 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant... Background: By 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk... |
| SourceID | doaj proquest pubmed crossref nii elsevier |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e317 |
| SubjectTerms | Algorithms Area Under Curve Artificial Intelligence Biomedical Research Biomedical Research - instrumentation Biomedical Research - methods Blockchain Cohort Studies Computer applications to medicine. Medical informatics Datasets as Topic Deep Learning Humans Informatics Internal Medicine Macular Degeneration Macular Degeneration - diagnosis Myopia Myopia - diagnosis Proof of Concept Study Public Health R858-859.7 Reproducibility of Results Retina Retina - diagnostic imaging Retrospective Studies ROC Curve |
| Title | Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2589750021000558 https://www.clinicalkey.es/playcontent/1-s2.0-S2589750021000558 https://dx.doi.org/10.1016/S2589-7500(21)00055-8 https://cir.nii.ac.jp/crid/1872835442338597632 https://www.ncbi.nlm.nih.gov/pubmed/33890579 https://www.proquest.com/docview/2518222894 https://doaj.org/article/7d027a4f3e5c45e0ac72665e314891ef |
| Volume | 3 |
| WOSCitedRecordID | wos000642286500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2589-7500 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002213777 issn: 2589-7500 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2589-7500 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002213777 issn: 2589-7500 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDI7YFQcuCMRrgF0FiQMcyvaRNAk3QLviACvES3uL0oyzU5hpR20XiQu_iZ-I3XbKrAQaDlx6iOq2sj32l4n9mbHHIuRQmEKj8xoVCWfiyCkIUZE4ROfaQdb_mfP5jTo91Wdn5t3WqC-qCRvogQfFHak5bpycCBlILyTEzivMKRIyxPEmgUDRN1ZmazP1pSd1ISY96pVOpTYRpsX4d_vO0Ydp8UmaPCXYIiN9KTH1_P2X8tNeVZZ_R6F9Njq5wa6PMJK_GD7_JrsC1S328z31L-PyelF3AxV1RFlqzucAaz4OiDjnbnleN2W3WLUcIStffa_XpeOumnPHC0xuX_3ClRVfL11HkJZ3NQ_OD3TewEllA-0EL7f4PPlqOPLhI33Q4jk-rYGuqTfNnLwvXqSJvE3He1rb2-zTyfHHV6-jcSJD5HOddtFcJ16GWAWhpY-DylwWgk_QDAUogd5gZMi1QAgZpJRKZR6URwwAAHS-m2Z32H5VV3CP8RiCDrEDb3IvCilckUgwzkivMYZkfsbExhzWj3TlNDVjaae6NLKiJSvaNLG9Fa2esWeT2Hrg69gl8JJsPd1MdNv9AjqhHZ3Q7nLCGcs3nmI3Ha0Yg_FB5a63qz8JQjtGktYmtk1tPEiTcJr0oiipJ8kRLA0g6F9eeoDOjFqla6IVUe4JhNWZxt1lnqUz9mjj5haDDZ0guQrqi9YiGCZAqY2YsbuD_0-KQ3FDnc33_4dCH7BrKRUP9ZWlD9l-11zAAbvqv3Vl2xyyPXWmD_tfPF7f_jj-BbrpU1s |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retinal+photograph-based+deep+learning+algorithms+for+myopia+and+a+blockchain+platform+to+facilitate+artificial+intelligence+medical+research%3A+a+retrospective+multicohort+study&rft.jtitle=The+Lancet.+Digital+health&rft.au=Tien-En+Tan%2C+FRCOphth&rft.au=Ayesha+Anees%2C+MSc&rft.au=Cheng+Chen%2C+MSc&rft.au=Shaohua+Li%2C+PhD&rft.date=2021-05-01&rft.pub=Elsevier&rft.issn=2589-7500&rft.volume=3&rft.issue=5&rft.spage=e317&rft.epage=e329&rft_id=info:doi/10.1016%2FS2589-7500%2821%2900055-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7d027a4f3e5c45e0ac72665e314891ef |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F25897500%2FS2589750021X00052%2Fcov150h.gif |