Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses

A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207–222 nm)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 10; H. 1; S. 10285 - 8
Hauptverfasser: Buonanno, Manuela, Welch, David, Shuryak, Igor, Brenner, David J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 24.06.2020
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207–222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm 2 inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm 2 /hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations.
AbstractList Abstract A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207–222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm2 inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm2/hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations.
A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207–222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm2 inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm2/hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations.
A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207-222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm2 inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm2/hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations.A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207-222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm2 inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm2/hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations.
A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207–222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm 2 inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm 2 /hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations.
A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207–222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm2 inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm2/hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations.
A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207-222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm /hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations.
ArticleNumber 10285
Author Welch, David
Buonanno, Manuela
Brenner, David J.
Shuryak, Igor
Author_xml – sequence: 1
  givenname: Manuela
  surname: Buonanno
  fullname: Buonanno, Manuela
  organization: Center for Radiological Research, Columbia University Irving Medical Center
– sequence: 2
  givenname: David
  surname: Welch
  fullname: Welch, David
  organization: Center for Radiological Research, Columbia University Irving Medical Center
– sequence: 3
  givenname: Igor
  surname: Shuryak
  fullname: Shuryak, Igor
  organization: Center for Radiological Research, Columbia University Irving Medical Center
– sequence: 4
  givenname: David J.
  surname: Brenner
  fullname: Brenner, David J.
  email: djb3@cumc.columbia.edu
  organization: Center for Radiological Research, Columbia University Irving Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32581288$$D View this record in MEDLINE/PubMed
BookMark eNp9UsFu1DAUjFARLaU_wAFF4lIOAfvZSewLUrWiUKkSF4q4WS-2s-tV1i52slJvXPlNvgRv00Lbw_riJ3tm3jx7XhYHPnhbFK8peU8JEx8Sp7UUFQFSNS1QWsGz4ggIrytgAAcP6sPiJKU1yasGyal8URwyqAUFIY6KH-cYq6vvi3Jwy9VYngLAn1-__eZdafveaWf9ONyU6E2ZsLe5dB716LY42lSii12I3paraYO-1CEGj1sXp2TTq-J5j0OyJ3f7cXF1_unb4kt1-fXzxeLsstKNgLHSUiLljBotKUPsdU1QEsa5ZqZHSzUlraWdZNowyzpjmdGm0X2DpO9aYthxcTHrmoBrdR3dBuONCujU7UGIS4VxdHqwqhYNI8a2mnWMt5rnRpwCmr6VDQJvs9bHWet66jbW6Dx8xOGR6OMb71ZqGbaqZZS3NckCp3cCMfycbBrVxiVthwG9DVNSwGnLJAHOMvTtE-g6TNHnp1I7K0I0gon9KNqAlLWQGfXmoe9_hu-_OQPEDNAxpBRtr7QbcXRhN4YbFCVqFyo1h0rlUKnbUCnIVHhCvVffS2IzKWWwX9r43_Ye1l-oed5Z
CitedBy_id crossref_primary_10_1016_j_energy_2021_122709
crossref_primary_10_1016_j_scitotenv_2024_170352
crossref_primary_10_1371_journal_pone_0294427
crossref_primary_10_1016_j_jphotobiol_2023_112784
crossref_primary_10_1016_j_buildenv_2021_107852
crossref_primary_10_1289_EHP13878
crossref_primary_10_1016_j_csbj_2021_03_037
crossref_primary_10_1186_s12879_021_06222_4
crossref_primary_10_1080_15459624_2022_2100404
crossref_primary_10_1007_s10946_022_10075_w
crossref_primary_10_1038_s41598_022_08462_z
crossref_primary_10_3390_ijms23169112
crossref_primary_10_1063_5_0124017
crossref_primary_10_1016_j_jece_2021_105881
crossref_primary_10_1371_journal_pone_0267957
crossref_primary_10_1111_php_14035
crossref_primary_10_1111_php_13620
crossref_primary_10_1016_j_bioactmat_2022_05_005
crossref_primary_10_1038_s41598_021_93231_7
crossref_primary_10_1111_php_13742
crossref_primary_10_1111_php_13866
crossref_primary_10_1063_5_0142242
crossref_primary_10_1111_php_14052
crossref_primary_10_1186_s13568_023_01611_1
crossref_primary_10_21315_mjms2020_27_5_14
crossref_primary_10_1016_j_jallcom_2025_179272
crossref_primary_10_1038_s41598_022_17663_5
crossref_primary_10_1007_s00249_024_01702_2
crossref_primary_10_1038_s41598_024_64689_y
crossref_primary_10_35848_1882_0786_ad40fb
crossref_primary_10_1016_j_ijleo_2021_166339
crossref_primary_10_1177_1937586720979832
crossref_primary_10_3390_ma14051075
crossref_primary_10_1109_JSEN_2021_3075893
crossref_primary_10_1016_j_atmosenv_2024_120559
crossref_primary_10_1016_j_buildenv_2022_109530
crossref_primary_10_3390_s21186282
crossref_primary_10_1016_j_jth_2025_102116
crossref_primary_10_3390_v16121904
crossref_primary_10_1016_j_jhazmat_2025_139723
crossref_primary_10_1016_j_jobe_2022_105466
crossref_primary_10_1007_s13538_024_01516_9
crossref_primary_10_1038_s41598_022_26783_x
crossref_primary_10_1038_s41467_025_60312_4
crossref_primary_10_1007_s11090_025_10579_8
crossref_primary_10_1088_1402_4896_ad1cb9
crossref_primary_10_1038_s41598_023_35438_4
crossref_primary_10_1111_php_14062
crossref_primary_10_1109_TPS_2023_3337631
crossref_primary_10_1016_j_envres_2023_116952
crossref_primary_10_3390_ijerph17207396
crossref_primary_10_3390_w14091394
crossref_primary_10_1038_s41598_023_49745_3
crossref_primary_10_15252_emmm_202318710
crossref_primary_10_1016_j_lssr_2024_01_006
crossref_primary_10_3357_AMHP_6350_2024
crossref_primary_10_1016_j_buildenv_2024_111742
crossref_primary_10_1039_D4EM00384E
crossref_primary_10_1089_apb_2022_0021
crossref_primary_10_1021_acs_est_5c03024
crossref_primary_10_1016_j_optlastec_2024_112025
crossref_primary_10_1016_j_indenv_2025_100099
crossref_primary_10_3390_foods10123141
crossref_primary_10_1371_journal_pone_0299421
crossref_primary_10_1186_s13063_024_07909_0
crossref_primary_10_1111_php_13523
crossref_primary_10_3390_coatings14010124
crossref_primary_10_1371_journal_pone_0311552
crossref_primary_10_1111_php_13767
crossref_primary_10_1021_acsestair_5c00138
crossref_primary_10_1109_JSEN_2021_3101593
crossref_primary_10_3390_pathogens11020226
crossref_primary_10_2166_wh_2022_263
crossref_primary_10_1002_asia_202400769
crossref_primary_10_1038_s42003_021_02962_w
crossref_primary_10_1016_j_optmat_2023_113866
crossref_primary_10_1519_SSC_0000000000000626
crossref_primary_10_35848_1347_4065_ad0c2a
crossref_primary_10_1055_s_0041_1740582
crossref_primary_10_1016_j_mser_2024_100803
crossref_primary_10_3390_antiox13111344
crossref_primary_10_1038_s41598_021_94070_2
crossref_primary_10_3390_app112210661
crossref_primary_10_1016_j_buildenv_2025_112868
crossref_primary_10_1016_j_jaerosci_2025_106642
crossref_primary_10_1111_php_13419
crossref_primary_10_1021_acsestair_5c00005
crossref_primary_10_1016_j_buildenv_2024_111990
crossref_primary_10_1111_php_13653
crossref_primary_10_3389_fvets_2023_1291312
crossref_primary_10_1016_j_colsurfb_2022_112400
crossref_primary_10_3390_v15071463
crossref_primary_10_1088_1361_6463_ac6237
crossref_primary_10_1111_php_13656
crossref_primary_10_3390_electronics10141703
crossref_primary_10_1038_s41598_025_09241_2
crossref_primary_10_3390_polym14061199
crossref_primary_10_1016_j_jphotobiol_2025_113154
crossref_primary_10_3992_jgb_16_1_199
crossref_primary_10_1111_php_13671
crossref_primary_10_3390_ijerph182111172
crossref_primary_10_1140_epjp_s13360_022_03252_y
crossref_primary_10_1016_j_ipemt_2023_100017
crossref_primary_10_1021_acs_est_3c00824
crossref_primary_10_1002_slct_202404928
crossref_primary_10_1021_acsestwater_5c00156
crossref_primary_10_1038_s41598_022_22969_5
crossref_primary_10_3390_app13031426
crossref_primary_10_1016_j_jhin_2021_05_005
crossref_primary_10_1364_AO_527427
crossref_primary_10_3390_ijms241814106
crossref_primary_10_1111_php_13421
crossref_primary_10_1111_php_13424
crossref_primary_10_1017_dmp_2025_26
crossref_primary_10_1021_acsestair_5c00117
crossref_primary_10_1038_s41377_021_00563_0
crossref_primary_10_1213_ANE_0000000000005169
crossref_primary_10_29026_oea_2023_220201
crossref_primary_10_1002_deo2_292
crossref_primary_10_3390_app12147239
crossref_primary_10_1002_adhm_202100383
crossref_primary_10_1038_s41598_022_13670_8
crossref_primary_10_1016_j_jphotobiol_2023_112755
crossref_primary_10_1088_1361_6463_ac6a8c
crossref_primary_10_1007_s00339_021_04559_w
crossref_primary_10_3389_fpubh_2020_590041
crossref_primary_10_1007_s40820_021_00723_2
crossref_primary_10_1038_s41598_021_03326_4
crossref_primary_10_1080_10962247_2022_2157907
crossref_primary_10_1021_envhealth_4c00215
crossref_primary_10_1063_5_0036286
crossref_primary_10_1016_j_jphotobiol_2021_112168
crossref_primary_10_1038_s41598_021_99204_0
crossref_primary_10_1177_14771535211010267
crossref_primary_10_3389_fmed_2021_774493
crossref_primary_10_1038_s41598_021_97357_6
crossref_primary_10_1142_S2737599425500276
crossref_primary_10_4236_health_2020_1211105
crossref_primary_10_1016_j_jphotobiol_2021_112282
crossref_primary_10_1038_s41598_022_18385_4
crossref_primary_10_1093_jambio_lxad046
crossref_primary_10_1186_s12879_021_06310_5
crossref_primary_10_1063_5_0142138
crossref_primary_10_1002_mbo3_1348
crossref_primary_10_1007_s12633_022_02148_x
crossref_primary_10_1016_j_ijleo_2021_168269
crossref_primary_10_1007_s11090_024_10535_y
crossref_primary_10_1016_j_cap_2021_05_007
crossref_primary_10_1111_ina_12965
crossref_primary_10_1016_j_ajo_2020_09_027
crossref_primary_10_1016_j_gr_2022_07_010
crossref_primary_10_3390_photonics11060491
crossref_primary_10_1080_02713683_2025_2524564
crossref_primary_10_1109_ACCESS_2020_3034436
crossref_primary_10_1063_5_0122697
crossref_primary_10_1002_adpr_202000101
crossref_primary_10_1109_JQE_2022_3151965
crossref_primary_10_1016_j_ajic_2020_08_022
crossref_primary_10_1016_j_isatra_2021_03_040
crossref_primary_10_1016_j_jhazmat_2022_129241
crossref_primary_10_1021_acs_est_5c09275
crossref_primary_10_1109_ACCESS_2021_3118302
crossref_primary_10_1038_s41598_021_02156_8
crossref_primary_10_1038_s41598_024_57441_z
crossref_primary_10_1126_science_abm9293
crossref_primary_10_1371_journal_pone_0271750
crossref_primary_10_1038_s41598_023_27380_2
crossref_primary_10_1016_j_buildenv_2024_111948
crossref_primary_10_1038_s41598_024_54006_y
crossref_primary_10_3389_fnano_2021_700888
crossref_primary_10_1002_adfm_202008452
crossref_primary_10_1016_j_buildenv_2024_111828
crossref_primary_10_3389_fpubh_2025_1445543
crossref_primary_10_1038_s41598_023_36610_6
crossref_primary_10_1016_j_jlumin_2025_121359
crossref_primary_10_1021_acs_est_5c07414
crossref_primary_10_29333_jcei_10811
crossref_primary_10_3390_app13074141
crossref_primary_10_3390_pharmacy13010009
crossref_primary_10_3390_v13030460
crossref_primary_10_1016_j_watres_2024_121533
crossref_primary_10_1080_02786826_2023_2186213
crossref_primary_10_1016_j_scitotenv_2024_174432
crossref_primary_10_3390_robotics14030026
crossref_primary_10_1007_s10311_021_01180_4
crossref_primary_10_1111_php_13594
crossref_primary_10_1126_science_abd9149
crossref_primary_10_1186_s41231_021_00090_5
crossref_primary_10_3390_app13148501
crossref_primary_10_1016_j_jep_2025_120546
crossref_primary_10_1177_23333928211058023
crossref_primary_10_3788_LOP242317
crossref_primary_10_1016_j_mseb_2022_116097
crossref_primary_10_1016_j_jphotobiol_2021_112378
crossref_primary_10_1038_s41598_022_04926_4
crossref_primary_10_1016_j_scs_2021_103408
crossref_primary_10_1128_spectrum_02439_24
crossref_primary_10_1002_pssa_202400064
crossref_primary_10_1016_j_pdpdt_2021_102334
crossref_primary_10_1038_s41598_020_79600_8
crossref_primary_10_1007_s11783_025_1980_0
crossref_primary_10_1016_j_cropro_2021_105791
crossref_primary_10_1016_j_jece_2023_110040
crossref_primary_10_1016_j_optlastec_2022_108156
crossref_primary_10_3390_s21113838
crossref_primary_10_1001_jama_2022_18025
crossref_primary_10_1016_j_buildenv_2025_113692
crossref_primary_10_1186_s12879_021_06659_7
crossref_primary_10_1038_s41598_021_01543_5
crossref_primary_10_1371_journal_pone_0266487
crossref_primary_10_1016_j_buildenv_2025_113336
crossref_primary_10_1111_php_70010
crossref_primary_10_3389_froh_2023_1270959
crossref_primary_10_1016_j_ifset_2023_103411
crossref_primary_10_1111_exd_14902
crossref_primary_10_1080_15502724_2024_2392569
crossref_primary_10_1021_acs_est_4c10774
crossref_primary_10_1111_php_13477
crossref_primary_10_1016_j_jmii_2021_12_005
crossref_primary_10_1155_2021_7427717
crossref_primary_10_1093_jambio_lxad124
crossref_primary_10_1016_j_pdpdt_2021_102682
crossref_primary_10_3390_ijerph19010331
crossref_primary_10_3390_s21155223
crossref_primary_10_1016_j_jobe_2024_109885
crossref_primary_10_1039_D1NR06188G
crossref_primary_10_1039_D3QI01253K
crossref_primary_10_1051_e3sconf_202234303005
crossref_primary_10_1111_php_13371
crossref_primary_10_1038_s41598_021_87692_z
crossref_primary_10_1186_s43593_022_00029_9
crossref_primary_10_1038_s41598_021_84592_0
crossref_primary_10_1080_23744731_2025_2487390
crossref_primary_10_1080_17452007_2021_1965949
crossref_primary_10_1016_j_scitotenv_2023_163007
crossref_primary_10_1016_j_psep_2025_106840
crossref_primary_10_1111_lam_13770
crossref_primary_10_3390_ijms26052278
crossref_primary_10_1038_s41598_021_98121_6
crossref_primary_10_3390_s23136129
crossref_primary_10_1016_j_buildenv_2024_111466
crossref_primary_10_1111_php_13805
crossref_primary_10_1016_j_buildenv_2023_110893
crossref_primary_10_1038_s41598_024_63472_3
crossref_primary_10_1063_5_0088454
crossref_primary_10_1111_php_13364
crossref_primary_10_1140_epjd_s10053_022_00506_3
crossref_primary_10_1016_j_optcom_2021_127504
crossref_primary_10_1038_s41598_022_09930_2
crossref_primary_10_1111_php_13383
crossref_primary_10_1070_QEL17374
crossref_primary_10_1111_php_13385
crossref_primary_10_3389_fmicb_2022_991856
crossref_primary_10_1016_j_scitotenv_2023_161848
crossref_primary_10_1038_s41598_020_77719_2
crossref_primary_10_1038_s41598_024_75245_z
crossref_primary_10_1016_j_scitotenv_2023_168803
crossref_primary_10_1016_j_cej_2024_151371
crossref_primary_10_3390_v14092038
crossref_primary_10_1038_s41598_025_02869_0
crossref_primary_10_2106_JBJS_RVW_20_00193
crossref_primary_10_1016_j_buildenv_2023_110765
crossref_primary_10_1016_j_buildenv_2024_112324
crossref_primary_10_1016_j_idc_2021_04_004
crossref_primary_10_1016_j_heliyon_2022_e11132
crossref_primary_10_1007_s00339_025_08924_x
crossref_primary_10_1016_j_jhazmat_2021_126682
crossref_primary_10_1016_j_sna_2025_117025
crossref_primary_10_1016_j_jclepro_2023_135974
crossref_primary_10_1016_j_pdpdt_2022_103015
crossref_primary_10_1080_09273948_2020_1834587
crossref_primary_10_1093_ijlct_ctac029
crossref_primary_10_1063_5_0055326
crossref_primary_10_1038_s41598_025_01896_1
crossref_primary_10_1088_1612_202X_ac0bc5
crossref_primary_10_3390_atmos15091100
crossref_primary_10_1001_jamainternmed_2025_3388
crossref_primary_10_1016_j_optlastec_2024_110828
crossref_primary_10_35848_1882_0786_ad3e48
crossref_primary_10_3389_fvets_2025_1512387
crossref_primary_10_1016_j_jhazmat_2025_137211
crossref_primary_10_1364_OE_553404
crossref_primary_10_1016_j_buildenv_2025_112734
crossref_primary_10_1016_j_jphotobiol_2022_112503
crossref_primary_10_1038_d41586_022_03360_w
crossref_primary_10_1371_journal_pcbi_1009474
crossref_primary_10_1053_j_jvca_2022_08_008
crossref_primary_10_31083_j_fbl2905195
crossref_primary_10_3390_photonics8090349
crossref_primary_10_1063_5_0174270
crossref_primary_10_3390_ijerph18083873
crossref_primary_10_1038_s41598_021_94648_w
crossref_primary_10_1111_php_14115
crossref_primary_10_3390_ma16134559
crossref_primary_10_1007_s10311_020_01160_0
crossref_primary_10_3390_v13010019
crossref_primary_10_1063_5_0069590
crossref_primary_10_1016_j_jhin_2021_07_014
crossref_primary_10_1155_2023_2085140
crossref_primary_10_1016_j_heliyon_2024_e39415
crossref_primary_10_1371_journal_pone_0291083
crossref_primary_10_3389_fpubh_2023_1085451
crossref_primary_10_1371_journal_pone_0292298
crossref_primary_10_38088_jise_1691959
crossref_primary_10_1016_j_jaerosci_2022_106003
crossref_primary_10_1109_IOTM_0011_2100053
crossref_primary_10_2217_fvl_2020_0326
crossref_primary_10_3390_foods11050653
crossref_primary_10_1002_adom_202300733
crossref_primary_10_1007_s40201_024_00918_w
crossref_primary_10_1038_s41598_020_76597_y
crossref_primary_10_3390_coatings14121531
crossref_primary_10_1016_j_optmat_2022_113191
crossref_primary_10_1016_j_foodcont_2021_108632
crossref_primary_10_37705_TechTrans_e2020041
crossref_primary_10_3390_life13051221
crossref_primary_10_48119_toleho_1257477
crossref_primary_10_1002_lpor_202200389
crossref_primary_10_1016_j_buildenv_2023_110260
crossref_primary_10_1016_j_ecoenv_2022_113211
crossref_primary_10_1016_j_fmre_2021_11_005
crossref_primary_10_1111_php_13710
crossref_primary_10_1002_jbio_202200306
crossref_primary_10_1063_5_0257551
crossref_primary_10_3390_app12031285
crossref_primary_10_1007_s12274_021_3832_y
crossref_primary_10_1128_msphere_00941_21
crossref_primary_10_1002_aic_17250
crossref_primary_10_1007_s44163_025_00419_1
crossref_primary_10_1088_1674_4926_45_1_012504
crossref_primary_10_3389_fphy_2020_00371
crossref_primary_10_1016_j_compbiomed_2021_104518
crossref_primary_10_1038_s41598_024_84196_4
crossref_primary_10_1017_ice_2021_103
crossref_primary_10_1017_S0950268823000560
crossref_primary_10_1111_php_13724
crossref_primary_10_1088_1674_4926_45_2_021501
crossref_primary_10_1017_ash_2024_409
crossref_primary_10_1016_j_jhazmat_2024_136666
crossref_primary_10_1038_s41598_022_06397_z
crossref_primary_10_1111_php_13961
crossref_primary_10_1002_ppap_202200054
crossref_primary_10_1111_php_13960
crossref_primary_10_1002_gch2_202200236
crossref_primary_10_1063_5_0092109
crossref_primary_10_1111_php_13602
crossref_primary_10_4236_aim_2025_157027
crossref_primary_10_7326_M21_2780
crossref_primary_10_1002_adma_202109498
crossref_primary_10_1246_bcsj_20210030
crossref_primary_10_7717_peerj_10196
crossref_primary_10_1088_1361_6528_acd5d7
crossref_primary_10_35534_fibrosis_2023_10002
crossref_primary_10_1007_s13762_023_04803_1
crossref_primary_10_1038_s41598_024_53144_7
crossref_primary_10_1016_j_hazadv_2022_100183
crossref_primary_10_1016_j_identj_2024_08_016
crossref_primary_10_3390_microorganisms9010172
crossref_primary_10_1016_j_rineng_2024_103642
crossref_primary_10_1371_journal_pone_0281162
crossref_primary_10_1111_php_70031
crossref_primary_10_1016_j_jhin_2025_04_004
crossref_primary_10_2184_lsj_52_1_36
crossref_primary_10_3390_pathogens13080698
crossref_primary_10_1016_j_buildenv_2022_109792
crossref_primary_10_3390_v14040684
crossref_primary_10_1063_5_0092599
crossref_primary_10_1016_j_ajic_2023_01_004
crossref_primary_10_1002_pssa_202400054
crossref_primary_10_1111_php_13739
crossref_primary_10_1088_1361_6498_ac9e60
crossref_primary_10_3390_nano15070562
crossref_primary_10_1128_AEM_01532_21
Cites_doi 10.1562/2005-10-27-RA-728
10.1371/journal.pone.0076968
10.1128/JVI.00079-09
10.1137/1.9781611971484
10.1089/jam.1997.10.105
10.1111/j.1751-1097.2012.01151.x
10.3390/v2081803
10.1021/es070056u
10.1007/978-1-4939-2438-7_1
10.1111/php.13269
10.1038/s41598-018-21058-w
10.1089/jop.2000.16.285
10.1007/978-3-642-20718-1
10.1111/j.1751-1097.1986.tb04676.x
10.1667/RR0010CC.1
10.1007/978-1-59745-394-3_24
10.2307/1911963
10.1371/journal.pone.0192053
10.2307/3572296
10.1007/BF01314577
10.1007/978-0-387-21706-2
10.1101/2020.03.09.20033217
10.1093/biomet/37.3-4.409
10.1073/pnas.1708727114
10.1016/j.watres.2008.09.001
10.1126/science.114.2954.156
10.1073/pnas.90.14.6666
10.1371/journal.pone.0138418
10.1371/journal.pone.0201259
10.1001/jama.2020.2565
10.1016/j.jphotobiol.2017.10.030
10.1097/00004032-200408000-00006
10.1007/978-3-642-01999-9
10.1093/oxfordjournals.aje.a118408
10.1002/sim.4780140810
10.2307/3583554
ContentType Journal Article
Copyright The Author(s) 2020. corrected publication 2021
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020, corrected publication 2021
Copyright_xml – notice: The Author(s) 2020. corrected publication 2021
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020, corrected publication 2021
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-020-67211-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database (ProQuest)
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
Publicly Available Content Database
MEDLINE - Academic
CrossRef

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 8
ExternalDocumentID oai_doaj_org_article_58630de7c3b347c4a90412adf796a247
PMC7314750
32581288
10_1038_s41598_020_67211_2
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c682t-c99a1431dc913aafc50a90344c3dfae1c107e1b93cd3e3bde3dcd6cf6a0fb70d3
IEDL.DBID BENPR
ISICitedReferencesCount 479
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000546712200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:53:21 EDT 2025
Tue Nov 04 02:02:56 EST 2025
Wed Oct 01 14:07:29 EDT 2025
Tue Oct 07 08:01:52 EDT 2025
Tue Oct 07 07:47:40 EDT 2025
Thu Apr 03 07:06:31 EDT 2025
Sat Nov 29 05:32:58 EST 2025
Tue Nov 18 20:02:33 EST 2025
Fri Feb 21 02:38:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c682t-c99a1431dc913aafc50a90344c3dfae1c107e1b93cd3e3bde3dcd6cf6a0fb70d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2473886838?pq-origsite=%requestingapplication%
PMID 32581288
PQID 2416299589
PQPubID 2041939
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_58630de7c3b347c4a90412adf796a247
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7314750
proquest_miscellaneous_2417390243
proquest_journals_2473886838
proquest_journals_2416299589
pubmed_primary_32581288
crossref_citationtrail_10_1038_s41598_020_67211_2
crossref_primary_10_1038_s41598_020_67211_2
springer_journals_10_1038_s41598_020_67211_2
PublicationCentury 2000
PublicationDate 2020-06-24
PublicationDateYYYYMMDD 2020-06-24
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Reed, L. J. & Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol.27(3), 493–497 (1938).
PonnaiyaBFar-UVC light prevents MRSA infection of superficial wounds in vivoPlos One2018132e019205310.1371/journal.pone.0192053p
Buonanno, M. et al. 207-nm UV light-a promising tool for safe low-cost reduction of surgical site infections. II: In-Vivo Safety Studies. PLoS One11(6), e0138418 (2016).
DurbinJWatsonGSTesting for serial correlation in least squares regression. IBiometrika1950373-440928392101:STN:280:DyaG3M%2FjtVKitw%3D%3D10.1093/biomet/37.3-4.409p
KeeneONThe log transformation is specialStat. Med.199514881191:STN:280:DyaK2Mznt1OmsQ%3D%3D10.1002/sim.4780140810p
BuonannoMGermicidal efficacy and mammalian skin safety of 222-nm uv lightRadiat. Res.201718744834912017RadR..187..493B1:CAS:528:DC%2BC2sXhtFCntr3L10.1667/RR0010CC.1p
Setlow, J. The molecular basis of biological effects of ultraviolet radiation and photoreactivation, in Current topics in radiation research, M. Ebert & A. Howard, Editors., North Holland Publishing Company: Amsterdam. p. 195–248 (1966).
Kangro, H. O. & Mahy, B. W. Virology methods manual. Elsevier (1996).
BalasubramanianDUltraviolet radiation and cataractJ. Ocul. Pharmacol. Ther.2000163285971:CAS:528:DC%2BD3cXjsl2lsrc%3D10.1089/jop.2000.16.285p
WalkerCMKoGEffect of Ultraviolet Germicidal Irradiation on Viral AerosolsEnv. Sci. Technol.20074115546054651:CAS:528:DC%2BD2sXmslWns7k%3D10.1021/es070056up
MarazziAAlgorithm, Routines, and S functions for Robust Statistics1993Pacific Grove, CaliforniaWadsworth & Brooks/cole0777.62004
SetlowRBWavelengths effective in induction of malignant melanomaProc. Natl Acad. Sci. USA199390146666701993PNAS...90.6666S1:CAS:528:DyaK3sXltlCnsbk%3D10.1073/pnas.90.14.6666p
Bai, Y. et al. Presumed asymptomatic carrier transmission of covid-19. JAMA, (2020).
LindenbachBDMeasuring HCV infectivity produced in cell culture and in vivoMethods Mol. Biol.2009510329361:CAS:528:DC%2BD1MXhtlersrk%3D10.1007/978-1-59745-394-3_24p
World Health Organization. Coronavirus disease (COVID-2019) situation reports. Available on: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (2020).
GoldfarbARSaidelLJUltraviolet absorption spectra of proteinsScience1951114295415671951Sci...114..156G1:CAS:528:DyaG3MXlvFWitw%3D%3D10.1126/science.114.2954.156p
WooPCCoronavirus genomics and bioinformatics analysisViruses2010281804201:CAS:528:DC%2BC3cXhtFShsrrI10.3390/v2081803p
BudowskyEIPrinciples of selective inactivation of viral genome. I. UV-induced inactivation of influenza virusArch. Virol.1981683-4239471:STN:280:DyaL3M3otFSisQ%3D%3D10.1007/BF01314577p
WelchDFar-UVC light: A new tool to control the spread of airborne-mediated microbial diseasesSci. Rep.2018812018NatSR...8.2752W10.1038/s41598-018-21058-wp
Narita, K. et al. 222-nm UVC inactivates a wide spectrum of microbial pathogens. J Hosp Infect (2020).
van Doremalen, N. et al. Aerosol and surface stability of sars-cov-2 as compared with sars-cov-1. N. Engl. J. Med, (2020).
NaritaKDisinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse woundsJ. Photochem. Photobiol. B2018178Supplement C10181:CAS:528:DC%2BC2sXhslygs7%2FP10.1016/j.jphotobiol.2017.10.030p
NaritaKChronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high dosesPLoS One2018137e020125910.1371/journal.pone.0201259p
Mahy, B. & Kangro, H. Virology Methods manual. Academic Press (1996).
PapineniRSRosenthalFSThe size distribution of droplets in the exhaled breath of healthy human subjectsJ. Aerosol Med.19971021051161:STN:280:DyaK2sznsF2jtA%3D%3D10.1089/jam.1997.10.105p
Modrow, S. et al. Molecular virology. Springer Berlin Heidelberg (2013).
BuonannoM207-nm UV light - a promising tool for safe low-cost reduction of surgical site infections. I: in vitro studiesPlos One2013810e769682013PLoSO...876968B1:CAS:528:DC%2BC3sXhs1OisLrI10.1371/journal.pone.0076968p
ACGIH(R), 2017 TLVs and BEIs. Threshold Limit Value (TLV) for chemical substances and physical agents and Biological Exposure Indices (BEIs). Signature Publications (2017).
Bjorck, A. Numerical Methods For Linear Least Squares Problems. Computer Science (1996).
Yamano, N. et al. Long-term effects of 222 nm ultraviolet radiation C sterilizing lamps on mice susceptible to ultraviolet radiation. Photochem Photobiol, (2020).
SparrowAHUnderbrinkAGSparrowRCChromosomes and cellular radiosensitivity. I. The relationship of D0 to chromosome volume and complexity in seventy-nine different organismsRadiat. Res.1967324915451967RadR...32..915S1:STN:280:DyaF1c%2FptVOktQ%3D%3D10.2307/3572296p
TrevisanAUnusual high exposure to ultraviolet-C radiationPhotochem. Photobiol.2006824107791:CAS:528:DC%2BD28XpsFegu78%3D10.1562/2005-10-27-RA-728p
WallsACTectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusionProc. Natl Acad. Sci. USA20171144211157111621:CAS:528:DC%2BC2sXhs1SksLjI10.1073/pnas.1708727114p
GreenHCytotoxicity and mutagenicity of low intensity, 248 and 193 nm excimer laser radiation in mammalian cellsCancer Res.198747241031:STN:280:DyaL2s%2FnvVSjtA%3D%3Dp
MaduIGCharacterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptideJ. Virol.200983157411211:CAS:528:DC%2BD1MXovFensLk%3D10.1128/JVI.00079-09p
The International Commission on Non-Ionizing Radiation Protection, Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Phys, 87(2), p. 171–186 (2004).
FehrARPerlmanSCoronaviruses: an overview of their replication and pathogenesisMethods Mol. Biol.201512821231:CAS:528:DC%2BC28Xls12ksL8%3D10.1007/978-1-4939-2438-7_1p
Kowalski, W. J. Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection. New York: Springer, (2009).
BreuschTPaganAA simple test for heteroscedasticity and random coefficient variationEconometrica19794751287129454596010.2307/1911963p
CoohillTPVirus-cell interactions as probes for vacuum-ultraviolet radiation damage and repairPhotochem. Photobiol.1986443359631:CAS:528:DyaL28Xmt1Wrtb0%3D10.1111/j.1751-1097.1986.tb04676.xp
NaunovicZLimSBlatchleyERIIIInvestigation of microbial inactivation efficiency of a UV disinfection system employing an excimer lampWater Res.200842194838461:CAS:528:DC%2BD1cXhtlCkt7%2FE10.1016/j.watres.2008.09.001p
Venables, W. N. & Ripley, B. D. Modern applied statistics with S. 4th ed. Statistics and computing, New York: Springer, xi, 495 p (2002).
ZaffinaSAccidental exposure to UV radiation produced by germicidal lamp: case report and risk assessmentPhotochem. Photobiol.2012884100141:CAS:528:DC%2BC38XhtFGrs7jP10.1111/j.1751-1097.2012.01151.xp
ON Keene (67211_CR39) 1995; 14
S Zaffina (67211_CR8) 2012; 88
AH Sparrow (67211_CR27) 1967; 32
K Narita (67211_CR16) 2018; 178
EI Budowsky (67211_CR5) 1981; 68
K Narita (67211_CR17) 2018; 13
67211_CR40
TP Coohill (67211_CR21) 1986; 44
D Balasubramanian (67211_CR10) 2000; 16
67211_CR20
67211_CR18
AC Walls (67211_CR31) 2017; 114
RB Setlow (67211_CR9) 1993; 90
67211_CR4
67211_CR37
67211_CR3
67211_CR36
T Breusch (67211_CR43) 1979; 47
67211_CR2
67211_CR1
67211_CR38
H Green (67211_CR22) 1987; 47
A Marazzi (67211_CR41) 1993
AR Goldfarb (67211_CR19) 1951; 114
BD Lindenbach (67211_CR28) 2009; 510
A Trevisan (67211_CR7) 2006; 82
67211_CR11
B Ponnaiya (67211_CR15) 2018; 13
67211_CR33
67211_CR13
J Durbin (67211_CR42) 1950; 37
67211_CR34
Z Naunovic (67211_CR6) 2008; 42
67211_CR30
M Buonanno (67211_CR12) 2013; 8
67211_CR29
D Welch (67211_CR23) 2018; 8
RS Papineni (67211_CR26) 1997; 10
IG Madu (67211_CR32) 2009; 83
CM Walker (67211_CR35) 2007; 41
AR Fehr (67211_CR24) 2015; 1282
PC Woo (67211_CR25) 2010; 2
M Buonanno (67211_CR14) 2017; 187
References_xml – reference: BuonannoMGermicidal efficacy and mammalian skin safety of 222-nm uv lightRadiat. Res.201718744834912017RadR..187..493B1:CAS:528:DC%2BC2sXhtFCntr3L10.1667/RR0010CC.1p
– reference: WalkerCMKoGEffect of Ultraviolet Germicidal Irradiation on Viral AerosolsEnv. Sci. Technol.20074115546054651:CAS:528:DC%2BD2sXmslWns7k%3D10.1021/es070056up
– reference: Kangro, H. O. & Mahy, B. W. Virology methods manual. Elsevier (1996).
– reference: Narita, K. et al. 222-nm UVC inactivates a wide spectrum of microbial pathogens. J Hosp Infect (2020).
– reference: LindenbachBDMeasuring HCV infectivity produced in cell culture and in vivoMethods Mol. Biol.2009510329361:CAS:528:DC%2BD1MXhtlersrk%3D10.1007/978-1-59745-394-3_24p
– reference: NaritaKDisinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse woundsJ. Photochem. Photobiol. B2018178Supplement C10181:CAS:528:DC%2BC2sXhslygs7%2FP10.1016/j.jphotobiol.2017.10.030p
– reference: BuonannoM207-nm UV light - a promising tool for safe low-cost reduction of surgical site infections. I: in vitro studiesPlos One2013810e769682013PLoSO...876968B1:CAS:528:DC%2BC3sXhs1OisLrI10.1371/journal.pone.0076968p
– reference: WallsACTectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusionProc. Natl Acad. Sci. USA20171144211157111621:CAS:528:DC%2BC2sXhs1SksLjI10.1073/pnas.1708727114p
– reference: Kowalski, W. J. Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection. New York: Springer, (2009).
– reference: Bjorck, A. Numerical Methods For Linear Least Squares Problems. Computer Science (1996).
– reference: ACGIH(R), 2017 TLVs and BEIs. Threshold Limit Value (TLV) for chemical substances and physical agents and Biological Exposure Indices (BEIs). Signature Publications (2017).
– reference: ZaffinaSAccidental exposure to UV radiation produced by germicidal lamp: case report and risk assessmentPhotochem. Photobiol.2012884100141:CAS:528:DC%2BC38XhtFGrs7jP10.1111/j.1751-1097.2012.01151.xp
– reference: Setlow, J. The molecular basis of biological effects of ultraviolet radiation and photoreactivation, in Current topics in radiation research, M. Ebert & A. Howard, Editors., North Holland Publishing Company: Amsterdam. p. 195–248 (1966).
– reference: WooPCCoronavirus genomics and bioinformatics analysisViruses2010281804201:CAS:528:DC%2BC3cXhtFShsrrI10.3390/v2081803p
– reference: Modrow, S. et al. Molecular virology. Springer Berlin Heidelberg (2013).
– reference: Bai, Y. et al. Presumed asymptomatic carrier transmission of covid-19. JAMA, (2020).
– reference: FehrARPerlmanSCoronaviruses: an overview of their replication and pathogenesisMethods Mol. Biol.201512821231:CAS:528:DC%2BC28Xls12ksL8%3D10.1007/978-1-4939-2438-7_1p
– reference: The International Commission on Non-Ionizing Radiation Protection, Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Phys, 87(2), p. 171–186 (2004).
– reference: NaritaKChronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high dosesPLoS One2018137e020125910.1371/journal.pone.0201259p
– reference: KeeneONThe log transformation is specialStat. Med.199514881191:STN:280:DyaK2Mznt1OmsQ%3D%3D10.1002/sim.4780140810p
– reference: TrevisanAUnusual high exposure to ultraviolet-C radiationPhotochem. Photobiol.2006824107791:CAS:528:DC%2BD28XpsFegu78%3D10.1562/2005-10-27-RA-728p
– reference: WelchDFar-UVC light: A new tool to control the spread of airborne-mediated microbial diseasesSci. Rep.2018812018NatSR...8.2752W10.1038/s41598-018-21058-wp
– reference: GreenHCytotoxicity and mutagenicity of low intensity, 248 and 193 nm excimer laser radiation in mammalian cellsCancer Res.198747241031:STN:280:DyaL2s%2FnvVSjtA%3D%3Dp
– reference: Yamano, N. et al. Long-term effects of 222 nm ultraviolet radiation C sterilizing lamps on mice susceptible to ultraviolet radiation. Photochem Photobiol, (2020).
– reference: SparrowAHUnderbrinkAGSparrowRCChromosomes and cellular radiosensitivity. I. The relationship of D0 to chromosome volume and complexity in seventy-nine different organismsRadiat. Res.1967324915451967RadR...32..915S1:STN:280:DyaF1c%2FptVOktQ%3D%3D10.2307/3572296p
– reference: BalasubramanianDUltraviolet radiation and cataractJ. Ocul. Pharmacol. Ther.2000163285971:CAS:528:DC%2BD3cXjsl2lsrc%3D10.1089/jop.2000.16.285p
– reference: PapineniRSRosenthalFSThe size distribution of droplets in the exhaled breath of healthy human subjectsJ. Aerosol Med.19971021051161:STN:280:DyaK2sznsF2jtA%3D%3D10.1089/jam.1997.10.105p
– reference: Venables, W. N. & Ripley, B. D. Modern applied statistics with S. 4th ed. Statistics and computing, New York: Springer, xi, 495 p (2002).
– reference: GoldfarbARSaidelLJUltraviolet absorption spectra of proteinsScience1951114295415671951Sci...114..156G1:CAS:528:DyaG3MXlvFWitw%3D%3D10.1126/science.114.2954.156p
– reference: Reed, L. J. & Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol.27(3), 493–497 (1938).
– reference: MarazziAAlgorithm, Routines, and S functions for Robust Statistics1993Pacific Grove, CaliforniaWadsworth & Brooks/cole0777.62004
– reference: DurbinJWatsonGSTesting for serial correlation in least squares regression. IBiometrika1950373-440928392101:STN:280:DyaG3M%2FjtVKitw%3D%3D10.1093/biomet/37.3-4.409p
– reference: NaunovicZLimSBlatchleyERIIIInvestigation of microbial inactivation efficiency of a UV disinfection system employing an excimer lampWater Res.200842194838461:CAS:528:DC%2BD1cXhtlCkt7%2FE10.1016/j.watres.2008.09.001p
– reference: BreuschTPaganAA simple test for heteroscedasticity and random coefficient variationEconometrica19794751287129454596010.2307/1911963p
– reference: MaduIGCharacterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptideJ. Virol.200983157411211:CAS:528:DC%2BD1MXovFensLk%3D10.1128/JVI.00079-09p
– reference: SetlowRBWavelengths effective in induction of malignant melanomaProc. Natl Acad. Sci. USA199390146666701993PNAS...90.6666S1:CAS:528:DyaK3sXltlCnsbk%3D10.1073/pnas.90.14.6666p
– reference: Buonanno, M. et al. 207-nm UV light-a promising tool for safe low-cost reduction of surgical site infections. II: In-Vivo Safety Studies. PLoS One11(6), e0138418 (2016).
– reference: PonnaiyaBFar-UVC light prevents MRSA infection of superficial wounds in vivoPlos One2018132e019205310.1371/journal.pone.0192053p
– reference: World Health Organization. Coronavirus disease (COVID-2019) situation reports. Available on: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (2020).
– reference: van Doremalen, N. et al. Aerosol and surface stability of sars-cov-2 as compared with sars-cov-1. N. Engl. J. Med, (2020).
– reference: CoohillTPVirus-cell interactions as probes for vacuum-ultraviolet radiation damage and repairPhotochem. Photobiol.1986443359631:CAS:528:DyaL28Xmt1Wrtb0%3D10.1111/j.1751-1097.1986.tb04676.xp
– reference: BudowskyEIPrinciples of selective inactivation of viral genome. I. UV-induced inactivation of influenza virusArch. Virol.1981683-4239471:STN:280:DyaL3M3otFSisQ%3D%3D10.1007/BF01314577p
– reference: Mahy, B. & Kangro, H. Virology Methods manual. Academic Press (1996).
– volume: 82
  start-page: 1077
  issue: 4
  year: 2006
  ident: 67211_CR7
  publication-title: Photochem. Photobiol.
  doi: 10.1562/2005-10-27-RA-728
– volume: 8
  start-page: e76968
  issue: 10
  year: 2013
  ident: 67211_CR12
  publication-title: Plos One
  doi: 10.1371/journal.pone.0076968
– volume: 83
  start-page: 7411
  issue: 15
  year: 2009
  ident: 67211_CR32
  publication-title: J. Virol.
  doi: 10.1128/JVI.00079-09
– ident: 67211_CR30
  doi: 10.1137/1.9781611971484
– volume: 10
  start-page: 105
  issue: 2
  year: 1997
  ident: 67211_CR26
  publication-title: J. Aerosol Med.
  doi: 10.1089/jam.1997.10.105
– volume: 88
  start-page: 1001
  issue: 4
  year: 2012
  ident: 67211_CR8
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.2012.01151.x
– volume: 2
  start-page: 1804
  issue: 8
  year: 2010
  ident: 67211_CR25
  publication-title: Viruses
  doi: 10.3390/v2081803
– volume: 41
  start-page: 5460
  issue: 15
  year: 2007
  ident: 67211_CR35
  publication-title: Env. Sci. Technol.
  doi: 10.1021/es070056u
– ident: 67211_CR37
– volume: 1282
  start-page: 1
  year: 2015
  ident: 67211_CR24
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-2438-7_1
– ident: 67211_CR18
  doi: 10.1111/php.13269
– volume: 8
  issue: 1
  year: 2018
  ident: 67211_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21058-w
– volume: 16
  start-page: 285
  issue: 3
  year: 2000
  ident: 67211_CR10
  publication-title: J. Ocul. Pharmacol. Ther.
  doi: 10.1089/jop.2000.16.285
– ident: 67211_CR33
  doi: 10.1007/978-3-642-20718-1
– volume: 44
  start-page: 359
  issue: 3
  year: 1986
  ident: 67211_CR21
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.1986.tb04676.x
– volume: 187
  start-page: 483
  issue: 4
  year: 2017
  ident: 67211_CR14
  publication-title: Radiat. Res.
  doi: 10.1667/RR0010CC.1
– volume: 510
  start-page: 329
  year: 2009
  ident: 67211_CR28
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-394-3_24
– volume: 47
  start-page: 1287
  issue: 5
  year: 1979
  ident: 67211_CR43
  publication-title: Econometrica
  doi: 10.2307/1911963
– volume: 13
  start-page: e0192053
  issue: 2
  year: 2018
  ident: 67211_CR15
  publication-title: Plos One
  doi: 10.1371/journal.pone.0192053
– volume: 32
  start-page: 915
  issue: 4
  year: 1967
  ident: 67211_CR27
  publication-title: Radiat. Res.
  doi: 10.2307/3572296
– volume: 68
  start-page: 239
  issue: 3-4
  year: 1981
  ident: 67211_CR5
  publication-title: Arch. Virol.
  doi: 10.1007/BF01314577
– volume: 47
  start-page: 410
  issue: 2
  year: 1987
  ident: 67211_CR22
  publication-title: Cancer Res.
– ident: 67211_CR40
  doi: 10.1007/978-0-387-21706-2
– ident: 67211_CR2
  doi: 10.1101/2020.03.09.20033217
– volume: 37
  start-page: 409
  issue: 3-4
  year: 1950
  ident: 67211_CR42
  publication-title: Biometrika
  doi: 10.1093/biomet/37.3-4.409
– volume: 114
  start-page: 11157
  issue: 42
  year: 2017
  ident: 67211_CR31
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1708727114
– ident: 67211_CR1
– ident: 67211_CR34
– volume: 42
  start-page: 4838
  issue: 19
  year: 2008
  ident: 67211_CR6
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.09.001
– volume: 114
  start-page: 156
  issue: 2954
  year: 1951
  ident: 67211_CR19
  publication-title: Science
  doi: 10.1126/science.114.2954.156
– volume: 90
  start-page: 6666
  issue: 14
  year: 1993
  ident: 67211_CR9
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.90.14.6666
– ident: 67211_CR13
  doi: 10.1371/journal.pone.0138418
– ident: 67211_CR29
– volume: 13
  start-page: e0201259
  issue: 7
  year: 2018
  ident: 67211_CR17
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0201259
– volume-title: Algorithm, Routines, and S functions for Robust Statistics
  year: 1993
  ident: 67211_CR41
– ident: 67211_CR3
  doi: 10.1001/jama.2020.2565
– volume: 178
  start-page: 10
  issue: Supplement C
  year: 2018
  ident: 67211_CR16
  publication-title: J. Photochem. Photobiol. B
  doi: 10.1016/j.jphotobiol.2017.10.030
– ident: 67211_CR36
  doi: 10.1097/00004032-200408000-00006
– ident: 67211_CR11
– ident: 67211_CR4
  doi: 10.1007/978-3-642-01999-9
– ident: 67211_CR38
  doi: 10.1093/oxfordjournals.aje.a118408
– volume: 14
  start-page: 811
  issue: 8
  year: 1995
  ident: 67211_CR39
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780140810
– ident: 67211_CR20
  doi: 10.2307/3583554
SSID ssj0000529419
Score 2.7045212
Snippet A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically...
Abstract A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10285
SubjectTerms 631/326
631/326/2522
631/326/596/4130
Antiviral Agents - adverse effects
Betacoronavirus - radiation effects
Cell Line
Coronaviridae
Coronavirus 229E, Human - radiation effects
Coronavirus Infections - radiotherapy
Coronavirus OC43, Human - radiation effects
Coronaviruses
COVID-19
Disinfection - methods
Health hazards
Humanities and Social Sciences
Humans
Inactivation
Influenza
multidisciplinary
Pandemics
Particulate Matter - radiation effects
Pneumonia, Viral - radiotherapy
SARS Virus - radiation effects
SARS-CoV-2
Science
Science (multidisciplinary)
Severe acute respiratory syndrome coronavirus 2
Ultraviolet radiation
Ultraviolet Rays - adverse effects
Virus Inactivation - radiation effects
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA6yKHgRf1tdJYIHRcO2eWl-HHVx8LR4cGVuIU1SHBi70s4M7M2r_6Z_iS9pZ9xRVy_eSpOG9MsL73sk73uEPAsG_bIrSxaUkUwYIZhpuWaN8rzlMqSq1rnYhDo50fO5eX-h1Fe6EzbKA4_AHdVaQhmi8tCAUF44kxSiXGhxbMdFziNH1nMhmBpVvbkRlZmyZErQRwN6qpRNlqKlFPUwvueJsmD_n1jm75clfzkxzY5odpPcmBgkfT3O_Ba5Ervb5NpYU_L8DpnPXM9OPx7TZQq76XP0zN-_fus-v6Axq0Xg-Mtz6rpAB9dGfFx0KbdhkzgndYsebaKLNJfuoz7JG7jNol8PcbhLTmdvPxy_Y1P5BOal5ivmjXHIhqrgTQXOtb4uETwQwkNoXaw8Rn6xagz4ABGaECH4IH0rXdk2qgxwjxx0Z118QCjgStZ13XCpoqir4KRvGs99BdqVTlYFqbZQWj9pi6cSF0ubz7hB2xF-i_DbDL_lBXm5--bLqKzx195v0grteiZV7PwCbcVOtmL_ZSsFOdyur5226mCRwkj0ybU2lzQr0Fpq0AV5umvGPZgOVlwXz9Z5CAUmaTsW5P5oLbuJAq-RQ2n8Wu3Z0d6f7Ld0i09Z51tBJZDQFeTV1uJ-TutypB7-D6Qekes8bZVSMi4OycGqX8fH5KrfrBZD_yTvtR_qVCps
  priority: 102
  providerName: Directory of Open Access Journals
Title Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses
URI https://link.springer.com/article/10.1038/s41598-020-67211-2
https://www.ncbi.nlm.nih.gov/pubmed/32581288
https://www.proquest.com/docview/2416299589
https://www.proquest.com/docview/2473886838
https://www.proquest.com/docview/2417390243
https://pubmed.ncbi.nlm.nih.gov/PMC7314750
https://doaj.org/article/58630de7c3b347c4a90412adf796a247
Volume 10
WOSCitedRecordID wos000546712200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xLUhceD8CSxUkDiCwNn7EjxNiV1vBYasKsaicIsd2oFJJl6SttDeu_E1-CbabFhXYvXCxotiO7MyMZ8ZjfwPwzCqvl3WWISsUR0wxhlRFJCqFIRXhNmS1jskmxGgkJxM17jbc2u5Y5WZNjAu1nZuwR35AmKBScknl67NvKGSNCtHVLoXGHvQDUhnrQf_weDR-v91lCXEshlV3Wyaj8qD1GivcKgteU_B-ENnRSBG4_1_W5t-HJv-InEaFNLz5v1O5BTc6UzR9s-ad23DF1Xfg2jo55fldmAx1g04_HqWz4L-nz72K__n9R_31Reoi7IQf4Ow81bVNW105_zitwyWJVTBeUz1tPHPVLo05AFMTcBL0atosW9feg9Ph8Yejt6jLw4AMl2SBjFLam1XYGoWp1pXJM60CVKChttIOG-9COlwqaix1tLSOWmO5qbjOqlJklt6HXj2v3UNIqWeJPM9LwoVjObaam7I0xGAqdaY5TgBvaFGYDqQ85MqYFTFYTmWxpl_h6VdE-hUkgZfbPmdriI5LWx8GEm9bBnjt-GLefC46aS1yyWlmnTC0pEwY5qfLMNG28gytPfkS2N9Qtuhkvi28LcS9cs-luqB6Q_UEnm6rvTCHCI2u3XwZPyGoCiCRCTxYs9t2oJTk3hiTvrfYYcSdmezW1NMvETBcUMy8ZZjAqw3L_h7WxX_q0eWzeAzXSZCijCPC9qG3aJbuCVw1q8W0bQawJyYilnLQCeUg7nf48oSMQyl82R-_Oxl_-gU7LEEC
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKAcGG9yNQIEgggSBqYid-LBCCwqhVy4hFW83OOLYDIw2ZkswMmh1bfoaP4ku4dh5ogHbXBbsodizbOff6-HUPQo-MgHFZxXFkmKBRKtI0EgXmUc40LjA1TtXai02w4ZCPRuL9GvrR3YVxxyo7n-gdtZlqt0a-iVNGOKec8JdHXyKnGuV2VzsJjQYWu3b5FaZs9YudN_B_H2M8eLu_tR21qgKRphzPIi2EApKQGC0SolShs1gJF_hOE1Mom2iYENkkF0QbYkluLDHaUF1QFRc5iw2Bcs-gs-DHmTtCxkasX9Nxu2ZpItq7OTHhmzWMj-4Om5ujublWhFfGPy8T8C9u-_cRzT_2af3wN7j8v3XcFXSpJdrhq8YyrqI1W15D5xvpzeV1NBqoKjo43AonbnUifAIE5ue37-Xnp6H1QTWgQybLUJUmrFVh4XFcuisgC0fNQzWuwHRKG3qFw1C7KBBqMa7mta1voINTadZNtF5OS3sbhQQAn2VZjimzaZYYRXWea6wTwlWsaBKgpPv3Urch2J0SyET6owCEywYvEvAiPV4kDtCz_pujJgDJiblfO0j1OV3wcP9iWn2UrS-SGackNpZpkpOU6RSamyZYmQLMVQFcArTRIUm2Hq2WwPQoUJeMi2OSO5QF6GGfDK7K7T-p0k7nvghGhAuBGaBbDbz7ihKcAdXk8DVbAf5KS1ZTyvEnHw6dkSQF3hug552J_K7W8T115-RWPEAXtvff7cm9neHuXXQROwuOaYTTDbQ-q-b2HjqnF7NxXd33LiBEH07bdH4BmtaaCg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKeYgN70egQJBAAkHUxHb8WCAELSOqwmgWFM0uOLYDkYZMSWYGzY4tv8Tn8CVcO8mgAdpdF-yi2I5s55zr49e9CD0wEsZlFceR4ZJFVFIayQKLKOcaF5gZF9XaB5vgw6EYj-VoA_3o78K4Y5W9TfSG2ky1WyPfxpQTIZggYrvojkWMdgfPD79ELoKU22ntw2m0ENm3y68wfWue7e3Cv36I8eDVu53XURdhINJM4FmkpVQgGBKjZUKUKnQaK-mc4GliCmUTDZMjm-SSaEMsyY0lRhumC6biIuexIfDdU-g0p2nq2PUWj1brO24HjSayu6cTQ7UbGCvdfTY3X3PzrgivjYU-ZMC_dO7fxzX_2LP1Q-Hg4v_ciZfQhU6Ahy9axlxGG7a6gs62ITmXV9F4oOro4P1OOHGrFuEjEDY_v32vPj8OrXe2AZ0zWYaqMmGjCguPZeWuhiycZA9VWQOlKhv6yIehdt4h1KKs541trqGDE2nWdbRZTSt7E4UEiJCmaY4ZtzRNjGI6zzXWCREqViwJUNLjINOda3YXIWSS-SMCRGQtdjLATuaxk-EAPVmVOWwdkxyb-6WD1yqncyruX0zrj1lno7JUMBIbyzXJCeWaQnNpgpUpgMYKoBOgrR5VWWfpmgwUIANJkwp5RHKPuADdXyWDCXP7Uqqy07n_BCfSucYM0I0W6quKEpyCBBVQmq-RYK0l6ylV-cm7SeckoaCHA_S0p8vvah3dU7eOb8U9dA4Yk73ZG-7fRuexI3PMIky30Oasnts76IxezMqmvuutQYg-nDRzfgHMlaLX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Far-UVC+light+%28222%E2%80%89nm%29+efficiently+and+safely+inactivates+airborne+human+coronaviruses&rft.jtitle=Scientific+reports&rft.au=Buonanno+Manuela&rft.au=Welch%2C+David&rft.au=Shuryak+Igor&rft.au=Brenner%2C+David+J&rft.date=2020-06-24&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-67211-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon