Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses
A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207–222 nm)...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 10; H. 1; S. 10285 - 8 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
24.06.2020
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207–222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm
2
inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm
2
/hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations. |
|---|---|
| AbstractList | Abstract A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207–222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm2 inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm2/hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations. A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207–222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm2 inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm2/hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations. A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207-222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm2 inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm2/hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations.A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207-222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm2 inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm2/hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations. A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207–222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm 2 inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm 2 /hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations. A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207–222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm2 inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm2/hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations. A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207-222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm /hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations. |
| ArticleNumber | 10285 |
| Author | Welch, David Buonanno, Manuela Brenner, David J. Shuryak, Igor |
| Author_xml | – sequence: 1 givenname: Manuela surname: Buonanno fullname: Buonanno, Manuela organization: Center for Radiological Research, Columbia University Irving Medical Center – sequence: 2 givenname: David surname: Welch fullname: Welch, David organization: Center for Radiological Research, Columbia University Irving Medical Center – sequence: 3 givenname: Igor surname: Shuryak fullname: Shuryak, Igor organization: Center for Radiological Research, Columbia University Irving Medical Center – sequence: 4 givenname: David J. surname: Brenner fullname: Brenner, David J. email: djb3@cumc.columbia.edu organization: Center for Radiological Research, Columbia University Irving Medical Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32581288$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UsFu1DAUjFARLaU_wAFF4lIOAfvZSewLUrWiUKkSF4q4WS-2s-tV1i52slJvXPlNvgRv00Lbw_riJ3tm3jx7XhYHPnhbFK8peU8JEx8Sp7UUFQFSNS1QWsGz4ggIrytgAAcP6sPiJKU1yasGyal8URwyqAUFIY6KH-cYq6vvi3Jwy9VYngLAn1-__eZdafveaWf9ONyU6E2ZsLe5dB716LY42lSii12I3paraYO-1CEGj1sXp2TTq-J5j0OyJ3f7cXF1_unb4kt1-fXzxeLsstKNgLHSUiLljBotKUPsdU1QEsa5ZqZHSzUlraWdZNowyzpjmdGm0X2DpO9aYthxcTHrmoBrdR3dBuONCujU7UGIS4VxdHqwqhYNI8a2mnWMt5rnRpwCmr6VDQJvs9bHWet66jbW6Dx8xOGR6OMb71ZqGbaqZZS3NckCp3cCMfycbBrVxiVthwG9DVNSwGnLJAHOMvTtE-g6TNHnp1I7K0I0gon9KNqAlLWQGfXmoe9_hu-_OQPEDNAxpBRtr7QbcXRhN4YbFCVqFyo1h0rlUKnbUCnIVHhCvVffS2IzKWWwX9r43_Ye1l-oed5Z |
| CitedBy_id | crossref_primary_10_1016_j_energy_2021_122709 crossref_primary_10_1016_j_scitotenv_2024_170352 crossref_primary_10_1371_journal_pone_0294427 crossref_primary_10_1016_j_jphotobiol_2023_112784 crossref_primary_10_1016_j_buildenv_2021_107852 crossref_primary_10_1289_EHP13878 crossref_primary_10_1016_j_csbj_2021_03_037 crossref_primary_10_1186_s12879_021_06222_4 crossref_primary_10_1080_15459624_2022_2100404 crossref_primary_10_1007_s10946_022_10075_w crossref_primary_10_1038_s41598_022_08462_z crossref_primary_10_3390_ijms23169112 crossref_primary_10_1063_5_0124017 crossref_primary_10_1016_j_jece_2021_105881 crossref_primary_10_1371_journal_pone_0267957 crossref_primary_10_1111_php_14035 crossref_primary_10_1111_php_13620 crossref_primary_10_1016_j_bioactmat_2022_05_005 crossref_primary_10_1038_s41598_021_93231_7 crossref_primary_10_1111_php_13742 crossref_primary_10_1111_php_13866 crossref_primary_10_1063_5_0142242 crossref_primary_10_1111_php_14052 crossref_primary_10_1186_s13568_023_01611_1 crossref_primary_10_21315_mjms2020_27_5_14 crossref_primary_10_1016_j_jallcom_2025_179272 crossref_primary_10_1038_s41598_022_17663_5 crossref_primary_10_1007_s00249_024_01702_2 crossref_primary_10_1038_s41598_024_64689_y crossref_primary_10_35848_1882_0786_ad40fb crossref_primary_10_1016_j_ijleo_2021_166339 crossref_primary_10_1177_1937586720979832 crossref_primary_10_3390_ma14051075 crossref_primary_10_1109_JSEN_2021_3075893 crossref_primary_10_1016_j_atmosenv_2024_120559 crossref_primary_10_1016_j_buildenv_2022_109530 crossref_primary_10_3390_s21186282 crossref_primary_10_1016_j_jth_2025_102116 crossref_primary_10_3390_v16121904 crossref_primary_10_1016_j_jhazmat_2025_139723 crossref_primary_10_1016_j_jobe_2022_105466 crossref_primary_10_1007_s13538_024_01516_9 crossref_primary_10_1038_s41598_022_26783_x crossref_primary_10_1038_s41467_025_60312_4 crossref_primary_10_1007_s11090_025_10579_8 crossref_primary_10_1088_1402_4896_ad1cb9 crossref_primary_10_1038_s41598_023_35438_4 crossref_primary_10_1111_php_14062 crossref_primary_10_1109_TPS_2023_3337631 crossref_primary_10_1016_j_envres_2023_116952 crossref_primary_10_3390_ijerph17207396 crossref_primary_10_3390_w14091394 crossref_primary_10_1038_s41598_023_49745_3 crossref_primary_10_15252_emmm_202318710 crossref_primary_10_1016_j_lssr_2024_01_006 crossref_primary_10_3357_AMHP_6350_2024 crossref_primary_10_1016_j_buildenv_2024_111742 crossref_primary_10_1039_D4EM00384E crossref_primary_10_1089_apb_2022_0021 crossref_primary_10_1021_acs_est_5c03024 crossref_primary_10_1016_j_optlastec_2024_112025 crossref_primary_10_1016_j_indenv_2025_100099 crossref_primary_10_3390_foods10123141 crossref_primary_10_1371_journal_pone_0299421 crossref_primary_10_1186_s13063_024_07909_0 crossref_primary_10_1111_php_13523 crossref_primary_10_3390_coatings14010124 crossref_primary_10_1371_journal_pone_0311552 crossref_primary_10_1111_php_13767 crossref_primary_10_1021_acsestair_5c00138 crossref_primary_10_1109_JSEN_2021_3101593 crossref_primary_10_3390_pathogens11020226 crossref_primary_10_2166_wh_2022_263 crossref_primary_10_1002_asia_202400769 crossref_primary_10_1038_s42003_021_02962_w crossref_primary_10_1016_j_optmat_2023_113866 crossref_primary_10_1519_SSC_0000000000000626 crossref_primary_10_35848_1347_4065_ad0c2a crossref_primary_10_1055_s_0041_1740582 crossref_primary_10_1016_j_mser_2024_100803 crossref_primary_10_3390_antiox13111344 crossref_primary_10_1038_s41598_021_94070_2 crossref_primary_10_3390_app112210661 crossref_primary_10_1016_j_buildenv_2025_112868 crossref_primary_10_1016_j_jaerosci_2025_106642 crossref_primary_10_1111_php_13419 crossref_primary_10_1021_acsestair_5c00005 crossref_primary_10_1016_j_buildenv_2024_111990 crossref_primary_10_1111_php_13653 crossref_primary_10_3389_fvets_2023_1291312 crossref_primary_10_1016_j_colsurfb_2022_112400 crossref_primary_10_3390_v15071463 crossref_primary_10_1088_1361_6463_ac6237 crossref_primary_10_1111_php_13656 crossref_primary_10_3390_electronics10141703 crossref_primary_10_1038_s41598_025_09241_2 crossref_primary_10_3390_polym14061199 crossref_primary_10_1016_j_jphotobiol_2025_113154 crossref_primary_10_3992_jgb_16_1_199 crossref_primary_10_1111_php_13671 crossref_primary_10_3390_ijerph182111172 crossref_primary_10_1140_epjp_s13360_022_03252_y crossref_primary_10_1016_j_ipemt_2023_100017 crossref_primary_10_1021_acs_est_3c00824 crossref_primary_10_1002_slct_202404928 crossref_primary_10_1021_acsestwater_5c00156 crossref_primary_10_1038_s41598_022_22969_5 crossref_primary_10_3390_app13031426 crossref_primary_10_1016_j_jhin_2021_05_005 crossref_primary_10_1364_AO_527427 crossref_primary_10_3390_ijms241814106 crossref_primary_10_1111_php_13421 crossref_primary_10_1111_php_13424 crossref_primary_10_1017_dmp_2025_26 crossref_primary_10_1021_acsestair_5c00117 crossref_primary_10_1038_s41377_021_00563_0 crossref_primary_10_1213_ANE_0000000000005169 crossref_primary_10_29026_oea_2023_220201 crossref_primary_10_1002_deo2_292 crossref_primary_10_3390_app12147239 crossref_primary_10_1002_adhm_202100383 crossref_primary_10_1038_s41598_022_13670_8 crossref_primary_10_1016_j_jphotobiol_2023_112755 crossref_primary_10_1088_1361_6463_ac6a8c crossref_primary_10_1007_s00339_021_04559_w crossref_primary_10_3389_fpubh_2020_590041 crossref_primary_10_1007_s40820_021_00723_2 crossref_primary_10_1038_s41598_021_03326_4 crossref_primary_10_1080_10962247_2022_2157907 crossref_primary_10_1021_envhealth_4c00215 crossref_primary_10_1063_5_0036286 crossref_primary_10_1016_j_jphotobiol_2021_112168 crossref_primary_10_1038_s41598_021_99204_0 crossref_primary_10_1177_14771535211010267 crossref_primary_10_3389_fmed_2021_774493 crossref_primary_10_1038_s41598_021_97357_6 crossref_primary_10_1142_S2737599425500276 crossref_primary_10_4236_health_2020_1211105 crossref_primary_10_1016_j_jphotobiol_2021_112282 crossref_primary_10_1038_s41598_022_18385_4 crossref_primary_10_1093_jambio_lxad046 crossref_primary_10_1186_s12879_021_06310_5 crossref_primary_10_1063_5_0142138 crossref_primary_10_1002_mbo3_1348 crossref_primary_10_1007_s12633_022_02148_x crossref_primary_10_1016_j_ijleo_2021_168269 crossref_primary_10_1007_s11090_024_10535_y crossref_primary_10_1016_j_cap_2021_05_007 crossref_primary_10_1111_ina_12965 crossref_primary_10_1016_j_ajo_2020_09_027 crossref_primary_10_1016_j_gr_2022_07_010 crossref_primary_10_3390_photonics11060491 crossref_primary_10_1080_02713683_2025_2524564 crossref_primary_10_1109_ACCESS_2020_3034436 crossref_primary_10_1063_5_0122697 crossref_primary_10_1002_adpr_202000101 crossref_primary_10_1109_JQE_2022_3151965 crossref_primary_10_1016_j_ajic_2020_08_022 crossref_primary_10_1016_j_isatra_2021_03_040 crossref_primary_10_1016_j_jhazmat_2022_129241 crossref_primary_10_1021_acs_est_5c09275 crossref_primary_10_1109_ACCESS_2021_3118302 crossref_primary_10_1038_s41598_021_02156_8 crossref_primary_10_1038_s41598_024_57441_z crossref_primary_10_1126_science_abm9293 crossref_primary_10_1371_journal_pone_0271750 crossref_primary_10_1038_s41598_023_27380_2 crossref_primary_10_1016_j_buildenv_2024_111948 crossref_primary_10_1038_s41598_024_54006_y crossref_primary_10_3389_fnano_2021_700888 crossref_primary_10_1002_adfm_202008452 crossref_primary_10_1016_j_buildenv_2024_111828 crossref_primary_10_3389_fpubh_2025_1445543 crossref_primary_10_1038_s41598_023_36610_6 crossref_primary_10_1016_j_jlumin_2025_121359 crossref_primary_10_1021_acs_est_5c07414 crossref_primary_10_29333_jcei_10811 crossref_primary_10_3390_app13074141 crossref_primary_10_3390_pharmacy13010009 crossref_primary_10_3390_v13030460 crossref_primary_10_1016_j_watres_2024_121533 crossref_primary_10_1080_02786826_2023_2186213 crossref_primary_10_1016_j_scitotenv_2024_174432 crossref_primary_10_3390_robotics14030026 crossref_primary_10_1007_s10311_021_01180_4 crossref_primary_10_1111_php_13594 crossref_primary_10_1126_science_abd9149 crossref_primary_10_1186_s41231_021_00090_5 crossref_primary_10_3390_app13148501 crossref_primary_10_1016_j_jep_2025_120546 crossref_primary_10_1177_23333928211058023 crossref_primary_10_3788_LOP242317 crossref_primary_10_1016_j_mseb_2022_116097 crossref_primary_10_1016_j_jphotobiol_2021_112378 crossref_primary_10_1038_s41598_022_04926_4 crossref_primary_10_1016_j_scs_2021_103408 crossref_primary_10_1128_spectrum_02439_24 crossref_primary_10_1002_pssa_202400064 crossref_primary_10_1016_j_pdpdt_2021_102334 crossref_primary_10_1038_s41598_020_79600_8 crossref_primary_10_1007_s11783_025_1980_0 crossref_primary_10_1016_j_cropro_2021_105791 crossref_primary_10_1016_j_jece_2023_110040 crossref_primary_10_1016_j_optlastec_2022_108156 crossref_primary_10_3390_s21113838 crossref_primary_10_1001_jama_2022_18025 crossref_primary_10_1016_j_buildenv_2025_113692 crossref_primary_10_1186_s12879_021_06659_7 crossref_primary_10_1038_s41598_021_01543_5 crossref_primary_10_1371_journal_pone_0266487 crossref_primary_10_1016_j_buildenv_2025_113336 crossref_primary_10_1111_php_70010 crossref_primary_10_3389_froh_2023_1270959 crossref_primary_10_1016_j_ifset_2023_103411 crossref_primary_10_1111_exd_14902 crossref_primary_10_1080_15502724_2024_2392569 crossref_primary_10_1021_acs_est_4c10774 crossref_primary_10_1111_php_13477 crossref_primary_10_1016_j_jmii_2021_12_005 crossref_primary_10_1155_2021_7427717 crossref_primary_10_1093_jambio_lxad124 crossref_primary_10_1016_j_pdpdt_2021_102682 crossref_primary_10_3390_ijerph19010331 crossref_primary_10_3390_s21155223 crossref_primary_10_1016_j_jobe_2024_109885 crossref_primary_10_1039_D1NR06188G crossref_primary_10_1039_D3QI01253K crossref_primary_10_1051_e3sconf_202234303005 crossref_primary_10_1111_php_13371 crossref_primary_10_1038_s41598_021_87692_z crossref_primary_10_1186_s43593_022_00029_9 crossref_primary_10_1038_s41598_021_84592_0 crossref_primary_10_1080_23744731_2025_2487390 crossref_primary_10_1080_17452007_2021_1965949 crossref_primary_10_1016_j_scitotenv_2023_163007 crossref_primary_10_1016_j_psep_2025_106840 crossref_primary_10_1111_lam_13770 crossref_primary_10_3390_ijms26052278 crossref_primary_10_1038_s41598_021_98121_6 crossref_primary_10_3390_s23136129 crossref_primary_10_1016_j_buildenv_2024_111466 crossref_primary_10_1111_php_13805 crossref_primary_10_1016_j_buildenv_2023_110893 crossref_primary_10_1038_s41598_024_63472_3 crossref_primary_10_1063_5_0088454 crossref_primary_10_1111_php_13364 crossref_primary_10_1140_epjd_s10053_022_00506_3 crossref_primary_10_1016_j_optcom_2021_127504 crossref_primary_10_1038_s41598_022_09930_2 crossref_primary_10_1111_php_13383 crossref_primary_10_1070_QEL17374 crossref_primary_10_1111_php_13385 crossref_primary_10_3389_fmicb_2022_991856 crossref_primary_10_1016_j_scitotenv_2023_161848 crossref_primary_10_1038_s41598_020_77719_2 crossref_primary_10_1038_s41598_024_75245_z crossref_primary_10_1016_j_scitotenv_2023_168803 crossref_primary_10_1016_j_cej_2024_151371 crossref_primary_10_3390_v14092038 crossref_primary_10_1038_s41598_025_02869_0 crossref_primary_10_2106_JBJS_RVW_20_00193 crossref_primary_10_1016_j_buildenv_2023_110765 crossref_primary_10_1016_j_buildenv_2024_112324 crossref_primary_10_1016_j_idc_2021_04_004 crossref_primary_10_1016_j_heliyon_2022_e11132 crossref_primary_10_1007_s00339_025_08924_x crossref_primary_10_1016_j_jhazmat_2021_126682 crossref_primary_10_1016_j_sna_2025_117025 crossref_primary_10_1016_j_jclepro_2023_135974 crossref_primary_10_1016_j_pdpdt_2022_103015 crossref_primary_10_1080_09273948_2020_1834587 crossref_primary_10_1093_ijlct_ctac029 crossref_primary_10_1063_5_0055326 crossref_primary_10_1038_s41598_025_01896_1 crossref_primary_10_1088_1612_202X_ac0bc5 crossref_primary_10_3390_atmos15091100 crossref_primary_10_1001_jamainternmed_2025_3388 crossref_primary_10_1016_j_optlastec_2024_110828 crossref_primary_10_35848_1882_0786_ad3e48 crossref_primary_10_3389_fvets_2025_1512387 crossref_primary_10_1016_j_jhazmat_2025_137211 crossref_primary_10_1364_OE_553404 crossref_primary_10_1016_j_buildenv_2025_112734 crossref_primary_10_1016_j_jphotobiol_2022_112503 crossref_primary_10_1038_d41586_022_03360_w crossref_primary_10_1371_journal_pcbi_1009474 crossref_primary_10_1053_j_jvca_2022_08_008 crossref_primary_10_31083_j_fbl2905195 crossref_primary_10_3390_photonics8090349 crossref_primary_10_1063_5_0174270 crossref_primary_10_3390_ijerph18083873 crossref_primary_10_1038_s41598_021_94648_w crossref_primary_10_1111_php_14115 crossref_primary_10_3390_ma16134559 crossref_primary_10_1007_s10311_020_01160_0 crossref_primary_10_3390_v13010019 crossref_primary_10_1063_5_0069590 crossref_primary_10_1016_j_jhin_2021_07_014 crossref_primary_10_1155_2023_2085140 crossref_primary_10_1016_j_heliyon_2024_e39415 crossref_primary_10_1371_journal_pone_0291083 crossref_primary_10_3389_fpubh_2023_1085451 crossref_primary_10_1371_journal_pone_0292298 crossref_primary_10_38088_jise_1691959 crossref_primary_10_1016_j_jaerosci_2022_106003 crossref_primary_10_1109_IOTM_0011_2100053 crossref_primary_10_2217_fvl_2020_0326 crossref_primary_10_3390_foods11050653 crossref_primary_10_1002_adom_202300733 crossref_primary_10_1007_s40201_024_00918_w crossref_primary_10_1038_s41598_020_76597_y crossref_primary_10_3390_coatings14121531 crossref_primary_10_1016_j_optmat_2022_113191 crossref_primary_10_1016_j_foodcont_2021_108632 crossref_primary_10_37705_TechTrans_e2020041 crossref_primary_10_3390_life13051221 crossref_primary_10_48119_toleho_1257477 crossref_primary_10_1002_lpor_202200389 crossref_primary_10_1016_j_buildenv_2023_110260 crossref_primary_10_1016_j_ecoenv_2022_113211 crossref_primary_10_1016_j_fmre_2021_11_005 crossref_primary_10_1111_php_13710 crossref_primary_10_1002_jbio_202200306 crossref_primary_10_1063_5_0257551 crossref_primary_10_3390_app12031285 crossref_primary_10_1007_s12274_021_3832_y crossref_primary_10_1128_msphere_00941_21 crossref_primary_10_1002_aic_17250 crossref_primary_10_1007_s44163_025_00419_1 crossref_primary_10_1088_1674_4926_45_1_012504 crossref_primary_10_3389_fphy_2020_00371 crossref_primary_10_1016_j_compbiomed_2021_104518 crossref_primary_10_1038_s41598_024_84196_4 crossref_primary_10_1017_ice_2021_103 crossref_primary_10_1017_S0950268823000560 crossref_primary_10_1111_php_13724 crossref_primary_10_1088_1674_4926_45_2_021501 crossref_primary_10_1017_ash_2024_409 crossref_primary_10_1016_j_jhazmat_2024_136666 crossref_primary_10_1038_s41598_022_06397_z crossref_primary_10_1111_php_13961 crossref_primary_10_1002_ppap_202200054 crossref_primary_10_1111_php_13960 crossref_primary_10_1002_gch2_202200236 crossref_primary_10_1063_5_0092109 crossref_primary_10_1111_php_13602 crossref_primary_10_4236_aim_2025_157027 crossref_primary_10_7326_M21_2780 crossref_primary_10_1002_adma_202109498 crossref_primary_10_1246_bcsj_20210030 crossref_primary_10_7717_peerj_10196 crossref_primary_10_1088_1361_6528_acd5d7 crossref_primary_10_35534_fibrosis_2023_10002 crossref_primary_10_1007_s13762_023_04803_1 crossref_primary_10_1038_s41598_024_53144_7 crossref_primary_10_1016_j_hazadv_2022_100183 crossref_primary_10_1016_j_identj_2024_08_016 crossref_primary_10_3390_microorganisms9010172 crossref_primary_10_1016_j_rineng_2024_103642 crossref_primary_10_1371_journal_pone_0281162 crossref_primary_10_1111_php_70031 crossref_primary_10_1016_j_jhin_2025_04_004 crossref_primary_10_2184_lsj_52_1_36 crossref_primary_10_3390_pathogens13080698 crossref_primary_10_1016_j_buildenv_2022_109792 crossref_primary_10_3390_v14040684 crossref_primary_10_1063_5_0092599 crossref_primary_10_1016_j_ajic_2023_01_004 crossref_primary_10_1002_pssa_202400054 crossref_primary_10_1111_php_13739 crossref_primary_10_1088_1361_6498_ac9e60 crossref_primary_10_3390_nano15070562 crossref_primary_10_1128_AEM_01532_21 |
| Cites_doi | 10.1562/2005-10-27-RA-728 10.1371/journal.pone.0076968 10.1128/JVI.00079-09 10.1137/1.9781611971484 10.1089/jam.1997.10.105 10.1111/j.1751-1097.2012.01151.x 10.3390/v2081803 10.1021/es070056u 10.1007/978-1-4939-2438-7_1 10.1111/php.13269 10.1038/s41598-018-21058-w 10.1089/jop.2000.16.285 10.1007/978-3-642-20718-1 10.1111/j.1751-1097.1986.tb04676.x 10.1667/RR0010CC.1 10.1007/978-1-59745-394-3_24 10.2307/1911963 10.1371/journal.pone.0192053 10.2307/3572296 10.1007/BF01314577 10.1007/978-0-387-21706-2 10.1101/2020.03.09.20033217 10.1093/biomet/37.3-4.409 10.1073/pnas.1708727114 10.1016/j.watres.2008.09.001 10.1126/science.114.2954.156 10.1073/pnas.90.14.6666 10.1371/journal.pone.0138418 10.1371/journal.pone.0201259 10.1001/jama.2020.2565 10.1016/j.jphotobiol.2017.10.030 10.1097/00004032-200408000-00006 10.1007/978-3-642-01999-9 10.1093/oxfordjournals.aje.a118408 10.1002/sim.4780140810 10.2307/3583554 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020. corrected publication 2021 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2020. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2020, corrected publication 2021 |
| Copyright_xml | – notice: The Author(s) 2020. corrected publication 2021 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2020. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2020, corrected publication 2021 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-020-67211-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database (ProQuest) Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 8 |
| ExternalDocumentID | oai_doaj_org_article_58630de7c3b347c4a90412adf796a247 PMC7314750 32581288 10_1038_s41598_020_67211_2 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c682t-c99a1431dc913aafc50a90344c3dfae1c107e1b93cd3e3bde3dcd6cf6a0fb70d3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 479 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000546712200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:53:21 EDT 2025 Tue Nov 04 02:02:56 EST 2025 Wed Oct 01 14:07:29 EDT 2025 Tue Oct 07 08:01:52 EDT 2025 Tue Oct 07 07:47:40 EDT 2025 Thu Apr 03 07:06:31 EDT 2025 Sat Nov 29 05:32:58 EST 2025 Tue Nov 18 20:02:33 EST 2025 Fri Feb 21 02:38:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c682t-c99a1431dc913aafc50a90344c3dfae1c107e1b93cd3e3bde3dcd6cf6a0fb70d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2473886838?pq-origsite=%requestingapplication% |
| PMID | 32581288 |
| PQID | 2416299589 |
| PQPubID | 2041939 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_58630de7c3b347c4a90412adf796a247 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7314750 proquest_miscellaneous_2417390243 proquest_journals_2473886838 proquest_journals_2416299589 pubmed_primary_32581288 crossref_citationtrail_10_1038_s41598_020_67211_2 crossref_primary_10_1038_s41598_020_67211_2 springer_journals_10_1038_s41598_020_67211_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-24 |
| PublicationDateYYYYMMDD | 2020-06-24 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Reed, L. J. & Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol.27(3), 493–497 (1938). PonnaiyaBFar-UVC light prevents MRSA infection of superficial wounds in vivoPlos One2018132e019205310.1371/journal.pone.0192053p Buonanno, M. et al. 207-nm UV light-a promising tool for safe low-cost reduction of surgical site infections. II: In-Vivo Safety Studies. PLoS One11(6), e0138418 (2016). DurbinJWatsonGSTesting for serial correlation in least squares regression. IBiometrika1950373-440928392101:STN:280:DyaG3M%2FjtVKitw%3D%3D10.1093/biomet/37.3-4.409p KeeneONThe log transformation is specialStat. Med.199514881191:STN:280:DyaK2Mznt1OmsQ%3D%3D10.1002/sim.4780140810p BuonannoMGermicidal efficacy and mammalian skin safety of 222-nm uv lightRadiat. Res.201718744834912017RadR..187..493B1:CAS:528:DC%2BC2sXhtFCntr3L10.1667/RR0010CC.1p Setlow, J. The molecular basis of biological effects of ultraviolet radiation and photoreactivation, in Current topics in radiation research, M. Ebert & A. Howard, Editors., North Holland Publishing Company: Amsterdam. p. 195–248 (1966). Kangro, H. O. & Mahy, B. W. Virology methods manual. Elsevier (1996). BalasubramanianDUltraviolet radiation and cataractJ. Ocul. Pharmacol. Ther.2000163285971:CAS:528:DC%2BD3cXjsl2lsrc%3D10.1089/jop.2000.16.285p WalkerCMKoGEffect of Ultraviolet Germicidal Irradiation on Viral AerosolsEnv. Sci. Technol.20074115546054651:CAS:528:DC%2BD2sXmslWns7k%3D10.1021/es070056up MarazziAAlgorithm, Routines, and S functions for Robust Statistics1993Pacific Grove, CaliforniaWadsworth & Brooks/cole0777.62004 SetlowRBWavelengths effective in induction of malignant melanomaProc. Natl Acad. Sci. USA199390146666701993PNAS...90.6666S1:CAS:528:DyaK3sXltlCnsbk%3D10.1073/pnas.90.14.6666p Bai, Y. et al. Presumed asymptomatic carrier transmission of covid-19. JAMA, (2020). LindenbachBDMeasuring HCV infectivity produced in cell culture and in vivoMethods Mol. Biol.2009510329361:CAS:528:DC%2BD1MXhtlersrk%3D10.1007/978-1-59745-394-3_24p World Health Organization. Coronavirus disease (COVID-2019) situation reports. Available on: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (2020). GoldfarbARSaidelLJUltraviolet absorption spectra of proteinsScience1951114295415671951Sci...114..156G1:CAS:528:DyaG3MXlvFWitw%3D%3D10.1126/science.114.2954.156p WooPCCoronavirus genomics and bioinformatics analysisViruses2010281804201:CAS:528:DC%2BC3cXhtFShsrrI10.3390/v2081803p BudowskyEIPrinciples of selective inactivation of viral genome. I. UV-induced inactivation of influenza virusArch. Virol.1981683-4239471:STN:280:DyaL3M3otFSisQ%3D%3D10.1007/BF01314577p WelchDFar-UVC light: A new tool to control the spread of airborne-mediated microbial diseasesSci. Rep.2018812018NatSR...8.2752W10.1038/s41598-018-21058-wp Narita, K. et al. 222-nm UVC inactivates a wide spectrum of microbial pathogens. J Hosp Infect (2020). van Doremalen, N. et al. Aerosol and surface stability of sars-cov-2 as compared with sars-cov-1. N. Engl. J. Med, (2020). NaritaKDisinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse woundsJ. Photochem. Photobiol. B2018178Supplement C10181:CAS:528:DC%2BC2sXhslygs7%2FP10.1016/j.jphotobiol.2017.10.030p NaritaKChronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high dosesPLoS One2018137e020125910.1371/journal.pone.0201259p Mahy, B. & Kangro, H. Virology Methods manual. Academic Press (1996). PapineniRSRosenthalFSThe size distribution of droplets in the exhaled breath of healthy human subjectsJ. Aerosol Med.19971021051161:STN:280:DyaK2sznsF2jtA%3D%3D10.1089/jam.1997.10.105p Modrow, S. et al. Molecular virology. Springer Berlin Heidelberg (2013). BuonannoM207-nm UV light - a promising tool for safe low-cost reduction of surgical site infections. I: in vitro studiesPlos One2013810e769682013PLoSO...876968B1:CAS:528:DC%2BC3sXhs1OisLrI10.1371/journal.pone.0076968p ACGIH(R), 2017 TLVs and BEIs. Threshold Limit Value (TLV) for chemical substances and physical agents and Biological Exposure Indices (BEIs). Signature Publications (2017). Bjorck, A. Numerical Methods For Linear Least Squares Problems. Computer Science (1996). Yamano, N. et al. Long-term effects of 222 nm ultraviolet radiation C sterilizing lamps on mice susceptible to ultraviolet radiation. Photochem Photobiol, (2020). SparrowAHUnderbrinkAGSparrowRCChromosomes and cellular radiosensitivity. I. The relationship of D0 to chromosome volume and complexity in seventy-nine different organismsRadiat. Res.1967324915451967RadR...32..915S1:STN:280:DyaF1c%2FptVOktQ%3D%3D10.2307/3572296p TrevisanAUnusual high exposure to ultraviolet-C radiationPhotochem. Photobiol.2006824107791:CAS:528:DC%2BD28XpsFegu78%3D10.1562/2005-10-27-RA-728p WallsACTectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusionProc. Natl Acad. Sci. USA20171144211157111621:CAS:528:DC%2BC2sXhs1SksLjI10.1073/pnas.1708727114p GreenHCytotoxicity and mutagenicity of low intensity, 248 and 193 nm excimer laser radiation in mammalian cellsCancer Res.198747241031:STN:280:DyaL2s%2FnvVSjtA%3D%3Dp MaduIGCharacterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptideJ. Virol.200983157411211:CAS:528:DC%2BD1MXovFensLk%3D10.1128/JVI.00079-09p The International Commission on Non-Ionizing Radiation Protection, Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Phys, 87(2), p. 171–186 (2004). FehrARPerlmanSCoronaviruses: an overview of their replication and pathogenesisMethods Mol. Biol.201512821231:CAS:528:DC%2BC28Xls12ksL8%3D10.1007/978-1-4939-2438-7_1p Kowalski, W. J. Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection. New York: Springer, (2009). BreuschTPaganAA simple test for heteroscedasticity and random coefficient variationEconometrica19794751287129454596010.2307/1911963p CoohillTPVirus-cell interactions as probes for vacuum-ultraviolet radiation damage and repairPhotochem. Photobiol.1986443359631:CAS:528:DyaL28Xmt1Wrtb0%3D10.1111/j.1751-1097.1986.tb04676.xp NaunovicZLimSBlatchleyERIIIInvestigation of microbial inactivation efficiency of a UV disinfection system employing an excimer lampWater Res.200842194838461:CAS:528:DC%2BD1cXhtlCkt7%2FE10.1016/j.watres.2008.09.001p Venables, W. N. & Ripley, B. D. Modern applied statistics with S. 4th ed. Statistics and computing, New York: Springer, xi, 495 p (2002). ZaffinaSAccidental exposure to UV radiation produced by germicidal lamp: case report and risk assessmentPhotochem. Photobiol.2012884100141:CAS:528:DC%2BC38XhtFGrs7jP10.1111/j.1751-1097.2012.01151.xp ON Keene (67211_CR39) 1995; 14 S Zaffina (67211_CR8) 2012; 88 AH Sparrow (67211_CR27) 1967; 32 K Narita (67211_CR16) 2018; 178 EI Budowsky (67211_CR5) 1981; 68 K Narita (67211_CR17) 2018; 13 67211_CR40 TP Coohill (67211_CR21) 1986; 44 D Balasubramanian (67211_CR10) 2000; 16 67211_CR20 67211_CR18 AC Walls (67211_CR31) 2017; 114 RB Setlow (67211_CR9) 1993; 90 67211_CR4 67211_CR37 67211_CR3 67211_CR36 T Breusch (67211_CR43) 1979; 47 67211_CR2 67211_CR1 67211_CR38 H Green (67211_CR22) 1987; 47 A Marazzi (67211_CR41) 1993 AR Goldfarb (67211_CR19) 1951; 114 BD Lindenbach (67211_CR28) 2009; 510 A Trevisan (67211_CR7) 2006; 82 67211_CR11 B Ponnaiya (67211_CR15) 2018; 13 67211_CR33 67211_CR13 J Durbin (67211_CR42) 1950; 37 67211_CR34 Z Naunovic (67211_CR6) 2008; 42 67211_CR30 M Buonanno (67211_CR12) 2013; 8 67211_CR29 D Welch (67211_CR23) 2018; 8 RS Papineni (67211_CR26) 1997; 10 IG Madu (67211_CR32) 2009; 83 CM Walker (67211_CR35) 2007; 41 AR Fehr (67211_CR24) 2015; 1282 PC Woo (67211_CR25) 2010; 2 M Buonanno (67211_CR14) 2017; 187 |
| References_xml | – reference: BuonannoMGermicidal efficacy and mammalian skin safety of 222-nm uv lightRadiat. Res.201718744834912017RadR..187..493B1:CAS:528:DC%2BC2sXhtFCntr3L10.1667/RR0010CC.1p – reference: WalkerCMKoGEffect of Ultraviolet Germicidal Irradiation on Viral AerosolsEnv. Sci. Technol.20074115546054651:CAS:528:DC%2BD2sXmslWns7k%3D10.1021/es070056up – reference: Kangro, H. O. & Mahy, B. W. Virology methods manual. Elsevier (1996). – reference: Narita, K. et al. 222-nm UVC inactivates a wide spectrum of microbial pathogens. J Hosp Infect (2020). – reference: LindenbachBDMeasuring HCV infectivity produced in cell culture and in vivoMethods Mol. Biol.2009510329361:CAS:528:DC%2BD1MXhtlersrk%3D10.1007/978-1-59745-394-3_24p – reference: NaritaKDisinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse woundsJ. Photochem. Photobiol. B2018178Supplement C10181:CAS:528:DC%2BC2sXhslygs7%2FP10.1016/j.jphotobiol.2017.10.030p – reference: BuonannoM207-nm UV light - a promising tool for safe low-cost reduction of surgical site infections. I: in vitro studiesPlos One2013810e769682013PLoSO...876968B1:CAS:528:DC%2BC3sXhs1OisLrI10.1371/journal.pone.0076968p – reference: WallsACTectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusionProc. Natl Acad. Sci. USA20171144211157111621:CAS:528:DC%2BC2sXhs1SksLjI10.1073/pnas.1708727114p – reference: Kowalski, W. J. Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection. New York: Springer, (2009). – reference: Bjorck, A. Numerical Methods For Linear Least Squares Problems. Computer Science (1996). – reference: ACGIH(R), 2017 TLVs and BEIs. Threshold Limit Value (TLV) for chemical substances and physical agents and Biological Exposure Indices (BEIs). Signature Publications (2017). – reference: ZaffinaSAccidental exposure to UV radiation produced by germicidal lamp: case report and risk assessmentPhotochem. Photobiol.2012884100141:CAS:528:DC%2BC38XhtFGrs7jP10.1111/j.1751-1097.2012.01151.xp – reference: Setlow, J. The molecular basis of biological effects of ultraviolet radiation and photoreactivation, in Current topics in radiation research, M. Ebert & A. Howard, Editors., North Holland Publishing Company: Amsterdam. p. 195–248 (1966). – reference: WooPCCoronavirus genomics and bioinformatics analysisViruses2010281804201:CAS:528:DC%2BC3cXhtFShsrrI10.3390/v2081803p – reference: Modrow, S. et al. Molecular virology. Springer Berlin Heidelberg (2013). – reference: Bai, Y. et al. Presumed asymptomatic carrier transmission of covid-19. JAMA, (2020). – reference: FehrARPerlmanSCoronaviruses: an overview of their replication and pathogenesisMethods Mol. Biol.201512821231:CAS:528:DC%2BC28Xls12ksL8%3D10.1007/978-1-4939-2438-7_1p – reference: The International Commission on Non-Ionizing Radiation Protection, Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Phys, 87(2), p. 171–186 (2004). – reference: NaritaKChronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high dosesPLoS One2018137e020125910.1371/journal.pone.0201259p – reference: KeeneONThe log transformation is specialStat. Med.199514881191:STN:280:DyaK2Mznt1OmsQ%3D%3D10.1002/sim.4780140810p – reference: TrevisanAUnusual high exposure to ultraviolet-C radiationPhotochem. Photobiol.2006824107791:CAS:528:DC%2BD28XpsFegu78%3D10.1562/2005-10-27-RA-728p – reference: WelchDFar-UVC light: A new tool to control the spread of airborne-mediated microbial diseasesSci. Rep.2018812018NatSR...8.2752W10.1038/s41598-018-21058-wp – reference: GreenHCytotoxicity and mutagenicity of low intensity, 248 and 193 nm excimer laser radiation in mammalian cellsCancer Res.198747241031:STN:280:DyaL2s%2FnvVSjtA%3D%3Dp – reference: Yamano, N. et al. Long-term effects of 222 nm ultraviolet radiation C sterilizing lamps on mice susceptible to ultraviolet radiation. Photochem Photobiol, (2020). – reference: SparrowAHUnderbrinkAGSparrowRCChromosomes and cellular radiosensitivity. I. The relationship of D0 to chromosome volume and complexity in seventy-nine different organismsRadiat. Res.1967324915451967RadR...32..915S1:STN:280:DyaF1c%2FptVOktQ%3D%3D10.2307/3572296p – reference: BalasubramanianDUltraviolet radiation and cataractJ. Ocul. Pharmacol. Ther.2000163285971:CAS:528:DC%2BD3cXjsl2lsrc%3D10.1089/jop.2000.16.285p – reference: PapineniRSRosenthalFSThe size distribution of droplets in the exhaled breath of healthy human subjectsJ. Aerosol Med.19971021051161:STN:280:DyaK2sznsF2jtA%3D%3D10.1089/jam.1997.10.105p – reference: Venables, W. N. & Ripley, B. D. Modern applied statistics with S. 4th ed. Statistics and computing, New York: Springer, xi, 495 p (2002). – reference: GoldfarbARSaidelLJUltraviolet absorption spectra of proteinsScience1951114295415671951Sci...114..156G1:CAS:528:DyaG3MXlvFWitw%3D%3D10.1126/science.114.2954.156p – reference: Reed, L. J. & Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol.27(3), 493–497 (1938). – reference: MarazziAAlgorithm, Routines, and S functions for Robust Statistics1993Pacific Grove, CaliforniaWadsworth & Brooks/cole0777.62004 – reference: DurbinJWatsonGSTesting for serial correlation in least squares regression. IBiometrika1950373-440928392101:STN:280:DyaG3M%2FjtVKitw%3D%3D10.1093/biomet/37.3-4.409p – reference: NaunovicZLimSBlatchleyERIIIInvestigation of microbial inactivation efficiency of a UV disinfection system employing an excimer lampWater Res.200842194838461:CAS:528:DC%2BD1cXhtlCkt7%2FE10.1016/j.watres.2008.09.001p – reference: BreuschTPaganAA simple test for heteroscedasticity and random coefficient variationEconometrica19794751287129454596010.2307/1911963p – reference: MaduIGCharacterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptideJ. Virol.200983157411211:CAS:528:DC%2BD1MXovFensLk%3D10.1128/JVI.00079-09p – reference: SetlowRBWavelengths effective in induction of malignant melanomaProc. Natl Acad. Sci. USA199390146666701993PNAS...90.6666S1:CAS:528:DyaK3sXltlCnsbk%3D10.1073/pnas.90.14.6666p – reference: Buonanno, M. et al. 207-nm UV light-a promising tool for safe low-cost reduction of surgical site infections. II: In-Vivo Safety Studies. PLoS One11(6), e0138418 (2016). – reference: PonnaiyaBFar-UVC light prevents MRSA infection of superficial wounds in vivoPlos One2018132e019205310.1371/journal.pone.0192053p – reference: World Health Organization. Coronavirus disease (COVID-2019) situation reports. Available on: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (2020). – reference: van Doremalen, N. et al. Aerosol and surface stability of sars-cov-2 as compared with sars-cov-1. N. Engl. J. Med, (2020). – reference: CoohillTPVirus-cell interactions as probes for vacuum-ultraviolet radiation damage and repairPhotochem. Photobiol.1986443359631:CAS:528:DyaL28Xmt1Wrtb0%3D10.1111/j.1751-1097.1986.tb04676.xp – reference: BudowskyEIPrinciples of selective inactivation of viral genome. I. UV-induced inactivation of influenza virusArch. Virol.1981683-4239471:STN:280:DyaL3M3otFSisQ%3D%3D10.1007/BF01314577p – reference: Mahy, B. & Kangro, H. Virology Methods manual. Academic Press (1996). – volume: 82 start-page: 1077 issue: 4 year: 2006 ident: 67211_CR7 publication-title: Photochem. Photobiol. doi: 10.1562/2005-10-27-RA-728 – volume: 8 start-page: e76968 issue: 10 year: 2013 ident: 67211_CR12 publication-title: Plos One doi: 10.1371/journal.pone.0076968 – volume: 83 start-page: 7411 issue: 15 year: 2009 ident: 67211_CR32 publication-title: J. Virol. doi: 10.1128/JVI.00079-09 – ident: 67211_CR30 doi: 10.1137/1.9781611971484 – volume: 10 start-page: 105 issue: 2 year: 1997 ident: 67211_CR26 publication-title: J. Aerosol Med. doi: 10.1089/jam.1997.10.105 – volume: 88 start-page: 1001 issue: 4 year: 2012 ident: 67211_CR8 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2012.01151.x – volume: 2 start-page: 1804 issue: 8 year: 2010 ident: 67211_CR25 publication-title: Viruses doi: 10.3390/v2081803 – volume: 41 start-page: 5460 issue: 15 year: 2007 ident: 67211_CR35 publication-title: Env. Sci. Technol. doi: 10.1021/es070056u – ident: 67211_CR37 – volume: 1282 start-page: 1 year: 2015 ident: 67211_CR24 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2438-7_1 – ident: 67211_CR18 doi: 10.1111/php.13269 – volume: 8 issue: 1 year: 2018 ident: 67211_CR23 publication-title: Sci. Rep. doi: 10.1038/s41598-018-21058-w – volume: 16 start-page: 285 issue: 3 year: 2000 ident: 67211_CR10 publication-title: J. Ocul. Pharmacol. Ther. doi: 10.1089/jop.2000.16.285 – ident: 67211_CR33 doi: 10.1007/978-3-642-20718-1 – volume: 44 start-page: 359 issue: 3 year: 1986 ident: 67211_CR21 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1986.tb04676.x – volume: 187 start-page: 483 issue: 4 year: 2017 ident: 67211_CR14 publication-title: Radiat. Res. doi: 10.1667/RR0010CC.1 – volume: 510 start-page: 329 year: 2009 ident: 67211_CR28 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-394-3_24 – volume: 47 start-page: 1287 issue: 5 year: 1979 ident: 67211_CR43 publication-title: Econometrica doi: 10.2307/1911963 – volume: 13 start-page: e0192053 issue: 2 year: 2018 ident: 67211_CR15 publication-title: Plos One doi: 10.1371/journal.pone.0192053 – volume: 32 start-page: 915 issue: 4 year: 1967 ident: 67211_CR27 publication-title: Radiat. Res. doi: 10.2307/3572296 – volume: 68 start-page: 239 issue: 3-4 year: 1981 ident: 67211_CR5 publication-title: Arch. Virol. doi: 10.1007/BF01314577 – volume: 47 start-page: 410 issue: 2 year: 1987 ident: 67211_CR22 publication-title: Cancer Res. – ident: 67211_CR40 doi: 10.1007/978-0-387-21706-2 – ident: 67211_CR2 doi: 10.1101/2020.03.09.20033217 – volume: 37 start-page: 409 issue: 3-4 year: 1950 ident: 67211_CR42 publication-title: Biometrika doi: 10.1093/biomet/37.3-4.409 – volume: 114 start-page: 11157 issue: 42 year: 2017 ident: 67211_CR31 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708727114 – ident: 67211_CR1 – ident: 67211_CR34 – volume: 42 start-page: 4838 issue: 19 year: 2008 ident: 67211_CR6 publication-title: Water Res. doi: 10.1016/j.watres.2008.09.001 – volume: 114 start-page: 156 issue: 2954 year: 1951 ident: 67211_CR19 publication-title: Science doi: 10.1126/science.114.2954.156 – volume: 90 start-page: 6666 issue: 14 year: 1993 ident: 67211_CR9 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.90.14.6666 – ident: 67211_CR13 doi: 10.1371/journal.pone.0138418 – ident: 67211_CR29 – volume: 13 start-page: e0201259 issue: 7 year: 2018 ident: 67211_CR17 publication-title: PLoS One doi: 10.1371/journal.pone.0201259 – volume-title: Algorithm, Routines, and S functions for Robust Statistics year: 1993 ident: 67211_CR41 – ident: 67211_CR3 doi: 10.1001/jama.2020.2565 – volume: 178 start-page: 10 issue: Supplement C year: 2018 ident: 67211_CR16 publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2017.10.030 – ident: 67211_CR36 doi: 10.1097/00004032-200408000-00006 – ident: 67211_CR11 – ident: 67211_CR4 doi: 10.1007/978-3-642-01999-9 – ident: 67211_CR38 doi: 10.1093/oxfordjournals.aje.a118408 – volume: 14 start-page: 811 issue: 8 year: 1995 ident: 67211_CR39 publication-title: Stat. Med. doi: 10.1002/sim.4780140810 – ident: 67211_CR20 doi: 10.2307/3583554 |
| SSID | ssj0000529419 |
| Score | 2.7045212 |
| Snippet | A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically... Abstract A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light,... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 10285 |
| SubjectTerms | 631/326 631/326/2522 631/326/596/4130 Antiviral Agents - adverse effects Betacoronavirus - radiation effects Cell Line Coronaviridae Coronavirus 229E, Human - radiation effects Coronavirus Infections - radiotherapy Coronavirus OC43, Human - radiation effects Coronaviruses COVID-19 Disinfection - methods Health hazards Humanities and Social Sciences Humans Inactivation Influenza multidisciplinary Pandemics Particulate Matter - radiation effects Pneumonia, Viral - radiotherapy SARS Virus - radiation effects SARS-CoV-2 Science Science (multidisciplinary) Severe acute respiratory syndrome coronavirus 2 Ultraviolet radiation Ultraviolet Rays - adverse effects Virus Inactivation - radiation effects |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA6yKHgRf1tdJYIHRcO2eWl-HHVx8LR4cGVuIU1SHBi70s4M7M2r_6Z_iS9pZ9xRVy_eSpOG9MsL73sk73uEPAsG_bIrSxaUkUwYIZhpuWaN8rzlMqSq1rnYhDo50fO5eX-h1Fe6EzbKA4_AHdVaQhmi8tCAUF44kxSiXGhxbMdFziNH1nMhmBpVvbkRlZmyZErQRwN6qpRNlqKlFPUwvueJsmD_n1jm75clfzkxzY5odpPcmBgkfT3O_Ba5Ervb5NpYU_L8DpnPXM9OPx7TZQq76XP0zN-_fus-v6Axq0Xg-Mtz6rpAB9dGfFx0KbdhkzgndYsebaKLNJfuoz7JG7jNol8PcbhLTmdvPxy_Y1P5BOal5ivmjXHIhqrgTQXOtb4uETwQwkNoXaw8Rn6xagz4ABGaECH4IH0rXdk2qgxwjxx0Z118QCjgStZ13XCpoqir4KRvGs99BdqVTlYFqbZQWj9pi6cSF0ubz7hB2xF-i_DbDL_lBXm5--bLqKzx195v0grteiZV7PwCbcVOtmL_ZSsFOdyur5226mCRwkj0ybU2lzQr0Fpq0AV5umvGPZgOVlwXz9Z5CAUmaTsW5P5oLbuJAq-RQ2n8Wu3Z0d6f7Ld0i09Z51tBJZDQFeTV1uJ-TutypB7-D6Qekes8bZVSMi4OycGqX8fH5KrfrBZD_yTvtR_qVCps priority: 102 providerName: Directory of Open Access Journals |
| Title | Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses |
| URI | https://link.springer.com/article/10.1038/s41598-020-67211-2 https://www.ncbi.nlm.nih.gov/pubmed/32581288 https://www.proquest.com/docview/2416299589 https://www.proquest.com/docview/2473886838 https://www.proquest.com/docview/2417390243 https://pubmed.ncbi.nlm.nih.gov/PMC7314750 https://doaj.org/article/58630de7c3b347c4a90412adf796a247 |
| Volume | 10 |
| WOSCitedRecordID | wos000546712200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xLUhceD8CSxUkDiCwNn7EjxNiV1vBYasKsaicIsd2oFJJl6SttDeu_E1-CbabFhXYvXCxotiO7MyMZ8ZjfwPwzCqvl3WWISsUR0wxhlRFJCqFIRXhNmS1jskmxGgkJxM17jbc2u5Y5WZNjAu1nZuwR35AmKBScknl67NvKGSNCtHVLoXGHvQDUhnrQf_weDR-v91lCXEshlV3Wyaj8qD1GivcKgteU_B-ENnRSBG4_1_W5t-HJv-InEaFNLz5v1O5BTc6UzR9s-ad23DF1Xfg2jo55fldmAx1g04_HqWz4L-nz72K__n9R_31Reoi7IQf4Ow81bVNW105_zitwyWJVTBeUz1tPHPVLo05AFMTcBL0atosW9feg9Ph8Yejt6jLw4AMl2SBjFLam1XYGoWp1pXJM60CVKChttIOG-9COlwqaix1tLSOWmO5qbjOqlJklt6HXj2v3UNIqWeJPM9LwoVjObaam7I0xGAqdaY5TgBvaFGYDqQ85MqYFTFYTmWxpl_h6VdE-hUkgZfbPmdriI5LWx8GEm9bBnjt-GLefC46aS1yyWlmnTC0pEwY5qfLMNG28gytPfkS2N9Qtuhkvi28LcS9cs-luqB6Q_UEnm6rvTCHCI2u3XwZPyGoCiCRCTxYs9t2oJTk3hiTvrfYYcSdmezW1NMvETBcUMy8ZZjAqw3L_h7WxX_q0eWzeAzXSZCijCPC9qG3aJbuCVw1q8W0bQawJyYilnLQCeUg7nf48oSMQyl82R-_Oxl_-gU7LEEC |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKAcGG9yNQIEgggSBqYid-LBCCwqhVy4hFW83OOLYDIw2ZkswMmh1bfoaP4ku4dh5ogHbXBbsodizbOff6-HUPQo-MgHFZxXFkmKBRKtI0EgXmUc40LjA1TtXai02w4ZCPRuL9GvrR3YVxxyo7n-gdtZlqt0a-iVNGOKec8JdHXyKnGuV2VzsJjQYWu3b5FaZs9YudN_B_H2M8eLu_tR21qgKRphzPIi2EApKQGC0SolShs1gJF_hOE1Mom2iYENkkF0QbYkluLDHaUF1QFRc5iw2Bcs-gs-DHmTtCxkasX9Nxu2ZpItq7OTHhmzWMj-4Om5ujublWhFfGPy8T8C9u-_cRzT_2af3wN7j8v3XcFXSpJdrhq8YyrqI1W15D5xvpzeV1NBqoKjo43AonbnUifAIE5ue37-Xnp6H1QTWgQybLUJUmrFVh4XFcuisgC0fNQzWuwHRKG3qFw1C7KBBqMa7mta1voINTadZNtF5OS3sbhQQAn2VZjimzaZYYRXWea6wTwlWsaBKgpPv3Urch2J0SyET6owCEywYvEvAiPV4kDtCz_pujJgDJiblfO0j1OV3wcP9iWn2UrS-SGackNpZpkpOU6RSamyZYmQLMVQFcArTRIUm2Hq2WwPQoUJeMi2OSO5QF6GGfDK7K7T-p0k7nvghGhAuBGaBbDbz7ihKcAdXk8DVbAf5KS1ZTyvEnHw6dkSQF3hug552J_K7W8T115-RWPEAXtvff7cm9neHuXXQROwuOaYTTDbQ-q-b2HjqnF7NxXd33LiBEH07bdH4BmtaaCg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKeYgN70egQJBAAkHUxHb8WCAELSOqwmgWFM0uOLYDkYZMSWYGzY4tv8Tn8CVcO8mgAdpdF-yi2I5s55zr49e9CD0wEsZlFceR4ZJFVFIayQKLKOcaF5gZF9XaB5vgw6EYj-VoA_3o78K4Y5W9TfSG2ky1WyPfxpQTIZggYrvojkWMdgfPD79ELoKU22ntw2m0ENm3y68wfWue7e3Cv36I8eDVu53XURdhINJM4FmkpVQgGBKjZUKUKnQaK-mc4GliCmUTDZMjm-SSaEMsyY0lRhumC6biIuexIfDdU-g0p2nq2PUWj1brO24HjSayu6cTQ7UbGCvdfTY3X3PzrgivjYU-ZMC_dO7fxzX_2LP1Q-Hg4v_ciZfQhU6Ahy9axlxGG7a6gs62ITmXV9F4oOro4P1OOHGrFuEjEDY_v32vPj8OrXe2AZ0zWYaqMmGjCguPZeWuhiycZA9VWQOlKhv6yIehdt4h1KKs541trqGDE2nWdbRZTSt7E4UEiJCmaY4ZtzRNjGI6zzXWCREqViwJUNLjINOda3YXIWSS-SMCRGQtdjLATuaxk-EAPVmVOWwdkxyb-6WD1yqncyruX0zrj1lno7JUMBIbyzXJCeWaQnNpgpUpgMYKoBOgrR5VWWfpmgwUIANJkwp5RHKPuADdXyWDCXP7Uqqy07n_BCfSucYM0I0W6quKEpyCBBVQmq-RYK0l6ylV-cm7SeckoaCHA_S0p8vvah3dU7eOb8U9dA4Yk73ZG-7fRuexI3PMIky30Oasnts76IxezMqmvuutQYg-nDRzfgHMlaLX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Far-UVC+light+%28222%E2%80%89nm%29+efficiently+and+safely+inactivates+airborne+human+coronaviruses&rft.jtitle=Scientific+reports&rft.au=Buonanno+Manuela&rft.au=Welch%2C+David&rft.au=Shuryak+Igor&rft.au=Brenner%2C+David+J&rft.date=2020-06-24&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-67211-2&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |