Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging
Mapping electromagnetic hotspots It is well known that hotspots can appear on rough metallic surfaces exposed to light, where the incident light is concentrated on the nanometre scale to produce an intense electromagnetic field. This 'surface enhancement' effect can be used, for example, t...
Gespeichert in:
| Veröffentlicht in: | Nature (London) Jg. 469; H. 7330; S. 385 - 388 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
20.01.2011
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Mapping electromagnetic hotspots
It is well known that hotspots can appear on rough metallic surfaces exposed to light, where the incident light is concentrated on the nanometre scale to produce an intense electromagnetic field. This 'surface enhancement' effect can be used, for example, to detect molecules, because weak fluorescence signals are strongly enhanced by the hotspots. Such hotspots are associated with localized electromagnetic modes, caused by the randomness of the surface texture, but the detailed profile of the local electromagnetic field is so far unknown. Cang
et al
. now describe an ingenious experiment that exploits the Brownian motion of single molecules to probe the local field. They succeed in imaging the fluorescence enhancement profile of single hotspots on the surface of aluminium thin-film and silver nanoparticle clusters with accuracy down to 1 nm, and find that the field distribution in a hotspot follows an exponential decay.
On rough metallic surfaces hotspots appear under optical illumination that concentrate light to tens of nanometres. This effect can be used to detect molecules, as weak fluorescence signals are strongly enhanced by the hotspots. Such hotspots are associated with localized electromagnetic modes, caused by the randomness of the surface texture, but the detailed profile of the local electromagnetic field is unknown. Here, an ingenious approach is described, making use of the Brownian motion of single molecules to probe the local field. The study succeeds in imaging the fluorescence enhancement profile of single hotspots on the surface of aluminium thin-film and silver nanoparticle clusters with accuracy down to one nanometre, and finds that the field distribution in a hotspot follows an exponential decay.
When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect
1
,
2
, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes
3
,
4
, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1–2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200–300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy
5
, electron energy-loss spectroscopy
6
, cathode luminescence imaging
7
and two-photon photoemission imaging
8
have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect
9
,
10
,
11
, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile. |
|---|---|
| AbstractList | When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect (1,2), has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes (3,4), caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy (5), electron energy-loss spectroscopy (6), cathode luminescence imaging (7) and two-photon photoemission imaging (8) have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect (9-11), how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile. Mapping electromagnetic hotspots It is well known that hotspots can appear on rough metallic surfaces exposed to light, where the incident light is concentrated on the nanometre scale to produce an intense electromagnetic field. This 'surface enhancement' effect can be used, for example, to detect molecules, because weak fluorescence signals are strongly enhanced by the hotspots. Such hotspots are associated with localized electromagnetic modes, caused by the randomness of the surface texture, but the detailed profile of the local electromagnetic field is so far unknown. Cang et al . now describe an ingenious experiment that exploits the Brownian motion of single molecules to probe the local field. They succeed in imaging the fluorescence enhancement profile of single hotspots on the surface of aluminium thin-film and silver nanoparticle clusters with accuracy down to 1 nm, and find that the field distribution in a hotspot follows an exponential decay. On rough metallic surfaces hotspots appear under optical illumination that concentrate light to tens of nanometres. This effect can be used to detect molecules, as weak fluorescence signals are strongly enhanced by the hotspots. Such hotspots are associated with localized electromagnetic modes, caused by the randomness of the surface texture, but the detailed profile of the local electromagnetic field is unknown. Here, an ingenious approach is described, making use of the Brownian motion of single molecules to probe the local field. The study succeeds in imaging the fluorescence enhancement profile of single hotspots on the surface of aluminium thin-film and silver nanoparticle clusters with accuracy down to one nanometre, and finds that the field distribution in a hotspot follows an exponential decay. When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect 1 , 2 , has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes 3 , 4 , caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1–2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200–300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy 5 , electron energy-loss spectroscopy 6 , cathode luminescence imaging 7 and two-photon photoemission imaging 8 have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect 9 , 10 , 11 , how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile. When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile. When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile. When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile. [PUBLICATION ABSTRACT] When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile.When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile. |
| Audience | Academic |
| Author | Liu, Yongmin Gladden, Christopher Liu, Ming Labno, Anna Cang, Hu Lu, Changgui Yin, Xiaobo Zhang, Xiang |
| Author_xml | – sequence: 1 givenname: Hu surname: Cang fullname: Cang, Hu organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, NSF Nano Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California – sequence: 2 givenname: Anna surname: Labno fullname: Labno, Anna organization: NSF Nano Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Biophysics Program, University of California Berkeley – sequence: 3 givenname: Changgui surname: Lu fullname: Lu, Changgui organization: NSF Nano Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California – sequence: 4 givenname: Xiaobo surname: Yin fullname: Yin, Xiaobo organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, NSF Nano Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California – sequence: 5 givenname: Ming surname: Liu fullname: Liu, Ming organization: NSF Nano Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California – sequence: 6 givenname: Christopher surname: Gladden fullname: Gladden, Christopher organization: NSF Nano Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California – sequence: 7 givenname: Yongmin surname: Liu fullname: Liu, Yongmin organization: NSF Nano Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California – sequence: 8 givenname: Xiang surname: Zhang fullname: Zhang, Xiang email: xiang@berkeley.edu organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, NSF Nano Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23733876$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21248848$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0t9r1TAUB_AgE3d39cl3KRNR0c6kSZP0cQx_DAaKv15DbnvSZbTJXZKC--_N5d6x3VGUPrSEz_ekOSdH6MB5Bwg9J_iEYCo_OJ2mALjhjXyEFoQJXjIuxQFaYFzJEkvKD9FRjFcY45oI9gQdVqRiUjK5QL-_Bb-yri_SJRQwQJuCH3XvINm2MBaGrvCm0AWpS6edHyEFKC59imufitVNEXN2gGL0OTrlD5vDeekpemz0EOHZ7r1Evz59_Hn2pbz4-vn87PSibLnEqeS4w1XVEGE4lV1tOlJJ2WBtgBLcUcMxY7phDUjNcCUI7bpacICGQ2f4itAler2tuw7-eoKY1GhjC8OgHfgpKpk70XBRbeSbf0oiasqauuHy_7TiXNSkzt1fouMH9MpPweUj561FzbCUG_Ryi3o9gLLO-BR0u6mpTqusaO7B5gfLGdWDg6CHPHFj8_KeP57x7dpeq_voZAblp4PRtrNV3-4FsknwJ_V6ilGd__i-b1_sDj-tRujUOuTphxt1e7syeLUDOrZ6MEG71sY7RwWlUvDsyNa1wccYwKjWJp1s3jtoOyiC1eamq3s3PWfePcjclp3X77c6ZuV6CHdzmuN_AR3CCC4 |
| CODEN | NATUAS |
| CitedBy_id | crossref_primary_10_1039_D3NR05332F crossref_primary_10_1007_s11432_013_5031_2 crossref_primary_10_1088_1674_1056_ac7215 crossref_primary_10_1016_j_cis_2015_05_002 crossref_primary_10_3389_fbioe_2014_00020 crossref_primary_10_1007_s11468_014_9870_5 crossref_primary_10_1039_C4FD00196F crossref_primary_10_1016_j_ijleo_2022_169856 crossref_primary_10_1039_c1an15452d crossref_primary_10_1103_PhysRevResearch_3_033111 crossref_primary_10_1039_C7CS00451F crossref_primary_10_1002_jrs_4323 crossref_primary_10_1038_s41598_017_02678_0 crossref_primary_10_1038_srep29014 crossref_primary_10_1038_ncomms13950 crossref_primary_10_3390_polym15193935 crossref_primary_10_1016_j_aca_2024_342579 crossref_primary_10_1364_OE_19_022029 crossref_primary_10_1155_2012_502930 crossref_primary_10_1126_science_1228638 crossref_primary_10_1038_s41377_020_00398_1 crossref_primary_10_1039_D1SC01623G crossref_primary_10_1146_annurev_physchem_032511_143757 crossref_primary_10_1038_ncomms13966 crossref_primary_10_3390_mi16090970 crossref_primary_10_1109_MNANO_2020_3024387 crossref_primary_10_1038_nphys3051 crossref_primary_10_1002_cphc_201300297 crossref_primary_10_1002_advs_201500232 crossref_primary_10_1109_TPAMI_2015_2452921 crossref_primary_10_1002_advs_202100640 crossref_primary_10_1039_c3cp44103b crossref_primary_10_3390_nano11112927 crossref_primary_10_1073_pnas_1205478109 crossref_primary_10_1016_j_progsurf_2012_08_001 crossref_primary_10_1515_nanoph_2022_0751 crossref_primary_10_1088_1361_6528_ad20a0 crossref_primary_10_1039_c3cp43882a crossref_primary_10_1177_00037028211034543 crossref_primary_10_1038_s41598_018_24065_z crossref_primary_10_1016_j_ultramic_2019_112811 crossref_primary_10_1039_C6CP08168A crossref_primary_10_1002_ange_201301875 crossref_primary_10_1002_chem_201903022 crossref_primary_10_1039_c3cs35460a crossref_primary_10_1039_C5CC03581C crossref_primary_10_1038_ncomms4441 crossref_primary_10_1088_2053_1583_ab9ea3 crossref_primary_10_1016_j_colsurfa_2013_12_029 crossref_primary_10_3762_bjnano_6_69 crossref_primary_10_1038_ncomms7558 crossref_primary_10_1038_s41598_017_08915_w crossref_primary_10_1038_s41565_018_0123_1 crossref_primary_10_1038_srep13424 crossref_primary_10_1364_PRJ_6_001102 crossref_primary_10_1039_C9NR08833D crossref_primary_10_1039_C3CS60334B crossref_primary_10_1063_1_4871102 crossref_primary_10_1039_C6CP08254H crossref_primary_10_5772_46209 crossref_primary_10_1021_jacs_9b07817 crossref_primary_10_1557_mrs_2012_176 crossref_primary_10_1063_1_4804171 crossref_primary_10_1002_adfm_201102836 crossref_primary_10_1039_C3CS60187K crossref_primary_10_1038_ncomms2477 crossref_primary_10_1002_bkcs_10195 crossref_primary_10_1002_adma_201201151 crossref_primary_10_1038_srep02090 crossref_primary_10_1002_jrs_4361 crossref_primary_10_1039_c2cp44030j crossref_primary_10_1007_s11467_016_0627_9 crossref_primary_10_1063_1_4940388 crossref_primary_10_1140_epjd_e2012_30273_3 crossref_primary_10_1016_j_combustflame_2017_05_002 crossref_primary_10_1088_2043_6262_7_1_015007 crossref_primary_10_1016_j_ijleo_2021_167504 crossref_primary_10_1039_C2CP43152A crossref_primary_10_1002_anie_201301875 crossref_primary_10_1038_s41570_018_0070_2 crossref_primary_10_1039_C7CS00169J crossref_primary_10_1007_s12274_017_1438_1 crossref_primary_10_1557_mrs_2012_171 crossref_primary_10_3390_ijms12085135 crossref_primary_10_1039_C7CC05473D crossref_primary_10_1002_andp_201200149 crossref_primary_10_1038_469307a crossref_primary_10_1063_1_4884060 crossref_primary_10_1002_advs_202507822 crossref_primary_10_1088_0957_4484_26_32_325201 crossref_primary_10_1002_adfm_202100889 crossref_primary_10_1038_srep02624 crossref_primary_10_1007_s00216_022_04001_x crossref_primary_10_1177_00037028211056975 crossref_primary_10_1002_lpor_201300043 crossref_primary_10_1002_polb_23611 crossref_primary_10_1515_nanoph_2021_0551 crossref_primary_10_1063_1_4892577 crossref_primary_10_3390_cryst13030393 crossref_primary_10_1007_s11467_013_0356_2 crossref_primary_10_1038_ncomms1806 crossref_primary_10_1002_smll_201201081 crossref_primary_10_1002_adom_201800444 crossref_primary_10_1515_nanoph_2022_0546 crossref_primary_10_1039_c3cp52564c crossref_primary_10_1038_ncomms1530 crossref_primary_10_3390_nano10061048 crossref_primary_10_1002_jrs_4671 crossref_primary_10_1002_adma_201204355 crossref_primary_10_1038_s43246_022_00264_0 crossref_primary_10_1016_j_talanta_2022_123690 crossref_primary_10_1038_nnano_2011_32 crossref_primary_10_1038_nnano_2011_31 crossref_primary_10_1088_2040_8978_16_11_114014 crossref_primary_10_1016_j_combustflame_2020_01_009 crossref_primary_10_1038_ncomms14513 |
| Cites_doi | 10.1021/ja00457a071 10.1103/PhysRevLett.78.1667 10.1007/BF01425582 10.1063/1.430748 10.1038/nmeth.1447 10.1149/1.2131549 10.1063/1.445550 10.1021/nl071480w 10.1021/nl8030696 10.1103/PhysRevLett.87.167401 10.1088/0953-4075/40/11/S02 10.1016/0009-2614(74)85388-1 10.1002/ange.200904944 10.1038/nphoton.2009.187 10.1016/S0022-0728(77)80224-6 10.1103/PhysRevLett.97.206103 10.1073/pnas.0609643104 10.1126/science.257.5067.189 10.1038/nphys575 10.1126/science.1127344 10.1103/PhysRevLett.96.113002 10.1039/f29797500790 10.1038/nphoton.2008.32 10.1021/nl0733280 10.1126/science.275.5303.1102 10.1063/1.440560 10.1038/nmeth929 10.1063/1.437095 10.1103/PhysRevB.60.16389 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2011 2015 INIST-CNRS COPYRIGHT 2011 Nature Publishing Group Copyright Nature Publishing Group Jan 20, 2011 |
| Copyright_xml | – notice: Springer Nature Limited 2011 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2011 Nature Publishing Group – notice: Copyright Nature Publishing Group Jan 20, 2011 |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7QF 7SC 7SP 7SR 7SU 7TB 7U5 8BQ F28 JG9 JQ2 KR7 L7M L~C L~D 7X8 |
| DOI | 10.1038/nature09698 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts ProQuest Agricultural Science Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database (Proquest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological science database Engineering Database Research Library (Corporate) ProQuest Nursing and Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection (ProQuest) Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts Aluminium Industry Abstracts Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Materials Research Database Materials Research Database Agricultural Science Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PATMY name: Environmental Science Database (subscripiton) url: http://search.proquest.com/environmentalscience sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 388 |
| ExternalDocumentID | 2250348421 A247530221 21248848 23733876 10_1038_nature09698 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .HR .XZ 00M 07C 08P 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACUHS ACWUS ADBBV ADFRT ADNMO ADUKH ADYSU ADZCM AENEX AEUYN AFFDN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGCDD AGGDT AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCR BCU BDKGC BEC BENPR BES BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~G0 ~KM AARCD AAYXX ABFSG ABUFD ACSTC ADXHL AETEA AFANA AFFHD AGQPQ ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB .-4 .GJ 1CY 1VW 354 3EH 3O- 41~ 42X 4R4 663 79B 9M8 AAJYS AAVBQ ABDPE ABEFU ACBNA ACBTR ACTDY ADGHP ADRHT AEZWR AFBBN AFHIU AFHKK AHWEU AIXLP AJUXI BKOMP DB5 FA8 FAC HG6 IQODW J5H LGEZI LOTEE MVM N4W NADUK NFIDA NXXTH ODYON PV9 QS- R4F RHI SKT TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZY4 CGR CUY CVF ECM EIF NPM ACMFV AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K ESTFP FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7QF 7SC 7SP 7SR 7SU 7TB 7U5 8BQ F28 JG9 JQ2 KR7 L7M L~C L~D 7X8 PUEGO |
| ID | FETCH-LOGICAL-c680t-60d022917f638d5fd128890afe310d3f6044a949e8a402713dd576ee96edf6b13 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 223 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286385600049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Mon Sep 08 03:45:49 EDT 2025 Tue Oct 07 09:34:04 EDT 2025 Mon Oct 06 18:01:54 EDT 2025 Sat Nov 29 14:39:11 EST 2025 Sat Nov 29 13:04:18 EST 2025 Sat Nov 29 11:47:55 EST 2025 Tue Jun 10 15:33:59 EDT 2025 Sun Nov 23 08:43:58 EST 2025 Wed Nov 26 10:09:56 EST 2025 Mon Jul 21 05:51:51 EDT 2025 Mon Jul 21 09:13:26 EDT 2025 Tue Nov 18 20:58:45 EST 2025 Sat Nov 29 03:18:05 EST 2025 Fri Feb 21 02:37:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7330 |
| Keywords | Organic dye Particle cluster Hot spots Fluorescence Optical imaging Aluminium Electromagnetic fields Thin films Brownian motion Nanoparticles Silver Total internal reflection Fluorescent material Imaging Transition elements Formation mechanism |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c680t-60d022917f638d5fd128890afe310d3f6044a949e8a402713dd576ee96edf6b13 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 21248848 |
| PQID | 847540880 |
| PQPubID | 23500 |
| PageCount | 4 |
| ParticipantIDs | proquest_miscellaneous_846896721 proquest_miscellaneous_1753495968 proquest_miscellaneous_1266751510 proquest_journals_847540880 gale_infotracmisc_A247530221 gale_infotracgeneralonefile_A247530221 gale_infotraccpiq_247530221 gale_infotracacademiconefile_A247530221 gale_incontextgauss_ISR_A247530221 pubmed_primary_21248848 pascalfrancis_primary_23733876 crossref_citationtrail_10_1038_nature09698 crossref_primary_10_1038_nature09698 springer_journals_10_1038_nature09698 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-01-20 |
| PublicationDateYYYYMMDD | 2011-01-20 |
| PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2011 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Roeffaers (CR23) 2009; 121 Anger, Bharadwaj, Novotny (CR28) 2006; 96 Kubo, Jung, Kim, Petek (CR8) 2007; 40 Rust, Bates, Zhuang (CR19) 2006; 3 Wokaun, Lutz, King, Wild, Ernst (CR26) 1983; 79 Betzig, Trautman (CR5) 1992; 257 Sarychev, Shubin, Shalaev (CR15) 1999; 60 Sharonov, Hochstrasser (CR20) 2006; 103 Kinkhabwala (CR30) 2009; 3 Stockman, Faleev, Bergman (CR4) 2001; 87 Nie, Emory (CR2) 1997; 275 Creighton, Blatchford, Albrecht (CR12) 1979; 75 Hell, Gräslund, Rigler, Widengren (CR22) 2009 Shalaev, Stockman (CR3) 1988; 10 Moskovits (CR13) 1978; 69 Hutchison (CR17) 2009; 9 Mortensen, Churchman, Spudich, Flyvbjerg (CR24) 2010; 7 Chance, Prock, Silbey (CR27) 1975; 62 Fleischmann, Hendra, McQuillan (CR11) 1974; 26 Seal (CR16) 2006; 97 Gersten, Nitzan (CR14) 1980; 73 Nelayah (CR6) 2007; 3 Betzig (CR18) 2006; 313 Vesseur, de Waele, Kuttge, Polman (CR7) 2007; 7 Albrecht, Creighton (CR10) 1977; 99 Chang (CR25) 1978; 125 Taminiau, Stefani, Segerink, van Hulst (CR29) 2008; 2 Kneipp (CR1) 1997; 78 Jeanmaire, Van Duyne (CR9) 1977; 84 Wu, Liu, Sun, Zhang (CR21) 2008; 8 D Wu (BFnature09698_CR21) 2008; 8 A Wokaun (BFnature09698_CR26) 1983; 79 TH Taminiau (BFnature09698_CR29) 2008; 2 J Gersten (BFnature09698_CR14) 1980; 73 K Seal (BFnature09698_CR16) 2006; 97 KI Mortensen (BFnature09698_CR24) 2010; 7 K Kneipp (BFnature09698_CR1) 1997; 78 EJR Vesseur (BFnature09698_CR7) 2007; 7 E Betzig (BFnature09698_CR5) 1992; 257 M Roeffaers (BFnature09698_CR23) 2009; 121 A Sharonov (BFnature09698_CR20) 2006; 103 RR Chance (BFnature09698_CR27) 1975; 62 A Kubo (BFnature09698_CR8) 2007; 40 M Moskovits (BFnature09698_CR13) 1978; 69 M Fleischmann (BFnature09698_CR11) 1974; 26 A Kinkhabwala (BFnature09698_CR30) 2009; 3 J Nelayah (BFnature09698_CR6) 2007; 3 JA Hutchison (BFnature09698_CR17) 2009; 9 E Betzig (BFnature09698_CR18) 2006; 313 P Anger (BFnature09698_CR28) 2006; 96 CC Chang (BFnature09698_CR25) 1978; 125 MI Stockman (BFnature09698_CR4) 2001; 87 VM Shalaev (BFnature09698_CR3) 1988; 10 SW Hell (BFnature09698_CR22) 2009 JA Creighton (BFnature09698_CR12) 1979; 75 DL Jeanmaire (BFnature09698_CR9) 1977; 84 AK Sarychev (BFnature09698_CR15) 1999; 60 S Nie (BFnature09698_CR2) 1997; 275 MG Albrecht (BFnature09698_CR10) 1977; 99 MJ Rust (BFnature09698_CR19) 2006; 3 21248833 - Nature. 2011 Jan 20;469(7330):307-8 19199757 - Nano Lett. 2009 Mar;9(3):995-1001 11690242 - Phys Rev Lett. 2001 Oct 15;87(16):167401 17155697 - Phys Rev Lett. 2006 Nov 17;97(20):206103 20364147 - Nat Methods. 2010 May;7(5):377-81 16902090 - Science. 2006 Sep 15;313(5793):1642-5 16896339 - Nat Methods. 2006 Oct;3(10):793-5 9027306 - Science. 1997 Feb 21;275(5303):1102-6 19890928 - Angew Chem Int Ed Engl. 2009;48(49):9285-9 16605818 - Phys Rev Lett. 2006 Mar 24;96(11):113002 18321073 - Nano Lett. 2008 Apr;8(4):1159-62 17794749 - Science. 1992 Jul 10;257(5067):189-95 17142314 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18911-6 17718531 - Nano Lett. 2007 Sep;7(9):2843-6 |
| References_xml | – volume: 99 start-page: 5215 year: 1977 end-page: 5217 ident: CR10 article-title: Anomalously intense Raman spectra of pyridine at a silver electrode publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00457a071 – volume: 78 start-page: 1667 year: 1997 end-page: 1670 ident: CR1 article-title: Single molecule detection using surface-enhanced Raman scattering (SERS) publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1667 – volume: 10 start-page: 71 year: 1988 end-page: 79 ident: CR3 article-title: Fractals: optical susceptibility and giant Raman scattering publication-title: Z. Phys. D doi: 10.1007/BF01425582 – volume: 62 start-page: 2245 year: 1975 end-page: 2253 ident: CR27 article-title: Comments on the classical theory of energy transfer publication-title: J. Chem. Phys. doi: 10.1063/1.430748 – volume: 7 start-page: 377 year: 2010 end-page: 381 ident: CR24 article-title: Optimized localization analysis for single-molecule tracking and super-resolution microscopy publication-title: Nature Methods doi: 10.1038/nmeth.1447 – volume: 125 start-page: 787 year: 1978 end-page: 792 ident: CR25 article-title: Aluminum oxidation in water publication-title: J. Electrochem. Soc. doi: 10.1149/1.2131549 – volume: 79 start-page: 509 year: 1983 end-page: 514 ident: CR26 article-title: Energy transfer in surface enhanced luminescence publication-title: J. Chem. Phys. doi: 10.1063/1.445550 – volume: 7 start-page: 2843 year: 2007 end-page: 2846 ident: CR7 article-title: Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy publication-title: Nano Lett. doi: 10.1021/nl071480w – volume: 9 start-page: 995 year: 2009 end-page: 1001 ident: CR17 article-title: Subdiffraction limited, remote excitation of surface enhanced Raman scattering publication-title: Nano Lett. doi: 10.1021/nl8030696 – volume: 87 start-page: 167401 year: 2001 ident: CR4 article-title: Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics? publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.167401 – volume: 40 start-page: S259 year: 2007 end-page: S272 ident: CR8 article-title: Femtosecond microscopy of localized and propagating surface plasmons in silver gratings publication-title: J. Phys. At. Mol. Opt. Phys. doi: 10.1088/0953-4075/40/11/S02 – volume: 26 start-page: 163 year: 1974 end-page: 166 ident: CR11 article-title: Raman spectra of pyridine adsorbed at a silver electrode publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(74)85388-1 – volume: 121 start-page: 9449 year: 2009 end-page: 9453 ident: CR23 article-title: Super-resolution reactivity mapping of nanostructured catalyst particles publication-title: Angew. Chem. doi: 10.1002/ange.200904944 – volume: 3 start-page: 654 year: 2009 end-page: 657 ident: CR30 article-title: Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna publication-title: Nature Photon. doi: 10.1038/nphoton.2009.187 – volume: 84 start-page: 1 year: 1977 end-page: 20 ident: CR9 article-title: Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(77)80224-6 – volume: 97 start-page: 206103 year: 2006 ident: CR16 article-title: Coexistence of localized and delocalized surface plasmon modes in percolating metal films publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.206103 – volume: 103 start-page: 18911 year: 2006 end-page: 18916 ident: CR20 article-title: Wide-field subdiffraction imaging by accumulated binding of diffusing probes publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0609643104 – volume: 257 start-page: 189 year: 1992 end-page: 195 ident: CR5 article-title: Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit publication-title: Science doi: 10.1126/science.257.5067.189 – volume: 3 start-page: 348 year: 2007 end-page: 353 ident: CR6 article-title: Mapping surface plasmons on a single metallic nanoparticle publication-title: Nature Phys. doi: 10.1038/nphys575 – volume: 313 start-page: 1642 year: 2006 end-page: 1645 ident: CR18 article-title: Imaging intracellular fluorescent proteins at nanometer resolution publication-title: Science doi: 10.1126/science.1127344 – volume: 96 start-page: 113002 year: 2006 ident: CR28 article-title: Enhancement and quenching of single-molecule fluorescence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.113002 – volume: 75 start-page: 790 year: 1979 end-page: 798 ident: CR12 article-title: Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength publication-title: J. Chem. Soc. Faraday Trans. 2 doi: 10.1039/f29797500790 – volume: 2 start-page: 234 year: 2008 end-page: 237 ident: CR29 article-title: Optical antennas direct single-molecule emission publication-title: Nature Photon. doi: 10.1038/nphoton.2008.32 – volume: 8 start-page: 1159 year: 2008 end-page: 1162 ident: CR21 article-title: Super-resolution imaging by random adsorbed molecule probes publication-title: Nano Lett. doi: 10.1021/nl0733280 – volume: 275 start-page: 1102 year: 1997 end-page: 1106 ident: CR2 article-title: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering publication-title: Science doi: 10.1126/science.275.5303.1102 – volume: 73 start-page: 3023 year: 1980 end-page: 3037 ident: CR14 article-title: Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces publication-title: J. Chem. Phys. doi: 10.1063/1.440560 – volume: 3 start-page: 793 year: 2006 end-page: 796 ident: CR19 article-title: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) publication-title: Nature Methods doi: 10.1038/nmeth929 – start-page: 365 year: 2009 end-page: 398 ident: CR22 publication-title: Single Molecule Spectroscopy in Chemistry, Physics and Biology – volume: 69 start-page: 4159 year: 1978 end-page: 4161 ident: CR13 article-title: Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals publication-title: J. Chem. Phys. doi: 10.1063/1.437095 – volume: 60 start-page: 16389 year: 1999 end-page: 16408 ident: CR15 article-title: Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.16389 – volume: 125 start-page: 787 year: 1978 ident: BFnature09698_CR25 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2131549 – volume: 9 start-page: 995 year: 2009 ident: BFnature09698_CR17 publication-title: Nano Lett. doi: 10.1021/nl8030696 – volume: 8 start-page: 1159 year: 2008 ident: BFnature09698_CR21 publication-title: Nano Lett. doi: 10.1021/nl0733280 – volume: 275 start-page: 1102 year: 1997 ident: BFnature09698_CR2 publication-title: Science doi: 10.1126/science.275.5303.1102 – volume: 10 start-page: 71 year: 1988 ident: BFnature09698_CR3 publication-title: Z. Phys. D doi: 10.1007/BF01425582 – volume: 40 start-page: S259 year: 2007 ident: BFnature09698_CR8 publication-title: J. Phys. At. Mol. Opt. Phys. doi: 10.1088/0953-4075/40/11/S02 – volume: 62 start-page: 2245 year: 1975 ident: BFnature09698_CR27 publication-title: J. Chem. Phys. doi: 10.1063/1.430748 – volume: 78 start-page: 1667 year: 1997 ident: BFnature09698_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1667 – volume: 257 start-page: 189 year: 1992 ident: BFnature09698_CR5 publication-title: Science doi: 10.1126/science.257.5067.189 – start-page: 365 volume-title: Single Molecule Spectroscopy in Chemistry, Physics and Biology year: 2009 ident: BFnature09698_CR22 – volume: 121 start-page: 9449 year: 2009 ident: BFnature09698_CR23 publication-title: Angew. Chem. doi: 10.1002/ange.200904944 – volume: 87 start-page: 167401 year: 2001 ident: BFnature09698_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.167401 – volume: 99 start-page: 5215 year: 1977 ident: BFnature09698_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00457a071 – volume: 97 start-page: 206103 year: 2006 ident: BFnature09698_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.206103 – volume: 313 start-page: 1642 year: 2006 ident: BFnature09698_CR18 publication-title: Science doi: 10.1126/science.1127344 – volume: 7 start-page: 377 year: 2010 ident: BFnature09698_CR24 publication-title: Nature Methods doi: 10.1038/nmeth.1447 – volume: 79 start-page: 509 year: 1983 ident: BFnature09698_CR26 publication-title: J. Chem. Phys. doi: 10.1063/1.445550 – volume: 73 start-page: 3023 year: 1980 ident: BFnature09698_CR14 publication-title: J. Chem. Phys. doi: 10.1063/1.440560 – volume: 69 start-page: 4159 year: 1978 ident: BFnature09698_CR13 publication-title: J. Chem. Phys. doi: 10.1063/1.437095 – volume: 3 start-page: 793 year: 2006 ident: BFnature09698_CR19 publication-title: Nature Methods doi: 10.1038/nmeth929 – volume: 2 start-page: 234 year: 2008 ident: BFnature09698_CR29 publication-title: Nature Photon. doi: 10.1038/nphoton.2008.32 – volume: 3 start-page: 654 year: 2009 ident: BFnature09698_CR30 publication-title: Nature Photon. doi: 10.1038/nphoton.2009.187 – volume: 84 start-page: 1 year: 1977 ident: BFnature09698_CR9 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(77)80224-6 – volume: 26 start-page: 163 year: 1974 ident: BFnature09698_CR11 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(74)85388-1 – volume: 75 start-page: 790 year: 1979 ident: BFnature09698_CR12 publication-title: J. Chem. Soc. Faraday Trans. 2 doi: 10.1039/f29797500790 – volume: 60 start-page: 16389 year: 1999 ident: BFnature09698_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.16389 – volume: 103 start-page: 18911 year: 2006 ident: BFnature09698_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0609643104 – volume: 7 start-page: 2843 year: 2007 ident: BFnature09698_CR7 publication-title: Nano Lett. doi: 10.1021/nl071480w – volume: 96 start-page: 113002 year: 2006 ident: BFnature09698_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.113002 – volume: 3 start-page: 348 year: 2007 ident: BFnature09698_CR6 publication-title: Nature Phys. doi: 10.1038/nphys575 – reference: 19199757 - Nano Lett. 2009 Mar;9(3):995-1001 – reference: 16605818 - Phys Rev Lett. 2006 Mar 24;96(11):113002 – reference: 17142314 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18911-6 – reference: 17794749 - Science. 1992 Jul 10;257(5067):189-95 – reference: 9027306 - Science. 1997 Feb 21;275(5303):1102-6 – reference: 18321073 - Nano Lett. 2008 Apr;8(4):1159-62 – reference: 17718531 - Nano Lett. 2007 Sep;7(9):2843-6 – reference: 21248833 - Nature. 2011 Jan 20;469(7330):307-8 – reference: 16902090 - Science. 2006 Sep 15;313(5793):1642-5 – reference: 16896339 - Nat Methods. 2006 Oct;3(10):793-5 – reference: 17155697 - Phys Rev Lett. 2006 Nov 17;97(20):206103 – reference: 11690242 - Phys Rev Lett. 2001 Oct 15;87(16):167401 – reference: 20364147 - Nat Methods. 2010 May;7(5):377-81 – reference: 19890928 - Angew Chem Int Ed Engl. 2009;48(49):9285-9 |
| SSID | ssj0005174 |
| Score | 2.4699273 |
| Snippet | Mapping electromagnetic hotspots
It is well known that hotspots can appear on rough metallic surfaces exposed to light, where the incident light is... When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense... |
| SourceID | proquest gale pubmed pascalfrancis crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 385 |
| SubjectTerms | 639/301/357/354 639/301/930/2735 639/766/25 Accuracy Adsorption Aluminum Aluminum - chemistry Condensed matter: electronic structure, electrical, magnetic, and optical properties Electromagnetic Fields Exact sciences and technology Experiments Fluorescence Fluorescent Dyes - analysis Fluorescent Dyes - chemistry Hot Temperature Humanities and Social Sciences Imaging Imaging systems letter Light microscopy Luminescent Measurements - methods Metal Nanoparticles - chemistry Metals and metallic alloys Methods Microscopy, Fluorescence - methods Molecular Imaging - methods Molecules Motion multidisciplinary Nanocrystals and nanoparticles Nanoparticles Nanostructure Observations Optical properties Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures Optical properties of specific thin films Optics Physics Quartz Scanning electron microscopy Science Science (multidisciplinary) Silver Silver - chemistry Spectrum analysis Standard deviation Studies Surface layer Surface Properties Texture Thin films |
| Title | Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging |
| URI | https://link.springer.com/article/10.1038/nature09698 https://www.ncbi.nlm.nih.gov/pubmed/21248848 https://www.proquest.com/docview/847540880 https://www.proquest.com/docview/1266751510 https://www.proquest.com/docview/1753495968 https://www.proquest.com/docview/846896721 |
| Volume | 469 |
| WOSCitedRecordID | wos000286385600049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature (UW-Madison Shared) customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database (subscripiton) customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database (subscription) customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library (subscription) customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (subscription) customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwELfYBhISAjZeZaMyaDyGFJbEeTifUDdtAk0tUfdQ2ZfIie1SaU26JkXiv-fsuO0CZV_4clLlS3rO2eff2ec7hHZZamd-mEorFdS3PEFVylviWo7DwB-hvi38VBebCHs9OhhEsYnNKU1Y5dwmakPNi0ztke-DFQVwAaPt8-TaUkWj1OGqqaCxhjZUkgSiI_fiZYTHH0mYzfU8m9D9OmsmwPeINhYkY5YfTFgJn0jWtS1Wgc-_Dk71enT86D978hg9NEAUd-qRs4nuiHwL3dMBoVm5hTbNpC_xB5OZeu8JuohV1qZ8iAE1YlNAZ8yGuboIiXUsHC4kZtjxrZzlxVhUU4F_FBW4zhVOf2G1L3El8LguySvwaKxrJD1F58dHZ4dfLFOYwcoCaldWYHNY-sHRkzB7uS85LHI0spkUABY5kYHteSzyIkEZuKfgBnMObo0QUSC4DFKHPEPreZGLFwhzWwBi9DwiXOm54K5JN2XgtrlhJl3Owxb6ONdOkpms5ap4xlWiT88JTW6osoV2F8yTOlnHarY3Ss2JSn-Rq_iaIZuVZfL1tJ90XFAOgc45LfTeMMkC_jBj5roCiK0yZjU4txuc2WR0ndxofddoHdY6W_WanQYjTPOs0dxuDMpFB10SEgJrGogxH26JsUNlshhrLfR60arerELrclHMysQBiBYCqnVu4wEhwJOOAvh2-B88AGRpFIRK0uf1HFmKCCCSUg8efjufNEsRVyjo5a1d2Ub36419B0z8DlqvpjPxCt3NflajctpGa2H_QtFBqCkFSg-dNto4OOrFffh1cvAJaNc-UdTtavpN07itDYimp0Bj_xKeiztn3e-_AVSzb3s |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAgIJAS2vpaUY1PKSouYd54BQBVRdtayqtlS9GSe2l5W6yXaTBfVH8R8ZJ85uA0tvPXD2xBnH8_gmHs8ArPPEToMoUVYiaWD5kuqSt55rOQ7HeIQGtgySqtlE1OvRk5N4fwF-NXdhdFplYxMrQy3yVP8j30QriuACpe3D6MzSTaP04WrTQaOWil15_hMjtuJ99xNu74brbn8--rhjmaYCVhpSu7RCW6DbwiBFoeSJQAk00DS2uZIIdISnQtv3eezHknIMrTCEEwIhuZRxKIUKE8fDea_BdTTjjs4giw6OZxklfxR9NtcBbY9u1lU6MVyIacsBGjdwZ8QL3BJV99KYB3b_Oqit_N_2vf_sy92HuwZok61aM5ZgQWbLcLNKeE2LZVgyRq0gb0zl7bcP4HhfV6XK-gRRMTENgoa8n-mLnqTK9SO5Ipw4gZXxLB_KcizJ97wsRnlJknOi_7ucSjKsWw5LMhhWPaAewtcrWekjWMzyTD4BImyJiNj3Pekq38VwVLkJx7DUjVLlChF14F0jDSw1Vdl1c5BTVmUHeJRdEJ0OrE-JR3UxkvlkL7VYMV3eI9P5Q30-KQrWPTxgWy4Kg4eLczrw2hCpHF-YcnMdA9nWFcFalCstynQ0OGMXRl-1Rvv1ns2bZrVFiGYsbQ2vtZRgukDXizwPfTay0Yg3M3a2YFPZ7sCL6aieWacOZjKfFMxBCBohancuo0Em_DiIQ_x25B80CNRpHEaa08e1Ts5YRJBMqY8PbzRKOmNxzgY9vXQpz-HWztGXPbbX7e2uwO36EMNBd7YKi-V4Ip_BjfRHOSjGa5X5IfDtqrX2Nw_ZvUM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELfG-BASArbxUTaGQRsDpKhJnA_nAaFpo6IaqioGaG_Gie1SaU2yJgXtT-O_45w4XQNlb3vg2RfnHN_H7-LzHUI7PLYTP4yVFUvqW56kuuQtcS3H4RCPUN-Wflw1mwgHA3pyEg1X0K_mLoxOq2xsYmWoRZbof-RdsKIALkDauspkRQwPe-_yM0s3kNIHrU03jVpCjuT5T4jeirf9Q9jqXdftvf988MEyDQasJKB2aQW2ABcGAYsCKRS-EmCsaWRzJQH0CKIC2_N45EWScgizIJwTAuC5lFEghQpih8C819D1kMDj-pL6wUJ2yR8FoM3VQJvQbl2xE0KHiLacoXEJd3JewPaouq_GMuD716Ft5Qt79_7jr3gf3TUAHO_XGrOGVmS6jm5WibBJsY7WjLEr8CtTkfv1Bvo61NWq0hEGtIxN46AJH6X6AiiucgBxpjDHjm-lPM0mspxK_D0rizwrcXyO9f-YU4kndStiiceTqjfUA_TlSlb6EK2mWSofIyxsCUjZ84h0ledCmKrcmEO46oaJcoUIO-hNIxksMdXaddOQU1ZlDRDKFsSog3bmxHldpGQ52QstYkyX_Uj13o_4rChY__gT23dBMAgszumgPUOkMnhhws01DWBbVwprUW62KJN8fMYWRl-2Rkf1ni2bZqtFCOYtaQ1vtxRivkCXhISALwc2GlFnxv4WbC7nHfR8Pqpn1imFqcxmBXMAmoaA5p3LaIAJL_KjAL4d_gcNAHgaBaHm9FGtnxcsAnim1IOHdxuFvWBxyQY9uXQpz9AtUFb2sT842kS367MNB7zcFlotpzP5FN1IfpTjYrpdWSKMvl210v4GWonFng |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+electromagnetic+field+of+a+15-nanometre+hotspot+by+single+molecule+imaging&rft.jtitle=Nature+%28London%29&rft.au=Cang%2C+Hu&rft.au=Labno%2C+Anna&rft.au=Lu%2C+Changgui&rft.au=Yin%2C+Xiaobo&rft.date=2011-01-20&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=469&rft.issue=7330&rft.spage=385&rft_id=info:doi/10.1038%2Fnature09698&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2250348421 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |