Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging

Mapping electromagnetic hotspots It is well known that hotspots can appear on rough metallic surfaces exposed to light, where the incident light is concentrated on the nanometre scale to produce an intense electromagnetic field. This 'surface enhancement' effect can be used, for example, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) Jg. 469; H. 7330; S. 385 - 388
Hauptverfasser: Cang, Hu, Labno, Anna, Lu, Changgui, Yin, Xiaobo, Liu, Ming, Gladden, Christopher, Liu, Yongmin, Zhang, Xiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 20.01.2011
Nature Publishing Group
Schlagworte:
ISSN:0028-0836, 1476-4687, 1476-4687
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Mapping electromagnetic hotspots It is well known that hotspots can appear on rough metallic surfaces exposed to light, where the incident light is concentrated on the nanometre scale to produce an intense electromagnetic field. This 'surface enhancement' effect can be used, for example, to detect molecules, because weak fluorescence signals are strongly enhanced by the hotspots. Such hotspots are associated with localized electromagnetic modes, caused by the randomness of the surface texture, but the detailed profile of the local electromagnetic field is so far unknown. Cang et al . now describe an ingenious experiment that exploits the Brownian motion of single molecules to probe the local field. They succeed in imaging the fluorescence enhancement profile of single hotspots on the surface of aluminium thin-film and silver nanoparticle clusters with accuracy down to 1 nm, and find that the field distribution in a hotspot follows an exponential decay. On rough metallic surfaces hotspots appear under optical illumination that concentrate light to tens of nanometres. This effect can be used to detect molecules, as weak fluorescence signals are strongly enhanced by the hotspots. Such hotspots are associated with localized electromagnetic modes, caused by the randomness of the surface texture, but the detailed profile of the local electromagnetic field is unknown. Here, an ingenious approach is described, making use of the Brownian motion of single molecules to probe the local field. The study succeeds in imaging the fluorescence enhancement profile of single hotspots on the surface of aluminium thin-film and silver nanoparticle clusters with accuracy down to one nanometre, and finds that the field distribution in a hotspot follows an exponential decay. When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect 1 , 2 , has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes 3 , 4 , caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1–2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200–300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy 5 , electron energy-loss spectroscopy 6 , cathode luminescence imaging 7 and two-photon photoemission imaging 8 have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect 9 , 10 , 11 , how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile.
AbstractList When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect (1,2), has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes (3,4), caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy (5), electron energy-loss spectroscopy (6), cathode luminescence imaging (7) and two-photon photoemission imaging (8) have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect (9-11), how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile.
Mapping electromagnetic hotspots It is well known that hotspots can appear on rough metallic surfaces exposed to light, where the incident light is concentrated on the nanometre scale to produce an intense electromagnetic field. This 'surface enhancement' effect can be used, for example, to detect molecules, because weak fluorescence signals are strongly enhanced by the hotspots. Such hotspots are associated with localized electromagnetic modes, caused by the randomness of the surface texture, but the detailed profile of the local electromagnetic field is so far unknown. Cang et al . now describe an ingenious experiment that exploits the Brownian motion of single molecules to probe the local field. They succeed in imaging the fluorescence enhancement profile of single hotspots on the surface of aluminium thin-film and silver nanoparticle clusters with accuracy down to 1 nm, and find that the field distribution in a hotspot follows an exponential decay. On rough metallic surfaces hotspots appear under optical illumination that concentrate light to tens of nanometres. This effect can be used to detect molecules, as weak fluorescence signals are strongly enhanced by the hotspots. Such hotspots are associated with localized electromagnetic modes, caused by the randomness of the surface texture, but the detailed profile of the local electromagnetic field is unknown. Here, an ingenious approach is described, making use of the Brownian motion of single molecules to probe the local field. The study succeeds in imaging the fluorescence enhancement profile of single hotspots on the surface of aluminium thin-film and silver nanoparticle clusters with accuracy down to one nanometre, and finds that the field distribution in a hotspot follows an exponential decay. When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect 1 , 2 , has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes 3 , 4 , caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1–2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200–300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy 5 , electron energy-loss spectroscopy 6 , cathode luminescence imaging 7 and two-photon photoemission imaging 8 have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect 9 , 10 , 11 , how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile.
When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile.
When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile.
When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile. [PUBLICATION ABSTRACT]
When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile.When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile.
Audience Academic
Author Liu, Yongmin
Gladden, Christopher
Liu, Ming
Labno, Anna
Cang, Hu
Lu, Changgui
Yin, Xiaobo
Zhang, Xiang
Author_xml – sequence: 1
  givenname: Hu
  surname: Cang
  fullname: Cang, Hu
  organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, NSF Nano Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California
– sequence: 2
  givenname: Anna
  surname: Labno
  fullname: Labno, Anna
  organization: NSF Nano Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Biophysics Program, University of California Berkeley
– sequence: 3
  givenname: Changgui
  surname: Lu
  fullname: Lu, Changgui
  organization: NSF Nano Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California
– sequence: 4
  givenname: Xiaobo
  surname: Yin
  fullname: Yin, Xiaobo
  organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, NSF Nano Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California
– sequence: 5
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
  organization: NSF Nano Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California
– sequence: 6
  givenname: Christopher
  surname: Gladden
  fullname: Gladden, Christopher
  organization: NSF Nano Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California
– sequence: 7
  givenname: Yongmin
  surname: Liu
  fullname: Liu, Yongmin
  organization: NSF Nano Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California
– sequence: 8
  givenname: Xiang
  surname: Zhang
  fullname: Zhang, Xiang
  email: xiang@berkeley.edu
  organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, NSF Nano Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23733876$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21248848$$D View this record in MEDLINE/PubMed
BookMark eNqF0t9r1TAUB_AgE3d39cl3KRNR0c6kSZP0cQx_DAaKv15DbnvSZbTJXZKC--_N5d6x3VGUPrSEz_ekOSdH6MB5Bwg9J_iEYCo_OJ2mALjhjXyEFoQJXjIuxQFaYFzJEkvKD9FRjFcY45oI9gQdVqRiUjK5QL-_Bb-yri_SJRQwQJuCH3XvINm2MBaGrvCm0AWpS6edHyEFKC59imufitVNEXN2gGL0OTrlD5vDeekpemz0EOHZ7r1Evz59_Hn2pbz4-vn87PSibLnEqeS4w1XVEGE4lV1tOlJJ2WBtgBLcUcMxY7phDUjNcCUI7bpacICGQ2f4itAler2tuw7-eoKY1GhjC8OgHfgpKpk70XBRbeSbf0oiasqauuHy_7TiXNSkzt1fouMH9MpPweUj561FzbCUG_Ryi3o9gLLO-BR0u6mpTqusaO7B5gfLGdWDg6CHPHFj8_KeP57x7dpeq_voZAblp4PRtrNV3-4FsknwJ_V6ilGd__i-b1_sDj-tRujUOuTphxt1e7syeLUDOrZ6MEG71sY7RwWlUvDsyNa1wccYwKjWJp1s3jtoOyiC1eamq3s3PWfePcjclp3X77c6ZuV6CHdzmuN_AR3CCC4
CODEN NATUAS
CitedBy_id crossref_primary_10_1039_D3NR05332F
crossref_primary_10_1007_s11432_013_5031_2
crossref_primary_10_1088_1674_1056_ac7215
crossref_primary_10_1016_j_cis_2015_05_002
crossref_primary_10_3389_fbioe_2014_00020
crossref_primary_10_1007_s11468_014_9870_5
crossref_primary_10_1039_C4FD00196F
crossref_primary_10_1016_j_ijleo_2022_169856
crossref_primary_10_1039_c1an15452d
crossref_primary_10_1103_PhysRevResearch_3_033111
crossref_primary_10_1039_C7CS00451F
crossref_primary_10_1002_jrs_4323
crossref_primary_10_1038_s41598_017_02678_0
crossref_primary_10_1038_srep29014
crossref_primary_10_1038_ncomms13950
crossref_primary_10_3390_polym15193935
crossref_primary_10_1016_j_aca_2024_342579
crossref_primary_10_1364_OE_19_022029
crossref_primary_10_1155_2012_502930
crossref_primary_10_1126_science_1228638
crossref_primary_10_1038_s41377_020_00398_1
crossref_primary_10_1039_D1SC01623G
crossref_primary_10_1146_annurev_physchem_032511_143757
crossref_primary_10_1038_ncomms13966
crossref_primary_10_3390_mi16090970
crossref_primary_10_1109_MNANO_2020_3024387
crossref_primary_10_1038_nphys3051
crossref_primary_10_1002_cphc_201300297
crossref_primary_10_1002_advs_201500232
crossref_primary_10_1109_TPAMI_2015_2452921
crossref_primary_10_1002_advs_202100640
crossref_primary_10_1039_c3cp44103b
crossref_primary_10_3390_nano11112927
crossref_primary_10_1073_pnas_1205478109
crossref_primary_10_1016_j_progsurf_2012_08_001
crossref_primary_10_1515_nanoph_2022_0751
crossref_primary_10_1088_1361_6528_ad20a0
crossref_primary_10_1039_c3cp43882a
crossref_primary_10_1177_00037028211034543
crossref_primary_10_1038_s41598_018_24065_z
crossref_primary_10_1016_j_ultramic_2019_112811
crossref_primary_10_1039_C6CP08168A
crossref_primary_10_1002_ange_201301875
crossref_primary_10_1002_chem_201903022
crossref_primary_10_1039_c3cs35460a
crossref_primary_10_1039_C5CC03581C
crossref_primary_10_1038_ncomms4441
crossref_primary_10_1088_2053_1583_ab9ea3
crossref_primary_10_1016_j_colsurfa_2013_12_029
crossref_primary_10_3762_bjnano_6_69
crossref_primary_10_1038_ncomms7558
crossref_primary_10_1038_s41598_017_08915_w
crossref_primary_10_1038_s41565_018_0123_1
crossref_primary_10_1038_srep13424
crossref_primary_10_1364_PRJ_6_001102
crossref_primary_10_1039_C9NR08833D
crossref_primary_10_1039_C3CS60334B
crossref_primary_10_1063_1_4871102
crossref_primary_10_1039_C6CP08254H
crossref_primary_10_5772_46209
crossref_primary_10_1021_jacs_9b07817
crossref_primary_10_1557_mrs_2012_176
crossref_primary_10_1063_1_4804171
crossref_primary_10_1002_adfm_201102836
crossref_primary_10_1039_C3CS60187K
crossref_primary_10_1038_ncomms2477
crossref_primary_10_1002_bkcs_10195
crossref_primary_10_1002_adma_201201151
crossref_primary_10_1038_srep02090
crossref_primary_10_1002_jrs_4361
crossref_primary_10_1039_c2cp44030j
crossref_primary_10_1007_s11467_016_0627_9
crossref_primary_10_1063_1_4940388
crossref_primary_10_1140_epjd_e2012_30273_3
crossref_primary_10_1016_j_combustflame_2017_05_002
crossref_primary_10_1088_2043_6262_7_1_015007
crossref_primary_10_1016_j_ijleo_2021_167504
crossref_primary_10_1039_C2CP43152A
crossref_primary_10_1002_anie_201301875
crossref_primary_10_1038_s41570_018_0070_2
crossref_primary_10_1039_C7CS00169J
crossref_primary_10_1007_s12274_017_1438_1
crossref_primary_10_1557_mrs_2012_171
crossref_primary_10_3390_ijms12085135
crossref_primary_10_1039_C7CC05473D
crossref_primary_10_1002_andp_201200149
crossref_primary_10_1038_469307a
crossref_primary_10_1063_1_4884060
crossref_primary_10_1002_advs_202507822
crossref_primary_10_1088_0957_4484_26_32_325201
crossref_primary_10_1002_adfm_202100889
crossref_primary_10_1038_srep02624
crossref_primary_10_1007_s00216_022_04001_x
crossref_primary_10_1177_00037028211056975
crossref_primary_10_1002_lpor_201300043
crossref_primary_10_1002_polb_23611
crossref_primary_10_1515_nanoph_2021_0551
crossref_primary_10_1063_1_4892577
crossref_primary_10_3390_cryst13030393
crossref_primary_10_1007_s11467_013_0356_2
crossref_primary_10_1038_ncomms1806
crossref_primary_10_1002_smll_201201081
crossref_primary_10_1002_adom_201800444
crossref_primary_10_1515_nanoph_2022_0546
crossref_primary_10_1039_c3cp52564c
crossref_primary_10_1038_ncomms1530
crossref_primary_10_3390_nano10061048
crossref_primary_10_1002_jrs_4671
crossref_primary_10_1002_adma_201204355
crossref_primary_10_1038_s43246_022_00264_0
crossref_primary_10_1016_j_talanta_2022_123690
crossref_primary_10_1038_nnano_2011_32
crossref_primary_10_1038_nnano_2011_31
crossref_primary_10_1088_2040_8978_16_11_114014
crossref_primary_10_1016_j_combustflame_2020_01_009
crossref_primary_10_1038_ncomms14513
Cites_doi 10.1021/ja00457a071
10.1103/PhysRevLett.78.1667
10.1007/BF01425582
10.1063/1.430748
10.1038/nmeth.1447
10.1149/1.2131549
10.1063/1.445550
10.1021/nl071480w
10.1021/nl8030696
10.1103/PhysRevLett.87.167401
10.1088/0953-4075/40/11/S02
10.1016/0009-2614(74)85388-1
10.1002/ange.200904944
10.1038/nphoton.2009.187
10.1016/S0022-0728(77)80224-6
10.1103/PhysRevLett.97.206103
10.1073/pnas.0609643104
10.1126/science.257.5067.189
10.1038/nphys575
10.1126/science.1127344
10.1103/PhysRevLett.96.113002
10.1039/f29797500790
10.1038/nphoton.2008.32
10.1021/nl0733280
10.1126/science.275.5303.1102
10.1063/1.440560
10.1038/nmeth929
10.1063/1.437095
10.1103/PhysRevB.60.16389
ContentType Journal Article
Copyright Springer Nature Limited 2011
2015 INIST-CNRS
COPYRIGHT 2011 Nature Publishing Group
Copyright Nature Publishing Group Jan 20, 2011
Copyright_xml – notice: Springer Nature Limited 2011
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2011 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jan 20, 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7QF
7SC
7SP
7SR
7SU
7TB
7U5
8BQ
F28
JG9
JQ2
KR7
L7M
L~C
L~D
7X8
DOI 10.1038/nature09698
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
ProQuest Agricultural Science
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database (Proquest)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological science database
Engineering Database
Research Library (Corporate)
ProQuest Nursing and Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection (ProQuest)
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
Aluminium Industry Abstracts
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Materials Research Database
Materials Research Database
Agricultural Science Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PATMY
  name: Environmental Science Database (subscripiton)
  url: http://search.proquest.com/environmentalscience
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 388
ExternalDocumentID 2250348421
A247530221
21248848
23733876
10_1038_nature09698
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.HR
.XZ
00M
07C
08P
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFDN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGCDD
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BES
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~G0
~KM
AARCD
AAYXX
ABFSG
ABUFD
ACSTC
ADXHL
AETEA
AFANA
AFFHD
AGQPQ
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
.-4
.GJ
1CY
1VW
354
3EH
3O-
41~
42X
4R4
663
79B
9M8
AAJYS
AAVBQ
ABDPE
ABEFU
ACBNA
ACBTR
ACTDY
ADGHP
ADRHT
AEZWR
AFBBN
AFHIU
AFHKK
AHWEU
AIXLP
AJUXI
BKOMP
DB5
FA8
FAC
HG6
IQODW
J5H
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NXXTH
ODYON
PV9
QS-
R4F
RHI
SKT
TUD
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
ACMFV
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
ESTFP
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7QF
7SC
7SP
7SR
7SU
7TB
7U5
8BQ
F28
JG9
JQ2
KR7
L7M
L~C
L~D
7X8
PUEGO
ID FETCH-LOGICAL-c680t-60d022917f638d5fd128890afe310d3f6044a949e8a402713dd576ee96edf6b13
IEDL.DBID M7P
ISICitedReferencesCount 223
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286385600049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Mon Sep 08 03:45:49 EDT 2025
Tue Oct 07 09:34:04 EDT 2025
Mon Oct 06 18:01:54 EDT 2025
Sat Nov 29 14:39:11 EST 2025
Sat Nov 29 13:04:18 EST 2025
Sat Nov 29 11:47:55 EST 2025
Tue Jun 10 15:33:59 EDT 2025
Sun Nov 23 08:43:58 EST 2025
Wed Nov 26 10:09:56 EST 2025
Mon Jul 21 05:51:51 EDT 2025
Mon Jul 21 09:13:26 EDT 2025
Tue Nov 18 20:58:45 EST 2025
Sat Nov 29 03:18:05 EST 2025
Fri Feb 21 02:37:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7330
Keywords Organic dye
Particle cluster
Hot spots
Fluorescence
Optical imaging
Aluminium
Electromagnetic fields
Thin films
Brownian motion
Nanoparticles
Silver
Total internal reflection
Fluorescent material
Imaging
Transition elements
Formation mechanism
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c680t-60d022917f638d5fd128890afe310d3f6044a949e8a402713dd576ee96edf6b13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 21248848
PQID 847540880
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_846896721
proquest_miscellaneous_1753495968
proquest_miscellaneous_1266751510
proquest_journals_847540880
gale_infotracmisc_A247530221
gale_infotracgeneralonefile_A247530221
gale_infotraccpiq_247530221
gale_infotracacademiconefile_A247530221
gale_incontextgauss_ISR_A247530221
pubmed_primary_21248848
pascalfrancis_primary_23733876
crossref_citationtrail_10_1038_nature09698
crossref_primary_10_1038_nature09698
springer_journals_10_1038_nature09698
PublicationCentury 2000
PublicationDate 2011-01-20
PublicationDateYYYYMMDD 2011-01-20
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-20
  day: 20
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2011
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Roeffaers (CR23) 2009; 121
Anger, Bharadwaj, Novotny (CR28) 2006; 96
Kubo, Jung, Kim, Petek (CR8) 2007; 40
Rust, Bates, Zhuang (CR19) 2006; 3
Wokaun, Lutz, King, Wild, Ernst (CR26) 1983; 79
Betzig, Trautman (CR5) 1992; 257
Sarychev, Shubin, Shalaev (CR15) 1999; 60
Sharonov, Hochstrasser (CR20) 2006; 103
Kinkhabwala (CR30) 2009; 3
Stockman, Faleev, Bergman (CR4) 2001; 87
Nie, Emory (CR2) 1997; 275
Creighton, Blatchford, Albrecht (CR12) 1979; 75
Hell, Gräslund, Rigler, Widengren (CR22) 2009
Shalaev, Stockman (CR3) 1988; 10
Moskovits (CR13) 1978; 69
Hutchison (CR17) 2009; 9
Mortensen, Churchman, Spudich, Flyvbjerg (CR24) 2010; 7
Chance, Prock, Silbey (CR27) 1975; 62
Fleischmann, Hendra, McQuillan (CR11) 1974; 26
Seal (CR16) 2006; 97
Gersten, Nitzan (CR14) 1980; 73
Nelayah (CR6) 2007; 3
Betzig (CR18) 2006; 313
Vesseur, de Waele, Kuttge, Polman (CR7) 2007; 7
Albrecht, Creighton (CR10) 1977; 99
Chang (CR25) 1978; 125
Taminiau, Stefani, Segerink, van Hulst (CR29) 2008; 2
Kneipp (CR1) 1997; 78
Jeanmaire, Van Duyne (CR9) 1977; 84
Wu, Liu, Sun, Zhang (CR21) 2008; 8
D Wu (BFnature09698_CR21) 2008; 8
A Wokaun (BFnature09698_CR26) 1983; 79
TH Taminiau (BFnature09698_CR29) 2008; 2
J Gersten (BFnature09698_CR14) 1980; 73
K Seal (BFnature09698_CR16) 2006; 97
KI Mortensen (BFnature09698_CR24) 2010; 7
K Kneipp (BFnature09698_CR1) 1997; 78
EJR Vesseur (BFnature09698_CR7) 2007; 7
E Betzig (BFnature09698_CR5) 1992; 257
M Roeffaers (BFnature09698_CR23) 2009; 121
A Sharonov (BFnature09698_CR20) 2006; 103
RR Chance (BFnature09698_CR27) 1975; 62
A Kubo (BFnature09698_CR8) 2007; 40
M Moskovits (BFnature09698_CR13) 1978; 69
M Fleischmann (BFnature09698_CR11) 1974; 26
A Kinkhabwala (BFnature09698_CR30) 2009; 3
J Nelayah (BFnature09698_CR6) 2007; 3
JA Hutchison (BFnature09698_CR17) 2009; 9
E Betzig (BFnature09698_CR18) 2006; 313
P Anger (BFnature09698_CR28) 2006; 96
CC Chang (BFnature09698_CR25) 1978; 125
MI Stockman (BFnature09698_CR4) 2001; 87
VM Shalaev (BFnature09698_CR3) 1988; 10
SW Hell (BFnature09698_CR22) 2009
JA Creighton (BFnature09698_CR12) 1979; 75
DL Jeanmaire (BFnature09698_CR9) 1977; 84
AK Sarychev (BFnature09698_CR15) 1999; 60
S Nie (BFnature09698_CR2) 1997; 275
MG Albrecht (BFnature09698_CR10) 1977; 99
MJ Rust (BFnature09698_CR19) 2006; 3
21248833 - Nature. 2011 Jan 20;469(7330):307-8
19199757 - Nano Lett. 2009 Mar;9(3):995-1001
11690242 - Phys Rev Lett. 2001 Oct 15;87(16):167401
17155697 - Phys Rev Lett. 2006 Nov 17;97(20):206103
20364147 - Nat Methods. 2010 May;7(5):377-81
16902090 - Science. 2006 Sep 15;313(5793):1642-5
16896339 - Nat Methods. 2006 Oct;3(10):793-5
9027306 - Science. 1997 Feb 21;275(5303):1102-6
19890928 - Angew Chem Int Ed Engl. 2009;48(49):9285-9
16605818 - Phys Rev Lett. 2006 Mar 24;96(11):113002
18321073 - Nano Lett. 2008 Apr;8(4):1159-62
17794749 - Science. 1992 Jul 10;257(5067):189-95
17142314 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18911-6
17718531 - Nano Lett. 2007 Sep;7(9):2843-6
References_xml – volume: 99
  start-page: 5215
  year: 1977
  end-page: 5217
  ident: CR10
  article-title: Anomalously intense Raman spectra of pyridine at a silver electrode
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00457a071
– volume: 78
  start-page: 1667
  year: 1997
  end-page: 1670
  ident: CR1
  article-title: Single molecule detection using surface-enhanced Raman scattering (SERS)
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1667
– volume: 10
  start-page: 71
  year: 1988
  end-page: 79
  ident: CR3
  article-title: Fractals: optical susceptibility and giant Raman scattering
  publication-title: Z. Phys. D
  doi: 10.1007/BF01425582
– volume: 62
  start-page: 2245
  year: 1975
  end-page: 2253
  ident: CR27
  article-title: Comments on the classical theory of energy transfer
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.430748
– volume: 7
  start-page: 377
  year: 2010
  end-page: 381
  ident: CR24
  article-title: Optimized localization analysis for single-molecule tracking and super-resolution microscopy
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1447
– volume: 125
  start-page: 787
  year: 1978
  end-page: 792
  ident: CR25
  article-title: Aluminum oxidation in water
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2131549
– volume: 79
  start-page: 509
  year: 1983
  end-page: 514
  ident: CR26
  article-title: Energy transfer in surface enhanced luminescence
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445550
– volume: 7
  start-page: 2843
  year: 2007
  end-page: 2846
  ident: CR7
  article-title: Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy
  publication-title: Nano Lett.
  doi: 10.1021/nl071480w
– volume: 9
  start-page: 995
  year: 2009
  end-page: 1001
  ident: CR17
  article-title: Subdiffraction limited, remote excitation of surface enhanced Raman scattering
  publication-title: Nano Lett.
  doi: 10.1021/nl8030696
– volume: 87
  start-page: 167401
  year: 2001
  ident: CR4
  article-title: Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.167401
– volume: 40
  start-page: S259
  year: 2007
  end-page: S272
  ident: CR8
  article-title: Femtosecond microscopy of localized and propagating surface plasmons in silver gratings
  publication-title: J. Phys. At. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/40/11/S02
– volume: 26
  start-page: 163
  year: 1974
  end-page: 166
  ident: CR11
  article-title: Raman spectra of pyridine adsorbed at a silver electrode
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(74)85388-1
– volume: 121
  start-page: 9449
  year: 2009
  end-page: 9453
  ident: CR23
  article-title: Super-resolution reactivity mapping of nanostructured catalyst particles
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200904944
– volume: 3
  start-page: 654
  year: 2009
  end-page: 657
  ident: CR30
  article-title: Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2009.187
– volume: 84
  start-page: 1
  year: 1977
  end-page: 20
  ident: CR9
  article-title: Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(77)80224-6
– volume: 97
  start-page: 206103
  year: 2006
  ident: CR16
  article-title: Coexistence of localized and delocalized surface plasmon modes in percolating metal films
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.206103
– volume: 103
  start-page: 18911
  year: 2006
  end-page: 18916
  ident: CR20
  article-title: Wide-field subdiffraction imaging by accumulated binding of diffusing probes
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0609643104
– volume: 257
  start-page: 189
  year: 1992
  end-page: 195
  ident: CR5
  article-title: Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit
  publication-title: Science
  doi: 10.1126/science.257.5067.189
– volume: 3
  start-page: 348
  year: 2007
  end-page: 353
  ident: CR6
  article-title: Mapping surface plasmons on a single metallic nanoparticle
  publication-title: Nature Phys.
  doi: 10.1038/nphys575
– volume: 313
  start-page: 1642
  year: 2006
  end-page: 1645
  ident: CR18
  article-title: Imaging intracellular fluorescent proteins at nanometer resolution
  publication-title: Science
  doi: 10.1126/science.1127344
– volume: 96
  start-page: 113002
  year: 2006
  ident: CR28
  article-title: Enhancement and quenching of single-molecule fluorescence
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.113002
– volume: 75
  start-page: 790
  year: 1979
  end-page: 798
  ident: CR12
  article-title: Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength
  publication-title: J. Chem. Soc. Faraday Trans. 2
  doi: 10.1039/f29797500790
– volume: 2
  start-page: 234
  year: 2008
  end-page: 237
  ident: CR29
  article-title: Optical antennas direct single-molecule emission
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2008.32
– volume: 8
  start-page: 1159
  year: 2008
  end-page: 1162
  ident: CR21
  article-title: Super-resolution imaging by random adsorbed molecule probes
  publication-title: Nano Lett.
  doi: 10.1021/nl0733280
– volume: 275
  start-page: 1102
  year: 1997
  end-page: 1106
  ident: CR2
  article-title: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering
  publication-title: Science
  doi: 10.1126/science.275.5303.1102
– volume: 73
  start-page: 3023
  year: 1980
  end-page: 3037
  ident: CR14
  article-title: Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.440560
– volume: 3
  start-page: 793
  year: 2006
  end-page: 796
  ident: CR19
  article-title: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)
  publication-title: Nature Methods
  doi: 10.1038/nmeth929
– start-page: 365
  year: 2009
  end-page: 398
  ident: CR22
  publication-title: Single Molecule Spectroscopy in Chemistry, Physics and Biology
– volume: 69
  start-page: 4159
  year: 1978
  end-page: 4161
  ident: CR13
  article-title: Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.437095
– volume: 60
  start-page: 16389
  year: 1999
  end-page: 16408
  ident: CR15
  article-title: Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.16389
– volume: 125
  start-page: 787
  year: 1978
  ident: BFnature09698_CR25
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2131549
– volume: 9
  start-page: 995
  year: 2009
  ident: BFnature09698_CR17
  publication-title: Nano Lett.
  doi: 10.1021/nl8030696
– volume: 8
  start-page: 1159
  year: 2008
  ident: BFnature09698_CR21
  publication-title: Nano Lett.
  doi: 10.1021/nl0733280
– volume: 275
  start-page: 1102
  year: 1997
  ident: BFnature09698_CR2
  publication-title: Science
  doi: 10.1126/science.275.5303.1102
– volume: 10
  start-page: 71
  year: 1988
  ident: BFnature09698_CR3
  publication-title: Z. Phys. D
  doi: 10.1007/BF01425582
– volume: 40
  start-page: S259
  year: 2007
  ident: BFnature09698_CR8
  publication-title: J. Phys. At. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/40/11/S02
– volume: 62
  start-page: 2245
  year: 1975
  ident: BFnature09698_CR27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.430748
– volume: 78
  start-page: 1667
  year: 1997
  ident: BFnature09698_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1667
– volume: 257
  start-page: 189
  year: 1992
  ident: BFnature09698_CR5
  publication-title: Science
  doi: 10.1126/science.257.5067.189
– start-page: 365
  volume-title: Single Molecule Spectroscopy in Chemistry, Physics and Biology
  year: 2009
  ident: BFnature09698_CR22
– volume: 121
  start-page: 9449
  year: 2009
  ident: BFnature09698_CR23
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200904944
– volume: 87
  start-page: 167401
  year: 2001
  ident: BFnature09698_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.167401
– volume: 99
  start-page: 5215
  year: 1977
  ident: BFnature09698_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00457a071
– volume: 97
  start-page: 206103
  year: 2006
  ident: BFnature09698_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.206103
– volume: 313
  start-page: 1642
  year: 2006
  ident: BFnature09698_CR18
  publication-title: Science
  doi: 10.1126/science.1127344
– volume: 7
  start-page: 377
  year: 2010
  ident: BFnature09698_CR24
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1447
– volume: 79
  start-page: 509
  year: 1983
  ident: BFnature09698_CR26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445550
– volume: 73
  start-page: 3023
  year: 1980
  ident: BFnature09698_CR14
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.440560
– volume: 69
  start-page: 4159
  year: 1978
  ident: BFnature09698_CR13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.437095
– volume: 3
  start-page: 793
  year: 2006
  ident: BFnature09698_CR19
  publication-title: Nature Methods
  doi: 10.1038/nmeth929
– volume: 2
  start-page: 234
  year: 2008
  ident: BFnature09698_CR29
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2008.32
– volume: 3
  start-page: 654
  year: 2009
  ident: BFnature09698_CR30
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2009.187
– volume: 84
  start-page: 1
  year: 1977
  ident: BFnature09698_CR9
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(77)80224-6
– volume: 26
  start-page: 163
  year: 1974
  ident: BFnature09698_CR11
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(74)85388-1
– volume: 75
  start-page: 790
  year: 1979
  ident: BFnature09698_CR12
  publication-title: J. Chem. Soc. Faraday Trans. 2
  doi: 10.1039/f29797500790
– volume: 60
  start-page: 16389
  year: 1999
  ident: BFnature09698_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.16389
– volume: 103
  start-page: 18911
  year: 2006
  ident: BFnature09698_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0609643104
– volume: 7
  start-page: 2843
  year: 2007
  ident: BFnature09698_CR7
  publication-title: Nano Lett.
  doi: 10.1021/nl071480w
– volume: 96
  start-page: 113002
  year: 2006
  ident: BFnature09698_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.113002
– volume: 3
  start-page: 348
  year: 2007
  ident: BFnature09698_CR6
  publication-title: Nature Phys.
  doi: 10.1038/nphys575
– reference: 19199757 - Nano Lett. 2009 Mar;9(3):995-1001
– reference: 16605818 - Phys Rev Lett. 2006 Mar 24;96(11):113002
– reference: 17142314 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18911-6
– reference: 17794749 - Science. 1992 Jul 10;257(5067):189-95
– reference: 9027306 - Science. 1997 Feb 21;275(5303):1102-6
– reference: 18321073 - Nano Lett. 2008 Apr;8(4):1159-62
– reference: 17718531 - Nano Lett. 2007 Sep;7(9):2843-6
– reference: 21248833 - Nature. 2011 Jan 20;469(7330):307-8
– reference: 16902090 - Science. 2006 Sep 15;313(5793):1642-5
– reference: 16896339 - Nat Methods. 2006 Oct;3(10):793-5
– reference: 17155697 - Phys Rev Lett. 2006 Nov 17;97(20):206103
– reference: 11690242 - Phys Rev Lett. 2001 Oct 15;87(16):167401
– reference: 20364147 - Nat Methods. 2010 May;7(5):377-81
– reference: 19890928 - Angew Chem Int Ed Engl. 2009;48(49):9285-9
SSID ssj0005174
Score 2.4699273
Snippet Mapping electromagnetic hotspots It is well known that hotspots can appear on rough metallic surfaces exposed to light, where the incident light is...
When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense...
SourceID proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 385
SubjectTerms 639/301/357/354
639/301/930/2735
639/766/25
Accuracy
Adsorption
Aluminum
Aluminum - chemistry
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electromagnetic Fields
Exact sciences and technology
Experiments
Fluorescence
Fluorescent Dyes - analysis
Fluorescent Dyes - chemistry
Hot Temperature
Humanities and Social Sciences
Imaging
Imaging systems
letter
Light microscopy
Luminescent Measurements - methods
Metal Nanoparticles - chemistry
Metals and metallic alloys
Methods
Microscopy, Fluorescence - methods
Molecular Imaging - methods
Molecules
Motion
multidisciplinary
Nanocrystals and nanoparticles
Nanoparticles
Nanostructure
Observations
Optical properties
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures
Optical properties of specific thin films
Optics
Physics
Quartz
Scanning electron microscopy
Science
Science (multidisciplinary)
Silver
Silver - chemistry
Spectrum analysis
Standard deviation
Studies
Surface layer
Surface Properties
Texture
Thin films
Title Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging
URI https://link.springer.com/article/10.1038/nature09698
https://www.ncbi.nlm.nih.gov/pubmed/21248848
https://www.proquest.com/docview/847540880
https://www.proquest.com/docview/1266751510
https://www.proquest.com/docview/1753495968
https://www.proquest.com/docview/846896721
Volume 469
WOSCitedRecordID wos000286385600049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: Nature (UW-Madison Shared)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: P5Z
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M0K
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PCBAR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7S
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database (subscripiton)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PATMY
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: KB.
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7RV
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2M
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (subscription)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library (subscription)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2O
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (subscription)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwELfYBhISAjZeZaMyaDyGFJbEeTifUDdtAk0tUfdQ2ZfIie1SaU26JkXiv-fsuO0CZV_4clLlS3rO2eff2ec7hHZZamd-mEorFdS3PEFVylviWo7DwB-hvi38VBebCHs9OhhEsYnNKU1Y5dwmakPNi0ztke-DFQVwAaPt8-TaUkWj1OGqqaCxhjZUkgSiI_fiZYTHH0mYzfU8m9D9OmsmwPeINhYkY5YfTFgJn0jWtS1Wgc-_Dk71enT86D978hg9NEAUd-qRs4nuiHwL3dMBoVm5hTbNpC_xB5OZeu8JuohV1qZ8iAE1YlNAZ8yGuboIiXUsHC4kZtjxrZzlxVhUU4F_FBW4zhVOf2G1L3El8LguySvwaKxrJD1F58dHZ4dfLFOYwcoCaldWYHNY-sHRkzB7uS85LHI0spkUABY5kYHteSzyIkEZuKfgBnMObo0QUSC4DFKHPEPreZGLFwhzWwBi9DwiXOm54K5JN2XgtrlhJl3Owxb6ONdOkpms5ap4xlWiT88JTW6osoV2F8yTOlnHarY3Ss2JSn-Rq_iaIZuVZfL1tJ90XFAOgc45LfTeMMkC_jBj5roCiK0yZjU4txuc2WR0ndxofddoHdY6W_WanQYjTPOs0dxuDMpFB10SEgJrGogxH26JsUNlshhrLfR60arerELrclHMysQBiBYCqnVu4wEhwJOOAvh2-B88AGRpFIRK0uf1HFmKCCCSUg8efjufNEsRVyjo5a1d2Ub36419B0z8DlqvpjPxCt3NflajctpGa2H_QtFBqCkFSg-dNto4OOrFffh1cvAJaNc-UdTtavpN07itDYimp0Bj_xKeiztn3e-_AVSzb3s
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAgIJAS2vpaUY1PKSouYd54BQBVRdtayqtlS9GSe2l5W6yXaTBfVH8R8ZJ85uA0tvPXD2xBnH8_gmHs8ArPPEToMoUVYiaWD5kuqSt55rOQ7HeIQGtgySqtlE1OvRk5N4fwF-NXdhdFplYxMrQy3yVP8j30QriuACpe3D6MzSTaP04WrTQaOWil15_hMjtuJ99xNu74brbn8--rhjmaYCVhpSu7RCW6DbwiBFoeSJQAk00DS2uZIIdISnQtv3eezHknIMrTCEEwIhuZRxKIUKE8fDea_BdTTjjs4giw6OZxklfxR9NtcBbY9u1lU6MVyIacsBGjdwZ8QL3BJV99KYB3b_Oqit_N_2vf_sy92HuwZok61aM5ZgQWbLcLNKeE2LZVgyRq0gb0zl7bcP4HhfV6XK-gRRMTENgoa8n-mLnqTK9SO5Ipw4gZXxLB_KcizJ97wsRnlJknOi_7ucSjKsWw5LMhhWPaAewtcrWekjWMzyTD4BImyJiNj3Pekq38VwVLkJx7DUjVLlChF14F0jDSw1Vdl1c5BTVmUHeJRdEJ0OrE-JR3UxkvlkL7VYMV3eI9P5Q30-KQrWPTxgWy4Kg4eLczrw2hCpHF-YcnMdA9nWFcFalCstynQ0OGMXRl-1Rvv1ns2bZrVFiGYsbQ2vtZRgukDXizwPfTay0Yg3M3a2YFPZ7sCL6aieWacOZjKfFMxBCBohancuo0Em_DiIQ_x25B80CNRpHEaa08e1Ts5YRJBMqY8PbzRKOmNxzgY9vXQpz-HWztGXPbbX7e2uwO36EMNBd7YKi-V4Ip_BjfRHOSjGa5X5IfDtqrX2Nw_ZvUM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELfG-BASArbxUTaGQRsDpKhJnA_nAaFpo6IaqioGaG_Gie1SaU2yJgXtT-O_45w4XQNlb3vg2RfnHN_H7-LzHUI7PLYTP4yVFUvqW56kuuQtcS3H4RCPUN-Wflw1mwgHA3pyEg1X0K_mLoxOq2xsYmWoRZbof-RdsKIALkDauspkRQwPe-_yM0s3kNIHrU03jVpCjuT5T4jeirf9Q9jqXdftvf988MEyDQasJKB2aQW2ABcGAYsCKRS-EmCsaWRzJQH0CKIC2_N45EWScgizIJwTAuC5lFEghQpih8C819D1kMDj-pL6wUJ2yR8FoM3VQJvQbl2xE0KHiLacoXEJd3JewPaouq_GMuD716Ft5Qt79_7jr3gf3TUAHO_XGrOGVmS6jm5WibBJsY7WjLEr8CtTkfv1Bvo61NWq0hEGtIxN46AJH6X6AiiucgBxpjDHjm-lPM0mspxK_D0rizwrcXyO9f-YU4kndStiiceTqjfUA_TlSlb6EK2mWSofIyxsCUjZ84h0ledCmKrcmEO46oaJcoUIO-hNIxksMdXaddOQU1ZlDRDKFsSog3bmxHldpGQ52QstYkyX_Uj13o_4rChY__gT23dBMAgszumgPUOkMnhhws01DWBbVwprUW62KJN8fMYWRl-2Rkf1ni2bZqtFCOYtaQ1vtxRivkCXhISALwc2GlFnxv4WbC7nHfR8Pqpn1imFqcxmBXMAmoaA5p3LaIAJL_KjAL4d_gcNAHgaBaHm9FGtnxcsAnim1IOHdxuFvWBxyQY9uXQpz9AtUFb2sT842kS367MNB7zcFlotpzP5FN1IfpTjYrpdWSKMvl210v4GWonFng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+electromagnetic+field+of+a+15-nanometre+hotspot+by+single+molecule+imaging&rft.jtitle=Nature+%28London%29&rft.au=Cang%2C+Hu&rft.au=Labno%2C+Anna&rft.au=Lu%2C+Changgui&rft.au=Yin%2C+Xiaobo&rft.date=2011-01-20&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=469&rft.issue=7330&rft.spage=385&rft_id=info:doi/10.1038%2Fnature09698&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2250348421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon