Selective Patterning of Gold Surfaces by Core/Shell, Semisoft Hybrid Nanoparticles
The generation of patterned surfaces with well‐defined nano‐ and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size distribution to microdomains of a gold‐coated silicon wafer. Near monodisperse nanoparticles are prepared using reversible addition‐fragmenta...
Saved in:
| Published in: | Small Vol. 11; no. 4; pp. 482 - 488 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Blackwell Publishing Ltd
2015
Wiley Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 1613-6810, 1613-6829, 1613-6829 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The generation of patterned surfaces with well‐defined nano‐ and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size distribution to microdomains of a gold‐coated silicon wafer. Near monodisperse nanoparticles are prepared using reversible addition‐fragmentation chain transfer (RAFT) polymerization, initiated from a silica surface, to prepare a polystyrene shell around a silica core. The particles are then used as‐prepared, or after aminolysis of the terminal thiocarbonyl group of the polystyrene shell, to give thiol‐terminated nanoparticles. When gold‐coated silicon wafers are immersed into very dilute suspensions of these particles (as low as 0.004 wt%), both types of particles are shown to adhere to the gold domains. The thiolated particles adhere selectively to the gold microdomains, allowing for microdomain patterning, while particles that contain the trithiocarbonate functionality lead to a much more even coverage of the gold surface with fewer particle aggregations.
The preparation of monodisperse particles with a silica core and a polystyrene shell is described using reversible addition‐fragmentation chain transfer (RAFT) polymerization. The particles prepared this way display either trithiocarbonate or thiolate end groups. The thiolated particles are shown to selectively deposit onto gold domains of a patterned silicon wafer while trithiocarbonate‐functionalize particles deposited onto both gold and silicon domains with an aggregation‐free coverage. |
|---|---|
| AbstractList | The generation of patterned surfaces with well-defined nano- and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size distribution to microdomains of a gold-coated silicon wafer. Near monodisperse nanoparticles are prepared using reversible addition-fragmentation chain transfer (RAFT) polymerization, initiated from a silica surface, to prepare a polystyrene shell around a silica core. The particles are then used as-prepared, or after aminolysis of the terminal thiocarbonyl group of the polystyrene shell, to give thiol-terminated nanoparticles. When gold-coated silicon wafers are immersed into very dilute suspensions of these particles (as low as 0.004 wt%), both types of particles are shown to adhere to the gold domains. The thiolated particles adhere selectively to the gold microdomains, allowing for microdomain patterning, while particles that contain the trithiocarbonate functionality lead to a much more even coverage of the gold surface with fewer particle aggregations. The preparation of monodisperse particles with a silica core and a polystyrene shell is described using reversible addition-fragmentation chain transfer (RAFT) polymerization. The particles prepared this way display either trithiocarbonate or thiolate end groups. The thiolated particles are shown to selectively deposit onto gold domains of a patterned silicon wafer while trithiocarbonate-functionalize particles deposited onto both gold and silicon domains with an aggregation-free coverage. The generation of patterned surfaces with well-defined nano- and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size distribution to microdomains of a gold-coated silicon wafer. Near monodisperse nanoparticles are prepared using reversible addition-fragmentation chain transfer (RAFT) polymerization, initiated from a silica surface, to prepare a polystyrene shell around a silica core. The particles are then used as-prepared, or after aminolysis of the terminal thiocarbonyl group of the polystyrene shell, to give thiol-terminated nanoparticles. When gold-coated silicon wafers are immersed into very dilute suspensions of these particles (as low as 0.004 wt%), both types of particles are shown to adhere to the gold domains. The thiolated particles adhere selectively to the gold microdomains, allowing for microdomain patterning, while particles that contain the trithiocarbonate functionality lead to a much more even coverage of the gold surface with fewer particle aggregations. The generation of patterned surfaces with well-defined nano- and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size distribution to microdomains of a gold-coated silicon wafer. Near monodisperse nanoparticles are prepared using reversible addition-fragmentation chain transfer (RAFT) polymerization, initiated from a silica surface, to prepare a polystyrene shell around a silica core. The particles are then used as-prepared, or after aminolysis of the terminal thiocarbonyl group of the polystyrene shell, to give thiol-terminated nanoparticles. When gold-coated silicon wafers are immersed into very dilute suspensions of these particles (as low as 0.004 wt%), both types of particles are shown to adhere to the gold domains. The thiolated particles adhere selectively to the gold microdomains, allowing for microdomain patterning, while particles that contain the trithiocarbonate functionality lead to a much more even coverage of the gold surface with fewer particle aggregations.The generation of patterned surfaces with well-defined nano- and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size distribution to microdomains of a gold-coated silicon wafer. Near monodisperse nanoparticles are prepared using reversible addition-fragmentation chain transfer (RAFT) polymerization, initiated from a silica surface, to prepare a polystyrene shell around a silica core. The particles are then used as-prepared, or after aminolysis of the terminal thiocarbonyl group of the polystyrene shell, to give thiol-terminated nanoparticles. When gold-coated silicon wafers are immersed into very dilute suspensions of these particles (as low as 0.004 wt%), both types of particles are shown to adhere to the gold domains. The thiolated particles adhere selectively to the gold microdomains, allowing for microdomain patterning, while particles that contain the trithiocarbonate functionality lead to a much more even coverage of the gold surface with fewer particle aggregations. The generation of patterned surfaces with well‐defined nano‐ and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size distribution to microdomains of a gold‐coated silicon wafer. Near monodisperse nanoparticles are prepared using reversible addition‐fragmentation chain transfer (RAFT) polymerization, initiated from a silica surface, to prepare a polystyrene shell around a silica core. The particles are then used as‐prepared, or after aminolysis of the terminal thiocarbonyl group of the polystyrene shell, to give thiol‐terminated nanoparticles. When gold‐coated silicon wafers are immersed into very dilute suspensions of these particles (as low as 0.004 wt%), both types of particles are shown to adhere to the gold domains. The thiolated particles adhere selectively to the gold microdomains, allowing for microdomain patterning, while particles that contain the trithiocarbonate functionality lead to a much more even coverage of the gold surface with fewer particle aggregations. The preparation of monodisperse particles with a silica core and a polystyrene shell is described using reversible addition‐fragmentation chain transfer (RAFT) polymerization. The particles prepared this way display either trithiocarbonate or thiolate end groups. The thiolated particles are shown to selectively deposit onto gold domains of a patterned silicon wafer while trithiocarbonate‐functionalize particles deposited onto both gold and silicon domains with an aggregation‐free coverage. |
| Author | Ohno, Kohji Perrier, Sébastien Maschmeyer, Thomas Moraes, John |
| Author_xml | – sequence: 1 givenname: John surname: Moraes fullname: Moraes, John organization: Key Centre for Polymers & Colloids, School of Chemistry, The University of Sydney, NSW, 2006, Australia – sequence: 2 givenname: Kohji surname: Ohno fullname: Ohno, Kohji organization: Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Uji, Japan – sequence: 3 givenname: Thomas surname: Maschmeyer fullname: Maschmeyer, Thomas organization: Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, NSW, 2006, Australia – sequence: 4 givenname: Sébastien surname: Perrier fullname: Perrier, Sébastien email: s.perrier@warwick.ac.uk organization: Key Centre for Polymers & Colloids, School of Chemistry, The University of Sydney, NSW, 2006, Australia |
| BackLink | https://cir.nii.ac.jp/crid/1871428067702171136$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/25223214$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtvEzEURi1URB-wZYlGggULkvo1tmdZRZAgpQV1QLCzPLYHXJxxsB0g_x6Ppo1QJQQbXy_Ouf6u7yk4GsJgAXiK4BxBiM_Txvs5hohCSGj9AJwghsiMCdwcHe4IHoPTlG4KgjDlj8AxrjEmGNETcN1ab3V2P2z1XuVs4-CGL1Xoq2Xwpmp3sVfapqrbV4sQ7Xn71Xr_qmrtxqXQ52q176Iz1ZUawlbF7LS36TF42Cuf7JPbegY-vnn9YbGard8t3y4u1jPNeFOPuUiPSY1wTbEhAqPO4E5BQ0lDmWkUJIJCS61glitsODW96inRHdYamp6cgZdT320M33c2ZVlC6ZJPDTbskkSMQSg4ZfV_oDWmuG4YLujze-hN2MWhDFIoyhohasEK9eyW2nUba-Q2uo2Ke3n3sQWgE6BjSCnaXmqXVXZhyFE5LxGU4_7kuD952F_R5ve0u85_FZpJ-Om83f-Dlu3lev2n-2JyB-dKvPFEgiOKBWScQ4w4QmScdTZhLmX76_CEit8k44TX8tPVUpZ6DT_zS7kivwGXz8Ql |
| CitedBy_id | crossref_primary_10_1016_j_cej_2018_02_081 |
| Cites_doi | 10.1021/ma9010878 10.1021/la034459t 10.1039/b917102a 10.1021/ma0602829 10.1002/adma.201100290 10.1002/marc.200600436 10.1039/b416951d 10.1021/la990070n 10.1021/cm401957m 10.1039/B924854B 10.1021/nl2030163 10.1021/bm3010534 10.1002/pola.20558 10.1002/1521-3773(20010817)40:16<3069::AID-ANIE3069>3.0.CO;2-J 10.1016/j.bbagen.2010.07.002 10.1021/nn8000092 10.1021/ja00246a011 10.1021/cm034696h 10.1002/smll.200700376 10.1021/ja020556h 10.1063/1.110628 10.1038/369387a0 10.1002/pola.23433 10.1523/JNEUROSCI.08-11-04098.1988 10.3762/bjoc.9.139 10.1002/adma.200290020 10.1039/b315816k 10.1021/nn301112t 10.1021/ja8099135 10.1038/nmat856 10.1021/la062793u 10.1021/ma902663n 10.1038/nchem.1352 10.1021/cm0622912 10.1021/ma991264c 10.1021/la00027a021 10.1021/la00049a020 10.1039/B9PY00216B 10.1002/adma.200702635 10.1038/nmat2109 10.1021/ma202105y 10.1016/S1369-7021(10)70057-2 10.1039/c000358a 10.1021/nl050861b |
| ContentType | Journal Article |
| Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL RYH AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 F28 FR3 |
| DOI | 10.1002/smll.201400345 |
| DatabaseName | Istex CiNii Complete CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Materials Research Database Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1613-6829 |
| EndPage | 488 |
| ExternalDocumentID | 3563476501 25223214 10_1002_smll_201400345 SMLL201400345 ark_67375_WNG_375R0X7M_H |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Australian Research Council's Discovery, Future Fellowship and Linkage Programs |
| GroupedDBID | --- 05W 0R~ 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- RYH AAYXX CITATION AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 F28 FR3 |
| ID | FETCH-LOGICAL-c6795-6813f23512542d3821bd2ba0d43946d9a03840e4e86e7a2d74dfaf43cb2cc0df3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348773100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1613-6810 1613-6829 |
| IngestDate | Fri Sep 05 09:00:39 EDT 2025 Thu Oct 02 10:10:47 EDT 2025 Fri Jul 25 11:49:23 EDT 2025 Thu Apr 03 07:04:07 EDT 2025 Tue Nov 18 21:13:07 EST 2025 Sat Nov 29 03:27:15 EST 2025 Tue Sep 09 05:07:53 EDT 2025 Mon Nov 10 09:13:35 EST 2025 Tue Sep 09 05:31:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | silica particles core/shell nanoparticles gold surfaces nanopatterning |
| Language | English |
| License | http://doi.wiley.com/10.1002/tdm_license_1.1 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6795-6813f23512542d3821bd2ba0d43946d9a03840e4e86e7a2d74dfaf43cb2cc0df3 |
| Notes | ark:/67375/WNG-375R0X7M-H istex:D56872963BDF03E9F910075322CEACEB7018B175 Australian Research Council's Discovery, Future Fellowship and Linkage Programs ArticleID:SMLL201400345 Present address: Department of Chemistry, University of Warwick, CV4 7AL, UK Present address: École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH‐1015, Lausanne, Switzerland ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8494-9907 0000-0002-1812-3354 |
| OpenAccessLink | https://cir.nii.ac.jp/crid/1871428067702171136 |
| PMID | 25223214 |
| PQID | 1646988586 |
| PQPubID | 1046358 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_1660087465 proquest_miscellaneous_1652425962 proquest_journals_1646988586 pubmed_primary_25223214 crossref_citationtrail_10_1002_smll_201400345 crossref_primary_10_1002_smll_201400345 wiley_primary_10_1002_smll_201400345_SMLL201400345 nii_cinii_1871428067702171136 istex_primary_ark_67375_WNG_375R0X7M_H |
| PublicationCentury | 2000 |
| PublicationDate | 2015-00-00 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – year: 2015 text: 2015-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Small |
| PublicationTitleAlternate | Small |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd Wiley Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
| References | A. M. Telford, L. Meagher, V. Glattauer, T. R. Gengenbach, C. D. Easton, C. Neto, Biomacromolecules 2012, 13, 2989. V. Lima, X. L. Jiang, J. Brokken-Zijp, P. J. Schoenmakers, B. Klumperman, R. Van Der Linde, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 959. R. Ogaki, M. Alexander, P. Kingshott, Mater. Today 2010, 13, 22. M. Tanaka, T. Hosaka, T. Tanii, I. Ohdomari, H. Nishide, Chem. Commun. 2004, 978. H. Hakkinen, Nat. Chem. 2012, 4, 443. L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Adv. Mater. 2002, 14, 1857. J. Moraes, K. Ohno, G. Gody, T. Maschmeyer, S. Perrier, Beilstein J. Org. Chem. 2013, 9, 1226. D. Mijatovic, J. C. T. Eijkel, A. van den Berg, Lab Chip 2005, 5, 492. X.-P. Qiu, F. M. Winnik, Macromol. Rapid Commun. 2006, 27, 1648. A. B. Lowe, B. S. Sumerlin, M. S. Donovan, C. L. McCormick, J. Am. Chem. Soc. 2002, 124, 11562. A.-S. Duwez, P. Guillet, C. Colard, J.-F. Gohy, C.-A. Fustin, Macromolecules 2006, 39, 2729. P. J. Bracher, M. Gupta, G. M. Whitesides, J. Mater. Chem. 2010, 20, 5117. M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey, J. Am. Chem. Soc. 1987, 109, 3559. J. Moraes, K. Ohno, T. Maschmeyer, S. Perrier, Chem. Mater. 2013, 25, 3522. Y. Lei, S. Yang, M. Wu, G. Wilde, Chem. Soc. Rev. 2011, 40, 1247. G. Widawski, M. Rawiso, B. Francois, Nature 1994, 369, 387. R. Blossey, Nat. Mater. 2003, 2, 301. B. S. Sumerlin, A. B. Lowe, P. A. Stroud, P. Zhang, M. W. Urban, C. L. McCormick, Langmuir 2003, 19, 5559. H. Kaji, G. Camci-Unal, R. Langer, A. Khademhosseini, Biochim. Biophys. Acta 2011, 1810, 239. K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, G. Barbastathis, ACS Nano 2012, 6, 3789. S. C. Thickett, C. Neto, A. T. Harris, Adv. Mater. 2011, 23, 3718. D. Kleinfeld, K. H. Kahler, P. E. Hockberger, J. Neurosci. 1988, 8, 4098. Q. He, A. Kuller, M. Grunze, J. B. Li, Langmuir 2007, 23, 3981. C. Boyer, M. R. Whittaker, C. Nouvel, T. P. Davis, Macromolecules 2010, 43, 1792. C. Boyer, A. Granville, T. P. Davis, V. Bulmus, J. Polym.Sci., Part A: Polym. Chem. 2009, 47, 3773. J. W. Chan, C. E. Hoyle, A. B. Lowe, J. Am. Chem. Soc. 2009, 131, 5751. J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, B. Kabius, Langmuir 1999, 16, 407. K. Ohno, Y. Ma, Y. Huang, C. Mori, Y. Yahata, Y. Tsujii, T. Maschmeyer, J. Moraes, S. Perrier, Macromolecules 2011, 44, 8944. J. Y. Shiu, C. W. Kuo, P. L. Chen, C. Y. Mou, Chem. Mater. 2004, 16, 561. Z. H. Nie, E. Kumacheva, Nat. Mater. 2008, 7, 277. H. Li, B. Yu, H. Matsushima, C. E. Hoyle, A. B. Lowe, Macromolecules 2009, 42, 6537. J. W. Hotchkiss, A. B. Lowe, S. G. Boyes, Chem. Mater. 2006, 19, 6. Z. Burton, B. Bhushan, Nano Lett. 2005, 5, 1607. A. Kumar, G. M. Whitesides, Appl. Phys. Lett. 1993, 63, 2002. A. B. Lowe, Polym. Chem. 2010, 1, 17. S. B. Jhaveri, M. Beinhoff, C. J. Hawker, K. R. Carter, D. Y. Sogah, ACS Nano 2008, 2, 719. A. Ihs, K. Uvdal, B. Liedberg, Langmuir 1993, 9, 733. L. M. Demers, C. A. Mirkin, Angew. Chem. Int. Ed. 2001, 40, 3069. A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, D. L. Huffaker, Nano Lett. 2011, 11, 5387. R. R. Shah, D. Merreceyes, M. Husemann, I. Rees, N. L. Abbott, C. J. Hawker, J. L. Hedrick, Macromolecules 2000, 33, 597. J. A. Mielczarski, R. H. Yoon, Langmuir 1991, 7, 101. Q. He, A. Kueller, S. Schilp, F. Leisten, H. A. Kolb, M. Grunze, J. B. Li, Small 2007, 3, 1860. A. B. Lowe, C. E. Hoyle, C. N. Bowman, J. Mater. Chem. 2010, 20, 4745. T. Lohmueller, E. Bock, J. P. Spatz, Adv. Mater. 2008, 20, 2297. 2009; 47 1993; 9 2002; 14 2013; 25 2010; 13 2009; 42 1987; 109 2006; 39 2011; 40 1993; 63 2008; 7 2011; 11 2005; 43 2006; 19 2004 2003; 19 2009; 131 2012; 13 2008; 2 2001; 40 1991; 7 2013; 9 2010; 43 2010; 20 1994; 369 2010; 1 2004; 16 2002; 124 2006; 27 2000; 33 1999; 16 1988; 8 2003; 2 2005; 5 2011; 44 2011; 23 2011; 1810 2007; 3 2008; 20 2012; 6 2012; 4 2007; 23 Kumar (10.1002/smll.201400345-BIB0015|smll201400345-cit-0015) 1993; 63 Hotchkiss (10.1002/smll.201400345-BIB0028|smll201400345-cit-0028) 2006; 19 Telford (10.1002/smll.201400345-BIB0003|smll201400345-cit-0003) 2012; 13 Demers (10.1002/smll.201400345-BIB0010|smll201400345-cit-0010) 2001; 40 Shiu (10.1002/smll.201400345-BIB0012|smll201400345-cit-0012) 2004; 16 Shah (10.1002/smll.201400345-BIB0014|smll201400345-cit-0014) 2000; 33 Li (10.1002/smll.201400345-BIB0027|smll201400345-cit-0027) 2009; 42 Moraes (10.1002/smll.201400345-BIB0023|smll201400345-cit-0023) 2013; 9 Tanaka (10.1002/smll.201400345-BIB0011|smll201400345-cit-0011) 2004 Mielczarski (10.1002/smll.201400345-BIB0039|smll201400345-cit-0039) 1991; 7 Hakkinen (10.1002/smll.201400345-BIB0020|smll201400345-cit-0020) 2012; 4 Mijatovic (10.1002/smll.201400345-BIB0032|smll201400345-cit-0032) 2005; 5 Lowe (10.1002/smll.201400345-BIB0030|smll201400345-cit-0030) 2002; 124 Feng (10.1002/smll.201400345-BIB0041|smll201400345-cit-0041) 2002; 14 He (10.1002/smll.201400345-BIB0018|smll201400345-cit-0018) 2007; 3 Lohmueller (10.1002/smll.201400345-BIB0036|smll201400345-cit-0036) 2008; 20 Chan (10.1002/smll.201400345-BIB0044|smll201400345-cit-0044) 2009; 131 Scofield (10.1002/smll.201400345-BIB0009|smll201400345-cit-0009) 2011; 11 Bracher (10.1002/smll.201400345-BIB0013|smll201400345-cit-0013) 2010; 20 Lei (10.1002/smll.201400345-BIB0002|smll201400345-cit-0002) 2011; 40 Moraes (10.1002/smll.201400345-BIB0043|smll201400345-cit-0043) 2013; 25 Blossey (10.1002/smll.201400345-BIB0007|smll201400345-cit-0007) 2003; 2 Sumerlin (10.1002/smll.201400345-BIB0031|smll201400345-cit-0031) 2003; 19 Duwez (10.1002/smll.201400345-BIB0037|smll201400345-cit-0037) 2006; 39 Boyer (10.1002/smll.201400345-BIB0029|smll201400345-cit-0029) 2010; 43 Ihs (10.1002/smll.201400345-BIB0038|smll201400345-cit-0038) 1993; 9 Porter (10.1002/smll.201400345-BIB0021|smll201400345-cit-0021) 1987; 109 Nie (10.1002/smll.201400345-BIB0001|smll201400345-cit-0001) 2008; 7 Kaji (10.1002/smll.201400345-BIB0004|smll201400345-cit-0004) 2011; 1810 He (10.1002/smll.201400345-BIB0017|smll201400345-cit-0017) 2007; 23 Burton (10.1002/smll.201400345-BIB0040|smll201400345-cit-0040) 2005; 5 Kleinfeld (10.1002/smll.201400345-BIB0042|smll201400345-cit-0042) 1988; 8 Lowe (10.1002/smll.201400345-BIB0026|smll201400345-cit-0026) 2010; 20 Thickett (10.1002/smll.201400345-BIB0008|smll201400345-cit-0008) 2011; 23 Lima (10.1002/smll.201400345-BIB0024|smll201400345-cit-0024) 2005; 43 Widawski (10.1002/smll.201400345-BIB0019|smll201400345-cit-0019) 1994; 369 Spatz (10.1002/smll.201400345-BIB0035|smll201400345-cit-0035) 1999; 16 Qiu (10.1002/smll.201400345-BIB0033|smll201400345-cit-0033) 2006; 27 Ohno (10.1002/smll.201400345-BIB0022|smll201400345-cit-0022) 2011; 44 Ogaki (10.1002/smll.201400345-BIB0005|smll201400345-cit-0005) 2010; 13 Park (10.1002/smll.201400345-BIB0006|smll201400345-cit-0006) 2012; 6 Jhaveri (10.1002/smll.201400345-BIB0016|smll201400345-cit-0016) 2008; 2 Lowe (10.1002/smll.201400345-BIB0025|smll201400345-cit-0025) 2010; 1 Boyer (10.1002/smll.201400345-BIB0034|smll201400345-cit-0034) 2009; 47 |
| References_xml | – reference: J. Moraes, K. Ohno, T. Maschmeyer, S. Perrier, Chem. Mater. 2013, 25, 3522. – reference: J. W. Chan, C. E. Hoyle, A. B. Lowe, J. Am. Chem. Soc. 2009, 131, 5751. – reference: A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, D. L. Huffaker, Nano Lett. 2011, 11, 5387. – reference: H. Kaji, G. Camci-Unal, R. Langer, A. Khademhosseini, Biochim. Biophys. Acta 2011, 1810, 239. – reference: M. Tanaka, T. Hosaka, T. Tanii, I. Ohdomari, H. Nishide, Chem. Commun. 2004, 978. – reference: A. Kumar, G. M. Whitesides, Appl. Phys. Lett. 1993, 63, 2002. – reference: A.-S. Duwez, P. Guillet, C. Colard, J.-F. Gohy, C.-A. Fustin, Macromolecules 2006, 39, 2729. – reference: R. R. Shah, D. Merreceyes, M. Husemann, I. Rees, N. L. Abbott, C. J. Hawker, J. L. Hedrick, Macromolecules 2000, 33, 597. – reference: H. Hakkinen, Nat. Chem. 2012, 4, 443. – reference: S. B. Jhaveri, M. Beinhoff, C. J. Hawker, K. R. Carter, D. Y. Sogah, ACS Nano 2008, 2, 719. – reference: V. Lima, X. L. Jiang, J. Brokken-Zijp, P. J. Schoenmakers, B. Klumperman, R. Van Der Linde, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 959. – reference: D. Kleinfeld, K. H. Kahler, P. E. Hockberger, J. Neurosci. 1988, 8, 4098. – reference: Q. He, A. Kueller, S. Schilp, F. Leisten, H. A. Kolb, M. Grunze, J. B. Li, Small 2007, 3, 1860. – reference: Z. Burton, B. Bhushan, Nano Lett. 2005, 5, 1607. – reference: J. A. Mielczarski, R. H. Yoon, Langmuir 1991, 7, 101. – reference: A. B. Lowe, Polym. Chem. 2010, 1, 17. – reference: J. W. Hotchkiss, A. B. Lowe, S. G. Boyes, Chem. Mater. 2006, 19, 6. – reference: G. Widawski, M. Rawiso, B. Francois, Nature 1994, 369, 387. – reference: M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey, J. Am. Chem. Soc. 1987, 109, 3559. – reference: R. Blossey, Nat. Mater. 2003, 2, 301. – reference: J. Moraes, K. Ohno, G. Gody, T. Maschmeyer, S. Perrier, Beilstein J. Org. Chem. 2013, 9, 1226. – reference: Y. Lei, S. Yang, M. Wu, G. Wilde, Chem. Soc. Rev. 2011, 40, 1247. – reference: A. M. Telford, L. Meagher, V. Glattauer, T. R. Gengenbach, C. D. Easton, C. Neto, Biomacromolecules 2012, 13, 2989. – reference: S. C. Thickett, C. Neto, A. T. Harris, Adv. Mater. 2011, 23, 3718. – reference: A. B. Lowe, B. S. Sumerlin, M. S. Donovan, C. L. McCormick, J. Am. Chem. Soc. 2002, 124, 11562. – reference: J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, B. Kabius, Langmuir 1999, 16, 407. – reference: R. Ogaki, M. Alexander, P. Kingshott, Mater. Today 2010, 13, 22. – reference: X.-P. Qiu, F. M. Winnik, Macromol. Rapid Commun. 2006, 27, 1648. – reference: J. Y. Shiu, C. W. Kuo, P. L. Chen, C. Y. Mou, Chem. Mater. 2004, 16, 561. – reference: D. Mijatovic, J. C. T. Eijkel, A. van den Berg, Lab Chip 2005, 5, 492. – reference: C. Boyer, M. R. Whittaker, C. Nouvel, T. P. Davis, Macromolecules 2010, 43, 1792. – reference: L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Adv. Mater. 2002, 14, 1857. – reference: K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, G. Barbastathis, ACS Nano 2012, 6, 3789. – reference: A. Ihs, K. Uvdal, B. Liedberg, Langmuir 1993, 9, 733. – reference: P. J. Bracher, M. Gupta, G. M. Whitesides, J. Mater. Chem. 2010, 20, 5117. – reference: Q. He, A. Kuller, M. Grunze, J. B. Li, Langmuir 2007, 23, 3981. – reference: Z. H. Nie, E. Kumacheva, Nat. Mater. 2008, 7, 277. – reference: H. Li, B. Yu, H. Matsushima, C. E. Hoyle, A. B. Lowe, Macromolecules 2009, 42, 6537. – reference: T. Lohmueller, E. Bock, J. P. Spatz, Adv. Mater. 2008, 20, 2297. – reference: L. M. Demers, C. A. Mirkin, Angew. Chem. Int. Ed. 2001, 40, 3069. – reference: B. S. Sumerlin, A. B. Lowe, P. A. Stroud, P. Zhang, M. W. Urban, C. L. McCormick, Langmuir 2003, 19, 5559. – reference: K. Ohno, Y. Ma, Y. Huang, C. Mori, Y. Yahata, Y. Tsujii, T. Maschmeyer, J. Moraes, S. Perrier, Macromolecules 2011, 44, 8944. – reference: A. B. Lowe, C. E. Hoyle, C. N. Bowman, J. Mater. Chem. 2010, 20, 4745. – reference: C. Boyer, A. Granville, T. P. Davis, V. Bulmus, J. Polym.Sci., Part A: Polym. Chem. 2009, 47, 3773. – volume: 1810 start-page: 239 year: 2011 publication-title: Biochim. Biophys. Acta – volume: 33 start-page: 597 year: 2000 publication-title: Macromolecules – volume: 44 start-page: 8944 year: 2011 publication-title: Macromolecules – volume: 2 start-page: 301 year: 2003 publication-title: Nat. Mater. – volume: 20 start-page: 2297 year: 2008 publication-title: Adv. Mater. – volume: 6 start-page: 3789 year: 2012 publication-title: ACS Nano – volume: 131 start-page: 5751 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 561 year: 2004 publication-title: Chem. Mater. – volume: 2 start-page: 719 year: 2008 publication-title: ACS Nano – volume: 8 start-page: 4098 year: 1988 publication-title: J. Neurosci. – volume: 4 start-page: 443 year: 2012 publication-title: Nat. Chem. – volume: 42 start-page: 6537 year: 2009 publication-title: Macromolecules – volume: 13 start-page: 22 year: 2010 publication-title: Mater. Today – volume: 9 start-page: 1226 year: 2013 publication-title: Beilstein J. Org. Chem. – volume: 23 start-page: 3981 year: 2007 publication-title: Langmuir – volume: 47 start-page: 3773 year: 2009 publication-title: J. Polym.Sci – volume: 5 start-page: 492 year: 2005 publication-title: Lab Chip – volume: 369 start-page: 387 year: 1994 publication-title: Nature – volume: 9 start-page: 733 year: 1993 publication-title: Langmuir – volume: 7 start-page: 277 year: 2008 publication-title: Nat. Mater. – volume: 5 start-page: 1607 year: 2005 publication-title: Nano Lett. – volume: 27 start-page: 1648 year: 2006 publication-title: Macromol. Rapid Commun. – volume: 40 start-page: 3069 year: 2001 publication-title: Angew. Chem. Int. Ed. – volume: 63 start-page: 2002 year: 1993 publication-title: Appl. Phys. Lett. – volume: 43 start-page: 959 year: 2005 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 39 start-page: 2729 year: 2006 publication-title: Macromolecules – volume: 40 start-page: 1247 year: 2011 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 5387 year: 2011 publication-title: Nano Lett. – volume: 43 start-page: 1792 year: 2010 publication-title: Macromolecules – start-page: 978 year: 2004 publication-title: Chem. Commun. – volume: 14 start-page: 1857 year: 2002 publication-title: Adv. Mater. – volume: 16 start-page: 407 year: 1999 publication-title: Langmuir – volume: 3 start-page: 1860 year: 2007 publication-title: Small – volume: 109 start-page: 3559 year: 1987 publication-title: J. Am. Chem. Soc. – volume: 124 start-page: 11562 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 2989 year: 2012 publication-title: Biomacromolecules – volume: 1 start-page: 17 year: 2010 publication-title: Polym. Chem. – volume: 23 start-page: 3718 year: 2011 publication-title: Adv. Mater. – volume: 19 start-page: 5559 year: 2003 publication-title: Langmuir – volume: 25 start-page: 3522 year: 2013 publication-title: Chem. Mater. – volume: 19 start-page: 6 year: 2006 publication-title: Chem. Mater. – volume: 7 start-page: 101 year: 1991 publication-title: Langmuir – volume: 20 start-page: 5117 year: 2010 publication-title: J. Mater. Chem. – volume: 20 start-page: 4745 year: 2010 publication-title: J. Mater. Chem. – volume: 42 start-page: 6537 year: 2009 ident: 10.1002/smll.201400345-BIB0027|smll201400345-cit-0027 publication-title: Macromolecules doi: 10.1021/ma9010878 – volume: 19 start-page: 5559 year: 2003 ident: 10.1002/smll.201400345-BIB0031|smll201400345-cit-0031 publication-title: Langmuir doi: 10.1021/la034459t – volume: 20 start-page: 4745 year: 2010 ident: 10.1002/smll.201400345-BIB0026|smll201400345-cit-0026 publication-title: J. Mater. Chem. doi: 10.1039/b917102a – volume: 39 start-page: 2729 year: 2006 ident: 10.1002/smll.201400345-BIB0037|smll201400345-cit-0037 publication-title: Macromolecules doi: 10.1021/ma0602829 – volume: 23 start-page: 3718 year: 2011 ident: 10.1002/smll.201400345-BIB0008|smll201400345-cit-0008 publication-title: Adv. Mater. doi: 10.1002/adma.201100290 – volume: 27 start-page: 1648 year: 2006 ident: 10.1002/smll.201400345-BIB0033|smll201400345-cit-0033 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.200600436 – volume: 5 start-page: 492 year: 2005 ident: 10.1002/smll.201400345-BIB0032|smll201400345-cit-0032 publication-title: Lab Chip doi: 10.1039/b416951d – volume: 16 start-page: 407 year: 1999 ident: 10.1002/smll.201400345-BIB0035|smll201400345-cit-0035 publication-title: Langmuir doi: 10.1021/la990070n – volume: 25 start-page: 3522 year: 2013 ident: 10.1002/smll.201400345-BIB0043|smll201400345-cit-0043 publication-title: Chem. Mater. doi: 10.1021/cm401957m – volume: 40 start-page: 1247 year: 2011 ident: 10.1002/smll.201400345-BIB0002|smll201400345-cit-0002 publication-title: Chem. Soc. Rev. doi: 10.1039/B924854B – volume: 11 start-page: 5387 year: 2011 ident: 10.1002/smll.201400345-BIB0009|smll201400345-cit-0009 publication-title: Nano Lett. doi: 10.1021/nl2030163 – volume: 13 start-page: 2989 year: 2012 ident: 10.1002/smll.201400345-BIB0003|smll201400345-cit-0003 publication-title: Biomacromolecules doi: 10.1021/bm3010534 – volume: 43 start-page: 959 year: 2005 ident: 10.1002/smll.201400345-BIB0024|smll201400345-cit-0024 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.20558 – volume: 40 start-page: 3069 year: 2001 ident: 10.1002/smll.201400345-BIB0010|smll201400345-cit-0010 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20010817)40:16<3069::AID-ANIE3069>3.0.CO;2-J – volume: 1810 start-page: 239 year: 2011 ident: 10.1002/smll.201400345-BIB0004|smll201400345-cit-0004 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2010.07.002 – volume: 2 start-page: 719 year: 2008 ident: 10.1002/smll.201400345-BIB0016|smll201400345-cit-0016 publication-title: ACS Nano doi: 10.1021/nn8000092 – volume: 109 start-page: 3559 year: 1987 ident: 10.1002/smll.201400345-BIB0021|smll201400345-cit-0021 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00246a011 – volume: 16 start-page: 561 year: 2004 ident: 10.1002/smll.201400345-BIB0012|smll201400345-cit-0012 publication-title: Chem. Mater. doi: 10.1021/cm034696h – volume: 3 start-page: 1860 year: 2007 ident: 10.1002/smll.201400345-BIB0018|smll201400345-cit-0018 publication-title: Small doi: 10.1002/smll.200700376 – volume: 124 start-page: 11562 year: 2002 ident: 10.1002/smll.201400345-BIB0030|smll201400345-cit-0030 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja020556h – volume: 63 start-page: 2002 year: 1993 ident: 10.1002/smll.201400345-BIB0015|smll201400345-cit-0015 publication-title: Appl. Phys. Lett. doi: 10.1063/1.110628 – volume: 369 start-page: 387 year: 1994 ident: 10.1002/smll.201400345-BIB0019|smll201400345-cit-0019 publication-title: Nature doi: 10.1038/369387a0 – volume: 47 start-page: 3773 year: 2009 ident: 10.1002/smll.201400345-BIB0034|smll201400345-cit-0034 publication-title: J. Polym.Sci doi: 10.1002/pola.23433 – volume: 8 start-page: 4098 year: 1988 ident: 10.1002/smll.201400345-BIB0042|smll201400345-cit-0042 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.08-11-04098.1988 – volume: 9 start-page: 1226 year: 2013 ident: 10.1002/smll.201400345-BIB0023|smll201400345-cit-0023 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.9.139 – volume: 14 start-page: 1857 year: 2002 ident: 10.1002/smll.201400345-BIB0041|smll201400345-cit-0041 publication-title: Adv. Mater. doi: 10.1002/adma.200290020 – start-page: 978 year: 2004 ident: 10.1002/smll.201400345-BIB0011|smll201400345-cit-0011 publication-title: Chem. Commun. doi: 10.1039/b315816k – volume: 6 start-page: 3789 year: 2012 ident: 10.1002/smll.201400345-BIB0006|smll201400345-cit-0006 publication-title: ACS Nano doi: 10.1021/nn301112t – volume: 131 start-page: 5751 year: 2009 ident: 10.1002/smll.201400345-BIB0044|smll201400345-cit-0044 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8099135 – volume: 2 start-page: 301 year: 2003 ident: 10.1002/smll.201400345-BIB0007|smll201400345-cit-0007 publication-title: Nat. Mater. doi: 10.1038/nmat856 – volume: 23 start-page: 3981 year: 2007 ident: 10.1002/smll.201400345-BIB0017|smll201400345-cit-0017 publication-title: Langmuir doi: 10.1021/la062793u – volume: 43 start-page: 1792 year: 2010 ident: 10.1002/smll.201400345-BIB0029|smll201400345-cit-0029 publication-title: Macromolecules doi: 10.1021/ma902663n – volume: 4 start-page: 443 year: 2012 ident: 10.1002/smll.201400345-BIB0020|smll201400345-cit-0020 publication-title: Nat. Chem. doi: 10.1038/nchem.1352 – volume: 19 start-page: 6 year: 2006 ident: 10.1002/smll.201400345-BIB0028|smll201400345-cit-0028 publication-title: Chem. Mater. doi: 10.1021/cm0622912 – volume: 33 start-page: 597 year: 2000 ident: 10.1002/smll.201400345-BIB0014|smll201400345-cit-0014 publication-title: Macromolecules doi: 10.1021/ma991264c – volume: 9 start-page: 733 year: 1993 ident: 10.1002/smll.201400345-BIB0038|smll201400345-cit-0038 publication-title: Langmuir doi: 10.1021/la00027a021 – volume: 7 start-page: 101 year: 1991 ident: 10.1002/smll.201400345-BIB0039|smll201400345-cit-0039 publication-title: Langmuir doi: 10.1021/la00049a020 – volume: 1 start-page: 17 year: 2010 ident: 10.1002/smll.201400345-BIB0025|smll201400345-cit-0025 publication-title: Polym. Chem. doi: 10.1039/B9PY00216B – volume: 20 start-page: 2297 year: 2008 ident: 10.1002/smll.201400345-BIB0036|smll201400345-cit-0036 publication-title: Adv. Mater. doi: 10.1002/adma.200702635 – volume: 7 start-page: 277 year: 2008 ident: 10.1002/smll.201400345-BIB0001|smll201400345-cit-0001 publication-title: Nat. Mater. doi: 10.1038/nmat2109 – volume: 44 start-page: 8944 year: 2011 ident: 10.1002/smll.201400345-BIB0022|smll201400345-cit-0022 publication-title: Macromolecules doi: 10.1021/ma202105y – volume: 13 start-page: 22 year: 2010 ident: 10.1002/smll.201400345-BIB0005|smll201400345-cit-0005 publication-title: Mater. Today doi: 10.1016/S1369-7021(10)70057-2 – volume: 20 start-page: 5117 year: 2010 ident: 10.1002/smll.201400345-BIB0013|smll201400345-cit-0013 publication-title: J. Mater. Chem. doi: 10.1039/c000358a – volume: 5 start-page: 1607 year: 2005 ident: 10.1002/smll.201400345-BIB0040|smll201400345-cit-0040 publication-title: Nano Lett. doi: 10.1021/nl050861b |
| SSID | ssj0031247 ssib017387498 ssib004908756 ssib030664022 ssib022722846 |
| Score | 2.1704054 |
| Snippet | The generation of patterned surfaces with well‐defined nano‐ and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size... The generation of patterned surfaces with well-defined nano- and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size... |
| SourceID | proquest pubmed crossref wiley nii istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 482 |
| SubjectTerms | Addition polymerization core/shell nanoparticles Gold gold surfaces nanopatterning Nanoparticles Nanotechnology Polystyrene resins QD Shells silica particles Silicon Silicon dioxide Silicon wafers Wafers |
| Title | Selective Patterning of Gold Surfaces by Core/Shell, Semisoft Hybrid Nanoparticles |
| URI | https://api.istex.fr/ark:/67375/WNG-375R0X7M-H/fulltext.pdf https://cir.nii.ac.jp/crid/1871428067702171136 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201400345 https://www.ncbi.nlm.nih.gov/pubmed/25223214 https://www.proquest.com/docview/1646988586 https://www.proquest.com/docview/1652425962 https://www.proquest.com/docview/1660087465 |
| Volume | 11 |
| WOSCitedRecordID | wos000348773100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 issn: 1613-6810 databaseCode: DRFUL dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RhAM98G4xtNUiIbhg1Vnbu_YRFdIc0qiKqchttd6HFBEclDSI_ntmbMc0Eg8JLnkoY2c9OzuPfXwfwCsrB6UnmlQjUosFijFhaSIf6lh6W-ZpJnTNWjKWk0k2m-WXt07xN_gQ3YQbjYzaX9MA1-X69Cdo6PrLgpYOsECI4iTdgz5H40170H8_HV6Nt944xvhVE6xg2AoJe2sL3Bjx09077ASmPun4O8abaj7_Ve65m8rWsWj44P-f4iHcb_NQ9q4xnEdwx1WPYf8WOuETmBY1Rw66Q3ZZo3DSFApbena-XFhWbFaetnOx8oadEblcQVtK37KCCOTQt7PRDR0GY-i-sS5vt989havhh49no7ClYMC-k3lKGos9jzErSBNu44wPSstLHVk6UCtsrqMYK0SXuEw4qbmVifXaJ7EpuTGR9fEB9Kpl5Z4BE9goO-A8F9YnTjj0soZLusJx7UobQLjVvzItPjnRZCxUg6zMFelKdboK4E0n_7VB5vit5Ou6OzsxvfpM-9lkqj5NzhW-T6OZvFCjAI6xv_Hf6XWApWRC685SUt1G3DcBHG0tQbVDfa0IoC3PMrTqAF52P6OqaeVFV265IZmUSrtc8D_JCMIHTAS297Cxsq7BHLNkYpQKgNfG9JcHVsXFeNx9e_4vF72Ae_g5bSabjqB3vdq4Y7hrvl3P16sT2JOz7KQdaj8AAs4j_A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB5BgwQ8cENNW1gkBC-16qztXfuxKqRBOFEVtyJvK3sPKSI4VdIg-u-ZsR1DJA4J8ZIoydhZz87Oscf3Abw2sl86oknVIjZYoGjtlzpwfhFKZ8o0TkRRs5ZkcjxOptP0rN1NSGdhGnyIbsKNRkbtr2mA04T00Q_U0NWXOa0dYIUQhFF8E3oR2hIaee_dZHCRbdxxiAGsZljBuOUT-NYGuTHgR9t32IpMPVLyNww41Wz2q-RzO5etg9Hg_n94jAdwr81E2XFjOg_hhq0ewd2f8AkfwySvWXLQIbKzGoeTJlHYwrHTxdywfL10tKGLldfshOjlctpUeshyopBD786G13QcjKEDx8q83YD3BC4G789Phn5LwoC9J9OYVBY6HmJeEEfchAnvl4aXRWDoSK0waRGEWCPayCbCyoIbGRlXuCjUJdc6MC58CjvVorK7wAQ2yvQ5T4VxkRUW_azmkq6wvLCl8cDfdIDSLUI5EWXMVYOtzBXpSnW68uBtJ3_ZYHP8VvJN3Z-dWLH8TDvaZKw-jU8Vvk-CqRypoQcH2OH47_Tax2IyopVnKalyI_YbD_Y3pqDawb5SBNGWJgnatQevup9R1bT2UlR2sSaZmIq7VPA_yQhCCIwEtvdZY2ZdgznmycQp5QGvrekvD6zyUZZ1n57_y0Uv4fbwfJSp7MP44x7cwe_jZuppH3aulmt7ALf016vZavmiHXHfAab3JwQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB5BghA8cB-GFhYJwQtWnfWx9iNqSYNwoyimIm-r9R5S1NSpkgbRf8-M7RgicUiIl0RJxs56dnaOPb4P4LURg9IRTapOYoMFitZ-qQPnq1A4U2ZxmqiatSQX43E6m2WTdjchnYVp8CG6CTcaGbW_pgFuL4w7-IEauj5f0NoBVghBGMXXoR8Rk0wP-kfT4Wm-dcchBrCaYQXjlk_gW1vkxoAf7N5hJzL1ScnfMOBU8_mvks_dXLYORsO7_-Ex7sGdNhNl7xvTuQ_XbPUAbv-ET_gQpkXNkoMOkU1qHE6aRGFLx46XC8OKzcrRhi5WXrFDopcraFPpO1YQhRx6dza6ouNgDB04VubtBrxHcDr88Plw5LckDNh7IotJZaHjIeYFccRNmPJBaXipAkNHahOTqSDEGtFGNk2sUNyIyDjlolCXXOvAuPAx9KplZZ8CS7BRZsB5lhgX2cSin9Vc0BWWK1saD_xtB0jdIpQTUcZCNtjKXJKuZKcrD9528hcNNsdvJd_U_dmJqdUZ7WgTsfwyPpb4Pg1m4kSOPNjHDsd_p9cBFpMRrTwLQZUbsd94sLc1BdkO9rUkiLYsTdGuPXjV_YyqprUXVdnlhmRiKu7QQP8kkxBCYJRge580ZtY1mGOeTJxSHvDamv7ywLI4yfPu07N_uegl3JwcDWX-cfzpOdzCr-Nm5mkPeperjd2HG_rr5Xy9etEOuO_2RCZ_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+Patterning+of+Gold+Surfaces+by+Core%2FShell%2C+Semisoft+Hybrid+Nanoparticles&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Moraes%2C+John&rft.au=Ohno%2C+Kohji&rft.au=Maschmeyer%2C+Thomas&rft.au=Perrier%2C+S%C3%A9bastien&rft.date=2015&rft.issn=1613-6810&rft.volume=11&rft.issue=4&rft.spage=482&rft.epage=488&rft_id=info:doi/10.1002%2Fsmll.201400345&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_201400345 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |