Selective Patterning of Gold Surfaces by Core/Shell, Semisoft Hybrid Nanoparticles

The generation of patterned surfaces with well‐defined nano‐ and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size distribution to microdomains of a gold‐coated silicon wafer. Near monodisperse nanoparticles are prepared using reversible addition‐fragmenta...

Full description

Saved in:
Bibliographic Details
Published in:Small Vol. 11; no. 4; pp. 482 - 488
Main Authors: Moraes, John, Ohno, Kohji, Maschmeyer, Thomas, Perrier, Sébastien
Format: Journal Article
Language:English
Published: Germany Blackwell Publishing Ltd 2015
Wiley
Wiley Subscription Services, Inc
Subjects:
ISSN:1613-6810, 1613-6829, 1613-6829
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The generation of patterned surfaces with well‐defined nano‐ and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size distribution to microdomains of a gold‐coated silicon wafer. Near monodisperse nanoparticles are prepared using reversible addition‐fragmentation chain transfer (RAFT) polymerization, initiated from a silica surface, to prepare a polystyrene shell around a silica core. The particles are then used as‐prepared, or after aminolysis of the terminal thiocarbonyl group of the polystyrene shell, to give thiol‐terminated nanoparticles. When gold‐coated silicon wafers are immersed into very dilute suspensions of these particles (as low as 0.004 wt%), both types of particles are shown to adhere to the gold domains. The thiolated particles adhere selectively to the gold microdomains, allowing for microdomain patterning, while particles that contain the trithiocarbonate functionality lead to a much more even coverage of the gold surface with fewer particle aggregations. The preparation of monodisperse particles with a silica core and a polystyrene shell is described using reversible addition‐fragmentation chain transfer (RAFT) polymerization. The particles prepared this way display either trithiocarbonate or thiolate end groups. The thiolated particles are shown to selectively deposit onto gold domains of a patterned silicon wafer while trithiocarbonate‐functionalize particles deposited onto both gold and silicon domains with an aggregation‐free coverage.
AbstractList The generation of patterned surfaces with well-defined nano- and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size distribution to microdomains of a gold-coated silicon wafer. Near monodisperse nanoparticles are prepared using reversible addition-fragmentation chain transfer (RAFT) polymerization, initiated from a silica surface, to prepare a polystyrene shell around a silica core. The particles are then used as-prepared, or after aminolysis of the terminal thiocarbonyl group of the polystyrene shell, to give thiol-terminated nanoparticles. When gold-coated silicon wafers are immersed into very dilute suspensions of these particles (as low as 0.004 wt%), both types of particles are shown to adhere to the gold domains. The thiolated particles adhere selectively to the gold microdomains, allowing for microdomain patterning, while particles that contain the trithiocarbonate functionality lead to a much more even coverage of the gold surface with fewer particle aggregations. The preparation of monodisperse particles with a silica core and a polystyrene shell is described using reversible addition-fragmentation chain transfer (RAFT) polymerization. The particles prepared this way display either trithiocarbonate or thiolate end groups. The thiolated particles are shown to selectively deposit onto gold domains of a patterned silicon wafer while trithiocarbonate-functionalize particles deposited onto both gold and silicon domains with an aggregation-free coverage.
The generation of patterned surfaces with well-defined nano- and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size distribution to microdomains of a gold-coated silicon wafer. Near monodisperse nanoparticles are prepared using reversible addition-fragmentation chain transfer (RAFT) polymerization, initiated from a silica surface, to prepare a polystyrene shell around a silica core. The particles are then used as-prepared, or after aminolysis of the terminal thiocarbonyl group of the polystyrene shell, to give thiol-terminated nanoparticles. When gold-coated silicon wafers are immersed into very dilute suspensions of these particles (as low as 0.004 wt%), both types of particles are shown to adhere to the gold domains. The thiolated particles adhere selectively to the gold microdomains, allowing for microdomain patterning, while particles that contain the trithiocarbonate functionality lead to a much more even coverage of the gold surface with fewer particle aggregations.
The generation of patterned surfaces with well-defined nano- and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size distribution to microdomains of a gold-coated silicon wafer. Near monodisperse nanoparticles are prepared using reversible addition-fragmentation chain transfer (RAFT) polymerization, initiated from a silica surface, to prepare a polystyrene shell around a silica core. The particles are then used as-prepared, or after aminolysis of the terminal thiocarbonyl group of the polystyrene shell, to give thiol-terminated nanoparticles. When gold-coated silicon wafers are immersed into very dilute suspensions of these particles (as low as 0.004 wt%), both types of particles are shown to adhere to the gold domains. The thiolated particles adhere selectively to the gold microdomains, allowing for microdomain patterning, while particles that contain the trithiocarbonate functionality lead to a much more even coverage of the gold surface with fewer particle aggregations.The generation of patterned surfaces with well-defined nano- and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size distribution to microdomains of a gold-coated silicon wafer. Near monodisperse nanoparticles are prepared using reversible addition-fragmentation chain transfer (RAFT) polymerization, initiated from a silica surface, to prepare a polystyrene shell around a silica core. The particles are then used as-prepared, or after aminolysis of the terminal thiocarbonyl group of the polystyrene shell, to give thiol-terminated nanoparticles. When gold-coated silicon wafers are immersed into very dilute suspensions of these particles (as low as 0.004 wt%), both types of particles are shown to adhere to the gold domains. The thiolated particles adhere selectively to the gold microdomains, allowing for microdomain patterning, while particles that contain the trithiocarbonate functionality lead to a much more even coverage of the gold surface with fewer particle aggregations.
The generation of patterned surfaces with well‐defined nano‐ and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size distribution to microdomains of a gold‐coated silicon wafer. Near monodisperse nanoparticles are prepared using reversible addition‐fragmentation chain transfer (RAFT) polymerization, initiated from a silica surface, to prepare a polystyrene shell around a silica core. The particles are then used as‐prepared, or after aminolysis of the terminal thiocarbonyl group of the polystyrene shell, to give thiol‐terminated nanoparticles. When gold‐coated silicon wafers are immersed into very dilute suspensions of these particles (as low as 0.004 wt%), both types of particles are shown to adhere to the gold domains. The thiolated particles adhere selectively to the gold microdomains, allowing for microdomain patterning, while particles that contain the trithiocarbonate functionality lead to a much more even coverage of the gold surface with fewer particle aggregations. The preparation of monodisperse particles with a silica core and a polystyrene shell is described using reversible addition‐fragmentation chain transfer (RAFT) polymerization. The particles prepared this way display either trithiocarbonate or thiolate end groups. The thiolated particles are shown to selectively deposit onto gold domains of a patterned silicon wafer while trithiocarbonate‐functionalize particles deposited onto both gold and silicon domains with an aggregation‐free coverage.
Author Ohno, Kohji
Perrier, Sébastien
Maschmeyer, Thomas
Moraes, John
Author_xml – sequence: 1
  givenname: John
  surname: Moraes
  fullname: Moraes, John
  organization: Key Centre for Polymers & Colloids, School of Chemistry, The University of Sydney, NSW, 2006, Australia
– sequence: 2
  givenname: Kohji
  surname: Ohno
  fullname: Ohno, Kohji
  organization: Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Uji, Japan
– sequence: 3
  givenname: Thomas
  surname: Maschmeyer
  fullname: Maschmeyer, Thomas
  organization: Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, NSW, 2006, Australia
– sequence: 4
  givenname: Sébastien
  surname: Perrier
  fullname: Perrier, Sébastien
  email: s.perrier@warwick.ac.uk
  organization: Key Centre for Polymers & Colloids, School of Chemistry, The University of Sydney, NSW, 2006, Australia
BackLink https://cir.nii.ac.jp/crid/1871428067702171136$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/25223214$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEURi1URB-wZYlGggULkvo1tmdZRZAgpQV1QLCzPLYHXJxxsB0g_x6Ppo1QJQQbXy_Ouf6u7yk4GsJgAXiK4BxBiM_Txvs5hohCSGj9AJwghsiMCdwcHe4IHoPTlG4KgjDlj8AxrjEmGNETcN1ab3V2P2z1XuVs4-CGL1Xoq2Xwpmp3sVfapqrbV4sQ7Xn71Xr_qmrtxqXQ52q176Iz1ZUawlbF7LS36TF42Cuf7JPbegY-vnn9YbGard8t3y4u1jPNeFOPuUiPSY1wTbEhAqPO4E5BQ0lDmWkUJIJCS61glitsODW96inRHdYamp6cgZdT320M33c2ZVlC6ZJPDTbskkSMQSg4ZfV_oDWmuG4YLujze-hN2MWhDFIoyhohasEK9eyW2nUba-Q2uo2Ke3n3sQWgE6BjSCnaXmqXVXZhyFE5LxGU4_7kuD952F_R5ve0u85_FZpJ-Om83f-Dlu3lev2n-2JyB-dKvPFEgiOKBWScQ4w4QmScdTZhLmX76_CEit8k44TX8tPVUpZ6DT_zS7kivwGXz8Ql
CitedBy_id crossref_primary_10_1016_j_cej_2018_02_081
Cites_doi 10.1021/ma9010878
10.1021/la034459t
10.1039/b917102a
10.1021/ma0602829
10.1002/adma.201100290
10.1002/marc.200600436
10.1039/b416951d
10.1021/la990070n
10.1021/cm401957m
10.1039/B924854B
10.1021/nl2030163
10.1021/bm3010534
10.1002/pola.20558
10.1002/1521-3773(20010817)40:16<3069::AID-ANIE3069>3.0.CO;2-J
10.1016/j.bbagen.2010.07.002
10.1021/nn8000092
10.1021/ja00246a011
10.1021/cm034696h
10.1002/smll.200700376
10.1021/ja020556h
10.1063/1.110628
10.1038/369387a0
10.1002/pola.23433
10.1523/JNEUROSCI.08-11-04098.1988
10.3762/bjoc.9.139
10.1002/adma.200290020
10.1039/b315816k
10.1021/nn301112t
10.1021/ja8099135
10.1038/nmat856
10.1021/la062793u
10.1021/ma902663n
10.1038/nchem.1352
10.1021/cm0622912
10.1021/ma991264c
10.1021/la00027a021
10.1021/la00049a020
10.1039/B9PY00216B
10.1002/adma.200702635
10.1038/nmat2109
10.1021/ma202105y
10.1016/S1369-7021(10)70057-2
10.1039/c000358a
10.1021/nl050861b
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
RYH
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
F28
FR3
DOI 10.1002/smll.201400345
DatabaseName Istex
CiNii Complete
CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Materials Research Database
Materials Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage 488
ExternalDocumentID 3563476501
25223214
10_1002_smll_201400345
SMLL201400345
ark_67375_WNG_375R0X7M_H
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Research Council's Discovery, Future Fellowship and Linkage Programs
GroupedDBID ---
05W
0R~
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
RYH
AAYXX
CITATION
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
F28
FR3
ID FETCH-LOGICAL-c6795-6813f23512542d3821bd2ba0d43946d9a03840e4e86e7a2d74dfaf43cb2cc0df3
IEDL.DBID DRFUL
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348773100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 09:00:39 EDT 2025
Thu Oct 02 10:10:47 EDT 2025
Fri Jul 25 11:49:23 EDT 2025
Thu Apr 03 07:04:07 EDT 2025
Tue Nov 18 21:13:07 EST 2025
Sat Nov 29 03:27:15 EST 2025
Tue Sep 09 05:07:53 EDT 2025
Mon Nov 10 09:13:35 EST 2025
Tue Sep 09 05:31:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords silica particles
core/shell nanoparticles
gold surfaces nanopatterning
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6795-6813f23512542d3821bd2ba0d43946d9a03840e4e86e7a2d74dfaf43cb2cc0df3
Notes ark:/67375/WNG-375R0X7M-H
istex:D56872963BDF03E9F910075322CEACEB7018B175
Australian Research Council's Discovery, Future Fellowship and Linkage Programs
ArticleID:SMLL201400345
Present address: Department of Chemistry, University of Warwick, CV4 7AL, UK
Present address: École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH‐1015, Lausanne, Switzerland
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8494-9907
0000-0002-1812-3354
OpenAccessLink https://cir.nii.ac.jp/crid/1871428067702171136
PMID 25223214
PQID 1646988586
PQPubID 1046358
PageCount 7
ParticipantIDs proquest_miscellaneous_1660087465
proquest_miscellaneous_1652425962
proquest_journals_1646988586
pubmed_primary_25223214
crossref_citationtrail_10_1002_smll_201400345
crossref_primary_10_1002_smll_201400345
wiley_primary_10_1002_smll_201400345_SMLL201400345
nii_cinii_1871428067702171136
istex_primary_ark_67375_WNG_375R0X7M_H
PublicationCentury 2000
PublicationDate 2015-00-00
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015-00-00
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small
PublicationTitleAlternate Small
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References A. M. Telford, L. Meagher, V. Glattauer, T. R. Gengenbach, C. D. Easton, C. Neto, Biomacromolecules 2012, 13, 2989.
V. Lima, X. L. Jiang, J. Brokken-Zijp, P. J. Schoenmakers, B. Klumperman, R. Van Der Linde, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 959.
R. Ogaki, M. Alexander, P. Kingshott, Mater. Today 2010, 13, 22.
M. Tanaka, T. Hosaka, T. Tanii, I. Ohdomari, H. Nishide, Chem. Commun. 2004, 978.
H. Hakkinen, Nat. Chem. 2012, 4, 443.
L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Adv. Mater. 2002, 14, 1857.
J. Moraes, K. Ohno, G. Gody, T. Maschmeyer, S. Perrier, Beilstein J. Org. Chem. 2013, 9, 1226.
D. Mijatovic, J. C. T. Eijkel, A. van den Berg, Lab Chip 2005, 5, 492.
X.-P. Qiu, F. M. Winnik, Macromol. Rapid Commun. 2006, 27, 1648.
A. B. Lowe, B. S. Sumerlin, M. S. Donovan, C. L. McCormick, J. Am. Chem. Soc. 2002, 124, 11562.
A.-S. Duwez, P. Guillet, C. Colard, J.-F. Gohy, C.-A. Fustin, Macromolecules 2006, 39, 2729.
P. J. Bracher, M. Gupta, G. M. Whitesides, J. Mater. Chem. 2010, 20, 5117.
M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey, J. Am. Chem. Soc. 1987, 109, 3559.
J. Moraes, K. Ohno, T. Maschmeyer, S. Perrier, Chem. Mater. 2013, 25, 3522.
Y. Lei, S. Yang, M. Wu, G. Wilde, Chem. Soc. Rev. 2011, 40, 1247.
G. Widawski, M. Rawiso, B. Francois, Nature 1994, 369, 387.
R. Blossey, Nat. Mater. 2003, 2, 301.
B. S. Sumerlin, A. B. Lowe, P. A. Stroud, P. Zhang, M. W. Urban, C. L. McCormick, Langmuir 2003, 19, 5559.
H. Kaji, G. Camci-Unal, R. Langer, A. Khademhosseini, Biochim. Biophys. Acta 2011, 1810, 239.
K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, G. Barbastathis, ACS Nano 2012, 6, 3789.
S. C. Thickett, C. Neto, A. T. Harris, Adv. Mater. 2011, 23, 3718.
D. Kleinfeld, K. H. Kahler, P. E. Hockberger, J. Neurosci. 1988, 8, 4098.
Q. He, A. Kuller, M. Grunze, J. B. Li, Langmuir 2007, 23, 3981.
C. Boyer, M. R. Whittaker, C. Nouvel, T. P. Davis, Macromolecules 2010, 43, 1792.
C. Boyer, A. Granville, T. P. Davis, V. Bulmus, J. Polym.Sci., Part A: Polym. Chem. 2009, 47, 3773.
J. W. Chan, C. E. Hoyle, A. B. Lowe, J. Am. Chem. Soc. 2009, 131, 5751.
J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, B. Kabius, Langmuir 1999, 16, 407.
K. Ohno, Y. Ma, Y. Huang, C. Mori, Y. Yahata, Y. Tsujii, T. Maschmeyer, J. Moraes, S. Perrier, Macromolecules 2011, 44, 8944.
J. Y. Shiu, C. W. Kuo, P. L. Chen, C. Y. Mou, Chem. Mater. 2004, 16, 561.
Z. H. Nie, E. Kumacheva, Nat. Mater. 2008, 7, 277.
H. Li, B. Yu, H. Matsushima, C. E. Hoyle, A. B. Lowe, Macromolecules 2009, 42, 6537.
J. W. Hotchkiss, A. B. Lowe, S. G. Boyes, Chem. Mater. 2006, 19, 6.
Z. Burton, B. Bhushan, Nano Lett. 2005, 5, 1607.
A. Kumar, G. M. Whitesides, Appl. Phys. Lett. 1993, 63, 2002.
A. B. Lowe, Polym. Chem. 2010, 1, 17.
S. B. Jhaveri, M. Beinhoff, C. J. Hawker, K. R. Carter, D. Y. Sogah, ACS Nano 2008, 2, 719.
A. Ihs, K. Uvdal, B. Liedberg, Langmuir 1993, 9, 733.
L. M. Demers, C. A. Mirkin, Angew. Chem. Int. Ed. 2001, 40, 3069.
A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, D. L. Huffaker, Nano Lett. 2011, 11, 5387.
R. R. Shah, D. Merreceyes, M. Husemann, I. Rees, N. L. Abbott, C. J. Hawker, J. L. Hedrick, Macromolecules 2000, 33, 597.
J. A. Mielczarski, R. H. Yoon, Langmuir 1991, 7, 101.
Q. He, A. Kueller, S. Schilp, F. Leisten, H. A. Kolb, M. Grunze, J. B. Li, Small 2007, 3, 1860.
A. B. Lowe, C. E. Hoyle, C. N. Bowman, J. Mater. Chem. 2010, 20, 4745.
T. Lohmueller, E. Bock, J. P. Spatz, Adv. Mater. 2008, 20, 2297.
2009; 47
1993; 9
2002; 14
2013; 25
2010; 13
2009; 42
1987; 109
2006; 39
2011; 40
1993; 63
2008; 7
2011; 11
2005; 43
2006; 19
2004
2003; 19
2009; 131
2012; 13
2008; 2
2001; 40
1991; 7
2013; 9
2010; 43
2010; 20
1994; 369
2010; 1
2004; 16
2002; 124
2006; 27
2000; 33
1999; 16
1988; 8
2003; 2
2005; 5
2011; 44
2011; 23
2011; 1810
2007; 3
2008; 20
2012; 6
2012; 4
2007; 23
Kumar (10.1002/smll.201400345-BIB0015|smll201400345-cit-0015) 1993; 63
Hotchkiss (10.1002/smll.201400345-BIB0028|smll201400345-cit-0028) 2006; 19
Telford (10.1002/smll.201400345-BIB0003|smll201400345-cit-0003) 2012; 13
Demers (10.1002/smll.201400345-BIB0010|smll201400345-cit-0010) 2001; 40
Shiu (10.1002/smll.201400345-BIB0012|smll201400345-cit-0012) 2004; 16
Shah (10.1002/smll.201400345-BIB0014|smll201400345-cit-0014) 2000; 33
Li (10.1002/smll.201400345-BIB0027|smll201400345-cit-0027) 2009; 42
Moraes (10.1002/smll.201400345-BIB0023|smll201400345-cit-0023) 2013; 9
Tanaka (10.1002/smll.201400345-BIB0011|smll201400345-cit-0011) 2004
Mielczarski (10.1002/smll.201400345-BIB0039|smll201400345-cit-0039) 1991; 7
Hakkinen (10.1002/smll.201400345-BIB0020|smll201400345-cit-0020) 2012; 4
Mijatovic (10.1002/smll.201400345-BIB0032|smll201400345-cit-0032) 2005; 5
Lowe (10.1002/smll.201400345-BIB0030|smll201400345-cit-0030) 2002; 124
Feng (10.1002/smll.201400345-BIB0041|smll201400345-cit-0041) 2002; 14
He (10.1002/smll.201400345-BIB0018|smll201400345-cit-0018) 2007; 3
Lohmueller (10.1002/smll.201400345-BIB0036|smll201400345-cit-0036) 2008; 20
Chan (10.1002/smll.201400345-BIB0044|smll201400345-cit-0044) 2009; 131
Scofield (10.1002/smll.201400345-BIB0009|smll201400345-cit-0009) 2011; 11
Bracher (10.1002/smll.201400345-BIB0013|smll201400345-cit-0013) 2010; 20
Lei (10.1002/smll.201400345-BIB0002|smll201400345-cit-0002) 2011; 40
Moraes (10.1002/smll.201400345-BIB0043|smll201400345-cit-0043) 2013; 25
Blossey (10.1002/smll.201400345-BIB0007|smll201400345-cit-0007) 2003; 2
Sumerlin (10.1002/smll.201400345-BIB0031|smll201400345-cit-0031) 2003; 19
Duwez (10.1002/smll.201400345-BIB0037|smll201400345-cit-0037) 2006; 39
Boyer (10.1002/smll.201400345-BIB0029|smll201400345-cit-0029) 2010; 43
Ihs (10.1002/smll.201400345-BIB0038|smll201400345-cit-0038) 1993; 9
Porter (10.1002/smll.201400345-BIB0021|smll201400345-cit-0021) 1987; 109
Nie (10.1002/smll.201400345-BIB0001|smll201400345-cit-0001) 2008; 7
Kaji (10.1002/smll.201400345-BIB0004|smll201400345-cit-0004) 2011; 1810
He (10.1002/smll.201400345-BIB0017|smll201400345-cit-0017) 2007; 23
Burton (10.1002/smll.201400345-BIB0040|smll201400345-cit-0040) 2005; 5
Kleinfeld (10.1002/smll.201400345-BIB0042|smll201400345-cit-0042) 1988; 8
Lowe (10.1002/smll.201400345-BIB0026|smll201400345-cit-0026) 2010; 20
Thickett (10.1002/smll.201400345-BIB0008|smll201400345-cit-0008) 2011; 23
Lima (10.1002/smll.201400345-BIB0024|smll201400345-cit-0024) 2005; 43
Widawski (10.1002/smll.201400345-BIB0019|smll201400345-cit-0019) 1994; 369
Spatz (10.1002/smll.201400345-BIB0035|smll201400345-cit-0035) 1999; 16
Qiu (10.1002/smll.201400345-BIB0033|smll201400345-cit-0033) 2006; 27
Ohno (10.1002/smll.201400345-BIB0022|smll201400345-cit-0022) 2011; 44
Ogaki (10.1002/smll.201400345-BIB0005|smll201400345-cit-0005) 2010; 13
Park (10.1002/smll.201400345-BIB0006|smll201400345-cit-0006) 2012; 6
Jhaveri (10.1002/smll.201400345-BIB0016|smll201400345-cit-0016) 2008; 2
Lowe (10.1002/smll.201400345-BIB0025|smll201400345-cit-0025) 2010; 1
Boyer (10.1002/smll.201400345-BIB0034|smll201400345-cit-0034) 2009; 47
References_xml – reference: J. Moraes, K. Ohno, T. Maschmeyer, S. Perrier, Chem. Mater. 2013, 25, 3522.
– reference: J. W. Chan, C. E. Hoyle, A. B. Lowe, J. Am. Chem. Soc. 2009, 131, 5751.
– reference: A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, D. L. Huffaker, Nano Lett. 2011, 11, 5387.
– reference: H. Kaji, G. Camci-Unal, R. Langer, A. Khademhosseini, Biochim. Biophys. Acta 2011, 1810, 239.
– reference: M. Tanaka, T. Hosaka, T. Tanii, I. Ohdomari, H. Nishide, Chem. Commun. 2004, 978.
– reference: A. Kumar, G. M. Whitesides, Appl. Phys. Lett. 1993, 63, 2002.
– reference: A.-S. Duwez, P. Guillet, C. Colard, J.-F. Gohy, C.-A. Fustin, Macromolecules 2006, 39, 2729.
– reference: R. R. Shah, D. Merreceyes, M. Husemann, I. Rees, N. L. Abbott, C. J. Hawker, J. L. Hedrick, Macromolecules 2000, 33, 597.
– reference: H. Hakkinen, Nat. Chem. 2012, 4, 443.
– reference: S. B. Jhaveri, M. Beinhoff, C. J. Hawker, K. R. Carter, D. Y. Sogah, ACS Nano 2008, 2, 719.
– reference: V. Lima, X. L. Jiang, J. Brokken-Zijp, P. J. Schoenmakers, B. Klumperman, R. Van Der Linde, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 959.
– reference: D. Kleinfeld, K. H. Kahler, P. E. Hockberger, J. Neurosci. 1988, 8, 4098.
– reference: Q. He, A. Kueller, S. Schilp, F. Leisten, H. A. Kolb, M. Grunze, J. B. Li, Small 2007, 3, 1860.
– reference: Z. Burton, B. Bhushan, Nano Lett. 2005, 5, 1607.
– reference: J. A. Mielczarski, R. H. Yoon, Langmuir 1991, 7, 101.
– reference: A. B. Lowe, Polym. Chem. 2010, 1, 17.
– reference: J. W. Hotchkiss, A. B. Lowe, S. G. Boyes, Chem. Mater. 2006, 19, 6.
– reference: G. Widawski, M. Rawiso, B. Francois, Nature 1994, 369, 387.
– reference: M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey, J. Am. Chem. Soc. 1987, 109, 3559.
– reference: R. Blossey, Nat. Mater. 2003, 2, 301.
– reference: J. Moraes, K. Ohno, G. Gody, T. Maschmeyer, S. Perrier, Beilstein J. Org. Chem. 2013, 9, 1226.
– reference: Y. Lei, S. Yang, M. Wu, G. Wilde, Chem. Soc. Rev. 2011, 40, 1247.
– reference: A. M. Telford, L. Meagher, V. Glattauer, T. R. Gengenbach, C. D. Easton, C. Neto, Biomacromolecules 2012, 13, 2989.
– reference: S. C. Thickett, C. Neto, A. T. Harris, Adv. Mater. 2011, 23, 3718.
– reference: A. B. Lowe, B. S. Sumerlin, M. S. Donovan, C. L. McCormick, J. Am. Chem. Soc. 2002, 124, 11562.
– reference: J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, B. Kabius, Langmuir 1999, 16, 407.
– reference: R. Ogaki, M. Alexander, P. Kingshott, Mater. Today 2010, 13, 22.
– reference: X.-P. Qiu, F. M. Winnik, Macromol. Rapid Commun. 2006, 27, 1648.
– reference: J. Y. Shiu, C. W. Kuo, P. L. Chen, C. Y. Mou, Chem. Mater. 2004, 16, 561.
– reference: D. Mijatovic, J. C. T. Eijkel, A. van den Berg, Lab Chip 2005, 5, 492.
– reference: C. Boyer, M. R. Whittaker, C. Nouvel, T. P. Davis, Macromolecules 2010, 43, 1792.
– reference: L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Adv. Mater. 2002, 14, 1857.
– reference: K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, G. Barbastathis, ACS Nano 2012, 6, 3789.
– reference: A. Ihs, K. Uvdal, B. Liedberg, Langmuir 1993, 9, 733.
– reference: P. J. Bracher, M. Gupta, G. M. Whitesides, J. Mater. Chem. 2010, 20, 5117.
– reference: Q. He, A. Kuller, M. Grunze, J. B. Li, Langmuir 2007, 23, 3981.
– reference: Z. H. Nie, E. Kumacheva, Nat. Mater. 2008, 7, 277.
– reference: H. Li, B. Yu, H. Matsushima, C. E. Hoyle, A. B. Lowe, Macromolecules 2009, 42, 6537.
– reference: T. Lohmueller, E. Bock, J. P. Spatz, Adv. Mater. 2008, 20, 2297.
– reference: L. M. Demers, C. A. Mirkin, Angew. Chem. Int. Ed. 2001, 40, 3069.
– reference: B. S. Sumerlin, A. B. Lowe, P. A. Stroud, P. Zhang, M. W. Urban, C. L. McCormick, Langmuir 2003, 19, 5559.
– reference: K. Ohno, Y. Ma, Y. Huang, C. Mori, Y. Yahata, Y. Tsujii, T. Maschmeyer, J. Moraes, S. Perrier, Macromolecules 2011, 44, 8944.
– reference: A. B. Lowe, C. E. Hoyle, C. N. Bowman, J. Mater. Chem. 2010, 20, 4745.
– reference: C. Boyer, A. Granville, T. P. Davis, V. Bulmus, J. Polym.Sci., Part A: Polym. Chem. 2009, 47, 3773.
– volume: 1810
  start-page: 239
  year: 2011
  publication-title: Biochim. Biophys. Acta
– volume: 33
  start-page: 597
  year: 2000
  publication-title: Macromolecules
– volume: 44
  start-page: 8944
  year: 2011
  publication-title: Macromolecules
– volume: 2
  start-page: 301
  year: 2003
  publication-title: Nat. Mater.
– volume: 20
  start-page: 2297
  year: 2008
  publication-title: Adv. Mater.
– volume: 6
  start-page: 3789
  year: 2012
  publication-title: ACS Nano
– volume: 131
  start-page: 5751
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 561
  year: 2004
  publication-title: Chem. Mater.
– volume: 2
  start-page: 719
  year: 2008
  publication-title: ACS Nano
– volume: 8
  start-page: 4098
  year: 1988
  publication-title: J. Neurosci.
– volume: 4
  start-page: 443
  year: 2012
  publication-title: Nat. Chem.
– volume: 42
  start-page: 6537
  year: 2009
  publication-title: Macromolecules
– volume: 13
  start-page: 22
  year: 2010
  publication-title: Mater. Today
– volume: 9
  start-page: 1226
  year: 2013
  publication-title: Beilstein J. Org. Chem.
– volume: 23
  start-page: 3981
  year: 2007
  publication-title: Langmuir
– volume: 47
  start-page: 3773
  year: 2009
  publication-title: J. Polym.Sci
– volume: 5
  start-page: 492
  year: 2005
  publication-title: Lab Chip
– volume: 369
  start-page: 387
  year: 1994
  publication-title: Nature
– volume: 9
  start-page: 733
  year: 1993
  publication-title: Langmuir
– volume: 7
  start-page: 277
  year: 2008
  publication-title: Nat. Mater.
– volume: 5
  start-page: 1607
  year: 2005
  publication-title: Nano Lett.
– volume: 27
  start-page: 1648
  year: 2006
  publication-title: Macromol. Rapid Commun.
– volume: 40
  start-page: 3069
  year: 2001
  publication-title: Angew. Chem. Int. Ed.
– volume: 63
  start-page: 2002
  year: 1993
  publication-title: Appl. Phys. Lett.
– volume: 43
  start-page: 959
  year: 2005
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 39
  start-page: 2729
  year: 2006
  publication-title: Macromolecules
– volume: 40
  start-page: 1247
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 5387
  year: 2011
  publication-title: Nano Lett.
– volume: 43
  start-page: 1792
  year: 2010
  publication-title: Macromolecules
– start-page: 978
  year: 2004
  publication-title: Chem. Commun.
– volume: 14
  start-page: 1857
  year: 2002
  publication-title: Adv. Mater.
– volume: 16
  start-page: 407
  year: 1999
  publication-title: Langmuir
– volume: 3
  start-page: 1860
  year: 2007
  publication-title: Small
– volume: 109
  start-page: 3559
  year: 1987
  publication-title: J. Am. Chem. Soc.
– volume: 124
  start-page: 11562
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 2989
  year: 2012
  publication-title: Biomacromolecules
– volume: 1
  start-page: 17
  year: 2010
  publication-title: Polym. Chem.
– volume: 23
  start-page: 3718
  year: 2011
  publication-title: Adv. Mater.
– volume: 19
  start-page: 5559
  year: 2003
  publication-title: Langmuir
– volume: 25
  start-page: 3522
  year: 2013
  publication-title: Chem. Mater.
– volume: 19
  start-page: 6
  year: 2006
  publication-title: Chem. Mater.
– volume: 7
  start-page: 101
  year: 1991
  publication-title: Langmuir
– volume: 20
  start-page: 5117
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 20
  start-page: 4745
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 42
  start-page: 6537
  year: 2009
  ident: 10.1002/smll.201400345-BIB0027|smll201400345-cit-0027
  publication-title: Macromolecules
  doi: 10.1021/ma9010878
– volume: 19
  start-page: 5559
  year: 2003
  ident: 10.1002/smll.201400345-BIB0031|smll201400345-cit-0031
  publication-title: Langmuir
  doi: 10.1021/la034459t
– volume: 20
  start-page: 4745
  year: 2010
  ident: 10.1002/smll.201400345-BIB0026|smll201400345-cit-0026
  publication-title: J. Mater. Chem.
  doi: 10.1039/b917102a
– volume: 39
  start-page: 2729
  year: 2006
  ident: 10.1002/smll.201400345-BIB0037|smll201400345-cit-0037
  publication-title: Macromolecules
  doi: 10.1021/ma0602829
– volume: 23
  start-page: 3718
  year: 2011
  ident: 10.1002/smll.201400345-BIB0008|smll201400345-cit-0008
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100290
– volume: 27
  start-page: 1648
  year: 2006
  ident: 10.1002/smll.201400345-BIB0033|smll201400345-cit-0033
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.200600436
– volume: 5
  start-page: 492
  year: 2005
  ident: 10.1002/smll.201400345-BIB0032|smll201400345-cit-0032
  publication-title: Lab Chip
  doi: 10.1039/b416951d
– volume: 16
  start-page: 407
  year: 1999
  ident: 10.1002/smll.201400345-BIB0035|smll201400345-cit-0035
  publication-title: Langmuir
  doi: 10.1021/la990070n
– volume: 25
  start-page: 3522
  year: 2013
  ident: 10.1002/smll.201400345-BIB0043|smll201400345-cit-0043
  publication-title: Chem. Mater.
  doi: 10.1021/cm401957m
– volume: 40
  start-page: 1247
  year: 2011
  ident: 10.1002/smll.201400345-BIB0002|smll201400345-cit-0002
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B924854B
– volume: 11
  start-page: 5387
  year: 2011
  ident: 10.1002/smll.201400345-BIB0009|smll201400345-cit-0009
  publication-title: Nano Lett.
  doi: 10.1021/nl2030163
– volume: 13
  start-page: 2989
  year: 2012
  ident: 10.1002/smll.201400345-BIB0003|smll201400345-cit-0003
  publication-title: Biomacromolecules
  doi: 10.1021/bm3010534
– volume: 43
  start-page: 959
  year: 2005
  ident: 10.1002/smll.201400345-BIB0024|smll201400345-cit-0024
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.20558
– volume: 40
  start-page: 3069
  year: 2001
  ident: 10.1002/smll.201400345-BIB0010|smll201400345-cit-0010
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20010817)40:16<3069::AID-ANIE3069>3.0.CO;2-J
– volume: 1810
  start-page: 239
  year: 2011
  ident: 10.1002/smll.201400345-BIB0004|smll201400345-cit-0004
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2010.07.002
– volume: 2
  start-page: 719
  year: 2008
  ident: 10.1002/smll.201400345-BIB0016|smll201400345-cit-0016
  publication-title: ACS Nano
  doi: 10.1021/nn8000092
– volume: 109
  start-page: 3559
  year: 1987
  ident: 10.1002/smll.201400345-BIB0021|smll201400345-cit-0021
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00246a011
– volume: 16
  start-page: 561
  year: 2004
  ident: 10.1002/smll.201400345-BIB0012|smll201400345-cit-0012
  publication-title: Chem. Mater.
  doi: 10.1021/cm034696h
– volume: 3
  start-page: 1860
  year: 2007
  ident: 10.1002/smll.201400345-BIB0018|smll201400345-cit-0018
  publication-title: Small
  doi: 10.1002/smll.200700376
– volume: 124
  start-page: 11562
  year: 2002
  ident: 10.1002/smll.201400345-BIB0030|smll201400345-cit-0030
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja020556h
– volume: 63
  start-page: 2002
  year: 1993
  ident: 10.1002/smll.201400345-BIB0015|smll201400345-cit-0015
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.110628
– volume: 369
  start-page: 387
  year: 1994
  ident: 10.1002/smll.201400345-BIB0019|smll201400345-cit-0019
  publication-title: Nature
  doi: 10.1038/369387a0
– volume: 47
  start-page: 3773
  year: 2009
  ident: 10.1002/smll.201400345-BIB0034|smll201400345-cit-0034
  publication-title: J. Polym.Sci
  doi: 10.1002/pola.23433
– volume: 8
  start-page: 4098
  year: 1988
  ident: 10.1002/smll.201400345-BIB0042|smll201400345-cit-0042
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.08-11-04098.1988
– volume: 9
  start-page: 1226
  year: 2013
  ident: 10.1002/smll.201400345-BIB0023|smll201400345-cit-0023
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.9.139
– volume: 14
  start-page: 1857
  year: 2002
  ident: 10.1002/smll.201400345-BIB0041|smll201400345-cit-0041
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200290020
– start-page: 978
  year: 2004
  ident: 10.1002/smll.201400345-BIB0011|smll201400345-cit-0011
  publication-title: Chem. Commun.
  doi: 10.1039/b315816k
– volume: 6
  start-page: 3789
  year: 2012
  ident: 10.1002/smll.201400345-BIB0006|smll201400345-cit-0006
  publication-title: ACS Nano
  doi: 10.1021/nn301112t
– volume: 131
  start-page: 5751
  year: 2009
  ident: 10.1002/smll.201400345-BIB0044|smll201400345-cit-0044
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8099135
– volume: 2
  start-page: 301
  year: 2003
  ident: 10.1002/smll.201400345-BIB0007|smll201400345-cit-0007
  publication-title: Nat. Mater.
  doi: 10.1038/nmat856
– volume: 23
  start-page: 3981
  year: 2007
  ident: 10.1002/smll.201400345-BIB0017|smll201400345-cit-0017
  publication-title: Langmuir
  doi: 10.1021/la062793u
– volume: 43
  start-page: 1792
  year: 2010
  ident: 10.1002/smll.201400345-BIB0029|smll201400345-cit-0029
  publication-title: Macromolecules
  doi: 10.1021/ma902663n
– volume: 4
  start-page: 443
  year: 2012
  ident: 10.1002/smll.201400345-BIB0020|smll201400345-cit-0020
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1352
– volume: 19
  start-page: 6
  year: 2006
  ident: 10.1002/smll.201400345-BIB0028|smll201400345-cit-0028
  publication-title: Chem. Mater.
  doi: 10.1021/cm0622912
– volume: 33
  start-page: 597
  year: 2000
  ident: 10.1002/smll.201400345-BIB0014|smll201400345-cit-0014
  publication-title: Macromolecules
  doi: 10.1021/ma991264c
– volume: 9
  start-page: 733
  year: 1993
  ident: 10.1002/smll.201400345-BIB0038|smll201400345-cit-0038
  publication-title: Langmuir
  doi: 10.1021/la00027a021
– volume: 7
  start-page: 101
  year: 1991
  ident: 10.1002/smll.201400345-BIB0039|smll201400345-cit-0039
  publication-title: Langmuir
  doi: 10.1021/la00049a020
– volume: 1
  start-page: 17
  year: 2010
  ident: 10.1002/smll.201400345-BIB0025|smll201400345-cit-0025
  publication-title: Polym. Chem.
  doi: 10.1039/B9PY00216B
– volume: 20
  start-page: 2297
  year: 2008
  ident: 10.1002/smll.201400345-BIB0036|smll201400345-cit-0036
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702635
– volume: 7
  start-page: 277
  year: 2008
  ident: 10.1002/smll.201400345-BIB0001|smll201400345-cit-0001
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2109
– volume: 44
  start-page: 8944
  year: 2011
  ident: 10.1002/smll.201400345-BIB0022|smll201400345-cit-0022
  publication-title: Macromolecules
  doi: 10.1021/ma202105y
– volume: 13
  start-page: 22
  year: 2010
  ident: 10.1002/smll.201400345-BIB0005|smll201400345-cit-0005
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(10)70057-2
– volume: 20
  start-page: 5117
  year: 2010
  ident: 10.1002/smll.201400345-BIB0013|smll201400345-cit-0013
  publication-title: J. Mater. Chem.
  doi: 10.1039/c000358a
– volume: 5
  start-page: 1607
  year: 2005
  ident: 10.1002/smll.201400345-BIB0040|smll201400345-cit-0040
  publication-title: Nano Lett.
  doi: 10.1021/nl050861b
SSID ssj0031247
ssib017387498
ssib004908756
ssib030664022
ssib022722846
Score 2.1704054
Snippet The generation of patterned surfaces with well‐defined nano‐ and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size...
The generation of patterned surfaces with well-defined nano- and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size...
SourceID proquest
pubmed
crossref
wiley
nii
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 482
SubjectTerms Addition polymerization
core/shell nanoparticles
Gold
gold surfaces nanopatterning
Nanoparticles
Nanotechnology
Polystyrene resins
QD
Shells
silica particles
Silicon
Silicon dioxide
Silicon wafers
Wafers
Title Selective Patterning of Gold Surfaces by Core/Shell, Semisoft Hybrid Nanoparticles
URI https://api.istex.fr/ark:/67375/WNG-375R0X7M-H/fulltext.pdf
https://cir.nii.ac.jp/crid/1871428067702171136
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201400345
https://www.ncbi.nlm.nih.gov/pubmed/25223214
https://www.proquest.com/docview/1646988586
https://www.proquest.com/docview/1652425962
https://www.proquest.com/docview/1660087465
Volume 11
WOSCitedRecordID wos000348773100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  issn: 1613-6810
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RhAM98G4xtNUiIbhg1Vnbu_YRFdIc0qiKqchttd6HFBEclDSI_ntmbMc0Eg8JLnkoY2c9OzuPfXwfwCsrB6UnmlQjUosFijFhaSIf6lh6W-ZpJnTNWjKWk0k2m-WXt07xN_gQ3YQbjYzaX9MA1-X69Cdo6PrLgpYOsECI4iTdgz5H40170H8_HV6Nt944xvhVE6xg2AoJe2sL3Bjx09077ASmPun4O8abaj7_Ve65m8rWsWj44P-f4iHcb_NQ9q4xnEdwx1WPYf8WOuETmBY1Rw66Q3ZZo3DSFApbena-XFhWbFaetnOx8oadEblcQVtK37KCCOTQt7PRDR0GY-i-sS5vt989havhh49no7ClYMC-k3lKGos9jzErSBNu44wPSstLHVk6UCtsrqMYK0SXuEw4qbmVifXaJ7EpuTGR9fEB9Kpl5Z4BE9goO-A8F9YnTjj0soZLusJx7UobQLjVvzItPjnRZCxUg6zMFelKdboK4E0n_7VB5vit5Ou6OzsxvfpM-9lkqj5NzhW-T6OZvFCjAI6xv_Hf6XWApWRC685SUt1G3DcBHG0tQbVDfa0IoC3PMrTqAF52P6OqaeVFV265IZmUSrtc8D_JCMIHTAS297Cxsq7BHLNkYpQKgNfG9JcHVsXFeNx9e_4vF72Ae_g5bSabjqB3vdq4Y7hrvl3P16sT2JOz7KQdaj8AAs4j_A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB5BgwQ8cENNW1gkBC-16qztXfuxKqRBOFEVtyJvK3sPKSI4VdIg-u-ZsR1DJA4J8ZIoydhZz87Oscf3Abw2sl86oknVIjZYoGjtlzpwfhFKZ8o0TkRRs5ZkcjxOptP0rN1NSGdhGnyIbsKNRkbtr2mA04T00Q_U0NWXOa0dYIUQhFF8E3oR2hIaee_dZHCRbdxxiAGsZljBuOUT-NYGuTHgR9t32IpMPVLyNww41Wz2q-RzO5etg9Hg_n94jAdwr81E2XFjOg_hhq0ewd2f8AkfwySvWXLQIbKzGoeTJlHYwrHTxdywfL10tKGLldfshOjlctpUeshyopBD786G13QcjKEDx8q83YD3BC4G789Phn5LwoC9J9OYVBY6HmJeEEfchAnvl4aXRWDoSK0waRGEWCPayCbCyoIbGRlXuCjUJdc6MC58CjvVorK7wAQ2yvQ5T4VxkRUW_azmkq6wvLCl8cDfdIDSLUI5EWXMVYOtzBXpSnW68uBtJ3_ZYHP8VvJN3Z-dWLH8TDvaZKw-jU8Vvk-CqRypoQcH2OH47_Tax2IyopVnKalyI_YbD_Y3pqDawb5SBNGWJgnatQevup9R1bT2UlR2sSaZmIq7VPA_yQhCCIwEtvdZY2ZdgznmycQp5QGvrekvD6zyUZZ1n57_y0Uv4fbwfJSp7MP44x7cwe_jZuppH3aulmt7ALf016vZavmiHXHfAab3JwQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB5BghA8cB-GFhYJwQtWnfWx9iNqSYNwoyimIm-r9R5S1NSpkgbRf8-M7RgicUiIl0RJxs56dnaOPb4P4LURg9IRTapOYoMFitZ-qQPnq1A4U2ZxmqiatSQX43E6m2WTdjchnYVp8CG6CTcaGbW_pgFuL4w7-IEauj5f0NoBVghBGMXXoR8Rk0wP-kfT4Wm-dcchBrCaYQXjlk_gW1vkxoAf7N5hJzL1ScnfMOBU8_mvks_dXLYORsO7_-Ex7sGdNhNl7xvTuQ_XbPUAbv-ET_gQpkXNkoMOkU1qHE6aRGFLx46XC8OKzcrRhi5WXrFDopcraFPpO1YQhRx6dza6ouNgDB04VubtBrxHcDr88Plw5LckDNh7IotJZaHjIeYFccRNmPJBaXipAkNHahOTqSDEGtFGNk2sUNyIyDjlolCXXOvAuPAx9KplZZ8CS7BRZsB5lhgX2cSin9Vc0BWWK1saD_xtB0jdIpQTUcZCNtjKXJKuZKcrD9528hcNNsdvJd_U_dmJqdUZ7WgTsfwyPpb4Pg1m4kSOPNjHDsd_p9cBFpMRrTwLQZUbsd94sLc1BdkO9rUkiLYsTdGuPXjV_YyqprUXVdnlhmRiKu7QQP8kkxBCYJRge580ZtY1mGOeTJxSHvDamv7ywLI4yfPu07N_uegl3JwcDWX-cfzpOdzCr-Nm5mkPeperjd2HG_rr5Xy9etEOuO_2RCZ_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+Patterning+of+Gold+Surfaces+by+Core%2FShell%2C+Semisoft+Hybrid+Nanoparticles&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Moraes%2C+John&rft.au=Ohno%2C+Kohji&rft.au=Maschmeyer%2C+Thomas&rft.au=Perrier%2C+S%C3%A9bastien&rft.date=2015&rft.issn=1613-6810&rft.volume=11&rft.issue=4&rft.spage=482&rft.epage=488&rft_id=info:doi/10.1002%2Fsmll.201400345&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_201400345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon