Strong valid inequalities for fluence map optimization problem under dose-volume restrictions

Fluence map optimization problems are commonly solved in intensity modulated radiation therapy (IMRT) planning. We show that, when subject to dose-volume restrictions, these problems are NP-hard and that the linear programming relaxation of their natural mixed integer programming formulation can be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annals of operations research Ročník 196; číslo 1; s. 819 - 840
Hlavní autoři: Tuncel, Ali T., Preciado, Felisa, Rardin, Ronald L., Langer, Mark, Richard, Jean-Philippe P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.07.2012
Springer Science + Business Media
Springer
Springer Nature B.V
Témata:
ISSN:0254-5330, 1572-9338
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Fluence map optimization problems are commonly solved in intensity modulated radiation therapy (IMRT) planning. We show that, when subject to dose-volume restrictions, these problems are NP-hard and that the linear programming relaxation of their natural mixed integer programming formulation can be arbitrarily weak. We then derive strong valid inequalities for fluence map optimization problems under dose-volume restrictions using disjunctive programming theory and show that strengthening mixed integer programming formulations with these valid inequalities has significant computational benefits.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0254-5330
1572-9338
DOI:10.1007/s10479-010-0759-1