A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance
Fatty acid transport from blood vessels to skeletal muscle, across endothelial cells, is regulated by the branched chain amino acid metabolite 3-hydroxy-isobutyrate. This finding provides a mechanistic explanation for the link between high levels of branched chain amino acids and diabetes. Epidemiol...
Saved in:
| Published in: | Nature medicine Vol. 22; no. 4; pp. 421 - 426 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Nature Publishing Group US
01.04.2016
Nature Publishing Group |
| Subjects: | |
| ISSN: | 1078-8956, 1546-170X, 1546-170X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Fatty acid transport from blood vessels to skeletal muscle, across endothelial cells, is regulated by the branched chain amino acid metabolite 3-hydroxy-isobutyrate. This finding provides a mechanistic explanation for the link between high levels of branched chain amino acids and diabetes.
Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear
1
,
2
,
3
. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species
4
, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by
Ppargc1a
), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake
in vivo
and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from
db/db
mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. |
|---|---|
| AbstractList | Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1 alpha ; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1 alpha to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. Fatty acid transport from blood vessels to skeletal muscle, across endothelial cells, is regulated by the branched chain amino acid metabolite 3-hydroxy-isobutyrate. This finding provides a mechanistic explanation for the link between high levels of branched chain amino acids and diabetes. Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear 1 , 2 , 3 . Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species 4 , a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a ), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear1, 2, 3. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species4, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. Epidemiological and experimental data implicate branchedchain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear (1-3). Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species (4), a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGCla (also known as PGC-1α; encoded by Ppargcla), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. |
| Audience | Academic |
| Author | Rhee, James Chu, Qingwei Kasper, Dennis L Forman, Daniel E Baca, Luisa G Hoshino, Atsushi Lecker, Stewart H Chan, Mun Chun Wada, Shogo Oh, Sungwhan F Jang, Cholsoon Liu, Laura Kim, Boa Jiang, Aihua Baur, Joseph A Arany, Zoltan Weljie, Aalim M Krishnaiah, Saikumari Kim, Esl Rowe, Glenn C Ghosh, Chandra C Parikh, Samir M Ibrahim, Ayon Rabinowitz, Joshua D |
| Author_xml | – sequence: 1 givenname: Cholsoon surname: Jang fullname: Jang, Cholsoon organization: Perelman School of Medicine, University of Pennsylvania, Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 2 givenname: Sungwhan F surname: Oh fullname: Oh, Sungwhan F organization: Department of Microbiology and Immunobiology, Harvard Medical School – sequence: 3 givenname: Shogo surname: Wada fullname: Wada, Shogo organization: Perelman School of Medicine, University of Pennsylvania – sequence: 4 givenname: Glenn C surname: Rowe fullname: Rowe, Glenn C organization: Beth Israel Deaconess Medical Center, Harvard Medical School, Present address: Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA – sequence: 5 givenname: Laura surname: Liu fullname: Liu, Laura organization: Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 6 givenname: Mun Chun surname: Chan fullname: Chan, Mun Chun organization: Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 7 givenname: James surname: Rhee fullname: Rhee, James organization: Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital – sequence: 8 givenname: Atsushi surname: Hoshino fullname: Hoshino, Atsushi organization: Perelman School of Medicine, University of Pennsylvania – sequence: 9 givenname: Boa surname: Kim fullname: Kim, Boa organization: Perelman School of Medicine, University of Pennsylvania – sequence: 10 givenname: Ayon surname: Ibrahim fullname: Ibrahim, Ayon organization: Perelman School of Medicine, University of Pennsylvania – sequence: 11 givenname: Luisa G surname: Baca fullname: Baca, Luisa G organization: Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 12 givenname: Esl surname: Kim fullname: Kim, Esl organization: Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 13 givenname: Chandra C surname: Ghosh fullname: Ghosh, Chandra C organization: Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 14 givenname: Samir M surname: Parikh fullname: Parikh, Samir M organization: Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 15 givenname: Aihua surname: Jiang fullname: Jiang, Aihua organization: Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 16 givenname: Qingwei surname: Chu fullname: Chu, Qingwei organization: Perelman School of Medicine, University of Pennsylvania – sequence: 17 givenname: Daniel E surname: Forman fullname: Forman, Daniel E organization: Department of Medicine, University of Pittsburgh – sequence: 18 givenname: Stewart H surname: Lecker fullname: Lecker, Stewart H organization: Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 19 givenname: Saikumari surname: Krishnaiah fullname: Krishnaiah, Saikumari organization: Perelman School of Medicine, University of Pennsylvania – sequence: 20 givenname: Joshua D surname: Rabinowitz fullname: Rabinowitz, Joshua D organization: Lewis-Sigler Institute for Integrative Genomics, Princeton University – sequence: 21 givenname: Aalim M surname: Weljie fullname: Weljie, Aalim M organization: Perelman School of Medicine, University of Pennsylvania – sequence: 22 givenname: Joseph A surname: Baur fullname: Baur, Joseph A organization: Perelman School of Medicine, University of Pennsylvania – sequence: 23 givenname: Dennis L surname: Kasper fullname: Kasper, Dennis L organization: Department of Microbiology and Immunobiology, Harvard Medical School – sequence: 24 givenname: Zoltan surname: Arany fullname: Arany, Zoltan email: zarany@mail.med.upenn.edu organization: Perelman School of Medicine, University of Pennsylvania |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26950361$$D View this record in MEDLINE/PubMed |
| BookMark | eNqN0ttq3DAQBmBTUppDS9-gGApNe-GtZFsHXy6hh0Ag0BO9M2N5vKsgS1tJDs3bR9vdJtmw0OILC_PNCM8_x9mBdRaz7CUlM0oq-d6Os5ow8SQ7oqzmBRXk50E6EyEL2TB-mB2HcEUIqQhrnmWHJW8YqTg9yvQ87zxYtcS-UEvQNodRW5eD0n0-YoTOGR0x772-xpBfQ1CTAZ8PEOPNRsVUH1bOxxxsnyuYQoLahsmkbh6DDjFdgM-zpwOYgC-275Ps-8cP384-FxeXn87P5heF4kLGQpWE1Vgjr3lPaMW6rpHl0AnOOwp06CUrK8XLWgyMppNkDYDqOk56YM0gsDrJ3m76rrz7NWGI7aiDQmPAoptCSyVhjNKa1_-mQjQy8apJ9PUjeuUmb9OP_FFESlFW92oBBlttB5eGo9ZN23nNaFOnRNa9ij1qgRY9mJTroNPnHT_b49PT46jV3oJ3OwXJRPwdFyma0J5__fL_9vLHrn3zwC4RTFwGZ6aonQ278NV2WlM3Yt-uvB7B37R_9y6B0w1Q3oXgcbgjlLTrjW7t2K43-n5Yd1LpCOsb0xC02eO3mYbU0S7QPwjqEb0FNhb_gw |
| CitedBy_id | crossref_primary_10_1161_CIRCRESAHA_120_318003 crossref_primary_10_1016_j_phymed_2024_156348 crossref_primary_10_1161_CIRCRESAHA_117_310865 crossref_primary_10_1038_srep33102 crossref_primary_10_1016_j_numecd_2021_01_027 crossref_primary_10_1016_j_cophys_2019_09_003 crossref_primary_10_1038_s41467_020_16662_2 crossref_primary_10_1038_s41467_021_22272_3 crossref_primary_10_3389_fcimb_2023_1218326 crossref_primary_10_1007_s10620_025_09072_1 crossref_primary_10_1016_j_coph_2017_03_007 crossref_primary_10_1111_1750_3841_15818 crossref_primary_10_1016_j_mad_2018_07_004 crossref_primary_10_1172_JCI148556 crossref_primary_10_1097_XCE_0000000000000201 crossref_primary_10_1093_jn_nxaa096 crossref_primary_10_2337_db20_0510 crossref_primary_10_1038_nrendo_2016_76 crossref_primary_10_2337_db21_0490 crossref_primary_10_1186_s40168_022_01396_8 crossref_primary_10_1002_mnfr_201700756 crossref_primary_10_1177_09645284231207871 crossref_primary_10_1016_j_phrs_2023_106892 crossref_primary_10_1038_s41589_018_0132_2 crossref_primary_10_1038_s41467_023_43529_z crossref_primary_10_3390_metabo11120889 crossref_primary_10_3390_molecules30010056 crossref_primary_10_3389_fendo_2020_00534 crossref_primary_10_3390_nu15010068 crossref_primary_10_2337_db16_1334 crossref_primary_10_2337_db18_0927 crossref_primary_10_1016_j_tcb_2020_10_003 crossref_primary_10_1038_s41586_019_1503_x crossref_primary_10_1016_j_tma_2019_09_001 crossref_primary_10_1210_endrev_bnaa025 crossref_primary_10_1210_endrev_bnaa026 crossref_primary_10_1016_j_neuint_2020_104908 crossref_primary_10_1126_scitranslmed_aad4000 crossref_primary_10_1007_s00125_021_05481_9 crossref_primary_10_1038_s41467_020_16795_4 crossref_primary_10_1016_j_bbadis_2016_09_009 crossref_primary_10_3390_metabo13060766 crossref_primary_10_1111_hepr_13346 crossref_primary_10_1016_j_clnu_2025_03_008 crossref_primary_10_1186_s12967_019_2091_0 crossref_primary_10_1007_s00125_016_4182_2 crossref_primary_10_1146_annurev_physiol_020518_114731 crossref_primary_10_1126_scitranslmed_ado7225 crossref_primary_10_1016_j_anifeedsci_2020_114757 crossref_primary_10_1172_JCI141828 crossref_primary_10_1186_s12986_018_0298_3 crossref_primary_10_1016_j_molmet_2019_03_002 crossref_primary_10_1016_j_bbadis_2019_165579 crossref_primary_10_1038_nm_4245 crossref_primary_10_1038_s41569_023_00887_x crossref_primary_10_3390_cells12242796 crossref_primary_10_1016_j_jtha_2023_06_039 crossref_primary_10_1111_1751_7915_14361 crossref_primary_10_1002_fsn3_70346 crossref_primary_10_4239_wjd_v12_i8_1146 crossref_primary_10_1038_s41467_022_31670_0 crossref_primary_10_1007_s40618_025_02641_1 crossref_primary_10_1016_j_molmet_2023_101694 crossref_primary_10_1038_nature18646 crossref_primary_10_1038_s41467_023_42456_3 crossref_primary_10_2337_db16_1475 crossref_primary_10_1002_jssc_201800910 crossref_primary_10_1016_j_molmet_2022_101454 crossref_primary_10_1038_s41467_022_31249_9 crossref_primary_10_1111_acel_13595 crossref_primary_10_3390_ijms20246201 crossref_primary_10_1016_j_cmet_2020_05_018 crossref_primary_10_3389_fphys_2019_00515 crossref_primary_10_3390_metabo11120834 crossref_primary_10_1016_j_ebiom_2017_12_008 crossref_primary_10_1016_j_ebiom_2021_103799 crossref_primary_10_1016_j_biochi_2019_10_017 crossref_primary_10_1007_s41664_017_0030_8 crossref_primary_10_1007_s00125_017_4380_6 crossref_primary_10_1161_CIRCRESAHA_116_310498 crossref_primary_10_1038_s41598_023_30036_w crossref_primary_10_1007_s00535_024_02092_0 crossref_primary_10_1093_ajcn_nqz024 crossref_primary_10_15252_emmm_202216951 crossref_primary_10_4049_jimmunol_1801151 crossref_primary_10_1016_j_numecd_2017_07_001 crossref_primary_10_1371_journal_pone_0314053 crossref_primary_10_3390_metabo15090581 crossref_primary_10_1016_j_metabol_2016_12_018 crossref_primary_10_4239_wjd_v12_i8_1164 crossref_primary_10_3389_fphys_2021_702826 crossref_primary_10_1016_j_mce_2016_11_014 crossref_primary_10_1016_j_jprot_2020_103823 crossref_primary_10_1038_s41467_023_43900_0 crossref_primary_10_1007_s00726_022_03140_w crossref_primary_10_3390_nu14194127 crossref_primary_10_1038_s12276_024_01263_6 crossref_primary_10_1186_s12916_016_0706_3 crossref_primary_10_1038_s41467_023_39752_3 crossref_primary_10_1042_BCJ20180088 crossref_primary_10_1111_bph_13624 crossref_primary_10_1016_j_cjca_2016_12_013 crossref_primary_10_1161_ATVBAHA_122_318876 crossref_primary_10_1038_s41598_018_20549_0 crossref_primary_10_7841_ksbbj_2025_40_1_10 crossref_primary_10_1186_s40104_024_01046_z crossref_primary_10_3390_ijms25136819 crossref_primary_10_1371_journal_pone_0184721 crossref_primary_10_1002_btm2_70075 crossref_primary_10_1016_j_coph_2017_11_005 crossref_primary_10_1080_14779072_2023_2174102 crossref_primary_10_1002_smtd_202000160 crossref_primary_10_1007_s10741_023_10353_y crossref_primary_10_1161_ATVBAHA_124_321964 crossref_primary_10_3389_fnmol_2024_1482999 crossref_primary_10_1007_s11357_023_00782_w crossref_primary_10_1097_CM9_0000000000003075 crossref_primary_10_1016_j_ajpath_2023_12_006 crossref_primary_10_3389_fcell_2024_1446964 crossref_primary_10_3390_nu11061225 crossref_primary_10_3390_nu14132582 crossref_primary_10_1155_2019_8247019 crossref_primary_10_3390_nu13093240 crossref_primary_10_1016_j_cmet_2023_10_005 crossref_primary_10_1016_j_jnutbio_2017_09_026 crossref_primary_10_1016_j_jpba_2021_114381 crossref_primary_10_3389_fphys_2017_00923 crossref_primary_10_1007_s40618_019_01022_9 crossref_primary_10_1016_j_numecd_2016_03_013 crossref_primary_10_1186_s12263_024_00752_7 crossref_primary_10_1007_s40519_021_01266_6 crossref_primary_10_1007_s00204_021_03105_0 crossref_primary_10_1007_s00125_018_4611_5 crossref_primary_10_2337_db19_0920 crossref_primary_10_3389_fendo_2017_00267 crossref_primary_10_1016_j_cell_2024_03_030 crossref_primary_10_3389_fnut_2024_1524738 crossref_primary_10_1016_j_lfs_2023_122137 crossref_primary_10_1038_s41467_021_23782_w crossref_primary_10_1186_s13098_023_01022_z crossref_primary_10_3390_ijms26010090 crossref_primary_10_1111_jhn_13076 crossref_primary_10_3390_nu16234208 crossref_primary_10_1096_fj_201901994R crossref_primary_10_3389_fimmu_2019_01674 crossref_primary_10_3389_fcvm_2022_965899 crossref_primary_10_1016_j_cmet_2018_03_017 crossref_primary_10_3390_metabo10020076 crossref_primary_10_1038_s41569_018_0007_y crossref_primary_10_1161_CIRCRESAHA_118_313237 crossref_primary_10_1016_j_gtc_2019_09_003 crossref_primary_10_1186_s13099_018_0270_9 crossref_primary_10_3389_fcvm_2020_542519 crossref_primary_10_1002_lipd_12126 crossref_primary_10_3390_jcm10030548 crossref_primary_10_1038_s41430_024_01525_6 crossref_primary_10_3390_jcm12186053 crossref_primary_10_1210_er_2017_00211 crossref_primary_10_1016_j_aquaculture_2024_742053 crossref_primary_10_1016_j_phrs_2025_107943 crossref_primary_10_1016_j_envres_2023_117776 crossref_primary_10_1002_ijc_33877 crossref_primary_10_1016_j_molmet_2021_101261 crossref_primary_10_1038_s42255_023_00794_y crossref_primary_10_1016_j_tjnut_2025_04_017 crossref_primary_10_1016_j_nutres_2024_06_009 crossref_primary_10_5713_ab_23_0387 crossref_primary_10_1186_s12263_017_0582_2 crossref_primary_10_1016_j_ejmech_2020_113111 crossref_primary_10_1186_s10020_021_00371_7 crossref_primary_10_1186_s12916_022_02688_4 crossref_primary_10_1016_j_cmet_2016_09_018 crossref_primary_10_1038_s41467_025_56013_7 crossref_primary_10_3389_fendo_2023_1107162 crossref_primary_10_1016_j_biochi_2021_11_004 crossref_primary_10_3389_fmicb_2024_1494139 crossref_primary_10_1016_j_cell_2018_03_055 crossref_primary_10_1016_j_jdiacomp_2018_01_007 crossref_primary_10_3390_metabo13070821 crossref_primary_10_1111_joim_20090 crossref_primary_10_1038_s41392_024_01756_w crossref_primary_10_1016_j_cmet_2020_07_010 crossref_primary_10_1002_jsfa_11728 crossref_primary_10_1111_dom_13799 crossref_primary_10_3389_fphys_2017_00853 crossref_primary_10_3390_nu16203501 crossref_primary_10_3390_nu13072229 crossref_primary_10_1007_s10522_025_10309_9 crossref_primary_10_1080_01635581_2019_1653474 crossref_primary_10_2337_dc16_2452 crossref_primary_10_1172_JCI99315 crossref_primary_10_1096_fj_201802842RR crossref_primary_10_1186_s13024_018_0260_x crossref_primary_10_1242_jcs_258964 crossref_primary_10_1007_s00592_024_02349_3 crossref_primary_10_1038_s41569_025_01162_x crossref_primary_10_1038_s41398_020_0831_9 crossref_primary_10_1016_j_theriogenology_2023_11_020 crossref_primary_10_3390_nu17152450 crossref_primary_10_1111_eci_70096 crossref_primary_10_1113_EP086019 crossref_primary_10_1016_j_clnu_2023_10_028 crossref_primary_10_1002_oby_22834 crossref_primary_10_1080_10408398_2023_2198605 crossref_primary_10_1016_j_cmet_2018_10_013 crossref_primary_10_3389_fcvm_2021_789267 crossref_primary_10_3390_biomedicines9020226 crossref_primary_10_1016_j_cmet_2018_10_015 crossref_primary_10_1080_10408398_2021_1977910 crossref_primary_10_1161_HYPERTENSIONAHA_119_13735 crossref_primary_10_3390_nu14071454 crossref_primary_10_1126_science_aal2379 crossref_primary_10_1111_acel_13626 crossref_primary_10_1007_s00535_018_1435_5 crossref_primary_10_1074_jbc_RA120_013121 crossref_primary_10_1016_j_clnu_2019_06_017 crossref_primary_10_1210_clinem_dgad148 crossref_primary_10_4239_wjd_v15_i1_53 crossref_primary_10_1016_j_clnesp_2024_03_013 crossref_primary_10_3390_ijms19040954 crossref_primary_10_1186_s13073_024_01308_5 crossref_primary_10_1016_j_lfs_2025_123614 crossref_primary_10_1016_j_scitotenv_2024_173624 crossref_primary_10_1038_s41598_017_14120_6 crossref_primary_10_1016_j_clnu_2025_07_033 crossref_primary_10_1042_BCJ20200686 crossref_primary_10_1371_journal_pgen_1007040 crossref_primary_10_1002_mnfr_202100007 crossref_primary_10_1016_j_cca_2022_12_005 crossref_primary_10_2337_db19_1174 crossref_primary_10_1016_j_coph_2022_102286 crossref_primary_10_1038_nrm_2017_36 crossref_primary_10_1016_j_jamda_2016_12_081 crossref_primary_10_1038_s41598_022_25747_5 crossref_primary_10_3390_molecules23040807 crossref_primary_10_3389_fphys_2023_1197224 crossref_primary_10_1016_j_nantod_2019_100834 crossref_primary_10_1152_physrev_00001_2017 crossref_primary_10_1016_j_atherosclerosis_2023_117246 crossref_primary_10_3390_ijms23084325 crossref_primary_10_1038_s41598_022_21814_z crossref_primary_10_3390_ijms18061188 crossref_primary_10_1111_acel_13725 crossref_primary_10_1016_j_tem_2024_04_014 crossref_primary_10_1038_s41569_022_00760_3 crossref_primary_10_1136_bmjdrc_2019_000822 crossref_primary_10_1007_s10545_017_0091_x crossref_primary_10_1007_s15034_016_0947_4 crossref_primary_10_3390_nu14163345 crossref_primary_10_1155_2022_5677073 crossref_primary_10_1210_clinem_dgac141 crossref_primary_10_1371_journal_ppat_1008918 crossref_primary_10_1152_ajpendo_00337_2017 crossref_primary_10_1161_CIRCRESAHA_120_317933 crossref_primary_10_1016_j_cmet_2018_05_017 crossref_primary_10_3390_antiox14030256 crossref_primary_10_3390_genes13122301 crossref_primary_10_1016_j_jbc_2024_108004 crossref_primary_10_1146_annurev_physiol_021115_105134 crossref_primary_10_1155_2018_9601801 crossref_primary_10_1038_s43856_023_00382_x crossref_primary_10_1007_s00125_017_4222_6 crossref_primary_10_1016_j_heliyon_2024_e27472 crossref_primary_10_1016_j_vph_2017_01_001 crossref_primary_10_1016_j_aca_2019_11_009 crossref_primary_10_1111_obr_13856 crossref_primary_10_3390_jcm9051369 crossref_primary_10_3390_nu15173801 crossref_primary_10_1186_s41110_023_00230_x crossref_primary_10_3945_cdn_117_002071 crossref_primary_10_1042_BSR20180127 crossref_primary_10_3892_mmr_2021_12494 crossref_primary_10_1016_j_bbalip_2021_158887 crossref_primary_10_3390_molecules27248656 crossref_primary_10_1038_s41580_018_0044_8 crossref_primary_10_1002_med_21883 crossref_primary_10_1080_87559129_2024_2437410 crossref_primary_10_1017_S1751731120000749 crossref_primary_10_1002_apj_3086 crossref_primary_10_3390_nu13124567 crossref_primary_10_3390_metabo14080436 crossref_primary_10_1002_ehf2_13572 crossref_primary_10_1039_D5MO00018A crossref_primary_10_1038_s41388_024_03228_5 crossref_primary_10_1038_s41598_023_44629_y crossref_primary_10_1038_s41598_023_47334_y crossref_primary_10_1155_2021_1798783 crossref_primary_10_3389_fendo_2025_1501305 crossref_primary_10_3389_fendo_2023_1269633 crossref_primary_10_3389_fmed_2021_765873 crossref_primary_10_1186_s43556_022_00091_2 crossref_primary_10_3390_nu11040829 crossref_primary_10_1038_s41467_021_27289_2 crossref_primary_10_1111_obr_13403 crossref_primary_10_1097_MOL_0000000000000494 crossref_primary_10_1016_j_jnutbio_2025_109839 crossref_primary_10_1016_j_heliyon_2023_e19108 crossref_primary_10_1016_j_cmet_2018_12_020 crossref_primary_10_1016_j_xcrm_2025_102327 crossref_primary_10_1016_j_clnu_2019_10_022 crossref_primary_10_1016_j_cmet_2023_09_002 crossref_primary_10_1161_CIRCULATIONAHA_119_040551 crossref_primary_10_1038_s41467_023_38433_5 crossref_primary_10_1126_sciadv_adt3552 crossref_primary_10_1038_s42255_021_00520_6 crossref_primary_10_3389_fcvm_2024_1410006 crossref_primary_10_1007_s11010_020_03720_y crossref_primary_10_1167_iovs_65_11_5 crossref_primary_10_1186_s40104_019_0423_9 crossref_primary_10_1016_j_cmet_2021_12_018 crossref_primary_10_2147_DMSO_S388117 crossref_primary_10_1002_rcm_8779 crossref_primary_10_1016_j_jchromb_2023_123930 crossref_primary_10_1053_j_ajkd_2020_01_019 crossref_primary_10_3389_fmed_2016_00057 crossref_primary_10_3390_nu17020227 crossref_primary_10_1016_j_cnd_2019_01_003 crossref_primary_10_17476_jmbs_2025_14_2_124 crossref_primary_10_1038_s41387_022_00213_3 crossref_primary_10_1016_j_molmet_2016_04_006 crossref_primary_10_1038_s41467_021_21962_2 crossref_primary_10_3389_fendo_2025_1510910 crossref_primary_10_1007_s11154_019_09533_9 crossref_primary_10_1007_s11892_018_1048_7 crossref_primary_10_3390_cells11101706 crossref_primary_10_1093_jn_nxy062 crossref_primary_10_1016_j_lfs_2024_122891 crossref_primary_10_1007_s00125_019_05001_w crossref_primary_10_1016_j_ebiom_2023_104569 crossref_primary_10_3390_ijms23074022 crossref_primary_10_15252_embj_2019103812 crossref_primary_10_1016_j_cclet_2020_12_042 crossref_primary_10_1016_j_cmet_2023_06_008 crossref_primary_10_1016_j_tibs_2017_01_004 crossref_primary_10_1038_s42255_019_0112_1 crossref_primary_10_3390_cells11213523 crossref_primary_10_14814_phy2_13798 crossref_primary_10_3389_fendo_2025_1579477 crossref_primary_10_4240_wjgs_v15_i11_2596 crossref_primary_10_1177_17562848221138676 crossref_primary_10_1016_j_cmet_2019_08_011 crossref_primary_10_3390_ijms19113634 crossref_primary_10_1016_j_ebiom_2023_104441 crossref_primary_10_1128_mSystems_00048_19 crossref_primary_10_1016_j_ejim_2021_07_002 crossref_primary_10_3389_fimmu_2020_551758 crossref_primary_10_3168_jds_2020_18339 crossref_primary_10_1038_s41591_018_0061_3 crossref_primary_10_1093_advances_nmaa161 crossref_primary_10_3389_fnut_2023_1279066 crossref_primary_10_1242_dev_143438 crossref_primary_10_1016_j_advnut_2024_100347 crossref_primary_10_1016_j_cmet_2021_03_025 crossref_primary_10_1016_j_cca_2018_09_028 crossref_primary_10_3389_fpsyt_2020_579538 crossref_primary_10_1186_s12933_020_01188_0 crossref_primary_10_14814_phy2_14673 crossref_primary_10_1007_s10555_021_10016_0 crossref_primary_10_3389_fnut_2022_974902 crossref_primary_10_1146_annurev_physiol_020518_114455 crossref_primary_10_1002_ptr_7822 crossref_primary_10_1007_s40200_024_01516_1 crossref_primary_10_1038_s41598_025_09132_6 crossref_primary_10_1186_s12864_017_3548_2 crossref_primary_10_7555_JBR_35_20200191 crossref_primary_10_1016_j_numecd_2017_09_009 crossref_primary_10_1371_journal_pone_0199351 crossref_primary_10_1210_jendso_bvaa127 crossref_primary_10_1093_advances_nmab073 crossref_primary_10_1016_j_nutres_2019_03_012 crossref_primary_10_3389_fvets_2025_1646332 crossref_primary_10_1089_ars_2020_8161 crossref_primary_10_1016_j_cell_2024_07_012 crossref_primary_10_1038_s41387_024_00298_y crossref_primary_10_1007_s12035_018_1270_y crossref_primary_10_1161_CIRCRESAHA_121_319817 crossref_primary_10_1161_JAHA_123_031617 crossref_primary_10_1016_j_tma_2021_05_001 crossref_primary_10_3390_nu14010214 crossref_primary_10_1155_2018_4207067 crossref_primary_10_3390_ijms22179139 crossref_primary_10_1093_nar_gky570 crossref_primary_10_1016_j_freeradbiomed_2021_12_009 crossref_primary_10_1002_dmrr_3490 crossref_primary_10_3390_biom12070969 crossref_primary_10_1038_s41598_020_73943_y crossref_primary_10_3389_fcell_2018_00082 crossref_primary_10_1161_HYPERTENSIONAHA_118_10919 crossref_primary_10_1186_s13023_023_02885_1 crossref_primary_10_1113_EP092008 crossref_primary_10_3390_antibiotics13040352 crossref_primary_10_1038_nrendo_2016_46 crossref_primary_10_1016_j_copbio_2019_05_002 crossref_primary_10_3390_nu9070642 crossref_primary_10_1038_s41467_021_27187_7 crossref_primary_10_3389_fnut_2023_1189982 crossref_primary_10_1016_j_tem_2021_11_004 crossref_primary_10_1042_BST20200991 crossref_primary_10_1093_jnci_djae181 crossref_primary_10_3389_fendo_2020_00617 crossref_primary_10_1038_s41387_022_00200_8 crossref_primary_10_1126_science_aav0558 crossref_primary_10_3390_metabo10050205 crossref_primary_10_15252_embr_202050663 crossref_primary_10_59717_j_xinn_med_2024_100090 crossref_primary_10_1177_0963689720927394 |
| Cites_doi | 10.1038/nm.2307 10.1016/j.celrep.2013.04.023 10.1182/blood-2011-08-375816 10.1210/er.2006-0037 10.1016/j.metabol.2014.01.006 10.1016/j.cmet.2009.02.002 10.1016/j.cmet.2013.12.003 10.1371/journal.pone.0129084 10.1021/cb300194b 10.1016/j.cmet.2006.12.003 10.1016/j.cmet.2012.01.024 10.1038/nature08945 10.1073/pnas.0810339105 10.1023/A:1016611824696 10.1038/ncomms8078 10.1056/NEJMra1011035 10.1007/s00125-015-3656-y 10.1016/j.cardfail.2014.03.007 10.1016/S0387-7604(01)00196-6 10.1038/nature06613 10.1016/j.cmet.2013.12.014 10.1038/nature00904 10.1242/jcs.103.1.23 10.1016/S0022-2275(20)38227-4 |
| ContentType | Journal Article |
| Copyright | Springer Nature America, Inc. 2016 COPYRIGHT 2016 Nature Publishing Group Copyright Nature Publishing Group Apr 2016 |
| Copyright_xml | – notice: Springer Nature America, Inc. 2016 – notice: COPYRIGHT 2016 Nature Publishing Group – notice: Copyright Nature Publishing Group Apr 2016 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 |
| DOI | 10.1038/nm.4057 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Toxicology Abstracts MEDLINE Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1546-170X |
| EndPage | 426 |
| ExternalDocumentID | 4012885541 A451941079 26950361 10_1038_nm_4057 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK019525 – fundername: NIA NIH HHS grantid: R01 AG043483 – fundername: NIDDK NIH HHS grantid: DK098656 – fundername: NIDDK NIH HHS grantid: R01 DK095072 – fundername: NHLBI NIH HHS grantid: HL094499 – fundername: NIDDK NIH HHS grantid: DK049210 – fundername: NIDDK NIH HHS grantid: R01 DK098656 – fundername: NIAMS NIH HHS grantid: AR062128 – fundername: NHLBI NIH HHS grantid: R01 HL093234 – fundername: NHLBI NIH HHS grantid: HL093234 |
| GroupedDBID | --- .-4 .55 .GJ 0R~ 123 1CY 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 88I 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABUWG ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IEA IH2 IHR IHW INH INR IOF IOV ISR ITC J5H L7B LGEZI LK8 LOTEE M0L M1P M2O M2P M7P MK0 N9A NADUK NNMJJ NXXTH O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TSG TUS UKHRP UQL X7M XJT YHZ ZGI ~8M AAYXX ABFSG ACSTC AFANA AFFHD AGSTI ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB XRW CGR CUY CVF ECM EIF NPM ACMFV 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c678t-c2054e4e646d0135bb982fb766b1a1fd8523c6247f5123c859aacbb60da59f7e3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 461 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373457700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1078-8956 1546-170X |
| IngestDate | Tue Oct 07 09:28:12 EDT 2025 Thu Oct 02 03:46:22 EDT 2025 Fri Oct 03 09:51:35 EDT 2025 Sat Nov 29 13:02:08 EST 2025 Sat Nov 29 11:48:20 EST 2025 Mon Nov 24 15:42:12 EST 2025 Wed Nov 26 10:16:45 EST 2025 Wed Nov 26 09:53:49 EST 2025 Thu May 22 20:51:40 EDT 2025 Wed Feb 19 02:40:21 EST 2025 Tue Nov 18 22:23:14 EST 2025 Sat Nov 29 06:02:22 EST 2025 Fri Feb 21 02:37:46 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c678t-c2054e4e646d0135bb982fb766b1a1fd8523c6247f5123c859aacbb60da59f7e3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://nrs.harvard.edu/urn-3:HUL.InstRepos:29407669 |
| PMID | 26950361 |
| PQID | 1779088723 |
| PQPubID | 33975 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_1805511464 proquest_miscellaneous_1779880539 proquest_journals_1779088723 gale_infotracmisc_A451941079 gale_infotracgeneralonefile_A451941079 gale_infotracacademiconefile_A451941079 gale_incontextgauss_ISR_A451941079 gale_incontextgauss_IOV_A451941079 gale_healthsolutions_A451941079 pubmed_primary_26950361 crossref_primary_10_1038_nm_4057 crossref_citationtrail_10_1038_nm_4057 springer_journals_10_1038_nm_4057 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-04-01 |
| PublicationDateYYYYMMDD | 2016-04-01 |
| PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Nature medicine |
| PublicationTitleAbbrev | Nat Med |
| PublicationTitleAlternate | Nat Med |
| PublicationYear | 2016 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | Giesbertz (CR16) 2015; 58 Shulman (CR4) 2014; 371 Darland, D'Amore (CR23) 2001; 4 Hagberg (CR8) 2010; 464 Abbott, Hughes, Revest, Greenwood (CR19) 1992; 103 Handschin, Spiegelman (CR6) 2006; 27 Titchenell, Chu, Monks, Birnbaum (CR24) 2015; 6 Avogaro, Bier (CR15) 1989; 30 Arany (CR7) 2008; 451 Roberts (CR9) 2014; 19 Hatazawa (CR12) 2015; 10 Henkin (CR13) 2012; 7 Arany (CR11) 2007; 5 Sasaki (CR18) 2001; 23 Newgard (CR2) 2009; 9 Forman (CR25) 2014; 20 Newgard (CR3) 2012; 15 Choi (CR14) 2008; 105 Rowe (CR21) 2013; 3 Sawada (CR22) 2014; 19 Lin (CR10) 2002; 418 Mullen, Ohlendieck (CR17) 2010; 25 Xie (CR20) 2012; 119 Chan, Arany (CR5) 2014; 63 Wang (CR1) 2011; 17 CB Newgard (BFnm4057_CR2) 2009; 9 Z Arany (BFnm4057_CR7) 2008; 451 LD Roberts (BFnm4057_CR9) 2014; 19 Z Arany (BFnm4057_CR11) 2007; 5 CS Choi (BFnm4057_CR14) 2008; 105 P Giesbertz (BFnm4057_CR16) 2015; 58 TJ Wang (BFnm4057_CR1) 2011; 17 M Sasaki (BFnm4057_CR18) 2001; 23 Y Hatazawa (BFnm4057_CR12) 2015; 10 N Sawada (BFnm4057_CR22) 2014; 19 AH Henkin (BFnm4057_CR13) 2012; 7 C Handschin (BFnm4057_CR6) 2006; 27 GI Shulman (BFnm4057_CR4) 2014; 371 DC Darland (BFnm4057_CR23) 2001; 4 DE Forman (BFnm4057_CR25) 2014; 20 J Lin (BFnm4057_CR10) 2002; 418 NJ Abbott (BFnm4057_CR19) 1992; 103 PM Titchenell (BFnm4057_CR24) 2015; 6 Z Xie (BFnm4057_CR20) 2012; 119 CE Hagberg (BFnm4057_CR8) 2010; 464 GC Rowe (BFnm4057_CR21) 2013; 3 CB Newgard (BFnm4057_CR3) 2012; 15 A Avogaro (BFnm4057_CR15) 1989; 30 E Mullen (BFnm4057_CR17) 2010; 25 MC Chan (BFnm4057_CR5) 2014; 63 20127051 - Int J Mol Med. 2010 Mar;25(3):445-58 22928772 - ACS Chem Biol. 2012 Nov 16;7(11):1884-91 11377004 - Brain Dev. 2001 Jul;23(4):243-5 25963408 - Nat Commun. 2015 May 12;6:7078 23707060 - Cell Rep. 2013 May 30;3(5):1449-56 1429907 - J Cell Sci. 1992 Sep;103 ( Pt 1):23-37 22411873 - Blood. 2012 May 3;119(18):4321-32 2614280 - J Lipid Res. 1989 Nov;30(11):1811-7 26988615 - Nat Rev Endocrinol. 2016 May;12(5):249 25229917 - N Engl J Med. 2014 Sep 18;371(12):1131-41 17189205 - Cell Metab. 2007 Jan;5(1):35-46 19066218 - Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19926-31 26114427 - PLoS One. 2015 Jun 26;10 (6):e0129084 26058503 - Diabetologia. 2015 Sep;58(9):2133-43 24704539 - J Card Fail. 2014 Jun;20(6):422-30 18599867 - Circ Res. 2008 Aug 15;103(4):360-8 19356713 - Cell Metab. 2009 Apr;9(4):311-26 12181572 - Nature. 2002 Aug 15;418(6899):797-801 24559845 - Metabolism. 2014 Apr;63(4):441-51 17018837 - Endocr Rev. 2006 Dec;27(7):728-35 21423183 - Nat Med. 2011 Apr;17(4):448-53 18288196 - Nature. 2008 Feb 21;451(7181):1008-12 24411942 - Cell Metab. 2014 Jan 7;19(1):96-108 22560213 - Cell Metab. 2012 May 2;15(5):606-14 20228789 - Nature. 2010 Apr 8;464(7290):917-21 11824373 - Angiogenesis. 2001;4(1):11-20 |
| References_xml | – volume: 17 start-page: 448 year: 2011 end-page: 453 ident: CR1 article-title: Metabolite profiles and the risk of developing diabetes publication-title: Nat. Med. doi: 10.1038/nm.2307 – volume: 3 start-page: 1449 year: 2013 end-page: 1456 ident: CR21 article-title: Disconnecting mitochondrial content from respiratory chain capacity in PGC-1-deficient skeletal muscle publication-title: Cell Reports doi: 10.1016/j.celrep.2013.04.023 – volume: 119 start-page: 4321 year: 2012 end-page: 4332 ident: CR20 article-title: Vascular endothelial hyperpermeability induces the clinical symptoms of Clarkson disease (the systemic capillary leak syndrome) publication-title: Blood doi: 10.1182/blood-2011-08-375816 – volume: 27 start-page: 728 year: 2006 end-page: 735 ident: CR6 article-title: Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism publication-title: Endocr. Rev. doi: 10.1210/er.2006-0037 – volume: 63 start-page: 441 year: 2014 end-page: 451 ident: CR5 article-title: The many roles of PGC-1α in muscle—recent developments publication-title: Metabolism doi: 10.1016/j.metabol.2014.01.006 – volume: 9 start-page: 311 year: 2009 end-page: 326 ident: CR2 article-title: A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance publication-title: Cell Metab. doi: 10.1016/j.cmet.2009.02.002 – volume: 19 start-page: 96 year: 2014 end-page: 108 ident: CR9 article-title: β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.12.003 – volume: 10 start-page: e0129084 year: 2015 ident: CR12 article-title: Metabolomic analysis of the skeletal muscle of mice overexpressing PGC-1α publication-title: PLoS One doi: 10.1371/journal.pone.0129084 – volume: 7 start-page: 1884 year: 2012 end-page: 1891 ident: CR13 article-title: Real-time noninvasive imaging of fatty acid uptake publication-title: ACS Chem. Biol. doi: 10.1021/cb300194b – volume: 5 start-page: 35 year: 2007 end-page: 46 ident: CR11 article-title: The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.12.003 – volume: 15 start-page: 606 year: 2012 end-page: 614 ident: CR3 article-title: Interplay between lipids and branched-chain amino acids in development of insulin resistance publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.01.024 – volume: 103 start-page: 23 year: 1992 end-page: 37 ident: CR19 article-title: Development and characterisation of a rat brain capillary endothelial culture: towards an blood-brain barrier publication-title: J. Cell Sci. – volume: 464 start-page: 917 year: 2010 end-page: 921 ident: CR8 article-title: Vascular endothelial growth factor B controls endothelial fatty acid uptake publication-title: Nature doi: 10.1038/nature08945 – volume: 105 start-page: 19926 year: 2008 end-page: 19931 ident: CR14 article-title: Paradoxical effects of increased expression of PGC-1α on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0810339105 – volume: 4 start-page: 11 year: 2001 end-page: 20 ident: CR23 article-title: TGFβ is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells publication-title: Angiogenesis doi: 10.1023/A:1016611824696 – volume: 6 start-page: 7078 year: 2015 ident: CR24 article-title: Hepatic insulin signalling is dispensable for suppression of glucose output by insulin publication-title: Nat. Commun. doi: 10.1038/ncomms8078 – volume: 371 start-page: 1131 year: 2014 end-page: 1141 ident: CR4 article-title: Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1011035 – volume: 58 start-page: 2133 year: 2015 end-page: 2143 ident: CR16 article-title: Metabolite profiling in plasma and tissues of and mice identifies novel markers of obesity and type 2 diabetes publication-title: Diabetologia doi: 10.1007/s00125-015-3656-y – volume: 20 start-page: 422 year: 2014 end-page: 430 ident: CR25 article-title: Analysis of skeletal muscle gene expression patterns and the impact of functional capacity in patients with systolic heart failure publication-title: J. Card. Fail. doi: 10.1016/j.cardfail.2014.03.007 – volume: 25 start-page: 445 year: 2010 end-page: 458 ident: CR17 article-title: Proteomic profiling of non-obese type 2 diabetic skeletal muscle publication-title: Int. J. Mol. Med. – volume: 23 start-page: 243 year: 2001 end-page: 245 ident: CR18 article-title: A severely brain-damaged case of 3-hydroxyisobutyric aciduria publication-title: Brain Dev. doi: 10.1016/S0387-7604(01)00196-6 – volume: 451 start-page: 1008 year: 2008 end-page: 1012 ident: CR7 article-title: HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α publication-title: Nature doi: 10.1038/nature06613 – volume: 19 start-page: 246 year: 2014 end-page: 258 ident: CR22 article-title: Endothelial PGC-1α mediates vascular dysfunction in diabetes publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.12.014 – volume: 418 start-page: 797 year: 2002 end-page: 801 ident: CR10 article-title: Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres publication-title: Nature doi: 10.1038/nature00904 – volume: 30 start-page: 1811 year: 1989 end-page: 1817 ident: CR15 article-title: Contribution of 3-hydroxyisobutyrate to the measurement of 3-hydroxybutyrate in human plasma: comparison of enzymatic and gas-liquid chromatography-mass spectrometry assays in normal and in diabetic subjects publication-title: J. Lipid Res. – volume: 119 start-page: 4321 year: 2012 ident: BFnm4057_CR20 publication-title: Blood doi: 10.1182/blood-2011-08-375816 – volume: 20 start-page: 422 year: 2014 ident: BFnm4057_CR25 publication-title: J. Card. Fail. doi: 10.1016/j.cardfail.2014.03.007 – volume: 103 start-page: 23 year: 1992 ident: BFnm4057_CR19 publication-title: J. Cell Sci. doi: 10.1242/jcs.103.1.23 – volume: 105 start-page: 19926 year: 2008 ident: BFnm4057_CR14 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0810339105 – volume: 27 start-page: 728 year: 2006 ident: BFnm4057_CR6 publication-title: Endocr. Rev. doi: 10.1210/er.2006-0037 – volume: 10 start-page: e0129084 year: 2015 ident: BFnm4057_CR12 publication-title: PLoS One doi: 10.1371/journal.pone.0129084 – volume: 19 start-page: 246 year: 2014 ident: BFnm4057_CR22 publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.12.014 – volume: 464 start-page: 917 year: 2010 ident: BFnm4057_CR8 publication-title: Nature doi: 10.1038/nature08945 – volume: 19 start-page: 96 year: 2014 ident: BFnm4057_CR9 publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.12.003 – volume: 451 start-page: 1008 year: 2008 ident: BFnm4057_CR7 publication-title: Nature doi: 10.1038/nature06613 – volume: 23 start-page: 243 year: 2001 ident: BFnm4057_CR18 publication-title: Brain Dev. doi: 10.1016/S0387-7604(01)00196-6 – volume: 5 start-page: 35 year: 2007 ident: BFnm4057_CR11 publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.12.003 – volume: 7 start-page: 1884 year: 2012 ident: BFnm4057_CR13 publication-title: ACS Chem. Biol. doi: 10.1021/cb300194b – volume: 371 start-page: 1131 year: 2014 ident: BFnm4057_CR4 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1011035 – volume: 25 start-page: 445 year: 2010 ident: BFnm4057_CR17 publication-title: Int. J. Mol. Med. – volume: 17 start-page: 448 year: 2011 ident: BFnm4057_CR1 publication-title: Nat. Med. doi: 10.1038/nm.2307 – volume: 3 start-page: 1449 year: 2013 ident: BFnm4057_CR21 publication-title: Cell Reports doi: 10.1016/j.celrep.2013.04.023 – volume: 58 start-page: 2133 year: 2015 ident: BFnm4057_CR16 publication-title: Diabetologia doi: 10.1007/s00125-015-3656-y – volume: 6 start-page: 7078 year: 2015 ident: BFnm4057_CR24 publication-title: Nat. Commun. doi: 10.1038/ncomms8078 – volume: 63 start-page: 441 year: 2014 ident: BFnm4057_CR5 publication-title: Metabolism doi: 10.1016/j.metabol.2014.01.006 – volume: 15 start-page: 606 year: 2012 ident: BFnm4057_CR3 publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.01.024 – volume: 4 start-page: 11 year: 2001 ident: BFnm4057_CR23 publication-title: Angiogenesis doi: 10.1023/A:1016611824696 – volume: 9 start-page: 311 year: 2009 ident: BFnm4057_CR2 publication-title: Cell Metab. doi: 10.1016/j.cmet.2009.02.002 – volume: 30 start-page: 1811 year: 1989 ident: BFnm4057_CR15 publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)38227-4 – volume: 418 start-page: 797 year: 2002 ident: BFnm4057_CR10 publication-title: Nature doi: 10.1038/nature00904 – reference: 1429907 - J Cell Sci. 1992 Sep;103 ( Pt 1):23-37 – reference: 17189205 - Cell Metab. 2007 Jan;5(1):35-46 – reference: 11377004 - Brain Dev. 2001 Jul;23(4):243-5 – reference: 22411873 - Blood. 2012 May 3;119(18):4321-32 – reference: 22928772 - ACS Chem Biol. 2012 Nov 16;7(11):1884-91 – reference: 19356713 - Cell Metab. 2009 Apr;9(4):311-26 – reference: 25963408 - Nat Commun. 2015 May 12;6:7078 – reference: 18288196 - Nature. 2008 Feb 21;451(7181):1008-12 – reference: 26114427 - PLoS One. 2015 Jun 26;10 (6):e0129084 – reference: 11824373 - Angiogenesis. 2001;4(1):11-20 – reference: 22560213 - Cell Metab. 2012 May 2;15(5):606-14 – reference: 23707060 - Cell Rep. 2013 May 30;3(5):1449-56 – reference: 26988615 - Nat Rev Endocrinol. 2016 May;12(5):249 – reference: 2614280 - J Lipid Res. 1989 Nov;30(11):1811-7 – reference: 24704539 - J Card Fail. 2014 Jun;20(6):422-30 – reference: 25229917 - N Engl J Med. 2014 Sep 18;371(12):1131-41 – reference: 24411942 - Cell Metab. 2014 Jan 7;19(1):96-108 – reference: 21423183 - Nat Med. 2011 Apr;17(4):448-53 – reference: 18599867 - Circ Res. 2008 Aug 15;103(4):360-8 – reference: 12181572 - Nature. 2002 Aug 15;418(6899):797-801 – reference: 20228789 - Nature. 2010 Apr 8;464(7290):917-21 – reference: 17018837 - Endocr Rev. 2006 Dec;27(7):728-35 – reference: 20127051 - Int J Mol Med. 2010 Mar;25(3):445-58 – reference: 19066218 - Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19926-31 – reference: 24559845 - Metabolism. 2014 Apr;63(4):441-51 – reference: 26058503 - Diabetologia. 2015 Sep;58(9):2133-43 |
| SSID | ssj0003059 |
| Score | 2.6508136 |
| Snippet | Fatty acid transport from blood vessels to skeletal muscle, across endothelial cells, is regulated by the branched chain amino acid metabolite... Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie... Epidemiological and experimental data implicate branchedchain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie... |
| SourceID | proquest gale pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 421 |
| SubjectTerms | 13/1 13/106 13/109 13/44 13/51 13/89 14/19 14/34 14/5 38/39 59 59/5 631/337 631/80/304 64 64/60 692/163/2743/137/773 82 Accumulation Amino acids Amino Acids, Branched-Chain - metabolism Animals Biological transport Biomedicine Cancer Research Development and progression Diabetes Experimental data Fatty acids Fatty Acids - genetics Fatty Acids - metabolism Fluctuations Genetic aspects Health aspects Humans Hydroxybutyrates - metabolism Infectious Diseases Insulin - genetics Insulin - metabolism Insulin resistance Insulin Resistance - genetics letter Lipids Metabolic Diseases Metabolites Mice Mice, Inbred NOD Molecular Medicine Muscle, Skeletal - metabolism Muscle, Skeletal - pathology Neurosciences Obesity - genetics Obesity - metabolism Obesity - pathology Pathogenesis Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha Properties Transcription factors Transcription Factors - biosynthesis Transcription Factors - genetics |
| Title | A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance |
| URI | https://link.springer.com/article/10.1038/nm.4057 https://www.ncbi.nlm.nih.gov/pubmed/26950361 https://www.proquest.com/docview/1779088723 https://www.proquest.com/docview/1779880539 https://www.proquest.com/docview/1805511464 |
| Volume | 22 |
| WOSCitedRecordID | wos000373457700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1546-170X dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: M7P dateStart: 19950101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库 customDbUrl: eissn: 1546-170X dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: 7X7 dateStart: 19950101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1546-170X dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: BENPR dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library (ProQuest) customDbUrl: eissn: 1546-170X dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: M2O dateStart: 19950101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1546-170X dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: M2P dateStart: 19950101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZYB4gXLuMWGMMgNJ7Mco_zhAraBBLrqnFR3yLfskWi6WhSpP17zomdsgw0IfHiqvKXxo2Pjz_Hx98h5FUsYI1Q8pzFqfRZDJSV5dL4DKhpR9AjX3c6s5-yyYTPZvnUvXBrXFhl7xM7R60XCt-R7wUojAcjIozenv1gmDUKd1ddCo0NsolKZfGIbL7bn0yP174YrDm3UYeccVgK2GOzKAq-V8_fIFkZzEeXvfKFaenSPmk3_Rzc-d-G3yW3HfGkY2sp98g1U2-RGzYV5fkWuXnoNtnvk2pMJabbODWaqVNR1VTMq3pBhao0nZsWzAYPLlO9RMla2sey0lK07blFtb1kOhW1pkqsGgC6sHcKC3wkrWBtD8jXg_0v7z8wl5GBKZjUWqZCYHgmNmmcauCOiZQ5D0uZpakMRFBqDstalYZxVgKPiBRPciGUlKmvRZKXmYkeklG9qM1jArcWPOalKrWET-NzGfhaZRpPWZdAMzyy2_dLoZxcOWbN-F502-YRL-p5gR3owW_1wDOr0PEn5Dl2bGGPlq7HdDFGbZ0YjCP3yMsOgYoYNYbcnMCTaYqPR9_-AfT5eAB67UDlAtqrhDvmAP8albYGyN0B8sTqjP8NuD0AggNQw-re8ArngJrit9V55MW6Gq_EoLraLFYWA-47ifIrMFCf4Mn12COP7FhYP-UwzRMgQAFc3Q-OCw0YdsGTqxv5lNwCJprakKhtMmqXK_OMXFc_26pZ7pCNbJZ1Jd9xIxy-HYZHXTnFMpv-Ahu9WMY |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qZb2wlC1Q6ICgnEwdr-MDQhFQNWoaEC0oNzOb20jEKbEDyp_iN_Kexw51QRWXHjj5MJ_t8fgt39hvAXgWCNwjZDxxgki6ToCU1UmkcR2kphVB911d1ZkdxMMhH42SDyvws8mFobDKxiZWhlpPFX0j3-pSYTzUCM9_ffzNoa5R9He1aaFhxWLXLH7glq141X-L7_e5522_O3iz49RdBRyFhrl0lIcsxQQmCiKN_CeUMuFeJuMokl3RzTTHrZmKvCDO0Bf6ioeJEErKyNUiTLLY-HjdC3AR7XhMIWTxaLnBI91JbIwjdzhuPGySLpUg38onL4katbzfaR9wwgme-itbObvtG__bMt2E6zWtZj2rB7dgxeRrcNk22lyswZW9OoTgNox7TFIzkSOjHXUkxjkTk3E-ZUKNNZuYEpWC0rKZnlFBXtZE6rJMlOXCosqmIDwTuWZKzAsE1kH9bGYKouSoS3fg07k88l1Yzae5uQ94a8EDnqlMSzwal8uuq1WsKYc8QxLVgc1GDlJVF2OnniBf0yoowOdpPklJYDp4rQZ4bOuP_AnZIEFKbeLs0mKlPaocFKAwJh14WiGo3kdOAUWHuDJF2n__-R9A-x9boBc1KJvifJWokzjwqamOWAu52UIe2irqfwOut4Bo3lR7uBH0tDavRfpbyjvwZDlMZ1LIYG6mc4tB5xT6yRkYHA8pLz_owD2re8tV9qIkRHrXxbMbZTwxgfYreHD2JDfg6s7B3iAd9Ie7D-Eacu7IBn-tw2o5m5tHcEl9L8fF7HFlTxh8OW_N_AWRoq9v |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VAhUXHuUVKHRBUE5uHD_XB4QiSkTUNkRQUG_uPltLxCmxA8pf49cx47VDXVDFpQdOPuxne72e19oz3xDyIuCwRzAscYJIuE4AIauTCO06EJpWAbrvqopndi8ejdjhYTJeIT-bWhhMq2xsYmWo1VTiN_JuD4nxQCM8v2vqtIjxzuDN6TcHO0jhn9amnYYVkV29-AHbt-L1cAfe9UvPG7w7ePveqTsMOBKMdOlIDyIWHegoiBTEQqEQCfOMiKNI9HjPKAbbNBl5QWzAL_qShQnnUojIVTxMTKx9uO4VcjUOwhC1a98bL70A6FFi8x2Zw2ATYgt2kY68m0-2MUxqecLz_uCMQzz3h7ZyfINb__OS3SY363Cb9q1-3CErOl8n120DzsU6WduvUwvukqxPBTYZOdHKkSc8yymfZPmUcpkpOtElKAuWa1M1Q6Je2mTwUsPLcmFRZUMUT3muqOTzAoB1sj-d6QJDddCxe-TzpTzyfbKaT3P9kMCtOQuYkUYJOGqXiZ6rZKywttxAcNUhW41MpLImacdeIV_TKlnAZ2k-SVF4OnCtBnhqeUn-hGyiUKW2oHZpydI-MgoFIJhJhzyvEMgDkqN4HMPKFOnww5d_AH362AK9qkFmCvOVvC7ugKdGfrEWcquFPLbs6n8DbrSAYPZke7gR-rQ2u0X6W-I75NlyGM_EVMJcT-cWA04r9JMLMDAeYr1-0CEPrB4uV9mLkhDCvh6c3SjmmQm0X8Gjiye5SdZAIdO94Wj3MbkBoXhkc8I2yGo5m-sn5Jr8XmbF7GllWig5umzF_AVZWLg8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+branched-chain+amino+acid+metabolite+drives+vascular+fatty+acid+transport+and+causes+insulin+resistance&rft.jtitle=Nature+medicine&rft.au=Jang%2C+Cholsoon&rft.au=Oh%2C+Sungwhan+F&rft.au=Wada%2C+Shogo&rft.au=Rowe%2C+Glenn+C&rft.date=2016-04-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1078-8956&rft.eissn=1546-170X&rft.volume=22&rft.issue=4&rft.spage=421&rft.epage=426&rft_id=info:doi/10.1038%2Fnm.4057&rft.externalDocID=10_1038_nm_4057 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon |