Proteolytic Cleavage of the SARS-CoV-2 Spike Protein and the Role of the Novel S1/S2 Site

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world within a few months. The origin of SARS-CoV-2 has been related to the lineage B Betacoronavirus SARS-CoV and SARS-related coronaviruses found...

Full description

Saved in:
Bibliographic Details
Published in:iScience Vol. 23; no. 6; p. 101212
Main Authors: Jaimes, Javier A., Millet, Jean K., Whittaker, Gary R.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 26.06.2020
Elsevier
Subjects:
ISSN:2589-0042, 2589-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world within a few months. The origin of SARS-CoV-2 has been related to the lineage B Betacoronavirus SARS-CoV and SARS-related coronaviruses found in bats. Early characterizations of the SARS-CoV-2 genome revealed the existence of a distinct four amino acid insert within the spike (S) protein (underlined, SPRRAR↓S), at the S1/S2 site located at the interface between the S1 receptor binding subunit and the S2 fusion subunit. Notably, this insert appears to be a distinguishing feature among SARS-related sequences and introduces a potential cleavage site for the protease furin. Here, we investigate the potential role of this novel S1/S2 cleavage site and present direct biochemical evidence for proteolytic processing by a variety of proteases. We discuss these findings in the context of the origin of SARS-CoV-2, viral stability, and transmission. [Display omitted] •SARS-CoV-2 spike protein harbors a distinct four amino acid insertion at the S1/S2 site•The S1/S2 site can be cleaved by furin-like, trypsin-like, and cathepsin proteases•The S1/S2 insert likely enhances spike protein cleavage by several proteases in vivo Biochemistry; Virology
AbstractList Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world within a few months. The origin of SARS-CoV-2 has been related to the lineage B Betacoronavirus SARS-CoV and SARS-related coronaviruses found in bats. Early characterizations of the SARS-CoV-2 genome revealed the existence of a distinct four amino acid insert within the spike (S) protein (underlined, SPRRAR↓S), at the S1/S2 site located at the interface between the S1 receptor binding subunit and the S2 fusion subunit. Notably, this insert appears to be a distinguishing feature among SARS-related sequences and introduces a potential cleavage site for the protease furin. Here, we investigate the potential role of this novel S1/S2 cleavage site and present direct biochemical evidence for proteolytic processing by a variety of proteases. We discuss these findings in the context of the origin of SARS-CoV-2, viral stability, and transmission. [Display omitted] •SARS-CoV-2 spike protein harbors a distinct four amino acid insertion at the S1/S2 site•The S1/S2 site can be cleaved by furin-like, trypsin-like, and cathepsin proteases•The S1/S2 insert likely enhances spike protein cleavage by several proteases in vivo Biochemistry; Virology
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world within a few months. The origin of SARS-CoV-2 has been related to the lineage B Betacoronavirus SARS-CoV and SARS-related coronaviruses found in bats. Early characterizations of the SARS-CoV-2 genome revealed the existence of a distinct four amino acid insert within the spike (S) protein (underlined, SPRRAR↓S), at the S1/S2 site located at the interface between the S1 receptor binding subunit and the S2 fusion subunit. Notably, this insert appears to be a distinguishing feature among SARS-related sequences and introduces a potential cleavage site for the protease furin. Here, we investigate the potential role of this novel S1/S2 cleavage site and present direct biochemical evidence for proteolytic processing by a variety of proteases. We discuss these findings in the context of the origin of SARS-CoV-2, viral stability, and transmission. • SARS-CoV-2 spike protein harbors a distinct four amino acid insertion at the S1/S2 site • The S1/S2 site can be cleaved by furin-like, trypsin-like, and cathepsin proteases • The S1/S2 insert likely enhances spike protein cleavage by several proteases in vivo Biochemistry; Virology
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world within a few months. The origin of SARS-CoV-2 has been related to the lineage B Betacoronavirus SARS-CoV and SARS-related coronaviruses found in bats. Early characterizations of the SARS-CoV-2 genome revealed the existence of a distinct four amino acid insert within the spike (S) protein (underlined, SPRRAR↓S), at the S1/S2 site located at the interface between the S1 receptor binding subunit and the S2 fusion subunit. Notably, this insert appears to be a distinguishing feature among SARS-related sequences and introduces a potential cleavage site for the protease furin. Here, we investigate the potential role of this novel S1/S2 cleavage site and present direct biochemical evidence for proteolytic processing by a variety of proteases. We discuss these findings in the context of the origin of SARS-CoV-2, viral stability, and transmission.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world within a few months. The origin of SARS-CoV-2 has been related to the lineage B Betacoronavirus SARS-CoV and SARS-related coronaviruses found in bats. Early characterizations of the SARS-CoV-2 genome revealed the existence of a distinct four amino acid insert within the spike (S) protein (underlined, SPRRAR↓S), at the S1/S2 site located at the interface between the S1 receptor binding subunit and the S2 fusion subunit. Notably, this insert appears to be a distinguishing feature among SARS-related sequences and introduces a potential cleavage site for the protease furin. Here, we investigate the potential role of this novel S1/S2 cleavage site and present direct biochemical evidence for proteolytic processing by a variety of proteases. We discuss these findings in the context of the origin of SARS-CoV-2, viral stability, and transmission.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world within a few months. The origin of SARS-CoV-2 has been related to the lineage B Betacoronavirus SARS-CoV and SARS-related coronaviruses found in bats. Early characterizations of the SARS-CoV-2 genome revealed the existence of a distinct four amino acid insert within the spike (S) protein (underlined, SPRRAR↓S), at the S1/S2 site located at the interface between the S1 receptor binding subunit and the S2 fusion subunit. Notably, this insert appears to be a distinguishing feature among SARS-related sequences and introduces a potential cleavage site for the protease furin. Here, we investigate the potential role of this novel S1/S2 cleavage site and present direct biochemical evidence for proteolytic processing by a variety of proteases. We discuss these findings in the context of the origin of SARS-CoV-2, viral stability, and transmission.
ArticleNumber 101212
Author Millet, Jean K.
Whittaker, Gary R.
Jaimes, Javier A.
Author_xml – sequence: 1
  givenname: Javier A.
  surname: Jaimes
  fullname: Jaimes, Javier A.
  organization: Department of Microbiology & Immunology, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA
– sequence: 2
  givenname: Jean K.
  surname: Millet
  fullname: Millet, Jean K.
  organization: Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas, France
– sequence: 3
  givenname: Gary R.
  surname: Whittaker
  fullname: Whittaker, Gary R.
  email: grw7@cornell.edu
  organization: Department of Microbiology & Immunology, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32512386$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-02919874$$DView record in HAL
BookMark eNp9kl9v0zAUxSM0xP6wL8ADyiM8pLNvnNiWEFJVAZtUAVoBiSfLsW9alzQuTlpp335Os03bHvZk6_p3jq99z2ly1PoWk-QdJRNKaHmxnrjOuAkQOBSAwqvkBAohM0IYHD3aHyfnXbcmJJIEmCzfJMc5FBRyUZ4kf38G36Nvbnpn0lmDeq-XmPo67VeYLqbXi2zm_2SQLrbuH6YH2LWpbu0BuPbNA_zd77FJF_RiEWnX49vkda2bDs_v1rPk99cvv2aX2fzHt6vZdJ6ZkvM-A1pRwnJSaFGVlBFW5CUwzoVFBJvXhQFtpUBgpQGKvK4kMp7nIGpBGK_ys-Rq9LVer9U2uI0ON8prpw4FH5ZKh_i6BpXVpWUVscTkhhW2lJWoZC0kl5WuDRTR6_Potd1VG7QG2z7o5onp05PWrdTS7xWHouAgosHH0WD1THY5nauhRkBSKTjb08h-uLss-P877Hq1iSPFptEt-l2ngFFKiSR0QN8_7uvB-X6OERAjYILvuoC1Mq7XvfNDm65RlKghNWqthtSoITVqTE2UwjPpvfuLok-jCONk9w6DigS2Bq0LaPr49e4l-S2_9daq
CitedBy_id crossref_primary_10_1038_s41598_021_91662_w
crossref_primary_10_3390_biomedicines10112966
crossref_primary_10_1016_j_csbj_2022_01_024
crossref_primary_10_1038_s41392_022_01039_2
crossref_primary_10_1371_journal_ppat_1009233
crossref_primary_10_1016_j_biochi_2024_04_010
crossref_primary_10_1016_j_biopha_2021_112517
crossref_primary_10_1016_j_peptides_2020_170428
crossref_primary_10_1164_rccm_202205_0956ED
crossref_primary_10_1016_j_lfs_2020_118541
crossref_primary_10_3390_microorganisms12010229
crossref_primary_10_1016_j_str_2021_04_006
crossref_primary_10_1186_s12985_024_02331_z
crossref_primary_10_1186_s44149_023_00075_x
crossref_primary_10_1128_msystems_00095_21
crossref_primary_10_1016_j_csbj_2024_05_037
crossref_primary_10_1051_bioconf_202412402007
crossref_primary_10_1080_19420889_2022_2057010
crossref_primary_10_3389_fimmu_2022_1032911
crossref_primary_10_1016_j_tibs_2021_06_001
crossref_primary_10_1093_oxfimm_iqaa004
crossref_primary_10_1371_journal_ppat_1011789
crossref_primary_10_3390_ijms232012522
crossref_primary_10_3390_vaccines10020251
crossref_primary_10_1063_5_0216072
crossref_primary_10_3390_ijms22031308
crossref_primary_10_1007_s10441_021_09425_z
crossref_primary_10_1016_j_celrep_2025_115929
crossref_primary_10_1089_hs_2023_0008
crossref_primary_10_1016_j_genrep_2022_101537
crossref_primary_10_1016_j_jiph_2023_12_008
crossref_primary_10_1038_s41392_021_00809_8
crossref_primary_10_1371_journal_ppat_1009500
crossref_primary_10_1038_s41564_021_00958_0
crossref_primary_10_3389_fimmu_2022_982839
crossref_primary_10_1038_s44318_024_00303_1
crossref_primary_10_1128_spectrum_01514_22
crossref_primary_10_1371_journal_pbio_3001006
crossref_primary_10_1002_jmv_27539
crossref_primary_10_1007_s00726_021_02991_z
crossref_primary_10_1007_s12291_021_01008_6
crossref_primary_10_3390_membranes11010064
crossref_primary_10_1007_s00289_022_04579_3
crossref_primary_10_1128_jvi_00474_22
crossref_primary_10_1016_j_carpath_2020_107278
crossref_primary_10_1038_s41467_021_23166_0
crossref_primary_10_1097_HJH_0000000000002829
crossref_primary_10_1186_s12967_020_02520_8
crossref_primary_10_3390_ijms23169089
crossref_primary_10_3390_v12111289
crossref_primary_10_1038_s41467_023_44076_3
crossref_primary_10_3390_cells9092046
crossref_primary_10_7554_eLife_77444
crossref_primary_10_1038_s41564_024_01786_8
crossref_primary_10_1113_JP281499
crossref_primary_10_1128_JVI_01751_20
crossref_primary_10_7759_cureus_57008
crossref_primary_10_1016_j_virusres_2023_199283
crossref_primary_10_1002_jmv_26615
crossref_primary_10_5812_pedinfect_113298
crossref_primary_10_3390_biochem2020009
crossref_primary_10_1016_j_virol_2021_11_012
crossref_primary_10_1111_febs_16114
crossref_primary_10_1007_s11356_021_12969_9
crossref_primary_10_3389_fimmu_2021_743022
crossref_primary_10_1126_sciimmunol_ade0958
crossref_primary_10_2217_fvl_2020_0384
crossref_primary_10_1002_rmv_2207
crossref_primary_10_1007_s40203_020_00058_7
crossref_primary_10_1016_j_bbrc_2020_10_080
crossref_primary_10_3390_biology12081070
crossref_primary_10_3390_cells9112343
crossref_primary_10_3390_ijms22063134
crossref_primary_10_3390_biom14050537
crossref_primary_10_2174_1381612828666220907105543
crossref_primary_10_3390_cells11030437
crossref_primary_10_1038_s41598_025_11600_y
crossref_primary_10_1007_s11033_022_08193_4
crossref_primary_10_1016_j_isci_2024_110387
crossref_primary_10_1093_femsre_fuaa057
crossref_primary_10_1039_D2SC06967A
crossref_primary_10_3390_cells11081262
crossref_primary_10_1177_1721727X221095382
crossref_primary_10_4103_jomfp_jomfp_208_23
crossref_primary_10_1007_s42247_021_00168_8
crossref_primary_10_3390_v16081243
crossref_primary_10_1128_jvi_01992_22
crossref_primary_10_1097_MNH_0000000000000692
crossref_primary_10_3389_fmicb_2022_789882
crossref_primary_10_3389_fcimb_2021_596201
crossref_primary_10_1038_s41467_021_24156_y
crossref_primary_10_1128_JVI_00002_21
crossref_primary_10_1007_s40495_025_00390_6
crossref_primary_10_1111_febs_15651
crossref_primary_10_1177_02184923211069185
crossref_primary_10_17116_repro20212703170
crossref_primary_10_1128_jvi_01823_24
crossref_primary_10_1016_j_ijbiomac_2021_04_157
crossref_primary_10_1002_rmv_2347
crossref_primary_10_1002_cbic_202400404
crossref_primary_10_1097_MS9_0000000000000950
crossref_primary_10_1128_jvi_01351_23
crossref_primary_10_1093_cid_ciab283
crossref_primary_10_1093_bib_bbab056
crossref_primary_10_1016_j_csbj_2020_12_035
crossref_primary_10_17116_repro20212703215
crossref_primary_10_1093_function_zqaa024
crossref_primary_10_3389_fphar_2022_1007527
crossref_primary_10_3390_scipharm89010002
crossref_primary_10_3390_cells10071752
crossref_primary_10_1007_s10311_021_01211_0
crossref_primary_10_1042_BST20240833
crossref_primary_10_1111_imr_13114
crossref_primary_10_3390_v13030425
crossref_primary_10_1016_j_jped_2020_09_002
crossref_primary_10_1016_j_envres_2020_110317
crossref_primary_10_3389_fmicb_2023_1251716
crossref_primary_10_3390_v14030465
crossref_primary_10_3390_v14061308
crossref_primary_10_1007_s11033_022_07359_4
crossref_primary_10_1016_j_csbj_2021_10_038
crossref_primary_10_3390_antib11020035
crossref_primary_10_1016_j_bpj_2021_02_023
crossref_primary_10_3390_ijms24054523
crossref_primary_10_3390_v13091703
crossref_primary_10_1016_j_pbiomolbio_2023_02_004
crossref_primary_10_3389_fmicb_2020_02016
crossref_primary_10_1002_rmv_2213
crossref_primary_10_1128_JVI_00140_21
crossref_primary_10_1080_17512433_2021_1874348
crossref_primary_10_1002_cti2_1189
crossref_primary_10_2147_IDR_S308176
crossref_primary_10_1002_jmv_28796
crossref_primary_10_3389_fmolb_2020_588618
crossref_primary_10_1016_j_isci_2021_103589
crossref_primary_10_1002_med_21919
crossref_primary_10_3390_diseases9010017
crossref_primary_10_1038_s41598_021_99642_w
crossref_primary_10_3389_fbioe_2022_1083232
crossref_primary_10_1007_s00289_023_04755_z
crossref_primary_10_1007_s40121_021_00400_2
crossref_primary_10_1002_jmv_27467
crossref_primary_10_1007_s15010_021_01677_8
crossref_primary_10_1016_j_fct_2020_111805
crossref_primary_10_1016_j_nantod_2021_101350
crossref_primary_10_3390_v13122511
crossref_primary_10_1128_JVI_00398_21
crossref_primary_10_3389_fbioe_2022_1052436
crossref_primary_10_1038_s41581_020_00357_4
crossref_primary_10_1016_j_jmb_2021_167280
crossref_primary_10_1073_pnas_2026207118
crossref_primary_10_1128_jvi_00685_25
crossref_primary_10_2174_0929867328666210526111318
crossref_primary_10_3389_fimmu_2020_569760
crossref_primary_10_1038_s41467_024_48503_x
crossref_primary_10_1111_bph_16187
crossref_primary_10_1371_journal_pone_0306197
crossref_primary_10_3389_fcell_2022_824851
crossref_primary_10_1002_jmv_27749
crossref_primary_10_1016_j_antiviral_2023_105655
crossref_primary_10_3390_ph13120447
crossref_primary_10_1038_s41564_021_00908_w
crossref_primary_10_3390_vaccines10091509
crossref_primary_10_1007_s00228_021_03102_3
crossref_primary_10_3390_cells10010030
crossref_primary_10_1002_1873_3468_14038
crossref_primary_10_1002_pro_4390
crossref_primary_10_1016_j_vaccine_2022_12_067
crossref_primary_10_3390_atmos11090995
crossref_primary_10_1016_j_tips_2020_07_004
crossref_primary_10_1371_journal_pone_0251649
crossref_primary_10_3892_mmr_2024_13272
crossref_primary_10_1002_rmv_2236
crossref_primary_10_1016_j_bcp_2020_114225
crossref_primary_10_3390_v14030481
crossref_primary_10_1002_psc_3541
crossref_primary_10_3389_fimmu_2022_987453
crossref_primary_10_1247_csf_21047
crossref_primary_10_1093_molbev_msab327
crossref_primary_10_3390_molecules27217572
crossref_primary_10_3389_fbioe_2020_00885
crossref_primary_10_3390_v15030639
crossref_primary_10_1016_j_lpm_2023_104167
crossref_primary_10_1038_s41586_022_05181_3
crossref_primary_10_1111_his_14264
crossref_primary_10_3389_fmed_2020_594495
crossref_primary_10_1016_j_molliq_2024_126100
crossref_primary_10_1016_j_virol_2025_110661
crossref_primary_10_3390_v15091930
crossref_primary_10_1016_j_yjmcc_2020_08_002
crossref_primary_10_1111_1348_0421_12945
crossref_primary_10_3390_ijms24054791
Cites_doi 10.1016/j.cell.2020.02.058
10.1016/j.jmb.2020.04.009
10.1073/pnas.0809524106
10.1128/mBio.02298-16
10.1371/journal.pone.0174827
10.1073/pnas.85.2.324
10.1038/s41467-020-15562-9
10.1038/s41586-020-2012-7
10.1016/j.cell.2020.02.052
10.1016/j.virusres.2014.11.021
10.1126/science.abb2507
10.1006/viro.1999.9716
10.1016/bs.aivir.2016.08.004
10.3201/eid1907.121094
10.1038/emi.2016.125
10.1016/j.molcel.2020.04.022
10.1093/bioinformatics/btx203
10.1371/journal.ppat.1005261
10.1177/002215549704500102
10.1016/j.cub.2020.09.030
10.1016/j.antiviral.2020.104742
10.1128/JVI.02648-13
10.1038/s41591-020-0820-9
10.1073/pnas.1407087111
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Attribution - NoDerivatives
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: Attribution - NoDerivatives
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.1016/j.isci.2020.101212
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_da6d4b0d0c3c45d69b8b9f8979bafc25
PMC7255728
oai:HAL:hal-02919874v1
32512386
10_1016_j_isci_2020_101212
S2589004220303977
Genre Journal Article
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c677t-21b104305a8b6140453624778dee2d3f5c2ad98e246c21e7fb9e473328f8047b3
IEDL.DBID DOA
ISICitedReferencesCount 229
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548240300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2589-0042
IngestDate Fri Oct 03 12:52:47 EDT 2025
Tue Sep 30 16:49:31 EDT 2025
Tue Oct 14 20:11:02 EDT 2025
Fri Jul 11 08:48:36 EDT 2025
Mon Jul 21 05:32:54 EDT 2025
Thu Nov 13 04:15:25 EST 2025
Tue Nov 18 21:55:00 EST 2025
Tue Jul 25 21:04:54 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Biochemistry
Virology
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Attribution - NoDerivatives: http://creativecommons.org/licenses/by-nd
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c677t-21b104305a8b6140453624778dee2d3f5c2ad98e246c21e7fb9e473328f8047b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
ORCID 0000-0001-8373-3688
0000-0001-6706-092X
OpenAccessLink https://doaj.org/article/da6d4b0d0c3c45d69b8b9f8979bafc25
PMID 32512386
PQID 2411109011
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_da6d4b0d0c3c45d69b8b9f8979bafc25
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7255728
hal_primary_oai_HAL_hal_02919874v1
proquest_miscellaneous_2411109011
pubmed_primary_32512386
crossref_citationtrail_10_1016_j_isci_2020_101212
crossref_primary_10_1016_j_isci_2020_101212
elsevier_sciencedirect_doi_10_1016_j_isci_2020_101212
PublicationCentury 2000
PublicationDate 2020-06-26
PublicationDateYYYYMMDD 2020-06-26
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Straus, Whittaker (bib20) 2017; 12
Steinhauer (bib19) 1999; 258
Hoffmann, Kleine-Weber, Pöhlmann (bib4) 2020; 28
Coutard, Valle, de Lamballerie, Canard, Seidah, Decroly (bib3) 2020; 176
Tse, Hamilton, Friling, Whittaker (bib21) 2014; 88
Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib25) 2020; 579
Millet, Goldstein, Labitt, Hsu, Daniel, Whittaker (bib14) 2016; 5
Millet, Whittaker (bib13) 2015; 202
Jaimes, Andre, Chappie, Millet, Whittaker (bib7) 2020
Shapiro, Sciaky, Lee, Bosshart, Angeletti, Bonifacino (bib18) 1997; 45
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche (bib5) 2020; 181
Kawaoka, Webster (bib9) 1988; 85
Andersen, Rambaut, Lipkin, Holmes, Garry (bib1) 2020; 26
Ou, Liu, Lei, Li, Mi, Ren, Guo, Guo, Chen, Hu (bib17) 2020; 11
Licitra, Millet, Regan, Hamilton, Rinaldi, Duhamel, Whittaker (bib12) 2013; 19
Jaimes, Millet, Goldstein, Whittaker, Straus (bib8) 2019; 143
Belouzard, Chu, Whittaker (bib2) 2009; 106
Hulswit, de Haan, Bosch (bib6) 2016; 96
Lee, Whittaker (bib11) 2017; 33
Nao, Yamagishi, Miyamoto, Igarashi, Manzoor, Ohnuma, Tsuda, Furuyama, Shigeno, Kajihara (bib16) 2017; 8
Le Coupanec, Desforges, Meessen-Pinard, Dube, Day, Seidah, Talbot (bib10) 2015; 11
Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib23) 2020; 367
Walls, Park, Tortorici, Wall, McGuire, Veesler (bib22) 2020; 181
Zhou, Chen, Hu, Li, Song, Liu, Wang, Liu, Yang, Holmes (bib24) 2020
Millet, Whittaker (bib15) 2014; 111
Zhou (10.1016/j.isci.2020.101212_bib24) 2020
Millet (10.1016/j.isci.2020.101212_bib14) 2016; 5
Licitra (10.1016/j.isci.2020.101212_bib12) 2013; 19
Tse (10.1016/j.isci.2020.101212_bib21) 2014; 88
Shapiro (10.1016/j.isci.2020.101212_bib18) 1997; 45
Kawaoka (10.1016/j.isci.2020.101212_bib9) 1988; 85
Nao (10.1016/j.isci.2020.101212_bib16) 2017; 8
Zhou (10.1016/j.isci.2020.101212_bib25) 2020; 579
Walls (10.1016/j.isci.2020.101212_bib22) 2020; 181
Millet (10.1016/j.isci.2020.101212_bib13) 2015; 202
Lee (10.1016/j.isci.2020.101212_bib11) 2017; 33
Hulswit (10.1016/j.isci.2020.101212_bib6) 2016; 96
Belouzard (10.1016/j.isci.2020.101212_bib2) 2009; 106
Le Coupanec (10.1016/j.isci.2020.101212_bib10) 2015; 11
Coutard (10.1016/j.isci.2020.101212_bib3) 2020; 176
Hoffmann (10.1016/j.isci.2020.101212_bib5) 2020; 181
Jaimes (10.1016/j.isci.2020.101212_bib8) 2019; 143
Jaimes (10.1016/j.isci.2020.101212_bib7) 2020
Straus (10.1016/j.isci.2020.101212_bib20) 2017; 12
Andersen (10.1016/j.isci.2020.101212_bib1) 2020; 26
Millet (10.1016/j.isci.2020.101212_bib15) 2014; 111
Ou (10.1016/j.isci.2020.101212_bib17) 2020; 11
Hoffmann (10.1016/j.isci.2020.101212_bib4) 2020; 28
Steinhauer (10.1016/j.isci.2020.101212_bib19) 1999; 258
Wrapp (10.1016/j.isci.2020.101212_bib23) 2020; 367
32714113 - SSRN. 2020 May 5:3581359. doi: 10.2139/ssrn.3581359
References_xml – volume: 11
  start-page: 1620
  year: 2020
  ident: bib17
  article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV
  publication-title: Nat. Commun.
– volume: 8
  year: 2017
  ident: bib16
  article-title: Genetic predisposition to acquire a polybasic cleavage site for highly pathogenic avian influenza virus hemagglutinin
  publication-title: MBio
– volume: 96
  start-page: 29
  year: 2016
  end-page: 57
  ident: bib6
  article-title: Coronavirus spike protein and tropism changes
  publication-title: Adv. Virus Res.
– volume: 88
  start-page: 1673
  year: 2014
  end-page: 1683
  ident: bib21
  article-title: A novel activation mechanism of avian influenza virus H9N2 by furin
  publication-title: J. Virol.
– volume: 181
  start-page: 271
  year: 2020
  end-page: 280
  ident: bib5
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
– volume: 202
  start-page: 120
  year: 2015
  end-page: 134
  ident: bib13
  article-title: Host cell proteases: critical determinants of coronavirus tropism and pathogenesis
  publication-title: Virus Res.
– year: 2020
  ident: bib7
  article-title: Phylogenetic analysis and structural modeling of SARS-CoV-2 spike protein reveals an evolutionary distinct and proteolytically sensitive activation loop
  publication-title: J. Mol. Biol.
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: bib25
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– volume: 258
  start-page: 1
  year: 1999
  end-page: 20
  ident: bib19
  article-title: Role of hemagglutinin cleavage for the pathogenicity of influenza virus
  publication-title: Virology
– volume: 5
  start-page: e126
  year: 2016
  ident: bib14
  article-title: A camel-derived MERS-CoV with a variant spike protein cleavage site and distinct fusion activation properties
  publication-title: Emerg. Microbes Infect.
– year: 2020
  ident: bib24
  article-title: A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein
  publication-title: Curr. Biol.
– volume: 143
  start-page: e58892
  year: 2019
  ident: bib8
  article-title: A fluorogenic peptide cleavage assay to screen for proteolytic activity: applications for coronavirus spike protein activation
  publication-title: J. Vis. Exp.
– volume: 11
  start-page: e1005261
  year: 2015
  ident: bib10
  article-title: Cleavage of a neuroinvasive human respiratory virus spike glycoprotein by proprotein convertases modulates neurovirulence and virus spread within the central nervous system
  publication-title: PLoS Pathog.
– volume: 12
  start-page: e0174827
  year: 2017
  ident: bib20
  article-title: A peptide-based approach to evaluate the adaptability of influenza A virus to humans based on its hemagglutinin proteolytic cleavage site
  publication-title: PLoS One
– volume: 26
  start-page: 450
  year: 2020
  end-page: 452
  ident: bib1
  article-title: The proximal origin of SARS-CoV-2
  publication-title: Nat. Med.
– volume: 45
  start-page: 3
  year: 1997
  end-page: 12
  ident: bib18
  article-title: Localization of endogenous furin in cultured cell lines
  publication-title: J. Histochem. Cytochem.
– volume: 176
  start-page: 104742
  year: 2020
  ident: bib3
  article-title: The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade
  publication-title: Antivir. Res.
– volume: 33
  start-page: 2431
  year: 2017
  end-page: 2435
  ident: bib11
  article-title: Use of AAScatterPlot tool for monitoring the evolution of the hemagglutinin cleavage site in H9 avian influenza viruses
  publication-title: Bioinformatics
– volume: 111
  start-page: 15214
  year: 2014
  end-page: 15219
  ident: bib15
  article-title: Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein
  publication-title: Proc. Natl. Acad. Sci.U S A
– volume: 106
  start-page: 5871
  year: 2009
  end-page: 5876
  ident: bib2
  article-title: Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 28
  start-page: 779
  year: 2020
  end-page: 784.e5
  ident: bib4
  article-title: A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells
  publication-title: Mol. Cell
– volume: 19
  start-page: 1066
  year: 2013
  end-page: 1073
  ident: bib12
  article-title: Mutation in spike protein cleavage site and pathogenesis of feline coronavirus
  publication-title: Emerg. Infect. Dis.
– volume: 181
  start-page: 281
  year: 2020
  end-page: 292.e6
  ident: bib22
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
– volume: 367
  start-page: 1260
  year: 2020
  ident: bib23
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
– volume: 85
  start-page: 324
  year: 1988
  end-page: 328
  ident: bib9
  article-title: Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 181
  start-page: 281
  year: 2020
  ident: 10.1016/j.isci.2020.101212_bib22
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– year: 2020
  ident: 10.1016/j.isci.2020.101212_bib7
  article-title: Phylogenetic analysis and structural modeling of SARS-CoV-2 spike protein reveals an evolutionary distinct and proteolytically sensitive activation loop
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2020.04.009
– volume: 106
  start-page: 5871
  year: 2009
  ident: 10.1016/j.isci.2020.101212_bib2
  article-title: Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0809524106
– volume: 8
  year: 2017
  ident: 10.1016/j.isci.2020.101212_bib16
  article-title: Genetic predisposition to acquire a polybasic cleavage site for highly pathogenic avian influenza virus hemagglutinin
  publication-title: MBio
  doi: 10.1128/mBio.02298-16
– volume: 12
  start-page: e0174827
  year: 2017
  ident: 10.1016/j.isci.2020.101212_bib20
  article-title: A peptide-based approach to evaluate the adaptability of influenza A virus to humans based on its hemagglutinin proteolytic cleavage site
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0174827
– volume: 85
  start-page: 324
  year: 1988
  ident: 10.1016/j.isci.2020.101212_bib9
  article-title: Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.85.2.324
– volume: 11
  start-page: 1620
  year: 2020
  ident: 10.1016/j.isci.2020.101212_bib17
  article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15562-9
– volume: 579
  start-page: 270
  year: 2020
  ident: 10.1016/j.isci.2020.101212_bib25
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 181
  start-page: 271
  year: 2020
  ident: 10.1016/j.isci.2020.101212_bib5
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 202
  start-page: 120
  year: 2015
  ident: 10.1016/j.isci.2020.101212_bib13
  article-title: Host cell proteases: critical determinants of coronavirus tropism and pathogenesis
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2014.11.021
– volume: 367
  start-page: 1260
  year: 2020
  ident: 10.1016/j.isci.2020.101212_bib23
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 258
  start-page: 1
  year: 1999
  ident: 10.1016/j.isci.2020.101212_bib19
  article-title: Role of hemagglutinin cleavage for the pathogenicity of influenza virus
  publication-title: Virology
  doi: 10.1006/viro.1999.9716
– volume: 96
  start-page: 29
  year: 2016
  ident: 10.1016/j.isci.2020.101212_bib6
  article-title: Coronavirus spike protein and tropism changes
  publication-title: Adv. Virus Res.
  doi: 10.1016/bs.aivir.2016.08.004
– volume: 19
  start-page: 1066
  year: 2013
  ident: 10.1016/j.isci.2020.101212_bib12
  article-title: Mutation in spike protein cleavage site and pathogenesis of feline coronavirus
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1907.121094
– volume: 5
  start-page: e126
  year: 2016
  ident: 10.1016/j.isci.2020.101212_bib14
  article-title: A camel-derived MERS-CoV with a variant spike protein cleavage site and distinct fusion activation properties
  publication-title: Emerg. Microbes Infect.
  doi: 10.1038/emi.2016.125
– volume: 28
  start-page: 779
  year: 2020
  ident: 10.1016/j.isci.2020.101212_bib4
  article-title: A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.04.022
– volume: 143
  start-page: e58892
  year: 2019
  ident: 10.1016/j.isci.2020.101212_bib8
  article-title: A fluorogenic peptide cleavage assay to screen for proteolytic activity: applications for coronavirus spike protein activation
  publication-title: J. Vis. Exp.
– volume: 33
  start-page: 2431
  year: 2017
  ident: 10.1016/j.isci.2020.101212_bib11
  article-title: Use of AAScatterPlot tool for monitoring the evolution of the hemagglutinin cleavage site in H9 avian influenza viruses
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx203
– volume: 11
  start-page: e1005261
  year: 2015
  ident: 10.1016/j.isci.2020.101212_bib10
  article-title: Cleavage of a neuroinvasive human respiratory virus spike glycoprotein by proprotein convertases modulates neurovirulence and virus spread within the central nervous system
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005261
– volume: 45
  start-page: 3
  year: 1997
  ident: 10.1016/j.isci.2020.101212_bib18
  article-title: Localization of endogenous furin in cultured cell lines
  publication-title: J. Histochem. Cytochem.
  doi: 10.1177/002215549704500102
– year: 2020
  ident: 10.1016/j.isci.2020.101212_bib24
  article-title: A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.09.030
– volume: 176
  start-page: 104742
  year: 2020
  ident: 10.1016/j.isci.2020.101212_bib3
  article-title: The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2020.104742
– volume: 88
  start-page: 1673
  year: 2014
  ident: 10.1016/j.isci.2020.101212_bib21
  article-title: A novel activation mechanism of avian influenza virus H9N2 by furin
  publication-title: J. Virol.
  doi: 10.1128/JVI.02648-13
– volume: 26
  start-page: 450
  year: 2020
  ident: 10.1016/j.isci.2020.101212_bib1
  article-title: The proximal origin of SARS-CoV-2
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0820-9
– volume: 111
  start-page: 15214
  year: 2014
  ident: 10.1016/j.isci.2020.101212_bib15
  article-title: Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein
  publication-title: Proc. Natl. Acad. Sci.U S A
  doi: 10.1073/pnas.1407087111
– reference: 32714113 - SSRN. 2020 May 5:3581359. doi: 10.2139/ssrn.3581359
SSID ssj0002002496
Score 2.5731604
Snippet Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101212
SubjectTerms Biochemistry
Biochemistry, Molecular Biology
Life Sciences
Microbiology and Parasitology
Virology
Title Proteolytic Cleavage of the SARS-CoV-2 Spike Protein and the Role of the Novel S1/S2 Site
URI https://dx.doi.org/10.1016/j.isci.2020.101212
https://www.ncbi.nlm.nih.gov/pubmed/32512386
https://www.proquest.com/docview/2411109011
https://hal.inrae.fr/hal-02919874
https://pubmed.ncbi.nlm.nih.gov/PMC7255728
https://doaj.org/article/da6d4b0d0c3c45d69b8b9f8979bafc25
Volume 23
WOSCitedRecordID wos000548240300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVoxYELAvEVoJVbcUNRE9uJ7eN2RdUDWlUNoOVk-Stq2iip2u1K_Hs8Tna1AalcuDoTWxk_28_x-A1Cn3RBja25S4UOo4kFCKXGlz7VhlFDQR5EmJhsgi8WYrmUFzupviAmbJAHHhx34nTpmMlcZqllhSulEUbWQnJpdG1JVC8NrGdnM3Udj9dACi9mlisgJihAc7wxMwR3wY3XsDkksYDkZLIqRfH-yeK0dwVRkn9T0D8jKXeWprMX6PnIKfFs-JaX6InvXqGfF6DA0Le_QiGet16vw8yB-xoHxoer2WWVzvsfKcHVbXPjcTRuOqw7Fw0u-3ZrvOjXvsVVflIF68BQX6PvZ1--zc_TMY9CakvOVynJTR6lvbQwJcjpFGHVYpwL5z1xtC4s0U4KT1hpSe55baRnnFIiapExbugbtN_1nX8HN7wd1dp5mQnHcmZEzmtdeM0zbjjRRYLyjR-VHUXGIddFqzbRZNcKfK_A92rwfYI-b9-5HSQ2HrU-he7ZWoI8diwIoFEjaNS_QJOgYtO5amQaA4MIVTWPNn4ckDBp-3z2VUFZRiT8v2HrPEFHG6CoMFbhAEZ3vn-4V4EtgcBrmFIT9HYAzrYuCkSTijJBfAKpSWPTJ11zFfXAedgWciLe_w_PfEDP4HshGI6UH9H-6u7BH6Cndr1q7u8O0R5fisM41H4DVSgotA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proteolytic+Cleavage+of+the+SARS-CoV-2+Spike+Protein+and+the+Role+of+the+Novel+S1%2FS2+Site&rft.jtitle=iScience&rft.au=Jaimes%2C+Javier+A&rft.au=Millet%2C+Jean+K.&rft.au=Whittaker%2C+Gary&rft.date=2020-06-26&rft.pub=Elsevier&rft.eissn=2589-0042&rft.volume=23&rft.issue=6&rft_id=info:doi/10.1016%2Fj.isci.2020.101212&rft_id=info%3Apmid%2F32512386&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02919874v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon