Proteolytic Cleavage of the SARS-CoV-2 Spike Protein and the Role of the Novel S1/S2 Site
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world within a few months. The origin of SARS-CoV-2 has been related to the lineage B Betacoronavirus SARS-CoV and SARS-related coronaviruses found...
Uložené v:
| Vydané v: | iScience Ročník 23; číslo 6; s. 101212 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
26.06.2020
Elsevier |
| Predmet: | |
| ISSN: | 2589-0042, 2589-0042 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world within a few months. The origin of SARS-CoV-2 has been related to the lineage B Betacoronavirus SARS-CoV and SARS-related coronaviruses found in bats. Early characterizations of the SARS-CoV-2 genome revealed the existence of a distinct four amino acid insert within the spike (S) protein (underlined, SPRRAR↓S), at the S1/S2 site located at the interface between the S1 receptor binding subunit and the S2 fusion subunit. Notably, this insert appears to be a distinguishing feature among SARS-related sequences and introduces a potential cleavage site for the protease furin. Here, we investigate the potential role of this novel S1/S2 cleavage site and present direct biochemical evidence for proteolytic processing by a variety of proteases. We discuss these findings in the context of the origin of SARS-CoV-2, viral stability, and transmission.
[Display omitted]
•SARS-CoV-2 spike protein harbors a distinct four amino acid insertion at the S1/S2 site•The S1/S2 site can be cleaved by furin-like, trypsin-like, and cathepsin proteases•The S1/S2 insert likely enhances spike protein cleavage by several proteases in vivo
Biochemistry; Virology |
|---|---|
| AbstractList | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world within a few months. The origin of SARS-CoV-2 has been related to the lineage B Betacoronavirus SARS-CoV and SARS-related coronaviruses found in bats. Early characterizations of the SARS-CoV-2 genome revealed the existence of a distinct four amino acid insert within the spike (S) protein (underlined, SPRRAR↓S), at the S1/S2 site located at the interface between the S1 receptor binding subunit and the S2 fusion subunit. Notably, this insert appears to be a distinguishing feature among SARS-related sequences and introduces a potential cleavage site for the protease furin. Here, we investigate the potential role of this novel S1/S2 cleavage site and present direct biochemical evidence for proteolytic processing by a variety of proteases. We discuss these findings in the context of the origin of SARS-CoV-2, viral stability, and transmission. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world within a few months. The origin of SARS-CoV-2 has been related to the lineage B Betacoronavirus SARS-CoV and SARS-related coronaviruses found in bats. Early characterizations of the SARS-CoV-2 genome revealed the existence of a distinct four amino acid insert within the spike (S) protein (underlined, SPRRAR↓S), at the S1/S2 site located at the interface between the S1 receptor binding subunit and the S2 fusion subunit. Notably, this insert appears to be a distinguishing feature among SARS-related sequences and introduces a potential cleavage site for the protease furin. Here, we investigate the potential role of this novel S1/S2 cleavage site and present direct biochemical evidence for proteolytic processing by a variety of proteases. We discuss these findings in the context of the origin of SARS-CoV-2, viral stability, and transmission. [Display omitted] •SARS-CoV-2 spike protein harbors a distinct four amino acid insertion at the S1/S2 site•The S1/S2 site can be cleaved by furin-like, trypsin-like, and cathepsin proteases•The S1/S2 insert likely enhances spike protein cleavage by several proteases in vivo Biochemistry; Virology Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world within a few months. The origin of SARS-CoV-2 has been related to the lineage B Betacoronavirus SARS-CoV and SARS-related coronaviruses found in bats. Early characterizations of the SARS-CoV-2 genome revealed the existence of a distinct four amino acid insert within the spike (S) protein (underlined, SPRRAR↓S), at the S1/S2 site located at the interface between the S1 receptor binding subunit and the S2 fusion subunit. Notably, this insert appears to be a distinguishing feature among SARS-related sequences and introduces a potential cleavage site for the protease furin. Here, we investigate the potential role of this novel S1/S2 cleavage site and present direct biochemical evidence for proteolytic processing by a variety of proteases. We discuss these findings in the context of the origin of SARS-CoV-2, viral stability, and transmission. • SARS-CoV-2 spike protein harbors a distinct four amino acid insertion at the S1/S2 site • The S1/S2 site can be cleaved by furin-like, trypsin-like, and cathepsin proteases • The S1/S2 insert likely enhances spike protein cleavage by several proteases in vivo Biochemistry; Virology Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world within a few months. The origin of SARS-CoV-2 has been related to the lineage B Betacoronavirus SARS-CoV and SARS-related coronaviruses found in bats. Early characterizations of the SARS-CoV-2 genome revealed the existence of a distinct four amino acid insert within the spike (S) protein (underlined, SPRRAR↓S), at the S1/S2 site located at the interface between the S1 receptor binding subunit and the S2 fusion subunit. Notably, this insert appears to be a distinguishing feature among SARS-related sequences and introduces a potential cleavage site for the protease furin. Here, we investigate the potential role of this novel S1/S2 cleavage site and present direct biochemical evidence for proteolytic processing by a variety of proteases. We discuss these findings in the context of the origin of SARS-CoV-2, viral stability, and transmission.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world within a few months. The origin of SARS-CoV-2 has been related to the lineage B Betacoronavirus SARS-CoV and SARS-related coronaviruses found in bats. Early characterizations of the SARS-CoV-2 genome revealed the existence of a distinct four amino acid insert within the spike (S) protein (underlined, SPRRAR↓S), at the S1/S2 site located at the interface between the S1 receptor binding subunit and the S2 fusion subunit. Notably, this insert appears to be a distinguishing feature among SARS-related sequences and introduces a potential cleavage site for the protease furin. Here, we investigate the potential role of this novel S1/S2 cleavage site and present direct biochemical evidence for proteolytic processing by a variety of proteases. We discuss these findings in the context of the origin of SARS-CoV-2, viral stability, and transmission. |
| ArticleNumber | 101212 |
| Author | Millet, Jean K. Whittaker, Gary R. Jaimes, Javier A. |
| Author_xml | – sequence: 1 givenname: Javier A. surname: Jaimes fullname: Jaimes, Javier A. organization: Department of Microbiology & Immunology, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA – sequence: 2 givenname: Jean K. surname: Millet fullname: Millet, Jean K. organization: Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas, France – sequence: 3 givenname: Gary R. surname: Whittaker fullname: Whittaker, Gary R. email: grw7@cornell.edu organization: Department of Microbiology & Immunology, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32512386$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-02919874$$DView record in HAL |
| BookMark | eNp9kl9v0zAUxSM0xP6wL8ADyiM8pLNvnNiWEFJVAZtUAVoBiSfLsW9alzQuTlpp335Os03bHvZk6_p3jq99z2ly1PoWk-QdJRNKaHmxnrjOuAkQOBSAwqvkBAohM0IYHD3aHyfnXbcmJJIEmCzfJMc5FBRyUZ4kf38G36Nvbnpn0lmDeq-XmPo67VeYLqbXi2zm_2SQLrbuH6YH2LWpbu0BuPbNA_zd77FJF_RiEWnX49vkda2bDs_v1rPk99cvv2aX2fzHt6vZdJ6ZkvM-A1pRwnJSaFGVlBFW5CUwzoVFBJvXhQFtpUBgpQGKvK4kMp7nIGpBGK_ys-Rq9LVer9U2uI0ON8prpw4FH5ZKh_i6BpXVpWUVscTkhhW2lJWoZC0kl5WuDRTR6_Potd1VG7QG2z7o5onp05PWrdTS7xWHouAgosHH0WD1THY5nauhRkBSKTjb08h-uLss-P877Hq1iSPFptEt-l2ngFFKiSR0QN8_7uvB-X6OERAjYILvuoC1Mq7XvfNDm65RlKghNWqthtSoITVqTE2UwjPpvfuLok-jCONk9w6DigS2Bq0LaPr49e4l-S2_9daq |
| CitedBy_id | crossref_primary_10_1038_s41598_021_91662_w crossref_primary_10_3390_biomedicines10112966 crossref_primary_10_1016_j_csbj_2022_01_024 crossref_primary_10_1038_s41392_022_01039_2 crossref_primary_10_1371_journal_ppat_1009233 crossref_primary_10_1016_j_biochi_2024_04_010 crossref_primary_10_1016_j_biopha_2021_112517 crossref_primary_10_1016_j_peptides_2020_170428 crossref_primary_10_1164_rccm_202205_0956ED crossref_primary_10_1016_j_lfs_2020_118541 crossref_primary_10_3390_microorganisms12010229 crossref_primary_10_1016_j_str_2021_04_006 crossref_primary_10_1186_s12985_024_02331_z crossref_primary_10_1186_s44149_023_00075_x crossref_primary_10_1128_msystems_00095_21 crossref_primary_10_1016_j_csbj_2024_05_037 crossref_primary_10_1051_bioconf_202412402007 crossref_primary_10_1080_19420889_2022_2057010 crossref_primary_10_3389_fimmu_2022_1032911 crossref_primary_10_1016_j_tibs_2021_06_001 crossref_primary_10_1093_oxfimm_iqaa004 crossref_primary_10_1371_journal_ppat_1011789 crossref_primary_10_3390_ijms232012522 crossref_primary_10_3390_vaccines10020251 crossref_primary_10_1063_5_0216072 crossref_primary_10_3390_ijms22031308 crossref_primary_10_1007_s10441_021_09425_z crossref_primary_10_1016_j_celrep_2025_115929 crossref_primary_10_1089_hs_2023_0008 crossref_primary_10_1016_j_genrep_2022_101537 crossref_primary_10_1016_j_jiph_2023_12_008 crossref_primary_10_1038_s41392_021_00809_8 crossref_primary_10_1371_journal_ppat_1009500 crossref_primary_10_1038_s41564_021_00958_0 crossref_primary_10_3389_fimmu_2022_982839 crossref_primary_10_1038_s44318_024_00303_1 crossref_primary_10_1128_spectrum_01514_22 crossref_primary_10_1371_journal_pbio_3001006 crossref_primary_10_1002_jmv_27539 crossref_primary_10_1007_s00726_021_02991_z crossref_primary_10_1007_s12291_021_01008_6 crossref_primary_10_3390_membranes11010064 crossref_primary_10_1007_s00289_022_04579_3 crossref_primary_10_1128_jvi_00474_22 crossref_primary_10_1016_j_carpath_2020_107278 crossref_primary_10_1038_s41467_021_23166_0 crossref_primary_10_1097_HJH_0000000000002829 crossref_primary_10_1186_s12967_020_02520_8 crossref_primary_10_3390_ijms23169089 crossref_primary_10_3390_v12111289 crossref_primary_10_1038_s41467_023_44076_3 crossref_primary_10_3390_cells9092046 crossref_primary_10_7554_eLife_77444 crossref_primary_10_1038_s41564_024_01786_8 crossref_primary_10_1113_JP281499 crossref_primary_10_1128_JVI_01751_20 crossref_primary_10_7759_cureus_57008 crossref_primary_10_1016_j_virusres_2023_199283 crossref_primary_10_1002_jmv_26615 crossref_primary_10_5812_pedinfect_113298 crossref_primary_10_3390_biochem2020009 crossref_primary_10_1016_j_virol_2021_11_012 crossref_primary_10_1111_febs_16114 crossref_primary_10_1007_s11356_021_12969_9 crossref_primary_10_3389_fimmu_2021_743022 crossref_primary_10_1126_sciimmunol_ade0958 crossref_primary_10_2217_fvl_2020_0384 crossref_primary_10_1002_rmv_2207 crossref_primary_10_1007_s40203_020_00058_7 crossref_primary_10_1016_j_bbrc_2020_10_080 crossref_primary_10_3390_biology12081070 crossref_primary_10_3390_cells9112343 crossref_primary_10_3390_ijms22063134 crossref_primary_10_3390_biom14050537 crossref_primary_10_2174_1381612828666220907105543 crossref_primary_10_3390_cells11030437 crossref_primary_10_1038_s41598_025_11600_y crossref_primary_10_1007_s11033_022_08193_4 crossref_primary_10_1016_j_isci_2024_110387 crossref_primary_10_1093_femsre_fuaa057 crossref_primary_10_1039_D2SC06967A crossref_primary_10_3390_cells11081262 crossref_primary_10_1177_1721727X221095382 crossref_primary_10_4103_jomfp_jomfp_208_23 crossref_primary_10_1007_s42247_021_00168_8 crossref_primary_10_3390_v16081243 crossref_primary_10_1128_jvi_01992_22 crossref_primary_10_1097_MNH_0000000000000692 crossref_primary_10_3389_fmicb_2022_789882 crossref_primary_10_3389_fcimb_2021_596201 crossref_primary_10_1038_s41467_021_24156_y crossref_primary_10_1128_JVI_00002_21 crossref_primary_10_1007_s40495_025_00390_6 crossref_primary_10_1111_febs_15651 crossref_primary_10_1177_02184923211069185 crossref_primary_10_17116_repro20212703170 crossref_primary_10_1128_jvi_01823_24 crossref_primary_10_1016_j_ijbiomac_2021_04_157 crossref_primary_10_1002_rmv_2347 crossref_primary_10_1002_cbic_202400404 crossref_primary_10_1097_MS9_0000000000000950 crossref_primary_10_1128_jvi_01351_23 crossref_primary_10_1093_cid_ciab283 crossref_primary_10_1093_bib_bbab056 crossref_primary_10_1016_j_csbj_2020_12_035 crossref_primary_10_17116_repro20212703215 crossref_primary_10_1093_function_zqaa024 crossref_primary_10_3389_fphar_2022_1007527 crossref_primary_10_3390_scipharm89010002 crossref_primary_10_3390_cells10071752 crossref_primary_10_1007_s10311_021_01211_0 crossref_primary_10_1042_BST20240833 crossref_primary_10_1111_imr_13114 crossref_primary_10_3390_v13030425 crossref_primary_10_1016_j_jped_2020_09_002 crossref_primary_10_1016_j_envres_2020_110317 crossref_primary_10_3389_fmicb_2023_1251716 crossref_primary_10_3390_v14030465 crossref_primary_10_3390_v14061308 crossref_primary_10_1007_s11033_022_07359_4 crossref_primary_10_1016_j_csbj_2021_10_038 crossref_primary_10_3390_antib11020035 crossref_primary_10_1016_j_bpj_2021_02_023 crossref_primary_10_3390_ijms24054523 crossref_primary_10_3390_v13091703 crossref_primary_10_1016_j_pbiomolbio_2023_02_004 crossref_primary_10_3389_fmicb_2020_02016 crossref_primary_10_1002_rmv_2213 crossref_primary_10_1128_JVI_00140_21 crossref_primary_10_1080_17512433_2021_1874348 crossref_primary_10_1002_cti2_1189 crossref_primary_10_2147_IDR_S308176 crossref_primary_10_1002_jmv_28796 crossref_primary_10_3389_fmolb_2020_588618 crossref_primary_10_1016_j_isci_2021_103589 crossref_primary_10_1002_med_21919 crossref_primary_10_3390_diseases9010017 crossref_primary_10_1038_s41598_021_99642_w crossref_primary_10_3389_fbioe_2022_1083232 crossref_primary_10_1007_s00289_023_04755_z crossref_primary_10_1007_s40121_021_00400_2 crossref_primary_10_1002_jmv_27467 crossref_primary_10_1007_s15010_021_01677_8 crossref_primary_10_1016_j_fct_2020_111805 crossref_primary_10_1016_j_nantod_2021_101350 crossref_primary_10_3390_v13122511 crossref_primary_10_1128_JVI_00398_21 crossref_primary_10_3389_fbioe_2022_1052436 crossref_primary_10_1038_s41581_020_00357_4 crossref_primary_10_1016_j_jmb_2021_167280 crossref_primary_10_1073_pnas_2026207118 crossref_primary_10_1128_jvi_00685_25 crossref_primary_10_2174_0929867328666210526111318 crossref_primary_10_3389_fimmu_2020_569760 crossref_primary_10_1038_s41467_024_48503_x crossref_primary_10_1111_bph_16187 crossref_primary_10_1371_journal_pone_0306197 crossref_primary_10_3389_fcell_2022_824851 crossref_primary_10_1002_jmv_27749 crossref_primary_10_1016_j_antiviral_2023_105655 crossref_primary_10_3390_ph13120447 crossref_primary_10_1038_s41564_021_00908_w crossref_primary_10_3390_vaccines10091509 crossref_primary_10_1007_s00228_021_03102_3 crossref_primary_10_3390_cells10010030 crossref_primary_10_1002_1873_3468_14038 crossref_primary_10_1002_pro_4390 crossref_primary_10_1016_j_vaccine_2022_12_067 crossref_primary_10_3390_atmos11090995 crossref_primary_10_1016_j_tips_2020_07_004 crossref_primary_10_1371_journal_pone_0251649 crossref_primary_10_3892_mmr_2024_13272 crossref_primary_10_1002_rmv_2236 crossref_primary_10_1016_j_bcp_2020_114225 crossref_primary_10_3390_v14030481 crossref_primary_10_1002_psc_3541 crossref_primary_10_3389_fimmu_2022_987453 crossref_primary_10_1247_csf_21047 crossref_primary_10_1093_molbev_msab327 crossref_primary_10_3390_molecules27217572 crossref_primary_10_3389_fbioe_2020_00885 crossref_primary_10_3390_v15030639 crossref_primary_10_1016_j_lpm_2023_104167 crossref_primary_10_1038_s41586_022_05181_3 crossref_primary_10_1111_his_14264 crossref_primary_10_3389_fmed_2020_594495 crossref_primary_10_1016_j_molliq_2024_126100 crossref_primary_10_1016_j_virol_2025_110661 crossref_primary_10_3390_v15091930 crossref_primary_10_1016_j_yjmcc_2020_08_002 crossref_primary_10_1111_1348_0421_12945 crossref_primary_10_3390_ijms24054791 |
| Cites_doi | 10.1016/j.cell.2020.02.058 10.1016/j.jmb.2020.04.009 10.1073/pnas.0809524106 10.1128/mBio.02298-16 10.1371/journal.pone.0174827 10.1073/pnas.85.2.324 10.1038/s41467-020-15562-9 10.1038/s41586-020-2012-7 10.1016/j.cell.2020.02.052 10.1016/j.virusres.2014.11.021 10.1126/science.abb2507 10.1006/viro.1999.9716 10.1016/bs.aivir.2016.08.004 10.3201/eid1907.121094 10.1038/emi.2016.125 10.1016/j.molcel.2020.04.022 10.1093/bioinformatics/btx203 10.1371/journal.ppat.1005261 10.1177/002215549704500102 10.1016/j.cub.2020.09.030 10.1016/j.antiviral.2020.104742 10.1128/JVI.02648-13 10.1038/s41591-020-0820-9 10.1073/pnas.1407087111 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. Attribution - NoDerivatives 2020 The Authors 2020 |
| Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Attribution - NoDerivatives – notice: 2020 The Authors 2020 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 1XC VOOES 5PM DOA |
| DOI | 10.1016/j.isci.2020.101212 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2589-0042 |
| ExternalDocumentID | oai_doaj_org_article_da6d4b0d0c3c45d69b8b9f8979bafc25 PMC7255728 oai:HAL:hal-02919874v1 32512386 10_1016_j_isci_2020_101212 S2589004220303977 |
| Genre | Journal Article |
| GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD NPM 7X8 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c677t-21b104305a8b6140453624778dee2d3f5c2ad98e246c21e7fb9e473328f8047b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 229 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548240300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2589-0042 |
| IngestDate | Fri Oct 03 12:52:47 EDT 2025 Tue Sep 30 16:49:31 EDT 2025 Tue Oct 14 20:11:02 EDT 2025 Fri Jul 11 08:48:36 EDT 2025 Mon Jul 21 05:32:54 EDT 2025 Thu Nov 13 04:15:25 EST 2025 Tue Nov 18 21:55:00 EST 2025 Tue Jul 25 21:04:54 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Biochemistry Virology |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. Attribution - NoDerivatives: http://creativecommons.org/licenses/by-nd This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c677t-21b104305a8b6140453624778dee2d3f5c2ad98e246c21e7fb9e473328f8047b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
| ORCID | 0000-0001-8373-3688 0000-0001-6706-092X |
| OpenAccessLink | https://doaj.org/article/da6d4b0d0c3c45d69b8b9f8979bafc25 |
| PMID | 32512386 |
| PQID | 2411109011 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_da6d4b0d0c3c45d69b8b9f8979bafc25 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7255728 hal_primary_oai_HAL_hal_02919874v1 proquest_miscellaneous_2411109011 pubmed_primary_32512386 crossref_citationtrail_10_1016_j_isci_2020_101212 crossref_primary_10_1016_j_isci_2020_101212 elsevier_sciencedirect_doi_10_1016_j_isci_2020_101212 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-26 |
| PublicationDateYYYYMMDD | 2020-06-26 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | iScience |
| PublicationTitleAlternate | iScience |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Straus, Whittaker (bib20) 2017; 12 Steinhauer (bib19) 1999; 258 Hoffmann, Kleine-Weber, Pöhlmann (bib4) 2020; 28 Coutard, Valle, de Lamballerie, Canard, Seidah, Decroly (bib3) 2020; 176 Tse, Hamilton, Friling, Whittaker (bib21) 2014; 88 Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib25) 2020; 579 Millet, Goldstein, Labitt, Hsu, Daniel, Whittaker (bib14) 2016; 5 Millet, Whittaker (bib13) 2015; 202 Jaimes, Andre, Chappie, Millet, Whittaker (bib7) 2020 Shapiro, Sciaky, Lee, Bosshart, Angeletti, Bonifacino (bib18) 1997; 45 Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche (bib5) 2020; 181 Kawaoka, Webster (bib9) 1988; 85 Andersen, Rambaut, Lipkin, Holmes, Garry (bib1) 2020; 26 Ou, Liu, Lei, Li, Mi, Ren, Guo, Guo, Chen, Hu (bib17) 2020; 11 Licitra, Millet, Regan, Hamilton, Rinaldi, Duhamel, Whittaker (bib12) 2013; 19 Jaimes, Millet, Goldstein, Whittaker, Straus (bib8) 2019; 143 Belouzard, Chu, Whittaker (bib2) 2009; 106 Hulswit, de Haan, Bosch (bib6) 2016; 96 Lee, Whittaker (bib11) 2017; 33 Nao, Yamagishi, Miyamoto, Igarashi, Manzoor, Ohnuma, Tsuda, Furuyama, Shigeno, Kajihara (bib16) 2017; 8 Le Coupanec, Desforges, Meessen-Pinard, Dube, Day, Seidah, Talbot (bib10) 2015; 11 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib23) 2020; 367 Walls, Park, Tortorici, Wall, McGuire, Veesler (bib22) 2020; 181 Zhou, Chen, Hu, Li, Song, Liu, Wang, Liu, Yang, Holmes (bib24) 2020 Millet, Whittaker (bib15) 2014; 111 Zhou (10.1016/j.isci.2020.101212_bib24) 2020 Millet (10.1016/j.isci.2020.101212_bib14) 2016; 5 Licitra (10.1016/j.isci.2020.101212_bib12) 2013; 19 Tse (10.1016/j.isci.2020.101212_bib21) 2014; 88 Shapiro (10.1016/j.isci.2020.101212_bib18) 1997; 45 Kawaoka (10.1016/j.isci.2020.101212_bib9) 1988; 85 Nao (10.1016/j.isci.2020.101212_bib16) 2017; 8 Zhou (10.1016/j.isci.2020.101212_bib25) 2020; 579 Walls (10.1016/j.isci.2020.101212_bib22) 2020; 181 Millet (10.1016/j.isci.2020.101212_bib13) 2015; 202 Lee (10.1016/j.isci.2020.101212_bib11) 2017; 33 Hulswit (10.1016/j.isci.2020.101212_bib6) 2016; 96 Belouzard (10.1016/j.isci.2020.101212_bib2) 2009; 106 Le Coupanec (10.1016/j.isci.2020.101212_bib10) 2015; 11 Coutard (10.1016/j.isci.2020.101212_bib3) 2020; 176 Hoffmann (10.1016/j.isci.2020.101212_bib5) 2020; 181 Jaimes (10.1016/j.isci.2020.101212_bib8) 2019; 143 Jaimes (10.1016/j.isci.2020.101212_bib7) 2020 Straus (10.1016/j.isci.2020.101212_bib20) 2017; 12 Andersen (10.1016/j.isci.2020.101212_bib1) 2020; 26 Millet (10.1016/j.isci.2020.101212_bib15) 2014; 111 Ou (10.1016/j.isci.2020.101212_bib17) 2020; 11 Hoffmann (10.1016/j.isci.2020.101212_bib4) 2020; 28 Steinhauer (10.1016/j.isci.2020.101212_bib19) 1999; 258 Wrapp (10.1016/j.isci.2020.101212_bib23) 2020; 367 32714113 - SSRN. 2020 May 5:3581359. doi: 10.2139/ssrn.3581359 |
| References_xml | – volume: 11 start-page: 1620 year: 2020 ident: bib17 article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV publication-title: Nat. Commun. – volume: 8 year: 2017 ident: bib16 article-title: Genetic predisposition to acquire a polybasic cleavage site for highly pathogenic avian influenza virus hemagglutinin publication-title: MBio – volume: 96 start-page: 29 year: 2016 end-page: 57 ident: bib6 article-title: Coronavirus spike protein and tropism changes publication-title: Adv. Virus Res. – volume: 88 start-page: 1673 year: 2014 end-page: 1683 ident: bib21 article-title: A novel activation mechanism of avian influenza virus H9N2 by furin publication-title: J. Virol. – volume: 181 start-page: 271 year: 2020 end-page: 280 ident: bib5 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell – volume: 202 start-page: 120 year: 2015 end-page: 134 ident: bib13 article-title: Host cell proteases: critical determinants of coronavirus tropism and pathogenesis publication-title: Virus Res. – year: 2020 ident: bib7 article-title: Phylogenetic analysis and structural modeling of SARS-CoV-2 spike protein reveals an evolutionary distinct and proteolytically sensitive activation loop publication-title: J. Mol. Biol. – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: bib25 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – volume: 258 start-page: 1 year: 1999 end-page: 20 ident: bib19 article-title: Role of hemagglutinin cleavage for the pathogenicity of influenza virus publication-title: Virology – volume: 5 start-page: e126 year: 2016 ident: bib14 article-title: A camel-derived MERS-CoV with a variant spike protein cleavage site and distinct fusion activation properties publication-title: Emerg. Microbes Infect. – year: 2020 ident: bib24 article-title: A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein publication-title: Curr. Biol. – volume: 143 start-page: e58892 year: 2019 ident: bib8 article-title: A fluorogenic peptide cleavage assay to screen for proteolytic activity: applications for coronavirus spike protein activation publication-title: J. Vis. Exp. – volume: 11 start-page: e1005261 year: 2015 ident: bib10 article-title: Cleavage of a neuroinvasive human respiratory virus spike glycoprotein by proprotein convertases modulates neurovirulence and virus spread within the central nervous system publication-title: PLoS Pathog. – volume: 12 start-page: e0174827 year: 2017 ident: bib20 article-title: A peptide-based approach to evaluate the adaptability of influenza A virus to humans based on its hemagglutinin proteolytic cleavage site publication-title: PLoS One – volume: 26 start-page: 450 year: 2020 end-page: 452 ident: bib1 article-title: The proximal origin of SARS-CoV-2 publication-title: Nat. Med. – volume: 45 start-page: 3 year: 1997 end-page: 12 ident: bib18 article-title: Localization of endogenous furin in cultured cell lines publication-title: J. Histochem. Cytochem. – volume: 176 start-page: 104742 year: 2020 ident: bib3 article-title: The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade publication-title: Antivir. Res. – volume: 33 start-page: 2431 year: 2017 end-page: 2435 ident: bib11 article-title: Use of AAScatterPlot tool for monitoring the evolution of the hemagglutinin cleavage site in H9 avian influenza viruses publication-title: Bioinformatics – volume: 111 start-page: 15214 year: 2014 end-page: 15219 ident: bib15 article-title: Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein publication-title: Proc. Natl. Acad. Sci.U S A – volume: 106 start-page: 5871 year: 2009 end-page: 5876 ident: bib2 article-title: Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites publication-title: Proc. Natl. Acad. Sci. U S A – volume: 28 start-page: 779 year: 2020 end-page: 784.e5 ident: bib4 article-title: A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells publication-title: Mol. Cell – volume: 19 start-page: 1066 year: 2013 end-page: 1073 ident: bib12 article-title: Mutation in spike protein cleavage site and pathogenesis of feline coronavirus publication-title: Emerg. Infect. Dis. – volume: 181 start-page: 281 year: 2020 end-page: 292.e6 ident: bib22 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell – volume: 367 start-page: 1260 year: 2020 ident: bib23 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 85 start-page: 324 year: 1988 end-page: 328 ident: bib9 article-title: Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells publication-title: Proc. Natl. Acad. Sci. U S A – volume: 181 start-page: 281 year: 2020 ident: 10.1016/j.isci.2020.101212_bib22 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – year: 2020 ident: 10.1016/j.isci.2020.101212_bib7 article-title: Phylogenetic analysis and structural modeling of SARS-CoV-2 spike protein reveals an evolutionary distinct and proteolytically sensitive activation loop publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2020.04.009 – volume: 106 start-page: 5871 year: 2009 ident: 10.1016/j.isci.2020.101212_bib2 article-title: Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0809524106 – volume: 8 year: 2017 ident: 10.1016/j.isci.2020.101212_bib16 article-title: Genetic predisposition to acquire a polybasic cleavage site for highly pathogenic avian influenza virus hemagglutinin publication-title: MBio doi: 10.1128/mBio.02298-16 – volume: 12 start-page: e0174827 year: 2017 ident: 10.1016/j.isci.2020.101212_bib20 article-title: A peptide-based approach to evaluate the adaptability of influenza A virus to humans based on its hemagglutinin proteolytic cleavage site publication-title: PLoS One doi: 10.1371/journal.pone.0174827 – volume: 85 start-page: 324 year: 1988 ident: 10.1016/j.isci.2020.101212_bib9 article-title: Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.85.2.324 – volume: 11 start-page: 1620 year: 2020 ident: 10.1016/j.isci.2020.101212_bib17 article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV publication-title: Nat. Commun. doi: 10.1038/s41467-020-15562-9 – volume: 579 start-page: 270 year: 2020 ident: 10.1016/j.isci.2020.101212_bib25 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 181 start-page: 271 year: 2020 ident: 10.1016/j.isci.2020.101212_bib5 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 202 start-page: 120 year: 2015 ident: 10.1016/j.isci.2020.101212_bib13 article-title: Host cell proteases: critical determinants of coronavirus tropism and pathogenesis publication-title: Virus Res. doi: 10.1016/j.virusres.2014.11.021 – volume: 367 start-page: 1260 year: 2020 ident: 10.1016/j.isci.2020.101212_bib23 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 258 start-page: 1 year: 1999 ident: 10.1016/j.isci.2020.101212_bib19 article-title: Role of hemagglutinin cleavage for the pathogenicity of influenza virus publication-title: Virology doi: 10.1006/viro.1999.9716 – volume: 96 start-page: 29 year: 2016 ident: 10.1016/j.isci.2020.101212_bib6 article-title: Coronavirus spike protein and tropism changes publication-title: Adv. Virus Res. doi: 10.1016/bs.aivir.2016.08.004 – volume: 19 start-page: 1066 year: 2013 ident: 10.1016/j.isci.2020.101212_bib12 article-title: Mutation in spike protein cleavage site and pathogenesis of feline coronavirus publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1907.121094 – volume: 5 start-page: e126 year: 2016 ident: 10.1016/j.isci.2020.101212_bib14 article-title: A camel-derived MERS-CoV with a variant spike protein cleavage site and distinct fusion activation properties publication-title: Emerg. Microbes Infect. doi: 10.1038/emi.2016.125 – volume: 28 start-page: 779 year: 2020 ident: 10.1016/j.isci.2020.101212_bib4 article-title: A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.04.022 – volume: 143 start-page: e58892 year: 2019 ident: 10.1016/j.isci.2020.101212_bib8 article-title: A fluorogenic peptide cleavage assay to screen for proteolytic activity: applications for coronavirus spike protein activation publication-title: J. Vis. Exp. – volume: 33 start-page: 2431 year: 2017 ident: 10.1016/j.isci.2020.101212_bib11 article-title: Use of AAScatterPlot tool for monitoring the evolution of the hemagglutinin cleavage site in H9 avian influenza viruses publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx203 – volume: 11 start-page: e1005261 year: 2015 ident: 10.1016/j.isci.2020.101212_bib10 article-title: Cleavage of a neuroinvasive human respiratory virus spike glycoprotein by proprotein convertases modulates neurovirulence and virus spread within the central nervous system publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005261 – volume: 45 start-page: 3 year: 1997 ident: 10.1016/j.isci.2020.101212_bib18 article-title: Localization of endogenous furin in cultured cell lines publication-title: J. Histochem. Cytochem. doi: 10.1177/002215549704500102 – year: 2020 ident: 10.1016/j.isci.2020.101212_bib24 article-title: A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.09.030 – volume: 176 start-page: 104742 year: 2020 ident: 10.1016/j.isci.2020.101212_bib3 article-title: The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2020.104742 – volume: 88 start-page: 1673 year: 2014 ident: 10.1016/j.isci.2020.101212_bib21 article-title: A novel activation mechanism of avian influenza virus H9N2 by furin publication-title: J. Virol. doi: 10.1128/JVI.02648-13 – volume: 26 start-page: 450 year: 2020 ident: 10.1016/j.isci.2020.101212_bib1 article-title: The proximal origin of SARS-CoV-2 publication-title: Nat. Med. doi: 10.1038/s41591-020-0820-9 – volume: 111 start-page: 15214 year: 2014 ident: 10.1016/j.isci.2020.101212_bib15 article-title: Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein publication-title: Proc. Natl. Acad. Sci.U S A doi: 10.1073/pnas.1407087111 – reference: 32714113 - SSRN. 2020 May 5:3581359. doi: 10.2139/ssrn.3581359 |
| SSID | ssj0002002496 |
| Score | 2.5731604 |
| Snippet | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 101212 |
| SubjectTerms | Biochemistry Biochemistry, Molecular Biology Life Sciences Microbiology and Parasitology Virology |
| Title | Proteolytic Cleavage of the SARS-CoV-2 Spike Protein and the Role of the Novel S1/S2 Site |
| URI | https://dx.doi.org/10.1016/j.isci.2020.101212 https://www.ncbi.nlm.nih.gov/pubmed/32512386 https://www.proquest.com/docview/2411109011 https://hal.inrae.fr/hal-02919874 https://pubmed.ncbi.nlm.nih.gov/PMC7255728 https://doaj.org/article/da6d4b0d0c3c45d69b8b9f8979bafc25 |
| Volume | 23 |
| WOSCitedRecordID | wos000548240300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZoxYELAvEKlMogbijqxm8flxVVD9WqaqBaTpZjO-q2UVK125X49x072dUGpHLhOhnb8njs-RyPPyP0pVAQ5hyMgPXxSo6uirxytc49pZZSz0SdbqVdnMr5XC0W-mznqa-YE9bTA_eGO_JWeFZN_MRRx7gXulKVrpWWurK1I4m9FFDPzmbqKh2vRSq89LIcjzlB4JrDjZk-uSveeIXNIUkCUpBRVErk_aPgtHcZsyT_hqB_ZlLuhKbjF-j5gCnxtO_LS_QktK_Qr7PIwNA1v0GIZ02wa1g5cFdjQHy4nJ6X-ay7yAkub5bXASflZYtt65PCeddslefdOjS4LI5K0AaE-hr9PP7-Y3aSD-8o5E5IucpJURWJ2suqSkQ6HQ5Ri0mpfAjE05o7Yr1WgTDhSBFkXenAJKVE1WrCZEXfoP22a8M7hGtYIKzg3HGvAUhZC0Ud58QyGwRTLkPFxo7GDSTj8a2Lxmyyya5MtL2Jtje97TP0dVvmpqfYeFT7WxyerWakx04CcBozOI35l9NkiG8G1wxIo0cQUNXy0cY_gyeM2j6ZnpoomxAd_9-wdZGhTxtHMTBX4wGMbUN3f2cALUWCV1hSM_S2d5xtXTQCTapEhuTIpUaNjb-0y8vEBy5hWyiJev8_LPMBPYv9jclwRByg_dXtffiInrr1anl3e4j25EIdpqn2ALOWKDI |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proteolytic+Cleavage+of+the+SARS-CoV-2+Spike+Protein+and+the+Role+of+the+Novel+S1%2FS2+Site&rft.jtitle=iScience&rft.au=Jaimes%2C+Javier+A.&rft.au=Millet%2C+Jean+K.&rft.au=Whittaker%2C+Gary+R.&rft.date=2020-06-26&rft.pub=Elsevier+Inc&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=23&rft.issue=6&rft_id=info:doi/10.1016%2Fj.isci.2020.101212&rft.externalDocID=S2589004220303977 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |