Reprogramming of murine and human somatic cells using a single polycistronic vector

Directed reprogramming of somatic cells by defined factors provides a novel method for the generation of patient-specific stem cells with the potential to bypass both the practical and ethical concerns associated with somatic cell nuclear transfer (SCNT) and human embryonic stem (hES) cells. Althoug...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the National Academy of Sciences - PNAS Ročník 106; číslo 1; s. 157
Hlavní autori: Carey, Bryce W, Markoulaki, Styliani, Hanna, Jacob, Saha, Kris, Gao, Qing, Mitalipova, Maisam, Jaenisch, Rudolf
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 06.01.2009
Predmet:
ISSN:1091-6490, 1091-6490
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Directed reprogramming of somatic cells by defined factors provides a novel method for the generation of patient-specific stem cells with the potential to bypass both the practical and ethical concerns associated with somatic cell nuclear transfer (SCNT) and human embryonic stem (hES) cells. Although the generation of induced pluripotent stem (iPS) cells has proven a robust technology in mouse and human, a major impediment to the use of iPS cells for therapeutic purposes has been the viral-based delivery of the reprogramming factors because multiple proviral integrations pose the danger of insertional mutagenesis. Here we report a novel approach to reduce the number of viruses necessary to reprogram somatic cells by delivering reprogramming factors in a single virus using 2A "self-cleaving" peptides, which support efficient polycistronic expression from a single promoter. We find that up to four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) can be expressed from a single virus to generate iPS cells in both embryonic and adult somatic mouse cells and we show that a single proviral copy is sufficient to generate iPS cells from mouse embryonic fibroblasts. In addition we have generated human induced pluripotent stem (hiPS) cell lines from human keratinocytes, demonstrating that a single polycistronic virus can reprogram human somatic cells.
AbstractList Directed reprogramming of somatic cells by defined factors provides a novel method for the generation of patient-specific stem cells with the potential to bypass both the practical and ethical concerns associated with somatic cell nuclear transfer (SCNT) and human embryonic stem (hES) cells. Although the generation of induced pluripotent stem (iPS) cells has proven a robust technology in mouse and human, a major impediment to the use of iPS cells for therapeutic purposes has been the viral-based delivery of the reprogramming factors because multiple proviral integrations pose the danger of insertional mutagenesis. Here we report a novel approach to reduce the number of viruses necessary to reprogram somatic cells by delivering reprogramming factors in a single virus using 2A "self-cleaving" peptides, which support efficient polycistronic expression from a single promoter. We find that up to four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) can be expressed from a single virus to generate iPS cells in both embryonic and adult somatic mouse cells and we show that a single proviral copy is sufficient to generate iPS cells from mouse embryonic fibroblasts. In addition we have generated human induced pluripotent stem (hiPS) cell lines from human keratinocytes, demonstrating that a single polycistronic virus can reprogram human somatic cells.
Directed reprogramming of somatic cells by defined factors provides a novel method for the generation of patient-specific stem cells with the potential to bypass both the practical and ethical concerns associated with somatic cell nuclear transfer (SCNT) and human embryonic stem (hES) cells. Although the generation of induced pluripotent stem (iPS) cells has proven a robust technology in mouse and human, a major impediment to the use of iPS cells for therapeutic purposes has been the viral-based delivery of the reprogramming factors because multiple proviral integrations pose the danger of insertional mutagenesis. Here we report a novel approach to reduce the number of viruses necessary to reprogram somatic cells by delivering reprogramming factors in a single virus using 2A "self-cleaving" peptides, which support efficient polycistronic expression from a single promoter. We find that up to four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) can be expressed from a single virus to generate iPS cells in both embryonic and adult somatic mouse cells and we show that a single proviral copy is sufficient to generate iPS cells from mouse embryonic fibroblasts. In addition we have generated human induced pluripotent stem (hiPS) cell lines from human keratinocytes, demonstrating that a single polycistronic virus can reprogram human somatic cells.Directed reprogramming of somatic cells by defined factors provides a novel method for the generation of patient-specific stem cells with the potential to bypass both the practical and ethical concerns associated with somatic cell nuclear transfer (SCNT) and human embryonic stem (hES) cells. Although the generation of induced pluripotent stem (iPS) cells has proven a robust technology in mouse and human, a major impediment to the use of iPS cells for therapeutic purposes has been the viral-based delivery of the reprogramming factors because multiple proviral integrations pose the danger of insertional mutagenesis. Here we report a novel approach to reduce the number of viruses necessary to reprogram somatic cells by delivering reprogramming factors in a single virus using 2A "self-cleaving" peptides, which support efficient polycistronic expression from a single promoter. We find that up to four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) can be expressed from a single virus to generate iPS cells in both embryonic and adult somatic mouse cells and we show that a single proviral copy is sufficient to generate iPS cells from mouse embryonic fibroblasts. In addition we have generated human induced pluripotent stem (hiPS) cell lines from human keratinocytes, demonstrating that a single polycistronic virus can reprogram human somatic cells.
Author Mitalipova, Maisam
Gao, Qing
Carey, Bryce W
Hanna, Jacob
Jaenisch, Rudolf
Saha, Kris
Markoulaki, Styliani
Author_xml – sequence: 1
  givenname: Bryce W
  surname: Carey
  fullname: Carey, Bryce W
  organization: Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
– sequence: 2
  givenname: Styliani
  surname: Markoulaki
  fullname: Markoulaki, Styliani
– sequence: 3
  givenname: Jacob
  surname: Hanna
  fullname: Hanna, Jacob
– sequence: 4
  givenname: Kris
  surname: Saha
  fullname: Saha, Kris
– sequence: 5
  givenname: Qing
  surname: Gao
  fullname: Gao, Qing
– sequence: 6
  givenname: Maisam
  surname: Mitalipova
  fullname: Mitalipova, Maisam
– sequence: 7
  givenname: Rudolf
  surname: Jaenisch
  fullname: Jaenisch, Rudolf
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19109433$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAUhYOMOA9du5Os3HXMTdOkXcrgCwYEH-uS5jFWmqQmrTD_3g6O4OocuN-9nHOXaOaDNwhdAlkDEflN72VakxKAUQ6En6AFkAoyzioy--fnaJnSJyGkKkpyhuZQTSOW5wv0-mL6GHZROtf6HQ4WuzG23mDpNf4YnfQ4BSeHVmFlui7hMR04iQ_SGdyHbq_aNMTgJ-TbqCHEc3RqZZfMxVFX6P3-7m3zmG2fH542t9tMccGHzNqGMs0aCqXWgjdC54yZQrGGCAUSqnxKWDCwqlAqZ1RUtmGcFqIQwEvN6Apd_96dGnyNJg21a9MhpfQmjKnmvCTTHp3AqyM4Ns7ouo-tk3Ff_72B_gDL8mGb
CitedBy_id crossref_primary_10_1038_s41467_021_25249_4
crossref_primary_10_1007_s00423_009_0546_0
crossref_primary_10_1016_j_cub_2014_10_018
crossref_primary_10_1007_s12015_020_10052_3
crossref_primary_10_1016_j_molmed_2016_06_005
crossref_primary_10_1242_jcs_194035
crossref_primary_10_1101_gad_1963910
crossref_primary_10_1073_pnas_0904825106
crossref_primary_10_1016_j_yexcr_2014_02_006
crossref_primary_10_1038_srep15234
crossref_primary_10_1111_j_1749_6632_2009_04563_x
crossref_primary_10_1074_jbc_M110_183780
crossref_primary_10_1186_s12885_018_4145_8
crossref_primary_10_1016_j_jcgg_2010_12_003
crossref_primary_10_1534_genetics_113_160846
crossref_primary_10_1038_ncb2800
crossref_primary_10_1155_2012_767195
crossref_primary_10_1016_j_ab_2009_07_031
crossref_primary_10_1089_ars_2010_3388
crossref_primary_10_1016_j_stem_2019_10_002
crossref_primary_10_3389_fbioe_2023_1101122
crossref_primary_10_1038_srep00657
crossref_primary_10_1038_cr_2009_20
crossref_primary_10_1146_annurev_physiol_021113_170301
crossref_primary_10_1016_j_bbrc_2010_02_150
crossref_primary_10_1007_s00246_009_9450_1
crossref_primary_10_1002_adhm_201200017
crossref_primary_10_1371_journal_pone_0063577
crossref_primary_10_3389_fcell_2017_00070
crossref_primary_10_1016_j_biomaterials_2023_122215
crossref_primary_10_7554_eLife_01846
crossref_primary_10_1371_journal_pone_0019986
crossref_primary_10_1016_j_biomaterials_2011_02_049
crossref_primary_10_1089_ars_2010_3814
crossref_primary_10_1002_jcp_25597
crossref_primary_10_1007_s00253_011_3392_2
crossref_primary_10_1111_j_1365_2184_2010_00723_x
crossref_primary_10_2217_fmb_10_100
crossref_primary_10_1101_gad_1811609
crossref_primary_10_1093_carcin_bgs104
crossref_primary_10_1002_stem_2453
crossref_primary_10_1371_journal_pone_0049065
crossref_primary_10_1371_journal_pone_0159477
crossref_primary_10_1016_j_tcb_2010_08_003
crossref_primary_10_1371_journal_pone_0064342
crossref_primary_10_3390_ijms21155467
crossref_primary_10_1007_s12015_023_10633_y
crossref_primary_10_7717_peerj_4370
crossref_primary_10_3390_cells7120261
crossref_primary_10_1371_journal_pone_0012664
crossref_primary_10_1007_s13238_011_1025_2
crossref_primary_10_1016_j_scr_2018_06_010
crossref_primary_10_1371_journal_pone_0006529
crossref_primary_10_1038_s41598_017_02460_2
crossref_primary_10_1038_srep00075
crossref_primary_10_1089_ten_tea_2019_0027
crossref_primary_10_1093_molehr_gau012
crossref_primary_10_1182_blood_2009_03_191304
crossref_primary_10_1089_cell_2009_0077
crossref_primary_10_3390_cells13070596
crossref_primary_10_1155_2012_423868
crossref_primary_10_1038_nmeth_1899
crossref_primary_10_1371_journal_pone_0103485
crossref_primary_10_1371_journal_pone_0124958
crossref_primary_10_1002_stem_201
crossref_primary_10_1002_stem_322
crossref_primary_10_1042_BJ20120146
crossref_primary_10_1002_stem_684
crossref_primary_10_1007_s12013_012_9487_2
crossref_primary_10_1016_j_cmet_2017_03_016
crossref_primary_10_1016_j_addr_2010_12_006
crossref_primary_10_1038_nmeth_1410
crossref_primary_10_1039_c0jm01207f
crossref_primary_10_1002_jcp_25212
crossref_primary_10_1371_journal_pone_0018992
crossref_primary_10_3109_08880018_2012_708707
crossref_primary_10_1002_jcp_25459
crossref_primary_10_1093_bmb_ldp011
crossref_primary_10_1007_s11816_018_0478_7
crossref_primary_10_1038_onc_2013_415
crossref_primary_10_1074_jbc_RA117_001643
crossref_primary_10_3389_fmicb_2022_1065532
crossref_primary_10_1371_journal_pone_0024501
crossref_primary_10_1038_s41420_017_0015_4
crossref_primary_10_1073_pnas_1210422109
crossref_primary_10_1016_j_tice_2018_09_004
crossref_primary_10_1586_epr_10_100
crossref_primary_10_1007_s12015_009_9077_x
crossref_primary_10_1016_j_anndiagpath_2010_01_004
crossref_primary_10_3390_jcm4040696
crossref_primary_10_1007_s11262_017_1489_0
crossref_primary_10_1016_j_jneumeth_2024_110114
crossref_primary_10_1089_cell_2012_0047
crossref_primary_10_1038_mt_2009_72
crossref_primary_10_1093_carcin_bgu112
crossref_primary_10_1002_bies_201100071
crossref_primary_10_1038_mt_2011_209
crossref_primary_10_3727_096368913X670958
crossref_primary_10_1038_nature07864
crossref_primary_10_1007_s12195_014_0374_3
crossref_primary_10_3390_ijms17091424
crossref_primary_10_1002_dvg_23083
crossref_primary_10_1007_s12015_009_9102_0
crossref_primary_10_1242_dev_203090
crossref_primary_10_1016_j_stem_2011_11_003
crossref_primary_10_1089_cell_2012_0039
crossref_primary_10_1016_j_yexcr_2011_05_017
crossref_primary_10_3390_life13020420
crossref_primary_10_1016_j_tice_2015_04_005
crossref_primary_10_1155_2013_291730
crossref_primary_10_1007_s12015_009_9103_z
crossref_primary_10_1002_jcb_24477
crossref_primary_10_1038_nrg2955
crossref_primary_10_1038_s41419_024_07207_2
crossref_primary_10_1371_journal_pone_0041007
crossref_primary_10_1134_S1062360423050028
crossref_primary_10_1089_scd_2015_0204
crossref_primary_10_1089_scd_2012_0245
crossref_primary_10_1073_pnas_0904689106
crossref_primary_10_1111_cpr_12162
crossref_primary_10_1371_journal_pone_0028885
crossref_primary_10_1007_s13238_011_1012_7
crossref_primary_10_3727_096368910X514305
crossref_primary_10_1016_j_bbadis_2009_08_014
crossref_primary_10_1016_j_jacc_2016_01_083
crossref_primary_10_3390_ijms160817368
crossref_primary_10_1073_pnas_0908450106
crossref_primary_10_1371_journal_pone_0059908
crossref_primary_10_1134_S1068162017020091
crossref_primary_10_1098_rsob_160311
crossref_primary_10_1002_biot_200900006
crossref_primary_10_1038_onc_2013_196
crossref_primary_10_3390_cells9040879
crossref_primary_10_1002_biot_200900134
crossref_primary_10_1016_j_copbio_2009_09_005
crossref_primary_10_1016_j_gde_2012_08_007
crossref_primary_10_1038_nmeth_1323
crossref_primary_10_2147_IJN_S304873
crossref_primary_10_3389_fmicb_2023_1137355
crossref_primary_10_1002_stem_1323
crossref_primary_10_1016_j_scr_2013_08_009
crossref_primary_10_1007_s12033_012_9504_0
crossref_primary_10_1002_stem_3295
crossref_primary_10_1016_j_gene_2018_11_069
crossref_primary_10_1002_stem_248
crossref_primary_10_1247_csf_11008
crossref_primary_10_1093_nar_gkw537
crossref_primary_10_1172_JCI40553
crossref_primary_10_1371_journal_pone_0064496
crossref_primary_10_1016_j_yexcr_2012_07_014
crossref_primary_10_1186_1472_6750_13_67
crossref_primary_10_1007_s12015_010_9121_x
crossref_primary_10_1016_j_biotechadv_2010_07_005
crossref_primary_10_1371_journal_pone_0070486
crossref_primary_10_1038_nrg2937
crossref_primary_10_1038_nrcardio_2010_1
crossref_primary_10_1186_s13287_019_1416_5
crossref_primary_10_1016_j_preteyeres_2014_10_002
crossref_primary_10_5661_bger_26_223
crossref_primary_10_1016_j_cell_2014_01_005
crossref_primary_10_1515_BC_2009_103
crossref_primary_10_1007_s11427_009_0092_6
crossref_primary_10_1016_j_scr_2013_11_007
crossref_primary_10_1089_cell_2011_0089
crossref_primary_10_1073_pnas_1406376111
crossref_primary_10_1089_scd_2010_0440
crossref_primary_10_1586_eop_10_56
crossref_primary_10_1038_jid_2011_434
crossref_primary_10_3727_096368916X691691
crossref_primary_10_1242_dev_086215
crossref_primary_10_1111_febs_13941
crossref_primary_10_1038_nature12586
crossref_primary_10_1073_pnas_0901471106
crossref_primary_10_1038_ncb2765
crossref_primary_10_1016_j_biomaterials_2021_120668
crossref_primary_10_1038_s41598_017_02632_0
crossref_primary_10_1111_pcmr_12676
crossref_primary_10_1016_j_stem_2010_06_019
crossref_primary_10_1586_erc_11_123
crossref_primary_10_1161_CIRCRESAHA_111_240374
crossref_primary_10_5966_sctm_2015_0093
crossref_primary_10_1038_mt_2010_314
crossref_primary_10_1517_14712598_2010_496775
crossref_primary_10_1007_s11684_011_0107_0
crossref_primary_10_1093_protein_gzx051
crossref_primary_10_3892_mmr_2013_1828
crossref_primary_10_1111_j_1538_7836_2009_03418_x
crossref_primary_10_1007_s00005_016_0385_y
crossref_primary_10_1038_s41598_017_01723_2
crossref_primary_10_1007_s13238_012_2920_x
crossref_primary_10_1128_JVI_03147_12
crossref_primary_10_1186_s13045_014_0050_z
crossref_primary_10_2217_fnl_11_14
crossref_primary_10_1093_hmg_ddr110
crossref_primary_10_1089_cell_2009_0103
crossref_primary_10_1016_j_bone_2023_116760
crossref_primary_10_1016_j_bioactmat_2024_11_010
crossref_primary_10_3892_ijmm_2017_3067
crossref_primary_10_1089_cell_2013_0072
crossref_primary_10_2217_rme_11_46
crossref_primary_10_1016_j_cell_2009_02_013
crossref_primary_10_1007_s10048_015_0448_y
crossref_primary_10_1089_biores_2019_0046
crossref_primary_10_1002_btpr_3152
crossref_primary_10_1161_CIRCRESAHA_112_278820
crossref_primary_10_1586_ehm_09_56
crossref_primary_10_1089_hum_2009_197
crossref_primary_10_1007_s12265_013_9494_8
crossref_primary_10_1080_17460751_2025_2526253
crossref_primary_10_1016_j_cell_2014_01_020
crossref_primary_10_1016_j_pnpbp_2017_05_025
crossref_primary_10_1073_pnas_1012677107
crossref_primary_10_1186_s12896_015_0121_4
crossref_primary_10_1371_journal_pone_0028719
crossref_primary_10_1096_fj_09_139477
crossref_primary_10_1371_journal_pone_0163580
crossref_primary_10_1016_j_stem_2009_11_009
crossref_primary_10_1002_stem_726
crossref_primary_10_1038_clpt_2011_37
crossref_primary_10_3389_fncel_2018_00413
crossref_primary_10_2217_rme_15_79
crossref_primary_10_1517_14712590903455989
crossref_primary_10_1038_s43587_022_00279_9
crossref_primary_10_1007_s40291_022_00599_x
crossref_primary_10_1016_j_theriogenology_2012_06_017
crossref_primary_10_2217_rme_11_8
crossref_primary_10_3390_cells9061349
crossref_primary_10_1016_j_scr_2016_05_008
crossref_primary_10_1089_scd_2009_0459
crossref_primary_10_1126_science_aam9046
crossref_primary_10_1161_CIRCRESAHA_116_305374
crossref_primary_10_1002_ajmg_a_36455
crossref_primary_10_1089_ten_tea_2014_0240
crossref_primary_10_1016_j_cels_2022_05_002
crossref_primary_10_1074_jbc_M113_455725
crossref_primary_10_1002_stem_3440
crossref_primary_10_1139_o11_064
crossref_primary_10_1007_s10856_011_4306_7
crossref_primary_10_2217_fvl_13_82
crossref_primary_10_3892_mmr_2014_2668
crossref_primary_10_1371_journal_pone_0065963
crossref_primary_10_1186_s13059_021_02518_5
crossref_primary_10_1016_j_stem_2015_01_015
crossref_primary_10_1371_journal_pone_0145336
crossref_primary_10_1038_nrd3577
crossref_primary_10_1016_j_jconrel_2015_03_016
crossref_primary_10_1007_s00795_022_00330_z
crossref_primary_10_1016_j_stem_2012_03_002
crossref_primary_10_1038_mt_2010_231
crossref_primary_10_1074_jbc_M113_475624
crossref_primary_10_1016_j_biomaterials_2015_09_011
crossref_primary_10_1093_nar_gkt1290
crossref_primary_10_1038_ncomms6042
crossref_primary_10_1038_srep00213
crossref_primary_10_1002_stem_742
crossref_primary_10_1038_jid_2013_376
crossref_primary_10_1111_gtc_12658
crossref_primary_10_1002_art_38780
crossref_primary_10_1111_j_1399_3089_2011_00631_x
crossref_primary_10_1038_mt_2014_4
crossref_primary_10_1111_jcmm_12053
crossref_primary_10_1146_annurev_biochem_052709_104948
crossref_primary_10_1161_CIRCRESAHA_112_271148
crossref_primary_10_1111_cpr_12321
crossref_primary_10_3727_096368912X655208
crossref_primary_10_5402_2013_397243
crossref_primary_10_1016_j_trim_2023_101804
crossref_primary_10_1007_s12015_019_09910_6
crossref_primary_10_1016_j_tifs_2025_105280
crossref_primary_10_1161_CIRCULATIONAHA_111_066092
crossref_primary_10_1089_ten_teb_2010_0549
crossref_primary_10_1186_scrt435
crossref_primary_10_3389_fcell_2025_1593207
crossref_primary_10_1155_2014_756240
crossref_primary_10_3892_mmr_2018_9753
crossref_primary_10_1016_S1474_4422_11_70022_9
crossref_primary_10_1002_stem_39
crossref_primary_10_1016_j_ymeth_2014_05_003
crossref_primary_10_1016_j_scr_2019_101470
crossref_primary_10_1038_embor_2010_15
crossref_primary_10_1016_j_gpb_2013_09_001
crossref_primary_10_1038_nature12243
crossref_primary_10_1002_jcp_24155
crossref_primary_10_1038_nbt_2800
crossref_primary_10_1093_hmg_ddr435
crossref_primary_10_1038_srep08053
crossref_primary_10_1016_j_virusres_2014_06_001
crossref_primary_10_1242_bio_016402
crossref_primary_10_1089_cell_2010_0027
crossref_primary_10_1186_scrt26
crossref_primary_10_1073_pnas_1501029112
crossref_primary_10_1111_xen_12431
crossref_primary_10_1007_s12265_012_9376_5
crossref_primary_10_1007_s12015_015_9622_8
crossref_primary_10_1242_bio_047225
crossref_primary_10_1177_03946320241276899
crossref_primary_10_5966_sctm_2015_0276
crossref_primary_10_1038_s41388_019_0871_x
crossref_primary_10_2165_11534300_000000000_00000
crossref_primary_10_7554_eLife_90579_3
crossref_primary_10_7554_eLife_90579
crossref_primary_10_2217_rme_09_46
crossref_primary_10_1016_j_biotechadv_2010_05_019
crossref_primary_10_1016_j_gene_2012_11_016
crossref_primary_10_1016_j_neuropharm_2011_02_021
crossref_primary_10_1007_s00109_012_0913_0
crossref_primary_10_1038_mt_2011_258
crossref_primary_10_1007_s10522_009_9213_7
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.0811426106
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 19109433
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: 5-R37-CA084198
– fundername: NCI NIH HHS
  grantid: R37 CA084198
– fundername: NCI NIH HHS
  grantid: R01 CA087869
– fundername: PHS HHS
  grantid: 5-R01-HDO45022
– fundername: NCI NIH HHS
  grantid: 5-R01-CA087869
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c676t-ffb24d4b218dd76b7d344e5c4b07c1a193433541fc5cc34279fb4625757168d42
IEDL.DBID 7X8
ISICitedReferencesCount 388
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262263900031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Sep 04 17:34:46 EDT 2025
Thu Apr 03 06:59:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c676t-ffb24d4b218dd76b7d344e5c4b07c1a193433541fc5cc34279fb4625757168d42
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1073/pnas.0811426106
PMID 19109433
PQID 66803422
PQPubID 23479
ParticipantIDs proquest_miscellaneous_66803422
pubmed_primary_19109433
PublicationCentury 2000
PublicationDate 2009-01-06
PublicationDateYYYYMMDD 2009-01-06
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-06
  day: 06
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2009
References 18845712 - Science. 2008 Nov 7;322(5903):949-53
8112307 - EMBO J. 1994 Feb 15;13(4):928-33
18594515 - Nature. 2008 Jul 31;454(7204):646-50
Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5449
11731781 - Nat Biotechnol. 2001 Dec;19(12):1129-33
15064769 - Nat Biotechnol. 2004 May;22(5):589-94
18287077 - Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2883-8
17724450 - Nat Biotechnol. 2007 Oct;25(10):1177-81
1658199 - J Gen Virol. 1991 Nov;72 ( Pt 11):2727-32
18035408 - Cell. 2007 Nov 30;131(5):861-72
18391196 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5856-61
16904174 - Cell. 2006 Aug 25;126(4):663-76
18786421 - Cell Stem Cell. 2008 Sep 11;3(3):346-53
18371436 - Cell Stem Cell. 2008 Feb 7;2(2):151-9
11786607 - Science. 2002 Feb 1;295(5556):868-72
18818365 - Science. 2008 Nov 7;322(5903):945-9
18423197 - Cell. 2008 Apr 18;133(2):250-64
18501604 - Curr Biol. 2008 Jun 24;18(12):890-4
18635867 - Stem Cells. 2008 Oct;26(10):2467-74
18371448 - Cell Stem Cell. 2008 Mar 6;2(3):230-40
18371336 - Cell Stem Cell. 2007 Jun 7;1(1):55-70
17554336 - Nature. 2007 Jul 19;448(7151):318-24
17554338 - Nature. 2007 Jul 19;448(7151):313-7
18594521 - Nat Biotechnol. 2008 Aug;26(8):916-24
18157115 - Nature. 2008 Jan 10;451(7175):141-6
18029452 - Science. 2007 Dec 21;318(5858):1917-20
Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11818
18063756 - Science. 2007 Dec 21;318(5858):1920-3
18458056 - Mol Cell Biol. 2008 Jul;28(13):4227-39
References_xml – reference: 18157115 - Nature. 2008 Jan 10;451(7175):141-6
– reference: 18063756 - Science. 2007 Dec 21;318(5858):1920-3
– reference: 18371448 - Cell Stem Cell. 2008 Mar 6;2(3):230-40
– reference: 18391196 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5856-61
– reference: 18594515 - Nature. 2008 Jul 31;454(7204):646-50
– reference: - Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5449
– reference: 18501604 - Curr Biol. 2008 Jun 24;18(12):890-4
– reference: 18818365 - Science. 2008 Nov 7;322(5903):945-9
– reference: 18786421 - Cell Stem Cell. 2008 Sep 11;3(3):346-53
– reference: 17554338 - Nature. 2007 Jul 19;448(7151):313-7
– reference: 11731781 - Nat Biotechnol. 2001 Dec;19(12):1129-33
– reference: 17554336 - Nature. 2007 Jul 19;448(7151):318-24
– reference: 15064769 - Nat Biotechnol. 2004 May;22(5):589-94
– reference: 11786607 - Science. 2002 Feb 1;295(5556):868-72
– reference: 16904174 - Cell. 2006 Aug 25;126(4):663-76
– reference: 18458056 - Mol Cell Biol. 2008 Jul;28(13):4227-39
– reference: 1658199 - J Gen Virol. 1991 Nov;72 ( Pt 11):2727-32
– reference: 18845712 - Science. 2008 Nov 7;322(5903):949-53
– reference: 18287077 - Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2883-8
– reference: 17724450 - Nat Biotechnol. 2007 Oct;25(10):1177-81
– reference: 18594521 - Nat Biotechnol. 2008 Aug;26(8):916-24
– reference: 18035408 - Cell. 2007 Nov 30;131(5):861-72
– reference: 18371336 - Cell Stem Cell. 2007 Jun 7;1(1):55-70
– reference: 18371436 - Cell Stem Cell. 2008 Feb 7;2(2):151-9
– reference: 18029452 - Science. 2007 Dec 21;318(5858):1917-20
– reference: - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11818
– reference: 18635867 - Stem Cells. 2008 Oct;26(10):2467-74
– reference: 8112307 - EMBO J. 1994 Feb 15;13(4):928-33
– reference: 18423197 - Cell. 2008 Apr 18;133(2):250-64
SSID ssj0009580
Score 2.4839854
Snippet Directed reprogramming of somatic cells by defined factors provides a novel method for the generation of patient-specific stem cells with the potential to...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 157
SubjectTerms Animals
Cells
Cells, Cultured
Cellular Reprogramming - genetics
Fibroblasts - cytology
Genetic Vectors - genetics
Keratinocytes - cytology
Kruppel-Like Transcription Factors - genetics
Mice
Octamer Transcription Factor-3 - genetics
Pluripotent Stem Cells - cytology
Proto-Oncogene Proteins c-myc - genetics
SOXB1 Transcription Factors - genetics
Transfection - methods
Transgenes - genetics
Title Reprogramming of murine and human somatic cells using a single polycistronic vector
URI https://www.ncbi.nlm.nih.gov/pubmed/19109433
https://www.proquest.com/docview/66803422
Volume 106
WOSCitedRecordID wos000262263900031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6r68GLuj7XZw4e9FC3bV4tCCLi4sVlQYW9LWmSirDbVrsu-O-d6QO8iAcv6SmQDpPM900m3xBynuhIWAW0RDClgaD4wgMUwj2Thr5wjAU2rptNqNEomkzicYdct29hsKyyPROrg9rmBnPkAykjVKsLb4p3D3tG4d1q00BjhXQZABn0aTWJfkjuRrUWQRx4ksd-K-yj2KDIdHkFwTBAAuHL39FlFWWGm_9b3xbZaNAlva3doUc6LtsmvWb_lvSiEZm-3CFPgLzr0qw5BC-ap3SOeXdHdWZp1biPlnkl50oxt19SLJB_pZriZ-Zokc--DIruorQuXVa5_13yMrx_vnvwmgYLnpFKLrw0TUJueQJh3lolE2UZ504YnvjKBBqwHWdM8CA1whj4ORWnCQfCpASwrMjycI-sZnnmDggNWKRjEzDJnAbGh68QE60C7qRUNuVhn5y1ZpuCA-PKdebyz3LaGq5P9mvLT4taZ2MKVBLrHtnhn3OPyHp9y4NVXMekm8LWdSdkzSwXb-XHaeUXMI7Gj99NScFs
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reprogramming+of+murine+and+human+somatic+cells+using+a+single+polycistronic+vector&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Carey%2C+Bryce+W&rft.au=Markoulaki%2C+Styliani&rft.au=Hanna%2C+Jacob&rft.au=Saha%2C+Kris&rft.date=2009-01-06&rft.eissn=1091-6490&rft.volume=106&rft.issue=1&rft.spage=157&rft_id=info:doi/10.1073%2Fpnas.0811426106&rft_id=info%3Apmid%2F19109433&rft_id=info%3Apmid%2F19109433&rft.externalDocID=19109433
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon