Reprogramming of murine and human somatic cells using a single polycistronic vector
Directed reprogramming of somatic cells by defined factors provides a novel method for the generation of patient-specific stem cells with the potential to bypass both the practical and ethical concerns associated with somatic cell nuclear transfer (SCNT) and human embryonic stem (hES) cells. Althoug...
Uloženo v:
| Vydáno v: | Proceedings of the National Academy of Sciences - PNAS Ročník 106; číslo 1; s. 157 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
06.01.2009
|
| Témata: | |
| ISSN: | 1091-6490, 1091-6490 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Directed reprogramming of somatic cells by defined factors provides a novel method for the generation of patient-specific stem cells with the potential to bypass both the practical and ethical concerns associated with somatic cell nuclear transfer (SCNT) and human embryonic stem (hES) cells. Although the generation of induced pluripotent stem (iPS) cells has proven a robust technology in mouse and human, a major impediment to the use of iPS cells for therapeutic purposes has been the viral-based delivery of the reprogramming factors because multiple proviral integrations pose the danger of insertional mutagenesis. Here we report a novel approach to reduce the number of viruses necessary to reprogram somatic cells by delivering reprogramming factors in a single virus using 2A "self-cleaving" peptides, which support efficient polycistronic expression from a single promoter. We find that up to four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) can be expressed from a single virus to generate iPS cells in both embryonic and adult somatic mouse cells and we show that a single proviral copy is sufficient to generate iPS cells from mouse embryonic fibroblasts. In addition we have generated human induced pluripotent stem (hiPS) cell lines from human keratinocytes, demonstrating that a single polycistronic virus can reprogram human somatic cells. |
|---|---|
| AbstractList | Directed reprogramming of somatic cells by defined factors provides a novel method for the generation of patient-specific stem cells with the potential to bypass both the practical and ethical concerns associated with somatic cell nuclear transfer (SCNT) and human embryonic stem (hES) cells. Although the generation of induced pluripotent stem (iPS) cells has proven a robust technology in mouse and human, a major impediment to the use of iPS cells for therapeutic purposes has been the viral-based delivery of the reprogramming factors because multiple proviral integrations pose the danger of insertional mutagenesis. Here we report a novel approach to reduce the number of viruses necessary to reprogram somatic cells by delivering reprogramming factors in a single virus using 2A "self-cleaving" peptides, which support efficient polycistronic expression from a single promoter. We find that up to four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) can be expressed from a single virus to generate iPS cells in both embryonic and adult somatic mouse cells and we show that a single proviral copy is sufficient to generate iPS cells from mouse embryonic fibroblasts. In addition we have generated human induced pluripotent stem (hiPS) cell lines from human keratinocytes, demonstrating that a single polycistronic virus can reprogram human somatic cells. Directed reprogramming of somatic cells by defined factors provides a novel method for the generation of patient-specific stem cells with the potential to bypass both the practical and ethical concerns associated with somatic cell nuclear transfer (SCNT) and human embryonic stem (hES) cells. Although the generation of induced pluripotent stem (iPS) cells has proven a robust technology in mouse and human, a major impediment to the use of iPS cells for therapeutic purposes has been the viral-based delivery of the reprogramming factors because multiple proviral integrations pose the danger of insertional mutagenesis. Here we report a novel approach to reduce the number of viruses necessary to reprogram somatic cells by delivering reprogramming factors in a single virus using 2A "self-cleaving" peptides, which support efficient polycistronic expression from a single promoter. We find that up to four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) can be expressed from a single virus to generate iPS cells in both embryonic and adult somatic mouse cells and we show that a single proviral copy is sufficient to generate iPS cells from mouse embryonic fibroblasts. In addition we have generated human induced pluripotent stem (hiPS) cell lines from human keratinocytes, demonstrating that a single polycistronic virus can reprogram human somatic cells.Directed reprogramming of somatic cells by defined factors provides a novel method for the generation of patient-specific stem cells with the potential to bypass both the practical and ethical concerns associated with somatic cell nuclear transfer (SCNT) and human embryonic stem (hES) cells. Although the generation of induced pluripotent stem (iPS) cells has proven a robust technology in mouse and human, a major impediment to the use of iPS cells for therapeutic purposes has been the viral-based delivery of the reprogramming factors because multiple proviral integrations pose the danger of insertional mutagenesis. Here we report a novel approach to reduce the number of viruses necessary to reprogram somatic cells by delivering reprogramming factors in a single virus using 2A "self-cleaving" peptides, which support efficient polycistronic expression from a single promoter. We find that up to four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) can be expressed from a single virus to generate iPS cells in both embryonic and adult somatic mouse cells and we show that a single proviral copy is sufficient to generate iPS cells from mouse embryonic fibroblasts. In addition we have generated human induced pluripotent stem (hiPS) cell lines from human keratinocytes, demonstrating that a single polycistronic virus can reprogram human somatic cells. |
| Author | Mitalipova, Maisam Gao, Qing Carey, Bryce W Hanna, Jacob Jaenisch, Rudolf Saha, Kris Markoulaki, Styliani |
| Author_xml | – sequence: 1 givenname: Bryce W surname: Carey fullname: Carey, Bryce W organization: Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA – sequence: 2 givenname: Styliani surname: Markoulaki fullname: Markoulaki, Styliani – sequence: 3 givenname: Jacob surname: Hanna fullname: Hanna, Jacob – sequence: 4 givenname: Kris surname: Saha fullname: Saha, Kris – sequence: 5 givenname: Qing surname: Gao fullname: Gao, Qing – sequence: 6 givenname: Maisam surname: Mitalipova fullname: Mitalipova, Maisam – sequence: 7 givenname: Rudolf surname: Jaenisch fullname: Jaenisch, Rudolf |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19109433$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLxDAUhYOMOA9du5Os3HXMTdOkXcrgCwYEH-uS5jFWmqQmrTD_3g6O4OocuN-9nHOXaOaDNwhdAlkDEflN72VakxKAUQ6En6AFkAoyzioy--fnaJnSJyGkKkpyhuZQTSOW5wv0-mL6GHZROtf6HQ4WuzG23mDpNf4YnfQ4BSeHVmFlui7hMR04iQ_SGdyHbq_aNMTgJ-TbqCHEc3RqZZfMxVFX6P3-7m3zmG2fH542t9tMccGHzNqGMs0aCqXWgjdC54yZQrGGCAUSqnxKWDCwqlAqZ1RUtmGcFqIQwEvN6Apd_96dGnyNJg21a9MhpfQmjKnmvCTTHp3AqyM4Ns7ouo-tk3Ff_72B_gDL8mGb |
| CitedBy_id | crossref_primary_10_1038_s41467_021_25249_4 crossref_primary_10_1007_s00423_009_0546_0 crossref_primary_10_1016_j_cub_2014_10_018 crossref_primary_10_1007_s12015_020_10052_3 crossref_primary_10_1016_j_molmed_2016_06_005 crossref_primary_10_1242_jcs_194035 crossref_primary_10_1101_gad_1963910 crossref_primary_10_1073_pnas_0904825106 crossref_primary_10_1016_j_yexcr_2014_02_006 crossref_primary_10_1038_srep15234 crossref_primary_10_1111_j_1749_6632_2009_04563_x crossref_primary_10_1074_jbc_M110_183780 crossref_primary_10_1186_s12885_018_4145_8 crossref_primary_10_1016_j_jcgg_2010_12_003 crossref_primary_10_1534_genetics_113_160846 crossref_primary_10_1038_ncb2800 crossref_primary_10_1155_2012_767195 crossref_primary_10_1016_j_ab_2009_07_031 crossref_primary_10_1089_ars_2010_3388 crossref_primary_10_1016_j_stem_2019_10_002 crossref_primary_10_3389_fbioe_2023_1101122 crossref_primary_10_1038_srep00657 crossref_primary_10_1038_cr_2009_20 crossref_primary_10_1146_annurev_physiol_021113_170301 crossref_primary_10_1016_j_bbrc_2010_02_150 crossref_primary_10_1007_s00246_009_9450_1 crossref_primary_10_1002_adhm_201200017 crossref_primary_10_1371_journal_pone_0063577 crossref_primary_10_3389_fcell_2017_00070 crossref_primary_10_1016_j_biomaterials_2023_122215 crossref_primary_10_7554_eLife_01846 crossref_primary_10_1371_journal_pone_0019986 crossref_primary_10_1016_j_biomaterials_2011_02_049 crossref_primary_10_1089_ars_2010_3814 crossref_primary_10_1002_jcp_25597 crossref_primary_10_1007_s00253_011_3392_2 crossref_primary_10_1111_j_1365_2184_2010_00723_x crossref_primary_10_2217_fmb_10_100 crossref_primary_10_1101_gad_1811609 crossref_primary_10_1093_carcin_bgs104 crossref_primary_10_1002_stem_2453 crossref_primary_10_1371_journal_pone_0049065 crossref_primary_10_1371_journal_pone_0159477 crossref_primary_10_1016_j_tcb_2010_08_003 crossref_primary_10_1371_journal_pone_0064342 crossref_primary_10_3390_ijms21155467 crossref_primary_10_1007_s12015_023_10633_y crossref_primary_10_7717_peerj_4370 crossref_primary_10_3390_cells7120261 crossref_primary_10_1371_journal_pone_0012664 crossref_primary_10_1007_s13238_011_1025_2 crossref_primary_10_1016_j_scr_2018_06_010 crossref_primary_10_1371_journal_pone_0006529 crossref_primary_10_1038_s41598_017_02460_2 crossref_primary_10_1038_srep00075 crossref_primary_10_1089_ten_tea_2019_0027 crossref_primary_10_1093_molehr_gau012 crossref_primary_10_1182_blood_2009_03_191304 crossref_primary_10_1089_cell_2009_0077 crossref_primary_10_3390_cells13070596 crossref_primary_10_1155_2012_423868 crossref_primary_10_1038_nmeth_1899 crossref_primary_10_1371_journal_pone_0103485 crossref_primary_10_1371_journal_pone_0124958 crossref_primary_10_1002_stem_201 crossref_primary_10_1002_stem_322 crossref_primary_10_1042_BJ20120146 crossref_primary_10_1002_stem_684 crossref_primary_10_1007_s12013_012_9487_2 crossref_primary_10_1016_j_cmet_2017_03_016 crossref_primary_10_1016_j_addr_2010_12_006 crossref_primary_10_1038_nmeth_1410 crossref_primary_10_1039_c0jm01207f crossref_primary_10_1002_jcp_25212 crossref_primary_10_1371_journal_pone_0018992 crossref_primary_10_3109_08880018_2012_708707 crossref_primary_10_1002_jcp_25459 crossref_primary_10_1093_bmb_ldp011 crossref_primary_10_1007_s11816_018_0478_7 crossref_primary_10_1038_onc_2013_415 crossref_primary_10_1074_jbc_RA117_001643 crossref_primary_10_3389_fmicb_2022_1065532 crossref_primary_10_1371_journal_pone_0024501 crossref_primary_10_1038_s41420_017_0015_4 crossref_primary_10_1073_pnas_1210422109 crossref_primary_10_1016_j_tice_2018_09_004 crossref_primary_10_1586_epr_10_100 crossref_primary_10_1007_s12015_009_9077_x crossref_primary_10_1016_j_anndiagpath_2010_01_004 crossref_primary_10_3390_jcm4040696 crossref_primary_10_1007_s11262_017_1489_0 crossref_primary_10_1016_j_jneumeth_2024_110114 crossref_primary_10_1089_cell_2012_0047 crossref_primary_10_1038_mt_2009_72 crossref_primary_10_1093_carcin_bgu112 crossref_primary_10_1002_bies_201100071 crossref_primary_10_1038_mt_2011_209 crossref_primary_10_3727_096368913X670958 crossref_primary_10_1038_nature07864 crossref_primary_10_1007_s12195_014_0374_3 crossref_primary_10_3390_ijms17091424 crossref_primary_10_1002_dvg_23083 crossref_primary_10_1007_s12015_009_9102_0 crossref_primary_10_1242_dev_203090 crossref_primary_10_1016_j_stem_2011_11_003 crossref_primary_10_1089_cell_2012_0039 crossref_primary_10_1016_j_yexcr_2011_05_017 crossref_primary_10_3390_life13020420 crossref_primary_10_1016_j_tice_2015_04_005 crossref_primary_10_1155_2013_291730 crossref_primary_10_1007_s12015_009_9103_z crossref_primary_10_1002_jcb_24477 crossref_primary_10_1038_nrg2955 crossref_primary_10_1038_s41419_024_07207_2 crossref_primary_10_1371_journal_pone_0041007 crossref_primary_10_1134_S1062360423050028 crossref_primary_10_1089_scd_2015_0204 crossref_primary_10_1089_scd_2012_0245 crossref_primary_10_1073_pnas_0904689106 crossref_primary_10_1111_cpr_12162 crossref_primary_10_1371_journal_pone_0028885 crossref_primary_10_1007_s13238_011_1012_7 crossref_primary_10_3727_096368910X514305 crossref_primary_10_1016_j_bbadis_2009_08_014 crossref_primary_10_1016_j_jacc_2016_01_083 crossref_primary_10_3390_ijms160817368 crossref_primary_10_1073_pnas_0908450106 crossref_primary_10_1371_journal_pone_0059908 crossref_primary_10_1134_S1068162017020091 crossref_primary_10_1098_rsob_160311 crossref_primary_10_1002_biot_200900006 crossref_primary_10_1038_onc_2013_196 crossref_primary_10_3390_cells9040879 crossref_primary_10_1002_biot_200900134 crossref_primary_10_1016_j_copbio_2009_09_005 crossref_primary_10_1016_j_gde_2012_08_007 crossref_primary_10_1038_nmeth_1323 crossref_primary_10_2147_IJN_S304873 crossref_primary_10_3389_fmicb_2023_1137355 crossref_primary_10_1002_stem_1323 crossref_primary_10_1016_j_scr_2013_08_009 crossref_primary_10_1007_s12033_012_9504_0 crossref_primary_10_1002_stem_3295 crossref_primary_10_1016_j_gene_2018_11_069 crossref_primary_10_1002_stem_248 crossref_primary_10_1247_csf_11008 crossref_primary_10_1093_nar_gkw537 crossref_primary_10_1172_JCI40553 crossref_primary_10_1371_journal_pone_0064496 crossref_primary_10_1016_j_yexcr_2012_07_014 crossref_primary_10_1186_1472_6750_13_67 crossref_primary_10_1007_s12015_010_9121_x crossref_primary_10_1016_j_biotechadv_2010_07_005 crossref_primary_10_1371_journal_pone_0070486 crossref_primary_10_1038_nrg2937 crossref_primary_10_1038_nrcardio_2010_1 crossref_primary_10_1186_s13287_019_1416_5 crossref_primary_10_1016_j_preteyeres_2014_10_002 crossref_primary_10_5661_bger_26_223 crossref_primary_10_1016_j_cell_2014_01_005 crossref_primary_10_1515_BC_2009_103 crossref_primary_10_1007_s11427_009_0092_6 crossref_primary_10_1016_j_scr_2013_11_007 crossref_primary_10_1089_cell_2011_0089 crossref_primary_10_1073_pnas_1406376111 crossref_primary_10_1089_scd_2010_0440 crossref_primary_10_1586_eop_10_56 crossref_primary_10_1038_jid_2011_434 crossref_primary_10_3727_096368916X691691 crossref_primary_10_1242_dev_086215 crossref_primary_10_1111_febs_13941 crossref_primary_10_1038_nature12586 crossref_primary_10_1073_pnas_0901471106 crossref_primary_10_1038_ncb2765 crossref_primary_10_1016_j_biomaterials_2021_120668 crossref_primary_10_1038_s41598_017_02632_0 crossref_primary_10_1111_pcmr_12676 crossref_primary_10_1016_j_stem_2010_06_019 crossref_primary_10_1586_erc_11_123 crossref_primary_10_1161_CIRCRESAHA_111_240374 crossref_primary_10_5966_sctm_2015_0093 crossref_primary_10_1038_mt_2010_314 crossref_primary_10_1517_14712598_2010_496775 crossref_primary_10_1007_s11684_011_0107_0 crossref_primary_10_1093_protein_gzx051 crossref_primary_10_3892_mmr_2013_1828 crossref_primary_10_1111_j_1538_7836_2009_03418_x crossref_primary_10_1007_s00005_016_0385_y crossref_primary_10_1038_s41598_017_01723_2 crossref_primary_10_1007_s13238_012_2920_x crossref_primary_10_1128_JVI_03147_12 crossref_primary_10_1186_s13045_014_0050_z crossref_primary_10_2217_fnl_11_14 crossref_primary_10_1093_hmg_ddr110 crossref_primary_10_1089_cell_2009_0103 crossref_primary_10_1016_j_bone_2023_116760 crossref_primary_10_1016_j_bioactmat_2024_11_010 crossref_primary_10_3892_ijmm_2017_3067 crossref_primary_10_1089_cell_2013_0072 crossref_primary_10_2217_rme_11_46 crossref_primary_10_1016_j_cell_2009_02_013 crossref_primary_10_1007_s10048_015_0448_y crossref_primary_10_1089_biores_2019_0046 crossref_primary_10_1002_btpr_3152 crossref_primary_10_1161_CIRCRESAHA_112_278820 crossref_primary_10_1586_ehm_09_56 crossref_primary_10_1089_hum_2009_197 crossref_primary_10_1007_s12265_013_9494_8 crossref_primary_10_1080_17460751_2025_2526253 crossref_primary_10_1016_j_cell_2014_01_020 crossref_primary_10_1016_j_pnpbp_2017_05_025 crossref_primary_10_1073_pnas_1012677107 crossref_primary_10_1186_s12896_015_0121_4 crossref_primary_10_1371_journal_pone_0028719 crossref_primary_10_1096_fj_09_139477 crossref_primary_10_1371_journal_pone_0163580 crossref_primary_10_1016_j_stem_2009_11_009 crossref_primary_10_1002_stem_726 crossref_primary_10_1038_clpt_2011_37 crossref_primary_10_3389_fncel_2018_00413 crossref_primary_10_2217_rme_15_79 crossref_primary_10_1517_14712590903455989 crossref_primary_10_1038_s43587_022_00279_9 crossref_primary_10_1007_s40291_022_00599_x crossref_primary_10_1016_j_theriogenology_2012_06_017 crossref_primary_10_2217_rme_11_8 crossref_primary_10_3390_cells9061349 crossref_primary_10_1016_j_scr_2016_05_008 crossref_primary_10_1089_scd_2009_0459 crossref_primary_10_1126_science_aam9046 crossref_primary_10_1161_CIRCRESAHA_116_305374 crossref_primary_10_1002_ajmg_a_36455 crossref_primary_10_1089_ten_tea_2014_0240 crossref_primary_10_1016_j_cels_2022_05_002 crossref_primary_10_1074_jbc_M113_455725 crossref_primary_10_1002_stem_3440 crossref_primary_10_1139_o11_064 crossref_primary_10_1007_s10856_011_4306_7 crossref_primary_10_2217_fvl_13_82 crossref_primary_10_3892_mmr_2014_2668 crossref_primary_10_1371_journal_pone_0065963 crossref_primary_10_1186_s13059_021_02518_5 crossref_primary_10_1016_j_stem_2015_01_015 crossref_primary_10_1371_journal_pone_0145336 crossref_primary_10_1038_nrd3577 crossref_primary_10_1016_j_jconrel_2015_03_016 crossref_primary_10_1007_s00795_022_00330_z crossref_primary_10_1016_j_stem_2012_03_002 crossref_primary_10_1038_mt_2010_231 crossref_primary_10_1074_jbc_M113_475624 crossref_primary_10_1016_j_biomaterials_2015_09_011 crossref_primary_10_1093_nar_gkt1290 crossref_primary_10_1038_ncomms6042 crossref_primary_10_1038_srep00213 crossref_primary_10_1002_stem_742 crossref_primary_10_1038_jid_2013_376 crossref_primary_10_1111_gtc_12658 crossref_primary_10_1002_art_38780 crossref_primary_10_1111_j_1399_3089_2011_00631_x crossref_primary_10_1038_mt_2014_4 crossref_primary_10_1111_jcmm_12053 crossref_primary_10_1146_annurev_biochem_052709_104948 crossref_primary_10_1161_CIRCRESAHA_112_271148 crossref_primary_10_1111_cpr_12321 crossref_primary_10_3727_096368912X655208 crossref_primary_10_5402_2013_397243 crossref_primary_10_1016_j_trim_2023_101804 crossref_primary_10_1007_s12015_019_09910_6 crossref_primary_10_1016_j_tifs_2025_105280 crossref_primary_10_1161_CIRCULATIONAHA_111_066092 crossref_primary_10_1089_ten_teb_2010_0549 crossref_primary_10_1186_scrt435 crossref_primary_10_3389_fcell_2025_1593207 crossref_primary_10_1155_2014_756240 crossref_primary_10_3892_mmr_2018_9753 crossref_primary_10_1016_S1474_4422_11_70022_9 crossref_primary_10_1002_stem_39 crossref_primary_10_1016_j_ymeth_2014_05_003 crossref_primary_10_1016_j_scr_2019_101470 crossref_primary_10_1038_embor_2010_15 crossref_primary_10_1016_j_gpb_2013_09_001 crossref_primary_10_1038_nature12243 crossref_primary_10_1002_jcp_24155 crossref_primary_10_1038_nbt_2800 crossref_primary_10_1093_hmg_ddr435 crossref_primary_10_1038_srep08053 crossref_primary_10_1016_j_virusres_2014_06_001 crossref_primary_10_1242_bio_016402 crossref_primary_10_1089_cell_2010_0027 crossref_primary_10_1186_scrt26 crossref_primary_10_1073_pnas_1501029112 crossref_primary_10_1111_xen_12431 crossref_primary_10_1007_s12265_012_9376_5 crossref_primary_10_1007_s12015_015_9622_8 crossref_primary_10_1242_bio_047225 crossref_primary_10_1177_03946320241276899 crossref_primary_10_5966_sctm_2015_0276 crossref_primary_10_1038_s41388_019_0871_x crossref_primary_10_2165_11534300_000000000_00000 crossref_primary_10_7554_eLife_90579_3 crossref_primary_10_7554_eLife_90579 crossref_primary_10_2217_rme_09_46 crossref_primary_10_1016_j_biotechadv_2010_05_019 crossref_primary_10_1016_j_gene_2012_11_016 crossref_primary_10_1016_j_neuropharm_2011_02_021 crossref_primary_10_1007_s00109_012_0913_0 crossref_primary_10_1038_mt_2011_258 crossref_primary_10_1007_s10522_009_9213_7 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.0811426106 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 19109433 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: 5-R37-CA084198 – fundername: NCI NIH HHS grantid: R37 CA084198 – fundername: NCI NIH HHS grantid: R01 CA087869 – fundername: PHS HHS grantid: 5-R01-HDO45022 – fundername: NCI NIH HHS grantid: 5-R01-CA087869 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 ADXHL |
| ID | FETCH-LOGICAL-c676t-ffb24d4b218dd76b7d344e5c4b07c1a193433541fc5cc34279fb4625757168d42 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 388 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262263900031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Thu Sep 04 17:34:46 EDT 2025 Thu Apr 03 06:59:33 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c676t-ffb24d4b218dd76b7d344e5c4b07c1a193433541fc5cc34279fb4625757168d42 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://doi.org/10.1073/pnas.0811426106 |
| PMID | 19109433 |
| PQID | 66803422 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_66803422 pubmed_primary_19109433 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-01-06 |
| PublicationDateYYYYMMDD | 2009-01-06 |
| PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-06 day: 06 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2009 |
| References | 18845712 - Science. 2008 Nov 7;322(5903):949-53 8112307 - EMBO J. 1994 Feb 15;13(4):928-33 18594515 - Nature. 2008 Jul 31;454(7204):646-50 Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5449 11731781 - Nat Biotechnol. 2001 Dec;19(12):1129-33 15064769 - Nat Biotechnol. 2004 May;22(5):589-94 18287077 - Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2883-8 17724450 - Nat Biotechnol. 2007 Oct;25(10):1177-81 1658199 - J Gen Virol. 1991 Nov;72 ( Pt 11):2727-32 18035408 - Cell. 2007 Nov 30;131(5):861-72 18391196 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5856-61 16904174 - Cell. 2006 Aug 25;126(4):663-76 18786421 - Cell Stem Cell. 2008 Sep 11;3(3):346-53 18371436 - Cell Stem Cell. 2008 Feb 7;2(2):151-9 11786607 - Science. 2002 Feb 1;295(5556):868-72 18818365 - Science. 2008 Nov 7;322(5903):945-9 18423197 - Cell. 2008 Apr 18;133(2):250-64 18501604 - Curr Biol. 2008 Jun 24;18(12):890-4 18635867 - Stem Cells. 2008 Oct;26(10):2467-74 18371448 - Cell Stem Cell. 2008 Mar 6;2(3):230-40 18371336 - Cell Stem Cell. 2007 Jun 7;1(1):55-70 17554336 - Nature. 2007 Jul 19;448(7151):318-24 17554338 - Nature. 2007 Jul 19;448(7151):313-7 18594521 - Nat Biotechnol. 2008 Aug;26(8):916-24 18157115 - Nature. 2008 Jan 10;451(7175):141-6 18029452 - Science. 2007 Dec 21;318(5858):1917-20 Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11818 18063756 - Science. 2007 Dec 21;318(5858):1920-3 18458056 - Mol Cell Biol. 2008 Jul;28(13):4227-39 |
| References_xml | – reference: 18157115 - Nature. 2008 Jan 10;451(7175):141-6 – reference: 18063756 - Science. 2007 Dec 21;318(5858):1920-3 – reference: 18371448 - Cell Stem Cell. 2008 Mar 6;2(3):230-40 – reference: 18391196 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5856-61 – reference: 18594515 - Nature. 2008 Jul 31;454(7204):646-50 – reference: - Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5449 – reference: 18501604 - Curr Biol. 2008 Jun 24;18(12):890-4 – reference: 18818365 - Science. 2008 Nov 7;322(5903):945-9 – reference: 18786421 - Cell Stem Cell. 2008 Sep 11;3(3):346-53 – reference: 17554338 - Nature. 2007 Jul 19;448(7151):313-7 – reference: 11731781 - Nat Biotechnol. 2001 Dec;19(12):1129-33 – reference: 17554336 - Nature. 2007 Jul 19;448(7151):318-24 – reference: 15064769 - Nat Biotechnol. 2004 May;22(5):589-94 – reference: 11786607 - Science. 2002 Feb 1;295(5556):868-72 – reference: 16904174 - Cell. 2006 Aug 25;126(4):663-76 – reference: 18458056 - Mol Cell Biol. 2008 Jul;28(13):4227-39 – reference: 1658199 - J Gen Virol. 1991 Nov;72 ( Pt 11):2727-32 – reference: 18845712 - Science. 2008 Nov 7;322(5903):949-53 – reference: 18287077 - Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2883-8 – reference: 17724450 - Nat Biotechnol. 2007 Oct;25(10):1177-81 – reference: 18594521 - Nat Biotechnol. 2008 Aug;26(8):916-24 – reference: 18035408 - Cell. 2007 Nov 30;131(5):861-72 – reference: 18371336 - Cell Stem Cell. 2007 Jun 7;1(1):55-70 – reference: 18371436 - Cell Stem Cell. 2008 Feb 7;2(2):151-9 – reference: 18029452 - Science. 2007 Dec 21;318(5858):1917-20 – reference: - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11818 – reference: 18635867 - Stem Cells. 2008 Oct;26(10):2467-74 – reference: 8112307 - EMBO J. 1994 Feb 15;13(4):928-33 – reference: 18423197 - Cell. 2008 Apr 18;133(2):250-64 |
| SSID | ssj0009580 |
| Score | 2.4839854 |
| Snippet | Directed reprogramming of somatic cells by defined factors provides a novel method for the generation of patient-specific stem cells with the potential to... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 157 |
| SubjectTerms | Animals Cells Cells, Cultured Cellular Reprogramming - genetics Fibroblasts - cytology Genetic Vectors - genetics Keratinocytes - cytology Kruppel-Like Transcription Factors - genetics Mice Octamer Transcription Factor-3 - genetics Pluripotent Stem Cells - cytology Proto-Oncogene Proteins c-myc - genetics SOXB1 Transcription Factors - genetics Transfection - methods Transgenes - genetics |
| Title | Reprogramming of murine and human somatic cells using a single polycistronic vector |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19109433 https://www.proquest.com/docview/66803422 |
| Volume | 106 |
| WOSCitedRecordID | wos000262263900031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKZWAByrM8PTDAEJqHYzsSEkKIigGqSjzULUr8QEhtEkipxL_nLg-JBTGwxFMU-3T2fXf-8h0hpzYFEOwL7ShhE4eZyHMkU67DfCasGyrJK7b7y70YjeRkEo075LL9FwZple2ZWB3UOldYIx9wLlGtzr8q3h3sGYV3q00DjSXSDQDIoE-LifwhuStrLQL4PmeR2wr7iGBQZEl5AcHQwwTC5b-jyyrKDNf_N78NstagS3pdu0OPdEy2SXrN_i3pWSMyfb5FHgF519SsGQQvmls6w7q7oUmmadW4j5Z5JedKsbZfUiTIv9KE4jA1tMinXwpFd1Faly6q2v82eR7ePt3cOU2DBUdxweeOtanPNEshzGsteCp0wJgJFUtdobwEsB0LgpB5VoVKweJEZFMGCZMIIcuSmvk7ZDnLM7NHqIeNxazhrpGKKcsiT0HuyJURYO9U6z45ac0WgwPjzJPM5J9l3BquT3Zry8dFrbMRQyqJvMdg_893D8hqfcuDLK5D0rWwdc0RWVGL-Vv5cVz5BTxH44dvQPvDBA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reprogramming+of+murine+and+human+somatic+cells+using+a+single+polycistronic+vector&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Carey%2C+Bryce+W&rft.au=Markoulaki%2C+Styliani&rft.au=Hanna%2C+Jacob&rft.au=Saha%2C+Kris&rft.date=2009-01-06&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=106&rft.issue=1&rft.spage=157&rft_id=info:doi/10.1073%2Fpnas.0811426106&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |