A genetically encoded photoactivatable Rac controls the motility of living cells

A light touch on proteins Many aspects of cellular function depend on when and where in the cell various protein activities are turned 'on' or 'off' at the molecular level. A new technique that uses light to manipulate the activity of a protein at precise times and places within...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature (London) Ročník 461; číslo 7260; s. 104 - 108
Hlavní autoři: Wu, Yi I., Frey, Daniel, Lungu, Oana I., Jaehrig, Angelika, Schlichting, Ilme, Kuhlman, Brian, Hahn, Klaus M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 03.09.2009
Nature Publishing Group
Témata:
ISSN:0028-0836, 1476-4687, 1476-4687
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A light touch on proteins Many aspects of cellular function depend on when and where in the cell various protein activities are turned 'on' or 'off' at the molecular level. A new technique that uses light to manipulate the activity of a protein at precise times and places within the living cell has the potential make the study of this fundamental aspect of protein function a practical proposition. It makes use of a genetically encoded, photoactivatable derivative of Rac1, a GTPase that regulates actin cytoskeletal dynamics, which can be activated by exposure to laser light. This localized activation generates precisely localized cell protrusions and ruffling and can direct cell motility. This approach should be extensible to other proteins. The precise spatiotemporal dynamics of protein activity remain poorly understood, yet they can be critical in determining cell behaviour. A genetically encoded, photoactivatable version of the protein Rac1, a key GTPase regulating actin cytoskeletal dynamics, has now been produced; this approach enables the manipulation of the activity of Rac1 at precise times and places within a living cell, thus controlling motility. The precise spatio-temporal dynamics of protein activity are often critical in determining cell behaviour, yet for most proteins they remain poorly understood; it remains difficult to manipulate protein activity at precise times and places within living cells. Protein activity has been controlled by light, through protein derivatization with photocleavable moieties 1 or using photoreactive small-molecule ligands 2 . However, this requires use of toxic ultraviolet wavelengths, activation is irreversible, and/or cell loading is accomplished via disruption of the cell membrane (for example, through microinjection). Here we have developed a new approach to produce genetically encoded photoactivatable derivatives of Rac1, a key GTPase regulating actin cytoskeletal dynamics in metazoan cells 3 , 4 . Rac1 mutants were fused to the photoreactive LOV (light oxygen voltage) domain from phototropin 5 , 6 , sterically blocking Rac1 interactions until irradiation unwound a helix linking LOV to Rac1. Photoactivatable Rac1 (PA-Rac1) could be reversibly and repeatedly activated using 458- or 473-nm light to generate precisely localized cell protrusions and ruffling. Localized Rac activation or inactivation was sufficient to produce cell motility and control the direction of cell movement. Myosin was involved in Rac control of directionality but not in Rac-induced protrusion, whereas PAK was required for Rac-induced protrusion. PA-Rac1 was used to elucidate Rac regulation of RhoA in cell motility. Rac and Rho coordinate cytoskeletal behaviours with seconds and submicrometre precision 7 , 8 . Their mutual regulation remains controversial 9 , with data indicating that Rac inhibits and/or activates Rho 10 , 11 . Rac was shown to inhibit RhoA in mouse embryonic fibroblasts, with inhibition modulated at protrusions and ruffles. A PA-Rac crystal structure and modelling revealed LOV–Rac interactions that will facilitate extension of this photoactivation approach to other proteins.
AbstractList A light touch on proteins Many aspects of cellular function depend on when and where in the cell various protein activities are turned 'on' or 'off' at the molecular level. A new technique that uses light to manipulate the activity of a protein at precise times and places within the living cell has the potential make the study of this fundamental aspect of protein function a practical proposition. It makes use of a genetically encoded, photoactivatable derivative of Rac1, a GTPase that regulates actin cytoskeletal dynamics, which can be activated by exposure to laser light. This localized activation generates precisely localized cell protrusions and ruffling and can direct cell motility. This approach should be extensible to other proteins. The precise spatiotemporal dynamics of protein activity remain poorly understood, yet they can be critical in determining cell behaviour. A genetically encoded, photoactivatable version of the protein Rac1, a key GTPase regulating actin cytoskeletal dynamics, has now been produced; this approach enables the manipulation of the activity of Rac1 at precise times and places within a living cell, thus controlling motility. The precise spatio-temporal dynamics of protein activity are often critical in determining cell behaviour, yet for most proteins they remain poorly understood; it remains difficult to manipulate protein activity at precise times and places within living cells. Protein activity has been controlled by light, through protein derivatization with photocleavable moieties 1 or using photoreactive small-molecule ligands 2 . However, this requires use of toxic ultraviolet wavelengths, activation is irreversible, and/or cell loading is accomplished via disruption of the cell membrane (for example, through microinjection). Here we have developed a new approach to produce genetically encoded photoactivatable derivatives of Rac1, a key GTPase regulating actin cytoskeletal dynamics in metazoan cells 3 , 4 . Rac1 mutants were fused to the photoreactive LOV (light oxygen voltage) domain from phototropin 5 , 6 , sterically blocking Rac1 interactions until irradiation unwound a helix linking LOV to Rac1. Photoactivatable Rac1 (PA-Rac1) could be reversibly and repeatedly activated using 458- or 473-nm light to generate precisely localized cell protrusions and ruffling. Localized Rac activation or inactivation was sufficient to produce cell motility and control the direction of cell movement. Myosin was involved in Rac control of directionality but not in Rac-induced protrusion, whereas PAK was required for Rac-induced protrusion. PA-Rac1 was used to elucidate Rac regulation of RhoA in cell motility. Rac and Rho coordinate cytoskeletal behaviours with seconds and submicrometre precision 7 , 8 . Their mutual regulation remains controversial 9 , with data indicating that Rac inhibits and/or activates Rho 10 , 11 . Rac was shown to inhibit RhoA in mouse embryonic fibroblasts, with inhibition modulated at protrusions and ruffles. A PA-Rac crystal structure and modelling revealed LOV–Rac interactions that will facilitate extension of this photoactivation approach to other proteins.
The precise spatio-temporal dynamics of protein activity are often critical in determining cell behaviour, yet for most proteins they remain poorly understood; it remains difficult to manipulate protein activity at precise times and places within living cells. Protein activity has been controlled by light, through protein derivatization with photocleavable moieties or using photoreactive small-molecule ligands. However, this requires use of toxic ultraviolet wavelengths, activation is irreversible, and/or cell loading is accomplished via disruption of the cell membrane (for example, through microinjection). Here we have developed a new approach to produce genetically encoded photoactivatable derivatives of Rac1, a key GTPase regulating actin cytoskeletal dynamics in metazoan cells. Rac1 mutants were fused to the photoreactive LOV (light oxygen voltage) domain from phototropin, sterically blocking Rac1 interactions until irradiation unwound a helix linking LOV to Rac1. Photoactivatable Rac1 (PA-Rac1) could be reversibly and repeatedly activated using 458- or 473-nm light to generate precisely localized cell protrusions and ruffling. Localized Rac activation or inactivation was sufficient to produce cell motility and control the direction of cell movement. Myosin was involved in Rac control of directionality but not in Rac-induced protrusion, whereas PAK was required for Rac-induced protrusion. PA-Rac1 was used to elucidate Rac regulation of RhoA in cell motility. Rac and Rho coordinate cytoskeletal behaviours with seconds and submicrometre precision. Their mutual regulation remains controversial, with data indicating that Rac inhibits and/or activates Rho. Rac was shown to inhibit RhoA in mouse embryonic fibroblasts, with inhibition modulated at protrusions and ruffles. A PA-Rac crystal structure and modelling revealed LOV-Rac interactions that will facilitate extension of this photoactivation approach to other proteins.The precise spatio-temporal dynamics of protein activity are often critical in determining cell behaviour, yet for most proteins they remain poorly understood; it remains difficult to manipulate protein activity at precise times and places within living cells. Protein activity has been controlled by light, through protein derivatization with photocleavable moieties or using photoreactive small-molecule ligands. However, this requires use of toxic ultraviolet wavelengths, activation is irreversible, and/or cell loading is accomplished via disruption of the cell membrane (for example, through microinjection). Here we have developed a new approach to produce genetically encoded photoactivatable derivatives of Rac1, a key GTPase regulating actin cytoskeletal dynamics in metazoan cells. Rac1 mutants were fused to the photoreactive LOV (light oxygen voltage) domain from phototropin, sterically blocking Rac1 interactions until irradiation unwound a helix linking LOV to Rac1. Photoactivatable Rac1 (PA-Rac1) could be reversibly and repeatedly activated using 458- or 473-nm light to generate precisely localized cell protrusions and ruffling. Localized Rac activation or inactivation was sufficient to produce cell motility and control the direction of cell movement. Myosin was involved in Rac control of directionality but not in Rac-induced protrusion, whereas PAK was required for Rac-induced protrusion. PA-Rac1 was used to elucidate Rac regulation of RhoA in cell motility. Rac and Rho coordinate cytoskeletal behaviours with seconds and submicrometre precision. Their mutual regulation remains controversial, with data indicating that Rac inhibits and/or activates Rho. Rac was shown to inhibit RhoA in mouse embryonic fibroblasts, with inhibition modulated at protrusions and ruffles. A PA-Rac crystal structure and modelling revealed LOV-Rac interactions that will facilitate extension of this photoactivation approach to other proteins.
To ensure that the photoactivatable Rac1 would induce no dominant-negative effects and that its activity would not be subject to upstream regulation, mutations were introduced to abolish GTP hydrolysis and diminish interactions with nucleotide exchange factors, guanine nucleotide dissociation inhibitors (Q61L) and GTPase activating proteins (E91H and N92H) (Supplementary Fig. 2 and Supplementary text 'Characterization of Rac1 constructs'). Using this advantage, we examined the role of myosin, a key mediator of actin-based contractility, in Rac-induced motility.\n Consistent with pull-down assays (Fig. 1b and Supplementary Fig. 1a), adding or removing even one residue from the connection between LOV and Rac resulted in conformational ensembles with exposed effector binding sites.
The precise spatio-temporal dynamics of protein activity are often critical in determining cell behaviour, yet for most proteins they remain poorly understood; it remains difficult to manipulate protein activity at precise times and places within living cells. Protein activity has been controlled by light, through protein derivatization with photocleavable moieties or using photoreactive small-molecule ligands. However, this requires use of toxic ultraviolet wavelengths, activation is irreversible, and/or cell loading is accomplished via disruption of the cell membrane (for example, through microinjection). Here we have developed a new approach to produce genetically encoded photoactivatable derivatives of Rac1, a key GTPase regulating actin cytoskeletal dynamics in metazoan cells. Rac1 mutants were fused to the photoreactive LOV (light oxygen voltage) domain from phototropin, sterically blocking Rac1 interactions until irradiation unwound a helix linking LOV to Rac1. Photoactivatable Rac1 (PA-Rac1) could be reversibly and repeatedly activated using 458- or 473-nm light to generate precisely localized cell protrusions and ruffling. Localized Rac activation or inactivation was sufficient to produce cell motility and control the direction of cell movement. Myosin was involved in Rac control of directionality but not in Rac-induced protrusion, whereas PAK was required for Rac-induced protrusion. PA-Rac1 was used to elucidate Rac regulation of RhoA in cell motility. Rac and Rho coordinate cytoskeletal behaviours with seconds and submicrometre precision. Their mutual regulation remains controversial, with data indicating that Rac inhibits and/or activates Rho. Rac was shown to inhibit RhoA in mouse embryonic fibroblasts, with inhibition modulated at protrusions and ruffles. A PA-Rac crystal structure and modelling revealed LOV-Rac interactions that will facilitate extension of this photoactivation approach to other proteins.
The precise spatio-temporal dynamics of protein activity are often critical in determining cell behaviour, yet for most proteins they remain poorly understood; it remains difficult to manipulate protein activity at precise times and places within living cells. Protein activity has been controlled by light, through protein derivatization with photocleavable moieties1 or using photoreactive small molecule ligands2. However, this requires use of toxic UV wavelengths, activation is irreversible, and/or cell loading is accomplished via disruption of the cell membrane (i.e. through microinjection). We have developed a new approach to produce genetically-encoded photo-activatable derivatives of Rac1, a key GTPase regulating actin cytoskeletal dynamics3,4. Rac1 mutants were fused to the photoreactive LOV (light oxygen voltage) domain from phototropin5,6, sterically blocking Rac1 interactions until irradiation unwound a helix linking LOV to Rac1. Photoactivatable Rac1 (PA-Rac1) could be reversibly and repeatedly activated using 458 or 473 nm light to generate precisely localized cell protrusions and ruffling. Localized Rac activation or inactivation was sufficient to produce cell motility and control the direction of cell movement. Myosin was involved in Rac control of directionality but not in Rac-induced protrusion, while PAK was required for Rac-induced protrusion. PA-Rac1 was used to elucidate Rac regulation of RhoA in cell motility. Rac and Rho coordinate cytoskeletal behaviours with seconds and submicron precision7,8. Their mutual regulation remains controversial9, with data indicating that Rac inhibits and/or activates Rho10,11. Rac was shown to inhibit RhoA in living cells, with inhibition modulated at protrusions and ruffles. A PA-Rac crystal structure and modelling revealed LOV-Rac interactions that will facilitate extension of this photoactivation approach to other proteins.
Audience Academic
Author Lungu, Oana I.
Schlichting, Ilme
Jaehrig, Angelika
Wu, Yi I.
Kuhlman, Brian
Hahn, Klaus M.
Frey, Daniel
Author_xml – sequence: 1
  givenname: Yi I.
  surname: Wu
  fullname: Wu, Yi I.
  email: yiwu@med.unc.edu
  organization: Department of Pharmacology,, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
– sequence: 2
  givenname: Daniel
  surname: Frey
  fullname: Frey, Daniel
  organization: Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahn-Strasse 29, 69120 Heidelberg, Germany
– sequence: 3
  givenname: Oana I.
  surname: Lungu
  fullname: Lungu, Oana I.
  organization: Department of Pharmacology,, Department of Biochemistry and Biophysics, and, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
– sequence: 4
  givenname: Angelika
  surname: Jaehrig
  fullname: Jaehrig, Angelika
  organization: Department of Pharmacology,, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
– sequence: 5
  givenname: Ilme
  surname: Schlichting
  fullname: Schlichting, Ilme
  organization: Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahn-Strasse 29, 69120 Heidelberg, Germany
– sequence: 6
  givenname: Brian
  surname: Kuhlman
  fullname: Kuhlman, Brian
  organization: Department of Biochemistry and Biophysics, and, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
– sequence: 7
  givenname: Klaus M.
  surname: Hahn
  fullname: Hahn, Klaus M.
  email: khahn@med.unc.edu
  organization: Department of Pharmacology,, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21860112$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19693014$$D View this record in MEDLINE/PubMed
BookMark eNp1ktuLEzEUxoOsuN3VJ99lEBREZ00yaTLzIpTiZWFRWVd8DJn0zDRLmnQnmWL_ezO09iKVPASS3_nO7btAZ847QOg5wVcEF-V7p2LfAS4pI4_QiDDBc8ZLcYZGGNMyx2XBz9FFCPcY4zER7Ak6JxWvCkzYCH2fZC04iEYra9cZOO1nMMuWcx-90tGsVFS1hexW6Ux7FztvQxbnkC18NNbEdeabzJqVcW2mwdrwFD1ulA3wbHtfop-fPt5Nv-Q33z5fTyc3ueaCx7yqVEE1pzUrtBICazarBalVWWDGQBRVxYBRyutGNfVY14LXUNVlmd5qDg0Ul-jDRnfZ1wuYaUi1KSuXnVmobi29MvL4x5m5bP1KUsE5FzgJvN4KdP6hhxDlwoShBeXA90GmMgvGaJXAl_-A977vXGpOUszGnDJGEpRvoFZZkMY1PiXVw2hT7rSvxqTnCcWipBWtxnvRI14vzYM8hK5OQOnMYGH0SdU3RwHDxuB3bFUfgrz-cXvMvv0_O7n7Nf16TL84HPduzn-dlIBXW0CF5KWmU06bsOMoKTkmhCaObDjd-RA6aKQ2UUUzeEsZKwmWg6vlgav3pe5idulP0u82dEiUa6Hb7-sU_gfPXQXk
CODEN NATUAS
CitedBy_id crossref_primary_10_1038_s41556_018_0198_9
crossref_primary_10_1083_jcb_201012159
crossref_primary_10_1016_j_ceb_2020_03_003
crossref_primary_10_1002_anie_201007078
crossref_primary_10_1038_nrm2957
crossref_primary_10_3389_fncir_2017_00012
crossref_primary_10_1111_pcn_12516
crossref_primary_10_1155_2014_895039
crossref_primary_10_1186_s13195_015_0129_y
crossref_primary_10_1016_j_jmb_2022_167620
crossref_primary_10_1007_s00018_016_2214_1
crossref_primary_10_1002_cbic_201000453
crossref_primary_10_1073_pnas_0911986107
crossref_primary_10_1186_s12915_024_01850_z
crossref_primary_10_3389_fimmu_2019_00755
crossref_primary_10_1016_j_neuron_2012_03_005
crossref_primary_10_1371_journal_pone_0091815
crossref_primary_10_1021_ja4037274
crossref_primary_10_1016_j_chembiol_2012_02_006
crossref_primary_10_1016_j_bbr_2013_04_018
crossref_primary_10_1002_ange_201202134
crossref_primary_10_1016_j_pbi_2022_102256
crossref_primary_10_1038_srep42297
crossref_primary_10_1073_pnas_2219339120
crossref_primary_10_1002_cbic_201800013
crossref_primary_10_1158_0008_5472_CAN_18_2757
crossref_primary_10_1186_s12934_016_0426_6
crossref_primary_10_4161_cib_17772
crossref_primary_10_1021_jacs_3c03701
crossref_primary_10_3390_cells9071635
crossref_primary_10_1002_anie_201800140
crossref_primary_10_1038_nmeth0810_595
crossref_primary_10_1111_j_1476_5381_2011_01328_x
crossref_primary_10_1016_j_chembiol_2011_07_004
crossref_primary_10_1126_science_aab4077
crossref_primary_10_1371_journal_pone_0092917
crossref_primary_10_1016_j_nbd_2019_02_004
crossref_primary_10_1002_anie_202403499
crossref_primary_10_3390_v10060337
crossref_primary_10_1039_c1cc10481k
crossref_primary_10_1088_1478_3975_acf7a1
crossref_primary_10_1242_dev_148874
crossref_primary_10_1371_journal_pcbi_1012025
crossref_primary_10_1016_j_bbrc_2019_11_023
crossref_primary_10_1371_journal_pone_0090736
crossref_primary_10_3389_fnmol_2017_00058
crossref_primary_10_7554_eLife_84364
crossref_primary_10_1038_emm_2013_73
crossref_primary_10_1016_j_neuron_2023_10_002
crossref_primary_10_1038_s41583_019_0197_2
crossref_primary_10_1038_s41598_019_40173_w
crossref_primary_10_3389_fimmu_2021_649600
crossref_primary_10_1016_j_ymeth_2015_06_014
crossref_primary_10_1371_journal_pone_0194716
crossref_primary_10_3390_ijms21207544
crossref_primary_10_1016_j_semcdb_2023_07_012
crossref_primary_10_7554_eLife_63756
crossref_primary_10_3390_app12083750
crossref_primary_10_1016_j_devcel_2015_12_011
crossref_primary_10_1016_j_intimp_2014_01_021
crossref_primary_10_1111_j_1365_313X_2009_04105_x
crossref_primary_10_1002_btm2_10292
crossref_primary_10_1002_cm_21115
crossref_primary_10_1016_j_neuron_2017_06_050
crossref_primary_10_1146_annurev_chembioeng_060816_101254
crossref_primary_10_1007_s12010_018_2710_x
crossref_primary_10_1111_febs_14175
crossref_primary_10_1038_ncb3234
crossref_primary_10_1038_ncb3115
crossref_primary_10_1038_s41567_025_02807_x
crossref_primary_10_1039_D1SC01059J
crossref_primary_10_1002_anie_202416456
crossref_primary_10_1091_mbc_e15_09_0645
crossref_primary_10_1074_jbc_RA119_009141
crossref_primary_10_1242_jcs_064345
crossref_primary_10_1016_j_conb_2021_05_001
crossref_primary_10_1038_s41592_019_0541_5
crossref_primary_10_1016_j_ceb_2014_06_005
crossref_primary_10_1111_j_1751_1097_2011_00913_x
crossref_primary_10_1007_s00424_013_1244_x
crossref_primary_10_1016_j_ceb_2014_06_007
crossref_primary_10_3389_fphys_2020_00822
crossref_primary_10_1016_j_ifacol_2019_12_262
crossref_primary_10_1038_s41467_020_19008_0
crossref_primary_10_1088_1478_3975_13_4_046001
crossref_primary_10_1016_j_chembiol_2013_04_004
crossref_primary_10_1371_journal_pone_0135965
crossref_primary_10_1371_journal_pone_0248688
crossref_primary_10_1186_s12915_021_00997_3
crossref_primary_10_3389_fnmol_2017_00396
crossref_primary_10_1016_j_yexcr_2024_114232
crossref_primary_10_1080_21541248_2017_1302551
crossref_primary_10_1016_j_yexcr_2025_114654
crossref_primary_10_1107_S1744309113029199
crossref_primary_10_1002_ange_201803993
crossref_primary_10_1007_s13238_013_3118_6
crossref_primary_10_1038_s41586_019_1188_1
crossref_primary_10_1016_j_tibtech_2014_11_007
crossref_primary_10_1002_anie_201310349
crossref_primary_10_1073_pnas_2121985119
crossref_primary_10_1016_j_ceb_2020_04_004
crossref_primary_10_1186_s13568_018_0582_7
crossref_primary_10_1016_j_mcn_2017_03_008
crossref_primary_10_1016_j_tibtech_2014_11_010
crossref_primary_10_1002_ange_202403499
crossref_primary_10_1016_j_biomaterials_2020_120222
crossref_primary_10_1038_nature15257
crossref_primary_10_1038_s41596_019_0165_3
crossref_primary_10_1038_srep23976
crossref_primary_10_1002_cm_21017
crossref_primary_10_1182_blood_2010_03_276972
crossref_primary_10_1016_j_bbrc_2019_12_132
crossref_primary_10_1016_j_jmb_2016_04_012
crossref_primary_10_1038_ncb3497
crossref_primary_10_7554_eLife_12387
crossref_primary_10_1038_nn_4091
crossref_primary_10_1242_jcs_085191
crossref_primary_10_1002_advs_202508422
crossref_primary_10_1038_nprot_2014_038
crossref_primary_10_1146_annurev_biophys_050708_133652
crossref_primary_10_1038_nrm2768
crossref_primary_10_1021_ja5080745
crossref_primary_10_1016_j_ceb_2025_102569
crossref_primary_10_1016_j_copbio_2018_02_003
crossref_primary_10_1002_ctm2_1243
crossref_primary_10_1038_ncomms7898
crossref_primary_10_1038_s41557_024_01463_7
crossref_primary_10_1038_nrm2883
crossref_primary_10_1038_nmeth_1473
crossref_primary_10_1074_jbc_M110_190496
crossref_primary_10_1124_pr_111_005611
crossref_primary_10_1016_j_tibs_2015_12_002
crossref_primary_10_1038_ncomms4019
crossref_primary_10_1002_wdev_101
crossref_primary_10_1038_s41556_022_00997_7
crossref_primary_10_1016_j_devcel_2023_04_019
crossref_primary_10_1134_S1062360413030016
crossref_primary_10_1002_ange_202416456
crossref_primary_10_1039_c5pp00178a
crossref_primary_10_1002_cbic_201000302
crossref_primary_10_1002_ange_201800140
crossref_primary_10_2116_analsci_18SDP06
crossref_primary_10_1016_j_ceca_2017_01_004
crossref_primary_10_1002_adbi_201800098
crossref_primary_10_1038_s41592_022_01697_8
crossref_primary_10_1038_s41593_019_0537_6
crossref_primary_10_1042_BCJ20160240
crossref_primary_10_1016_j_chembiol_2017_05_008
crossref_primary_10_1016_j_nbt_2016_10_003
crossref_primary_10_7554_eLife_57395
crossref_primary_10_1016_j_devcel_2014_03_009
crossref_primary_10_1021_jacs_4c06459
crossref_primary_10_3389_fphar_2023_1206136
crossref_primary_10_1002_cbic_201700635
crossref_primary_10_1016_j_biomaterials_2012_07_013
crossref_primary_10_3390_ijms21186522
crossref_primary_10_1038_ncomms8826
crossref_primary_10_1038_s41467_021_21025_6
crossref_primary_10_1073_pnas_1220755110
crossref_primary_10_1038_ncb2061
crossref_primary_10_1038_s41467_017_00518_3
crossref_primary_10_1016_j_chembiol_2011_09_014
crossref_primary_10_1038_s41467_024_54351_6
crossref_primary_10_1111_nph_17008
crossref_primary_10_3389_fnmol_2017_00004
crossref_primary_10_1002_anie_201803993
crossref_primary_10_1016_j_bpj_2017_05_035
crossref_primary_10_1073_pnas_1211305109
crossref_primary_10_1105_tpc_109_067876
crossref_primary_10_1038_nrm2985
crossref_primary_10_1007_s00253_017_8178_8
crossref_primary_10_1038_nrm3837
crossref_primary_10_1016_j_chembiol_2013_03_005
crossref_primary_10_1016_j_chembiol_2014_05_013
crossref_primary_10_1074_jbc_M113_515403
crossref_primary_10_1016_j_cub_2019_07_035
crossref_primary_10_1093_cercor_bhq197
crossref_primary_10_1038_nrm3950
crossref_primary_10_1016_j_bbrc_2017_11_091
crossref_primary_10_1136_ard_2010_138156
crossref_primary_10_1007_s12264_021_00677_w
crossref_primary_10_1016_j_bpj_2023_11_011
crossref_primary_10_1111_j_1365_2567_2010_03267_x
crossref_primary_10_1002_cbic_201600640
crossref_primary_10_1242_jcs_154435
crossref_primary_10_1016_j_cell_2013_11_004
crossref_primary_10_1021_ja203198y
crossref_primary_10_1371_journal_pcbi_1001121
crossref_primary_10_1021_jacs_5b06234
crossref_primary_10_1146_annurev_neuro_061010_113817
crossref_primary_10_1002_prot_24031
crossref_primary_10_1016_j_tibtech_2014_10_007
crossref_primary_10_1002_cbic_201000642
crossref_primary_10_1016_j_tcb_2018_02_008
crossref_primary_10_1002_prot_24556
crossref_primary_10_1021_ja412191m
crossref_primary_10_1042_BST20130150
crossref_primary_10_3389_fcell_2020_582975
crossref_primary_10_1038_s41386_022_01518_8
crossref_primary_10_1146_annurev_arplant_071122_094840
crossref_primary_10_1002_bit_26523
crossref_primary_10_1073_pnas_1304340110
crossref_primary_10_1038_s41467_021_27342_0
crossref_primary_10_1093_jxb_eraf284
crossref_primary_10_1038_s41598_018_27174_x
crossref_primary_10_1146_annurev_bioeng_083120_111648
crossref_primary_10_1016_j_chembiol_2010_04_013
crossref_primary_10_1038_nmeth_3689
crossref_primary_10_1002_cm_21057
crossref_primary_10_1038_s41467_021_25465_y
crossref_primary_10_1002_smll_202301431
crossref_primary_10_1126_science_1226854
crossref_primary_10_1091_mbc_E22_07_0266
crossref_primary_10_1002_biot_201400077
crossref_primary_10_1146_annurev_biochem_072420_112431
crossref_primary_10_1016_j_coph_2016_11_001
crossref_primary_10_1016_j_jmb_2012_01_001
crossref_primary_10_1038_nbt_3909
crossref_primary_10_1016_j_biomaterials_2016_09_035
crossref_primary_10_2492_inflammregen_34_015
crossref_primary_10_1155_2012_398640
crossref_primary_10_1002_anie_201509622
crossref_primary_10_1038_ncb2533
crossref_primary_10_7554_eLife_66074
crossref_primary_10_1242_jcs_093732
crossref_primary_10_1016_j_jmb_2012_02_037
crossref_primary_10_1073_pnas_1713845115
crossref_primary_10_1242_jcs_201749
crossref_primary_10_1038_nmeth_2360
crossref_primary_10_1002_adbi_202000256
crossref_primary_10_1124_pharmrev_122_000584
crossref_primary_10_1002_nadc_201176255
crossref_primary_10_1016_j_gde_2020_04_001
crossref_primary_10_1016_j_febslet_2012_05_040
crossref_primary_10_1016_j_tcb_2011_07_001
crossref_primary_10_7554_eLife_60647
crossref_primary_10_1016_j_gde_2011_08_005
crossref_primary_10_4161_sgtp_19379
crossref_primary_10_1016_j_cels_2016_04_007
crossref_primary_10_1002_wsbm_110
crossref_primary_10_1073_pnas_1423162112
crossref_primary_10_1016_j_jmb_2019_12_033
crossref_primary_10_1016_j_pneurobio_2019_101638
crossref_primary_10_1146_annurev_arplant_042809_112259
crossref_primary_10_1038_s41598_017_12162_4
crossref_primary_10_1016_j_toxicon_2019_02_019
crossref_primary_10_1038_srep42592
crossref_primary_10_1038_s41467_019_13236_9
crossref_primary_10_1038_s41598_017_13674_9
crossref_primary_10_1073_pnas_1115260109
crossref_primary_10_1242_jcs_121988
crossref_primary_10_4049_jimmunol_1301623
crossref_primary_10_1038_nnano_2015_28
crossref_primary_10_1080_14686996_2016_1241131
crossref_primary_10_1016_j_gde_2011_08_011
crossref_primary_10_1083_jcb_201412015
crossref_primary_10_1111_ejn_14734
crossref_primary_10_12688_f1000research_10617_1
crossref_primary_10_1007_s00425_013_1962_5
crossref_primary_10_1242_jcs_115063
crossref_primary_10_1002_anie_201601736
crossref_primary_10_1016_j_febslet_2012_02_032
crossref_primary_10_1038_msb_2013_48
crossref_primary_10_1038_nnano_2010_104
crossref_primary_10_1002_chem_201002716
crossref_primary_10_1016_j_biocel_2014_11_007
crossref_primary_10_1126_science_1175668
crossref_primary_10_1038_ncomms14396
crossref_primary_10_1038_s41576_025_00837_y
crossref_primary_10_1039_c0ib00102c
crossref_primary_10_1038_nn_3094
crossref_primary_10_1007_s00018_021_03836_4
crossref_primary_10_1074_jbc_M109_051490
crossref_primary_10_1080_21541248_2017_1366965
crossref_primary_10_1038_nature11859
crossref_primary_10_1083_jcb_201203012
crossref_primary_10_1016_j_cell_2025_05_006
crossref_primary_10_1002_cbic_201402576
crossref_primary_10_1038_emboj_2011_446
crossref_primary_10_3103_S0096392516010028
crossref_primary_10_1016_j_pneurobio_2024_102600
crossref_primary_10_1002_adbi_202000181
crossref_primary_10_3389_fcell_2020_594998
crossref_primary_10_1016_j_tcb_2015_11_003
crossref_primary_10_1038_s41467_020_18389_6
crossref_primary_10_1038_nrm_2016_106
crossref_primary_10_1002_ange_201806976
crossref_primary_10_1002_dvg_20754
crossref_primary_10_1038_ncomms15017
crossref_primary_10_1002_cm_21097
crossref_primary_10_1016_j_febslet_2012_03_044
crossref_primary_10_1038_s41467_017_00648_8
crossref_primary_10_3389_fcell_2020_00418
crossref_primary_10_1016_j_conb_2009_09_004
crossref_primary_10_1038_ncomms15385
crossref_primary_10_1016_j_copbio_2011_12_004
crossref_primary_10_1021_ja5026326
crossref_primary_10_1038_s41598_024_52056_w
crossref_primary_10_1016_j_bbamcr_2012_04_001
crossref_primary_10_1093_nar_gkx804
crossref_primary_10_7554_eLife_57681
crossref_primary_10_3390_cancers17121924
crossref_primary_10_1016_j_crmeth_2022_100235
crossref_primary_10_1016_j_cbpa_2017_05_001
crossref_primary_10_1126_scitranslmed_3003101
crossref_primary_10_1038_nprot_2017_071
crossref_primary_10_1073_pnas_1319296111
crossref_primary_10_1242_dev_171397
crossref_primary_10_1371_journal_pone_0070861
crossref_primary_10_3389_fcell_2022_789841
crossref_primary_10_1016_j_gene_2018_07_077
crossref_primary_10_1016_j_semcdb_2022_04_013
crossref_primary_10_1038_nmeth_4222
crossref_primary_10_1002_anie_201202134
crossref_primary_10_1002_anie_201611432
crossref_primary_10_1016_j_chembiol_2011_07_013
crossref_primary_10_1016_j_celrep_2014_10_055
crossref_primary_10_1002_jcp_29290
crossref_primary_10_1016_j_jbc_2021_100290
crossref_primary_10_1074_jbc_AW119_008144
crossref_primary_10_1242_dev_090332
crossref_primary_10_1016_j_coisb_2017_03_005
crossref_primary_10_1126_science_add9666
crossref_primary_10_1039_c5ib00263j
crossref_primary_10_1038_nmeth1009_694a
crossref_primary_10_1038_s41467_019_12260_z
crossref_primary_10_1038_ncomms1121
crossref_primary_10_1007_s41614_017_0004_3
crossref_primary_10_1039_c4ib00099d
crossref_primary_10_12688_f1000research_8090_1
crossref_primary_10_1002_ange_201007078
crossref_primary_10_1016_j_neuron_2017_02_036
crossref_primary_10_7554_eLife_10024
crossref_primary_10_1111_tpj_17191
crossref_primary_10_1242_dev_140889
crossref_primary_10_1016_j_cbpa_2012_06_003
crossref_primary_10_1038_s41556_019_0438_7
crossref_primary_10_1038_s41593_022_01148_9
crossref_primary_10_1016_j_sbi_2016_11_014
crossref_primary_10_1038_s41467_018_07150_9
crossref_primary_10_1080_21541248_2018_1507411
crossref_primary_10_1016_j_jmb_2020_07_005
crossref_primary_10_1021_ja108258d
crossref_primary_10_1002_pro_2089
crossref_primary_10_1016_j_sbi_2019_01_012
crossref_primary_10_1016_j_sbi_2019_01_017
crossref_primary_10_3390_molecules28072976
crossref_primary_10_1002_ange_201404198
crossref_primary_10_1038_nrm2904
crossref_primary_10_3389_fsybi_2025_1548572
crossref_primary_10_1038_ncb3447
crossref_primary_10_1038_s41556_017_0028_5
crossref_primary_10_1016_j_gde_2011_09_012
crossref_primary_10_1073_pnas_1614716114
crossref_primary_10_1038_s41467_020_18816_8
crossref_primary_10_1091_mbc_E21_11_0540
crossref_primary_10_1093_pcp_pcs165
crossref_primary_10_1002_nadc_20164046022
crossref_primary_10_1039_c0pp00167h
crossref_primary_10_1016_j_tcb_2011_10_001
crossref_primary_10_1093_jb_mvaa139
crossref_primary_10_1098_rsob_210043
crossref_primary_10_1021_ja4130803
crossref_primary_10_1016_j_tig_2013_03_004
crossref_primary_10_1073_pnas_1705064114
crossref_primary_10_1073_pnas_1304056110
crossref_primary_10_1038_s42003_021_02583_3
crossref_primary_10_1016_j_chembiol_2011_04_014
crossref_primary_10_1038_nmeth_4257
crossref_primary_10_1073_pnas_1210295109
crossref_primary_10_1091_mbc_e13_04_0178
crossref_primary_10_1038_s41540_021_00176_8
crossref_primary_10_1016_j_bbrc_2012_10_047
crossref_primary_10_3389_fcell_2023_1195806
crossref_primary_10_1038_nnano_2013_23
crossref_primary_10_1098_rsfs_2013_0005
crossref_primary_10_1016_j_biomaterials_2019_119546
crossref_primary_10_1016_j_cobme_2020_100250
crossref_primary_10_1016_j_chembiol_2015_04_014
crossref_primary_10_1038_s41583_024_00851_9
crossref_primary_10_1093_pcp_pcs172
crossref_primary_10_1021_ja404992r
crossref_primary_10_1016_j_copbio_2016_03_004
crossref_primary_10_1002_ange_201611432
crossref_primary_10_1002_smtd_202401522
crossref_primary_10_1002_chem_201200348
crossref_primary_10_1016_j_tibtech_2016_09_002
crossref_primary_10_1002_wnan_1313
crossref_primary_10_1016_j_jmb_2016_07_009
crossref_primary_10_1016_j_canlet_2021_10_030
crossref_primary_10_3389_fmolb_2021_752700
crossref_primary_10_3389_fphys_2014_00374
crossref_primary_10_1016_j_neuron_2017_09_047
crossref_primary_10_1002_advs_201800952
crossref_primary_10_1042_BJ20130637
crossref_primary_10_1016_j_csbj_2021_11_038
crossref_primary_10_1038_srep13289
crossref_primary_10_1093_mp_sss020
crossref_primary_10_3389_fbioe_2022_903982
crossref_primary_10_1002_chem_201900562
crossref_primary_10_3389_fmicb_2018_02692
crossref_primary_10_1002_2211_5463_13179
crossref_primary_10_1016_j_jmb_2019_05_033
crossref_primary_10_1038_s41567_023_02314_x
crossref_primary_10_1038_srep02385
crossref_primary_10_1038_srep03118
crossref_primary_10_1016_j_bpj_2023_06_013
crossref_primary_10_1016_j_jsb_2011_11_017
crossref_primary_10_1038_nrc3742
crossref_primary_10_1186_s12918_014_0128_9
crossref_primary_10_1038_s41467_022_33727_6
crossref_primary_10_4161_sgtp_27958
crossref_primary_10_1016_j_cell_2015_06_049
crossref_primary_10_1016_j_neuron_2015_05_043
crossref_primary_10_1002_biot_201100091
crossref_primary_10_1007_s12013_009_9070_7
crossref_primary_10_1016_j_bpj_2016_07_040
crossref_primary_10_1016_j_tips_2025_05_002
crossref_primary_10_1093_g3journal_jkaf073
crossref_primary_10_1002_ggn2_202500021
crossref_primary_10_1083_jcb_201108152
crossref_primary_10_1002_ange_201601736
crossref_primary_10_1159_000528796
crossref_primary_10_1016_j_jbc_2025_108417
crossref_primary_10_1016_j_jmb_2017_08_015
crossref_primary_10_1016_j_devcel_2018_05_029
crossref_primary_10_1109_JSAC_2014_2367667
crossref_primary_10_1039_C4CC09040C
crossref_primary_10_1038_nchembio_2387
crossref_primary_10_1038_s12276_025_01395_3
crossref_primary_10_1038_s41589_021_00917_0
crossref_primary_10_1016_j_bbamcr_2013_02_013
crossref_primary_10_3390_cells10102777
crossref_primary_10_3389_fnmol_2020_572312
crossref_primary_10_1038_s41589_024_01770_7
crossref_primary_10_1371_journal_pgen_1009544
crossref_primary_10_1074_jbc_M110_185496
crossref_primary_10_1016_j_copbio_2010_07_005
crossref_primary_10_1126_science_aah3605
crossref_primary_10_1016_j_cbpa_2011_10_016
crossref_primary_10_1016_j_copbio_2010_07_006
crossref_primary_10_1038_s41567_023_02295_x
crossref_primary_10_3389_fchem_2017_00012
crossref_primary_10_1016_j_celrep_2024_113982
crossref_primary_10_1016_j_jmb_2020_08_002
crossref_primary_10_1016_j_semcdb_2021_06_005
crossref_primary_10_1088_0957_4484_22_6_065101
crossref_primary_10_3389_fmolb_2015_00049
crossref_primary_10_1038_ncomms9021
crossref_primary_10_1038_s41467_020_14390_1
crossref_primary_10_3390_s20215980
crossref_primary_10_1016_j_cub_2024_06_019
crossref_primary_10_7554_eLife_57732
crossref_primary_10_1134_S0026261715040086
crossref_primary_10_1073_pnas_2411316122
crossref_primary_10_1016_j_cub_2014_03_023
crossref_primary_10_1016_j_ultramic_2015_10_014
crossref_primary_10_1038_nmeth_1904
crossref_primary_10_1016_j_ceb_2014_08_004
crossref_primary_10_1038_s41467_018_06531_4
crossref_primary_10_1093_nar_gkac191
crossref_primary_10_1002_dvg_23505
crossref_primary_10_1016_j_jmb_2024_168919
crossref_primary_10_1080_09500340_2015_1010620
crossref_primary_10_1038_s41598_019_54349_x
crossref_primary_10_15252_embr_201948385
crossref_primary_10_1002_anie_201402294
crossref_primary_10_1038_srep14589
crossref_primary_10_1016_j_biopsych_2011_12_026
crossref_primary_10_1126_science_1208555
crossref_primary_10_1016_j_devcel_2009_11_015
crossref_primary_10_1021_jacs_2c03669
crossref_primary_10_1126_science_aaj2161
crossref_primary_10_1083_jcb_201201124
crossref_primary_10_3389_fcell_2021_642235
crossref_primary_10_1038_s41598_020_62874_3
crossref_primary_10_1038_nchembio_2244
crossref_primary_10_1111_php_12470
crossref_primary_10_1083_jcb_201706052
crossref_primary_10_1002_chem_202401619
crossref_primary_10_1146_annurev_arplant_042110_103843
crossref_primary_10_1091_mbc_E20_08_0546
crossref_primary_10_1038_s41467_020_14567_8
crossref_primary_10_1073_pnas_1218319110
crossref_primary_10_1016_j_ceb_2019_12_009
crossref_primary_10_1371_journal_pcbi_1008411
crossref_primary_10_1038_ki_2013_175
crossref_primary_10_1534_genetics_110_120998
crossref_primary_10_3390_cells13060468
crossref_primary_10_1007_s00894_011_1165_6
crossref_primary_10_1016_j_ceca_2012_12_005
crossref_primary_10_1016_j_tcb_2011_08_002
crossref_primary_10_1038_nchembio_2369
crossref_primary_10_1016_j_ceca_2018_08_007
crossref_primary_10_1098_rsob_130001
crossref_primary_10_1016_j_devcel_2020_11_024
crossref_primary_10_1016_j_ceca_2010_08_009
crossref_primary_10_1016_j_devcel_2018_06_008
crossref_primary_10_1038_ncb2972
crossref_primary_10_1038_s41556_025_01729_3
crossref_primary_10_1016_j_bpj_2013_11_4489
crossref_primary_10_1073_pnas_1100262108
crossref_primary_10_1021_acschembio_5c00083
crossref_primary_10_1093_jb_mvab006
crossref_primary_10_1146_annurev_arplant_042811_105538
crossref_primary_10_1007_s00418_020_01935_0
crossref_primary_10_1074_jbc_RA120_013623
crossref_primary_10_1038_s41598_017_09600_8
crossref_primary_10_1021_ja500327g
crossref_primary_10_1016_j_str_2017_04_006
crossref_primary_10_3389_fncel_2014_00321
crossref_primary_10_1371_journal_pone_0170464
crossref_primary_10_1016_j_bpj_2023_05_015
crossref_primary_10_3390_ijms19124052
crossref_primary_10_1016_j_semcdb_2024_12_004
crossref_primary_10_1038_nnano_2012_246
crossref_primary_10_1016_j_mib_2022_102158
crossref_primary_10_1073_pnas_1518412113
crossref_primary_10_1007_s12195_022_00743_x
crossref_primary_10_1039_c3cc44866e
crossref_primary_10_1038_srep43760
crossref_primary_10_1016_j_cbpa_2012_04_010
crossref_primary_10_1039_C6CP08370F
crossref_primary_10_1038_nnano_2011_226
crossref_primary_10_1016_j_cell_2011_06_010
crossref_primary_10_1126_science_aah3404
crossref_primary_10_1016_j_chembiol_2019_10_006
crossref_primary_10_1038_s41467_022_30252_4
crossref_primary_10_1080_17460441_2018_1437138
crossref_primary_10_3390_ijms23031737
crossref_primary_10_1038_s41467_023_43875_y
crossref_primary_10_7554_eLife_84364_3
crossref_primary_10_1371_journal_pone_0082693
crossref_primary_10_1016_j_jmb_2010_03_053
crossref_primary_10_1016_j_devcel_2010_12_014
crossref_primary_10_1038_nrg3227
crossref_primary_10_1111_j_1749_6632_2011_06368_x
crossref_primary_10_3389_fncel_2022_811493
crossref_primary_10_1083_jcb_201406102
crossref_primary_10_1016_j_neubiorev_2017_05_015
crossref_primary_10_1002_ange_201402294
crossref_primary_10_1038_s41467_023_38993_6
crossref_primary_10_1111_febs_12348
crossref_primary_10_1080_21541248_2017_1396390
crossref_primary_10_1038_nature09232
crossref_primary_10_1016_j_jbc_2022_102388
crossref_primary_10_1016_j_tibtech_2010_06_001
crossref_primary_10_1073_pnas_1507355112
crossref_primary_10_1016_j_coph_2022_102197
crossref_primary_10_1016_j_neures_2019_12_020
crossref_primary_10_1021_acsbiomaterials_8b01206
crossref_primary_10_3389_fnmol_2015_00037
crossref_primary_10_1016_j_jmb_2010_10_038
crossref_primary_10_1016_j_cub_2011_06_032
crossref_primary_10_1016_j_copbio_2012_01_004
crossref_primary_10_1016_j_mcn_2018_04_004
crossref_primary_10_1038_nnano_2014_147
crossref_primary_10_1016_j_jmb_2024_168439
crossref_primary_10_1038_s41592_020_0774_3
crossref_primary_10_1088_1478_3975_9_4_046005
crossref_primary_10_1007_s12264_012_1252_4
crossref_primary_10_3389_fnsyn_2016_00024
crossref_primary_10_1021_jacs_9b12898
crossref_primary_10_1038_nmeth_1708
crossref_primary_10_1038_nmeth_f_324
crossref_primary_10_1093_imammb_dqab002
crossref_primary_10_1038_nmeth_f_327
crossref_primary_10_1016_j_devcel_2021_07_011
crossref_primary_10_1038_nmeth_f_326
crossref_primary_10_3389_fcell_2021_706126
crossref_primary_10_1002_adbi_201800302
crossref_primary_10_1002_cbic_201500245
crossref_primary_10_1016_j_molcel_2011_03_032
crossref_primary_10_1016_j_jphotochemrev_2016_10_003
crossref_primary_10_1016_j_devcel_2024_05_024
crossref_primary_10_1242_dev_155200
crossref_primary_10_1146_annurev_biochem_060614_034411
crossref_primary_10_4161_sgtp_28997
crossref_primary_10_1038_s41580_018_0024_z
crossref_primary_10_1016_j_cell_2010_02_037
crossref_primary_10_1016_j_jmb_2010_05_019
crossref_primary_10_1002_ange_201310349
crossref_primary_10_3389_fmolb_2021_771717
crossref_primary_10_1016_j_ceca_2013_03_001
crossref_primary_10_1007_s00418_016_1440_9
crossref_primary_10_1107_S2052252524005608
crossref_primary_10_1038_s41467_025_61710_4
crossref_primary_10_1021_jacs_1c02156
crossref_primary_10_1038_s41556_021_00786_8
crossref_primary_10_1042_BST20160386
crossref_primary_10_1007_s10439_019_02407_w
crossref_primary_10_1016_j_tig_2022_05_014
crossref_primary_10_1038_emboj_2010_182
crossref_primary_10_1002_cbic_200900754
crossref_primary_10_1038_ncomms2800
crossref_primary_10_1016_j_tplants_2019_10_002
crossref_primary_10_1146_annurev_biochem_060409_093259
crossref_primary_10_3390_pharmaceutics3020141
crossref_primary_10_1016_j_chembiol_2014_08_011
crossref_primary_10_1038_nn_3424
crossref_primary_10_7554_eLife_63230
crossref_primary_10_1073_pnas_1402087111
crossref_primary_10_1016_j_colsurfb_2024_114474
crossref_primary_10_1016_j_devcel_2015_06_012
crossref_primary_10_1073_pnas_1813586116
crossref_primary_10_1039_c5pp00171d
crossref_primary_10_1038_s41467_023_42643_2
crossref_primary_10_1002_cbic_201500469
crossref_primary_10_1371_journal_pone_0064738
crossref_primary_10_1515_hsz_2021_0417
crossref_primary_10_1038_ng_2359
crossref_primary_10_1016_j_conb_2010_08_018
crossref_primary_10_1016_j_tcb_2016_09_006
crossref_primary_10_1073_pnas_1903500116
crossref_primary_10_1091_mbc_E25_02_0058
crossref_primary_10_15252_embj_201797404
crossref_primary_10_1016_j_cellsig_2012_03_005
crossref_primary_10_1021_ja1097379
crossref_primary_10_1016_j_neuron_2011_06_004
crossref_primary_10_1038_jid_2014_50
crossref_primary_10_1109_ACCESS_2021_3093442
crossref_primary_10_3390_ijms22105300
crossref_primary_10_1002_adfm_202302145
crossref_primary_10_1016_j_devcel_2020_05_009
crossref_primary_10_1371_journal_pone_0097749
crossref_primary_10_1016_j_ydbio_2015_09_023
crossref_primary_10_1002_smtd_202401271
crossref_primary_10_1038_ncb1009_1180
crossref_primary_10_3109_10409238_2010_546389
crossref_primary_10_1038_s41592_023_01880_5
crossref_primary_10_1242_jcs_206979
crossref_primary_10_1002_adhm_201500957
crossref_primary_10_1038_nrmicro2622
crossref_primary_10_1091_mbc_E14_07_1197
crossref_primary_10_1146_annurev_cellbio_100109_104051
crossref_primary_10_1016_j_jmb_2020_02_019
crossref_primary_10_1016_j_aca_2011_04_012
crossref_primary_10_1016_j_copbio_2020_07_007
crossref_primary_10_3389_fcell_2020_627647
crossref_primary_10_1016_j_tins_2011_12_002
crossref_primary_10_1016_j_jmb_2023_168356
crossref_primary_10_1016_j_str_2012_02_016
crossref_primary_10_1371_journal_pone_0010977
crossref_primary_10_1007_s00424_023_02864_2
crossref_primary_10_1002_anie_201404198
crossref_primary_10_1038_s41467_020_15593_2
crossref_primary_10_1111_j_1751_1097_2011_00926_x
crossref_primary_10_1371_journal_pcbi_1005433
crossref_primary_10_1038_ncomms15817
crossref_primary_10_1091_mbc_e10_08_0699
crossref_primary_10_1111_j_1751_1097_2011_00903_x
crossref_primary_10_1021_sb3000172
crossref_primary_10_1111_j_1365_2443_2012_01616_x
crossref_primary_10_1093_nar_gkv290
crossref_primary_10_3390_bios15090556
crossref_primary_10_1038_s12276_025_01399_z
crossref_primary_10_1111_boc_201200056
crossref_primary_10_1091_mbc_E21_06_0334
crossref_primary_10_1038_s41551_021_00829_3
crossref_primary_10_1111_joa_13526
crossref_primary_10_1016_j_devcel_2020_12_017
crossref_primary_10_3389_fmolb_2015_00030
crossref_primary_10_3390_app9183924
crossref_primary_10_1038_ncomms7256
crossref_primary_10_1038_ncomms7137
crossref_primary_10_1083_jcb_201210119
crossref_primary_10_1002_cbic_200900529
crossref_primary_10_1038_nrm3212
crossref_primary_10_1138_20100459
crossref_primary_10_3389_fbioe_2022_1029403
crossref_primary_10_1242_jcs_161703
crossref_primary_10_1109_RBME_2013_2294796
crossref_primary_10_1002_cbic_201700681
crossref_primary_10_1002_advs_202307549
crossref_primary_10_1016_j_ejcb_2015_05_009
crossref_primary_10_1242_jcs_099994
crossref_primary_10_1002_wdev_188
crossref_primary_10_1073_pnas_1207968109
crossref_primary_10_1016_j_isci_2025_112529
crossref_primary_10_1007_s00018_013_1519_6
crossref_primary_10_1038_s41589_019_0405_4
crossref_primary_10_1073_pnas_1114487109
crossref_primary_10_1242_dev_175067
crossref_primary_10_1002_cbic_202500156
crossref_primary_10_1074_jbc_M112_447326
crossref_primary_10_1016_j_bpj_2015_08_042
crossref_primary_10_1016_j_nancom_2015_08_004
crossref_primary_10_1113_JP282306
crossref_primary_10_1016_j_bpj_2018_04_020
crossref_primary_10_1083_jcb_201409108
crossref_primary_10_1096_fj_11_195800
crossref_primary_10_1002_1873_3468_12095
crossref_primary_10_1134_S0006297914090107
crossref_primary_10_1016_j_conb_2010_06_009
crossref_primary_10_1021_acscentsci_3c01105
crossref_primary_10_1073_pnas_2018480118
crossref_primary_10_3389_fmolb_2015_00018
crossref_primary_10_1002_ange_201509622
crossref_primary_10_1016_j_chembiol_2014_07_004
crossref_primary_10_1038_s41598_019_52002_1
crossref_primary_10_1146_annurev_conmatphys_033117_054046
crossref_primary_10_1073_pnas_2221615120
crossref_primary_10_1158_0008_5472_CAN_10_2267
crossref_primary_10_1038_nmeth_1979
crossref_primary_10_1016_j_chembiol_2015_09_018
crossref_primary_10_1039_c9pp00434c
crossref_primary_10_1083_jcb_201802076
crossref_primary_10_1016_j_copbio_2017_02_006
crossref_primary_10_1242_jcs_263634
crossref_primary_10_1038_nmeth_2940
crossref_primary_10_1007_s10237_020_01308_5
crossref_primary_10_1002_cbic_201000008
crossref_primary_10_3389_fbioe_2022_901300
crossref_primary_10_1016_j_biomaterials_2017_10_009
crossref_primary_10_1002_anie_201806976
Cites_doi 10.1126/science.1159052
10.1083/jcb.147.5.1009
10.1126/science.1074952
10.1016/j.ydbio.2003.06.003
10.1016/0092-8674(92)90164-8
10.1038/nature04665
10.1021/bi000585+
10.1038/nmeth.1187
10.1021/bi701543e
10.1073/pnas.0709610105
10.1038/nchembio.99
10.1016/S0092-8674(04)00003-0
10.1016/0092-8674(95)90370-4
10.1021/bi048092i
10.1146/annurev.cellbio.12.1.463
10.1126/science.1086810
10.1021/bi980140+
10.1126/science.290.5490.333
10.1016/S0076-6879(04)83004-0
10.1042/bj3510095
10.1091/mbc.e04-12-1076
10.1083/jcb.200612043
10.1073/pnas.0801232105
10.1016/j.cell.2006.12.039
10.1073/pnas.96.15.8779
10.1002/3527605592
10.1126/science.1092053
10.1016/j.jmb.2008.12.017
ContentType Journal Article
Copyright Macmillan Publishers Limited. All rights reserved 2009
2009 INIST-CNRS
COPYRIGHT 2009 Nature Publishing Group
Copyright Nature Publishing Group Sep 3, 2009
Copyright_xml – notice: Macmillan Publishers Limited. All rights reserved 2009
– notice: 2009 INIST-CNRS
– notice: COPYRIGHT 2009 Nature Publishing Group
– notice: Copyright Nature Publishing Group Sep 3, 2009
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/nature08241
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest eLibrary (NC LIVE)
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Proquest Research Library
ProQuest Science Database (NC LIVE)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Databases
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Agricultural Science Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PATMY
  name: Environmental Science Database
  url: http://search.proquest.com/environmentalscience
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 108
ExternalDocumentID PMC2766670
1859387551
A207829295
19693014
21860112
10_1038_nature08241
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
Germany
GeographicLocations_xml – name: Germany
– name: United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM057464
– fundername: NIGMS NIH HHS
  grantid: GM057464
– fundername: NIGMS NIH HHS
  grantid: U54 GM064346
– fundername: NIGMS NIH HHS
  grantid: GM64346
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
.55
.CO
.GJ
.HR
.XZ
00M
07C
0R~
0WA
123
186
1VR
29M
2KS
2XV
39C
3O-
3V.
4.4
41X
4R4
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
9M8
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYOK
AAYZH
ABAWZ
ABDBF
ABDQB
ABEFU
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFDN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGCDD
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BES
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DB5
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
MVM
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7L
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YYP
YZZ
Z5M
ZCA
ZHY
ZKB
~02
~7V
~88
~8M
~G0
~KM
354
AARCD
AAYXX
ABFSG
ABUFD
ACSTC
ADXHL
AETEA
AFANA
AFFHD
AGQPQ
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
08P
1CY
1OL
1VW
3EH
41~
42X
663
79B
AAJYS
AAVBQ
ABDPE
ACBNA
ACBTR
ACTDY
ADGHP
ADRHT
AEZWR
AFBBN
AFHIU
AFHKK
AHWEU
AIXLP
AJUXI
FA8
FAC
HG6
IQODW
J5H
LGEZI
LOTEE
N4W
NADUK
NFIDA
NXXTH
ODYON
PV9
QS-
R4F
RHI
SKT
TUD
UBY
UHB
USG
VOH
XOL
YJ6
YQI
YQJ
YV5
YXA
YYQ
ZCG
ZE2
ZGI
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
ACMFV
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ESTFP
5PM
ID FETCH-LOGICAL-c676t-99a32c62b43ca770c4db71ba83044e73994e4226bfafb5cb76be9b88422b6efe3
IEDL.DBID P5Z
ISICitedReferencesCount 873
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000269478800039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Tue Nov 04 01:38:34 EST 2025
Sun Nov 09 11:02:59 EST 2025
Sat Nov 29 14:26:16 EST 2025
Sat Nov 29 12:56:22 EST 2025
Tue Jun 10 15:35:42 EDT 2025
Sun Nov 23 08:44:54 EST 2025
Wed Nov 26 11:18:36 EST 2025
Wed Nov 26 11:05:56 EST 2025
Mon Jul 21 06:00:07 EDT 2025
Mon Jul 21 09:17:24 EDT 2025
Sat Nov 29 04:00:47 EST 2025
Tue Nov 18 22:31:33 EST 2025
Fri Feb 21 02:37:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7260
Keywords Motility
Enzyme
Triphosphoric monoester hydrolases
Photoactivation
Rodentia
dGTPase
Esterases
Recombinant cell
Metazoa
Cellular motility
Vertebrata
Regulation(control)
Mammalia
Mouse
Embryonic cell
Dynamics
Hydrolases
Cytoskeleton
Mutation
Fibroblast
Language English
License http://www.springer.com/tdm
CC BY 4.0
Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c676t-99a32c62b43ca770c4db71ba83044e73994e4226bfafb5cb76be9b88422b6efe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC2766670
PMID 19693014
PQID 204562441
PQPubID 40569
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2766670
proquest_miscellaneous_67634429
proquest_journals_204562441
gale_infotracgeneralonefile_A207829295
gale_infotraccpiq_207829295
gale_infotracacademiconefile_A207829295
gale_incontextgauss_ISR_A207829295
gale_incontextgauss_ATWCN_A207829295
pubmed_primary_19693014
pascalfrancis_primary_21860112
crossref_citationtrail_10_1038_nature08241
crossref_primary_10_1038_nature08241
springer_journals_10_1038_nature08241
PublicationCentury 2000
PublicationDate 2009-09-03
PublicationDateYYYYMMDD 2009-09-03
PublicationDate_xml – month: 09
  year: 2009
  text: 2009-09-03
  day: 03
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2009
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Vicente-ManzanaresMZarenoJWhitmoreLChoiCKHorwitzAFRegulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cellsJ. Cell Biol.20071765731:CAS:528:DC%2BD2sXisVymtL8%3D10.1083/jcb.200612043
GiannoneGLamellipodial actin mechanically links myosin activity with adhesion-site formationCell20071285615751:CAS:528:DC%2BD2sXit1WltLo%3D10.1016/j.cell.2006.12.039
NobesCDHallARho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodiaCell19958153621:CAS:528:DyaK2MXkvFOisrs%3D10.1016/0092-8674(95)90370-4
LeungDWOtomoCChoryJRosenMKGenetically encoded photoswitching of actin assembly through the Cdc42-WASP-Arp2/3 complex pathwayProc. Natl Acad. Sci. USA200810512797128022008PNAS..10512797L1:CAS:528:DC%2BD1cXhtFSmtrrF10.1073/pnas.0801232105
DaviesSPReddyHCaivanoMCohenPSpecificity and mechanism of action of some commonly used protein kinase inhibitorsBiochem. J.2000351951051:CAS:528:DC%2BD3cXnslWltrY%3D10.1042/bj3510095
SanderEEten KloosterJPvan DelftSvan der KammenRACollardJGRac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behaviorJ. Cell Biol.1999147100910221:CAS:528:DyaK1MXnslOjsLY%3D10.1083/jcb.147.5.1009
StricklandDMoffatKSosnickTRLight-activated DNA binding in a designed allosteric proteinProc. Natl Acad. Sci. USA200810510709107142008PNAS..10510709S1:CAS:528:DC%2BD1cXpvFOjtbo%3D10.1073/pnas.0709610105
GoeldnerMGivensRDynamic Studies in Biology: Phototriggers, Photoswitches and Caged Biomolecules200510.1002/3527605592
SalomonMChristieJMKniebELempertUBriggsWRPhotochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropinBiochemistry200039940194101:CAS:528:DC%2BD3cXks1emtbk%3D10.1021/bi000585
HarperSMChristieJMGardnerKHDisruption of the LOV-Jα helix interaction activates phototropin kinase activityBiochemistry20044316184161921:CAS:528:DC%2BD2cXhtVaisrzK10.1021/bi048092i
BurridgeKChrzanowska-WodnickaMFocal adhesions, contractility, and signalingAnnu. Rev. Cell Dev. Biol.1996124635181:CAS:528:DyaK28XnsFCltrc%3D10.1146/annurev.cellbio.12.1.463
KraynovVSLocalized Rac activation dynamics visualized in living cellsScience20002903333372000Sci...290..333K1:CAS:528:DC%2BD3cXnsVGitLg%3D10.1126/science.290.5490.333
RidleyAJPatersonHFJohnstonCLDiekmannDHallAThe small GTP-binding protein rac regulates growth factor-induced membrane rufflingCell1992704014101:CAS:528:DyaK38XlsVyisrs%3D10.1016/0092-8674(92)90164-8
MoglichAAyersRAMoffatKDesign and Signaling Mechanism of Light-Regulated Histidine KinasesJ. Mol. Biol.20083851433144410.1016/j.jmb.2008.12.017
RohlCAStraussCEMisuraKMBakerDProtein structure prediction using RosettaMethods Enzymol.200438366931:CAS:528:DC%2BD2cXkt1Siurs%3D10.1016/S0076-6879(04)83004-0
ThompsonGOwenDChalkPALowePNDelineation of the Cdc42/Rac-binding domain of p21-activated kinaseBiochemistry199837788578911:CAS:528:DyaK1cXis12ktr4%3D10.1021/bi980140
HarperSMNeilLCGardnerKHStructural basis of a phototropin light switchScience2003301154115442003Sci...301.1541H1:CAS:528:DC%2BD3sXnt12ltL8%3D10.1126/science.1086810
YaoXRosenMKGardnerKHEstimation of the available free energy in a LOV2-Jα photoswitchNature Chem. Biol.200844914971:CAS:528:DC%2BD1cXoslClsbw%3D10.1038/nchembio.99
PattersonGHLippincott-SchwartzJA photoactivatable GFP for selective photolabeling of proteins and cellsScience2002297187318772002Sci...297.1873P1:CAS:528:DC%2BD38XmvFGgsLo%3D10.1126/science.1074952
RidleyAJCell migration: integrating signals from front to backScience2003302170417092003Sci...302.1704R1:CAS:528:DC%2BD3sXpsVWns7o%3D10.1126/science.1092053
HalavatyASMoffatKN- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativaBiochemistry20074614001140091:CAS:528:DC%2BD2sXht12msLrJ10.1021/bi701543e
FortinDLPhotochemical control of endogenous ion channels and cellular excitabilityNature Methods200853313381:CAS:528:DC%2BD1cXjvFOgurk%3D10.1038/nmeth.1187
LeeJSurface sites for engineering allosteric control in proteinsScience20083224384422008Sci...322..438L1:CAS:528:DC%2BD1cXht1Citr3J10.1126/science.1159052
BurridgeKWennerbergKRho and Rac take center stageCell20041161671791:CAS:528:DC%2BD2cXhtValsrs%3D10.1016/S0092-8674(04)00003-0
Hodgson, L., Shen, F. & Hahn, K. M. Biosensors for characterizing the dynamics of Rho family GTPases in living cells. Curr. Protoc. Cell Biol. (in the press)
PertzOHodgsonLKlemkeRLHahnKMSpatiotemporal dynamics of RhoA activity in migrating cellsNature2006440106910722006Natur.440.1069P1:CAS:528:DC%2BD28Xjs1agt7g%3D10.1038/nature04665
RaftopoulouMHallACell migration: Rho GTPases lead the wayDev. Biol.200426523321:CAS:528:DC%2BD3sXhtVShsr%2FJ10.1016/j.ydbio.2003.06.003
ChristieJMSalomonMNozueKWadaMBriggsWRLOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotideProc. Natl Acad. Sci. USA199996877987831999PNAS...96.8779C1:CAS:528:DyaK1MXkslOkur0%3D10.1073/pnas.96.15.8779
KurokawaKMatsudaMLocalized RhoA activation as a requirement for the induction of membrane rufflingMol. Biol. Cell200516429443031:CAS:528:DC%2BD2MXpvFKlsbc%3D10.1091/mbc.e04-12-1076
AJ Ridley (BFnature08241_CR10) 1992; 70
G Thompson (BFnature08241_CR15) 1998; 37
D Strickland (BFnature08241_CR27) 2008; 105
M Raftopoulou (BFnature08241_CR3) 2004; 265
O Pertz (BFnature08241_CR8) 2006; 440
DW Leung (BFnature08241_CR28) 2008; 105
DL Fortin (BFnature08241_CR2) 2008; 5
J Lee (BFnature08241_CR25) 2008; 322
G Giannone (BFnature08241_CR19) 2007; 128
K Kurokawa (BFnature08241_CR21) 2005; 16
SM Harper (BFnature08241_CR14) 2004; 43
CA Rohl (BFnature08241_CR22) 2004; 383
CD Nobes (BFnature08241_CR24) 1995; 81
X Yao (BFnature08241_CR12) 2008; 4
GH Patterson (BFnature08241_CR16) 2002; 297
JM Christie (BFnature08241_CR5) 1999; 96
SP Davies (BFnature08241_CR20) 2000; 351
K Burridge (BFnature08241_CR9) 2004; 116
EE Sander (BFnature08241_CR11) 1999; 147
AJ Ridley (BFnature08241_CR4) 2003; 302
BFnature08241_CR29
M Goeldner (BFnature08241_CR1) 2005
M Vicente-Manzanares (BFnature08241_CR17) 2007; 176
SM Harper (BFnature08241_CR6) 2003; 301
VS Kraynov (BFnature08241_CR7) 2000; 290
A Moglich (BFnature08241_CR26) 2008; 385
K Burridge (BFnature08241_CR18) 1996; 12
M Salomon (BFnature08241_CR13) 2000; 39
AS Halavaty (BFnature08241_CR23) 2007; 46
20861876 - Nat Rev Mol Cell Biol. 2010 Oct;11(10):680-1. doi: 10.1038/nrm2985.
References_xml – reference: GiannoneGLamellipodial actin mechanically links myosin activity with adhesion-site formationCell20071285615751:CAS:528:DC%2BD2sXit1WltLo%3D10.1016/j.cell.2006.12.039
– reference: DaviesSPReddyHCaivanoMCohenPSpecificity and mechanism of action of some commonly used protein kinase inhibitorsBiochem. J.2000351951051:CAS:528:DC%2BD3cXnslWltrY%3D10.1042/bj3510095
– reference: BurridgeKChrzanowska-WodnickaMFocal adhesions, contractility, and signalingAnnu. Rev. Cell Dev. Biol.1996124635181:CAS:528:DyaK28XnsFCltrc%3D10.1146/annurev.cellbio.12.1.463
– reference: HarperSMChristieJMGardnerKHDisruption of the LOV-Jα helix interaction activates phototropin kinase activityBiochemistry20044316184161921:CAS:528:DC%2BD2cXhtVaisrzK10.1021/bi048092i
– reference: Vicente-ManzanaresMZarenoJWhitmoreLChoiCKHorwitzAFRegulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cellsJ. Cell Biol.20071765731:CAS:528:DC%2BD2sXisVymtL8%3D10.1083/jcb.200612043
– reference: KurokawaKMatsudaMLocalized RhoA activation as a requirement for the induction of membrane rufflingMol. Biol. Cell200516429443031:CAS:528:DC%2BD2MXpvFKlsbc%3D10.1091/mbc.e04-12-1076
– reference: StricklandDMoffatKSosnickTRLight-activated DNA binding in a designed allosteric proteinProc. Natl Acad. Sci. USA200810510709107142008PNAS..10510709S1:CAS:528:DC%2BD1cXpvFOjtbo%3D10.1073/pnas.0709610105
– reference: ChristieJMSalomonMNozueKWadaMBriggsWRLOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotideProc. Natl Acad. Sci. USA199996877987831999PNAS...96.8779C1:CAS:528:DyaK1MXkslOkur0%3D10.1073/pnas.96.15.8779
– reference: BurridgeKWennerbergKRho and Rac take center stageCell20041161671791:CAS:528:DC%2BD2cXhtValsrs%3D10.1016/S0092-8674(04)00003-0
– reference: SalomonMChristieJMKniebELempertUBriggsWRPhotochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropinBiochemistry200039940194101:CAS:528:DC%2BD3cXks1emtbk%3D10.1021/bi000585+
– reference: SanderEEten KloosterJPvan DelftSvan der KammenRACollardJGRac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behaviorJ. Cell Biol.1999147100910221:CAS:528:DyaK1MXnslOjsLY%3D10.1083/jcb.147.5.1009
– reference: LeungDWOtomoCChoryJRosenMKGenetically encoded photoswitching of actin assembly through the Cdc42-WASP-Arp2/3 complex pathwayProc. Natl Acad. Sci. USA200810512797128022008PNAS..10512797L1:CAS:528:DC%2BD1cXhtFSmtrrF10.1073/pnas.0801232105
– reference: RidleyAJPatersonHFJohnstonCLDiekmannDHallAThe small GTP-binding protein rac regulates growth factor-induced membrane rufflingCell1992704014101:CAS:528:DyaK38XlsVyisrs%3D10.1016/0092-8674(92)90164-8
– reference: PertzOHodgsonLKlemkeRLHahnKMSpatiotemporal dynamics of RhoA activity in migrating cellsNature2006440106910722006Natur.440.1069P1:CAS:528:DC%2BD28Xjs1agt7g%3D10.1038/nature04665
– reference: LeeJSurface sites for engineering allosteric control in proteinsScience20083224384422008Sci...322..438L1:CAS:528:DC%2BD1cXht1Citr3J10.1126/science.1159052
– reference: HalavatyASMoffatKN- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativaBiochemistry20074614001140091:CAS:528:DC%2BD2sXht12msLrJ10.1021/bi701543e
– reference: RidleyAJCell migration: integrating signals from front to backScience2003302170417092003Sci...302.1704R1:CAS:528:DC%2BD3sXpsVWns7o%3D10.1126/science.1092053
– reference: MoglichAAyersRAMoffatKDesign and Signaling Mechanism of Light-Regulated Histidine KinasesJ. Mol. Biol.20083851433144410.1016/j.jmb.2008.12.017
– reference: NobesCDHallARho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodiaCell19958153621:CAS:528:DyaK2MXkvFOisrs%3D10.1016/0092-8674(95)90370-4
– reference: FortinDLPhotochemical control of endogenous ion channels and cellular excitabilityNature Methods200853313381:CAS:528:DC%2BD1cXjvFOgurk%3D10.1038/nmeth.1187
– reference: RaftopoulouMHallACell migration: Rho GTPases lead the wayDev. Biol.200426523321:CAS:528:DC%2BD3sXhtVShsr%2FJ10.1016/j.ydbio.2003.06.003
– reference: ThompsonGOwenDChalkPALowePNDelineation of the Cdc42/Rac-binding domain of p21-activated kinaseBiochemistry199837788578911:CAS:528:DyaK1cXis12ktr4%3D10.1021/bi980140+
– reference: GoeldnerMGivensRDynamic Studies in Biology: Phototriggers, Photoswitches and Caged Biomolecules200510.1002/3527605592
– reference: RohlCAStraussCEMisuraKMBakerDProtein structure prediction using RosettaMethods Enzymol.200438366931:CAS:528:DC%2BD2cXkt1Siurs%3D10.1016/S0076-6879(04)83004-0
– reference: HarperSMNeilLCGardnerKHStructural basis of a phototropin light switchScience2003301154115442003Sci...301.1541H1:CAS:528:DC%2BD3sXnt12ltL8%3D10.1126/science.1086810
– reference: Hodgson, L., Shen, F. & Hahn, K. M. Biosensors for characterizing the dynamics of Rho family GTPases in living cells. Curr. Protoc. Cell Biol. (in the press)
– reference: PattersonGHLippincott-SchwartzJA photoactivatable GFP for selective photolabeling of proteins and cellsScience2002297187318772002Sci...297.1873P1:CAS:528:DC%2BD38XmvFGgsLo%3D10.1126/science.1074952
– reference: YaoXRosenMKGardnerKHEstimation of the available free energy in a LOV2-Jα photoswitchNature Chem. Biol.200844914971:CAS:528:DC%2BD1cXoslClsbw%3D10.1038/nchembio.99
– reference: KraynovVSLocalized Rac activation dynamics visualized in living cellsScience20002903333372000Sci...290..333K1:CAS:528:DC%2BD3cXnsVGitLg%3D10.1126/science.290.5490.333
– volume: 322
  start-page: 438
  year: 2008
  ident: BFnature08241_CR25
  publication-title: Science
  doi: 10.1126/science.1159052
– volume: 147
  start-page: 1009
  year: 1999
  ident: BFnature08241_CR11
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.147.5.1009
– volume: 297
  start-page: 1873
  year: 2002
  ident: BFnature08241_CR16
  publication-title: Science
  doi: 10.1126/science.1074952
– volume: 265
  start-page: 23
  year: 2004
  ident: BFnature08241_CR3
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2003.06.003
– volume: 70
  start-page: 401
  year: 1992
  ident: BFnature08241_CR10
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90164-8
– volume: 440
  start-page: 1069
  year: 2006
  ident: BFnature08241_CR8
  publication-title: Nature
  doi: 10.1038/nature04665
– volume: 39
  start-page: 9401
  year: 2000
  ident: BFnature08241_CR13
  publication-title: Biochemistry
  doi: 10.1021/bi000585+
– volume: 5
  start-page: 331
  year: 2008
  ident: BFnature08241_CR2
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1187
– volume: 46
  start-page: 14001
  year: 2007
  ident: BFnature08241_CR23
  publication-title: Biochemistry
  doi: 10.1021/bi701543e
– volume: 105
  start-page: 10709
  year: 2008
  ident: BFnature08241_CR27
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0709610105
– volume: 4
  start-page: 491
  year: 2008
  ident: BFnature08241_CR12
  publication-title: Nature Chem. Biol.
  doi: 10.1038/nchembio.99
– volume: 116
  start-page: 167
  year: 2004
  ident: BFnature08241_CR9
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00003-0
– volume: 81
  start-page: 53
  year: 1995
  ident: BFnature08241_CR24
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90370-4
– volume: 43
  start-page: 16184
  year: 2004
  ident: BFnature08241_CR14
  publication-title: Biochemistry
  doi: 10.1021/bi048092i
– volume: 12
  start-page: 463
  year: 1996
  ident: BFnature08241_CR18
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.12.1.463
– volume: 301
  start-page: 1541
  year: 2003
  ident: BFnature08241_CR6
  publication-title: Science
  doi: 10.1126/science.1086810
– volume: 37
  start-page: 7885
  year: 1998
  ident: BFnature08241_CR15
  publication-title: Biochemistry
  doi: 10.1021/bi980140+
– ident: BFnature08241_CR29
– volume: 290
  start-page: 333
  year: 2000
  ident: BFnature08241_CR7
  publication-title: Science
  doi: 10.1126/science.290.5490.333
– volume: 383
  start-page: 66
  year: 2004
  ident: BFnature08241_CR22
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(04)83004-0
– volume: 351
  start-page: 95
  year: 2000
  ident: BFnature08241_CR20
  publication-title: Biochem. J.
  doi: 10.1042/bj3510095
– volume: 16
  start-page: 4294
  year: 2005
  ident: BFnature08241_CR21
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-12-1076
– volume: 176
  start-page: 573
  year: 2007
  ident: BFnature08241_CR17
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200612043
– volume: 105
  start-page: 12797
  year: 2008
  ident: BFnature08241_CR28
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0801232105
– volume: 128
  start-page: 561
  year: 2007
  ident: BFnature08241_CR19
  publication-title: Cell
  doi: 10.1016/j.cell.2006.12.039
– volume: 96
  start-page: 8779
  year: 1999
  ident: BFnature08241_CR5
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.15.8779
– volume-title: Dynamic Studies in Biology: Phototriggers, Photoswitches and Caged Biomolecules
  year: 2005
  ident: BFnature08241_CR1
  doi: 10.1002/3527605592
– volume: 302
  start-page: 1704
  year: 2003
  ident: BFnature08241_CR4
  publication-title: Science
  doi: 10.1126/science.1092053
– volume: 385
  start-page: 1433
  year: 2008
  ident: BFnature08241_CR26
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2008.12.017
– reference: 20861876 - Nat Rev Mol Cell Biol. 2010 Oct;11(10):680-1. doi: 10.1038/nrm2985.
SSID ssj0005174
Score 2.5458946
Snippet A light touch on proteins Many aspects of cellular function depend on when and where in the cell various protein activities are turned 'on' or 'off' at the...
The precise spatio-temporal dynamics of protein activity are often critical in determining cell behaviour, yet for most proteins they remain poorly understood;...
To ensure that the photoactivatable Rac1 would induce no dominant-negative effects and that its activity would not be subject to upstream regulation, mutations...
SourceID pubmedcentral
proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104
SubjectTerms Animals
Avena - genetics
Binding sites
Biological and medical sciences
Cell Line
Cell Movement - radiation effects
Cell physiology
Cell Surface Extensions
Cell Survival
Cells
Cryptochromes
Crystal structure
Crystallization
Crystallography, X-Ray
Embryo, Mammalian - cytology
Enzyme Activation - radiation effects
Fibroblasts
Flavoproteins - chemistry
Flavoproteins - genetics
Flavoproteins - metabolism
Fluorescence Recovery After Photobleaching
Fundamental and applied biological sciences. Psychology
Genetic Engineering - methods
HeLa Cells
Humanities and Social Sciences
Humans
Hydrogen bonds
letter
Measurement
Mice
Models, Molecular
Molecular and cellular biology
Motility
Motility and taxis
Motion pictures
multidisciplinary
Mutation
Myosins - metabolism
Physiological aspects
Protein Conformation
Proteins
rac1 GTP-Binding Protein - chemistry
rac1 GTP-Binding Protein - genetics
rac1 GTP-Binding Protein - metabolism
rac1 GTP-Binding Protein - radiation effects
rho GTP-Binding Proteins - antagonists & inhibitors
rho GTP-Binding Proteins - metabolism
rhoA GTP-Binding Protein
Science
Studies
Title A genetically encoded photoactivatable Rac controls the motility of living cells
URI https://link.springer.com/article/10.1038/nature08241
https://www.ncbi.nlm.nih.gov/pubmed/19693014
https://www.proquest.com/docview/204562441
https://www.proquest.com/docview/67634429
https://pubmed.ncbi.nlm.nih.gov/PMC2766670
Volume 461
WOSCitedRecordID wos000269478800039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: Nature
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: P5Z
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M0K
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PCBAR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7S
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PATMY
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: KB.
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7RV
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Science Database (NC LIVE)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2M
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2O
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhISAja-wqBYaHxKYUnsxMkT6qpNoKml6goUXiLbsbdKVdIt7ST-e3yJ2y6j8IJUndT6mtq58901vvsdQnsAWhZrj7ueYqFLE89zha9DNyOUaq4I1VndbIL1evFolPRtbk5p0yoXNrEy1Fkh4Rn5flDF6sZ5f5yeu9A0Cg5XbQeNDbQFIAmwL_vhz1WGxzUQZlue55F4v0bNNO6P-g2HZM3ynSkvzS3SdW-LdcHnnzmU1w5SK_90dO8_V3Yf3bWBKW7XmrSNbqh8B92qEkRluYO2rREo8VuLVP3uAeq3sdG_ugxy8gsDJmamMjw9K2YFFExc8hlUZuEBl9jmxJfYRJwYMgAh_seFxpMxPNPAcIJQPkRfjw6HnU-ubdHgyohFMzdJOAlkFAhKJGfMkzQTzBc8Jh6lipnohyqo1RWaaxFKwSKhEhHH5jMRKa3II7SZF7l6gjDJVKJjwgUxUZ3ni4SKUBsHy4gUkbFLDnq_kFMqLX45tNGYpNU5OonTK0J10N6SeVrDdvyFDQSeAhBGDpk2p3xelml7-L3TS9sBhE8mfAwd9HId2-eTQYPpjWXShZmX5La-wawOILYanLsNTjkdn6dXRl83Rk9roa67TKuhpsuFQpsxY7YD8zsLhUutZSrTpbY56MVy1JgUkDLPVTEvUyNZs1ODxEGPax1f3cIEOmf61EGsof1LBgArb47k47MKtDxg5o8y8xz0arFPVnNaI5mn_5z7Lrpdn-qZF3mGNmcXc_Uc3ZSXs3F50UIbbPAN6IhVNDY07vgttHVw2OsPzLvjgw-Gdr1joEG3ol8q2gfKanrSquyJ-V6_Pez--A2wtnQl
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAgIJAS0vU2hXqOUlWXVsx2sfEIoKVaOWqCpB5GZ217ttpMhO66SoP4r_yIwfSV0Ctx6QfPKO7F3Pc70z3wBsEmhZaBxhO5q3bT9yHFu2TNtOPN83Qnu-ScpmE7zXCweD6HAJftW1MJRWWdvEwlAnmaJ_5NtuEauj8_44PrWpaRQdrtYdNEqp2NcXP3HHln_ofkL2brnu7uf-zp5dNRWwVcCDiR1FwnNV4ErfU4JzR_mJ5C0pQtzX-5qjv_Y1VZdKI4xsK8kDqSMZhnhPBtpoD597A26iGeeUQcYHfJ5RcgX0uSoHdLxwu0TpRHfrtxoOsHID98YiR5aYspfGomD3z5zNKwe3hT_cffCffcmHcL8KvFmn1JQVWNLpKtwuEmBVvgorlZHL2dsKifvdIzjsMNSvssxzdMEI8zPRCRufZJOMCkLOxYQqz9iRUKzK-c8ZRtSMMhxpf8Myw0ZD-mfD6IQkfwzfrmWNT2A5zVL9DJiX6MiEnpAeRq1OS0a-bBsMILinZIB214L3tVzEqsJnpzYho7jIE_DC-JIQWbA5Ix6XsCR_ISMBiwnoI6VMomMxzfO40_--04s7LoWHGB63LXi1iKz79ahB9KYiMhnOS4mqfgNXRxBiDcq1BqUaD0_jS6OvG6PHJVMXPWa9oRazhVIbNXRLLr6nFvC4srx5PJNuCzZmo2gyicsi1dk0j5GzaIncyIKnpU7NP2FEnUFbvgW8oW0zAgJjb46kw5MClN3lQYBstGCr1sv5nBZw5vk_574Bd_b6Xw7ig25vfw3ulieYeHkvYHlyNtUv4ZY6nwzzs_XCAjH4cd2K-hvdrcSF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4a4yIkBGzcwmCz0MZNiprGaZw8IFRtTFRDVTU2MfESbMfeKlVJt7RD-2n8O44Tp11G4W0PSHmKjxI75-r4nO8AbBrQskh73PUU67hB7HmuaOuOm9Ig0FzRQKdVswnW70dHR_FgCX7VtTAmrbK2iaWhTnNp_pG3_DJWR-fd0jYrYrCz-3F86poGUuagte6mUUnInrr4ibu34kNvB1m95fu7nw62P7u2wYArQxZO3Djm1JehLwIqOWOeDFLB2oJHuMcPFEPfHShTaSo016IjBQuFikUU4T0RKq0oPvcG3GS4xTT7vkHn-zy75AoAtC0N9GjUqhA70fUG7YYztC7h3pgXyB5d9dVYFPj-mb955RC39I27D_7jr_oQ7tuAnHQrDVqBJZWtwu0yMVYWq7BijV9B3lqE7nePYNAlqHdV-efoghgs0FSlZHyST3JTKHLOJ6YijexzSWwtQEEw0iYm89Hse0iuyWho_uUQc3JSPIbDa1njE1jO8kw9A0JTFeuIckExmvXaIg5ER2NgwagUIdpjB97XMpJIi9tu2oeMkjJ_gEbJJYFyYHNGPK7gSv5CZoQtMQAgmeH6MZ8WRdI9-LbdT7q-CRsxbO448GoRWe_rfoPojSXSOc5LclvXgasz0GINyrUGpRwPT5NLo68bo8cVUxc9Zr2hIrOFmvZq6K58fE8t7Im1yEUyk3QHNmajaEoNl3mm8mmRIGfRQvmxA08r_Zp_wth0DG0HDrCG5s0IDEh7cyQbnpRg7T4LQ2SjA1u1js7ntIAzz_859w24g_qZfOn199bgbnWwiRd9AcuTs6l6Cbfk-WRYnK2XxojAj-vW09_RYM14
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genetically+encoded+photoactivatable+Rac+controls+the+motility+of+living+cells&rft.jtitle=Nature+%28London%29&rft.au=Wu%2C+Yi+I&rft.au=Frey%2C+Daniel&rft.au=Lungu%2C+Oana+I&rft.au=Jaehrig%2C+Angelika&rft.date=2009-09-03&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=461&rft.issue=7260&rft.spage=104&rft_id=info:doi/10.1038%2Fnature08241&rft.externalDocID=A207829295
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon