The performance of VCS(volume, conductivity, light scatter) parameters in distinguishing latent tuberculosis and active tuberculosis by using machine learning algorithm

Background Tuberculosis is a chronic infectious disease caused by mycobacterium tuberculosis (MTB) and is the ninth leading cause of death worldwide. It is still difficult to distinguish active TB from latent TB,but it is very important for individualized management and treatment to distinguish whet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC infectious diseases Jg. 23; H. 1; S. 881 - 9
Hauptverfasser: Chen, Lijiao, Yuan, Lingke, Sun, Tingting, Liu, Ruiqing, Huang, Qing, Deng, Shaoli
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 16.12.2023
BioMed Central Ltd
Springer Nature B.V
BMC
Schlagworte:
ISSN:1471-2334, 1471-2334
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background Tuberculosis is a chronic infectious disease caused by mycobacterium tuberculosis (MTB) and is the ninth leading cause of death worldwide. It is still difficult to distinguish active TB from latent TB,but it is very important for individualized management and treatment to distinguish whether patients are active or latent tuberculosis infection. Methods A total of 220 subjects, including active TB patients (ATB, n  = 97) and latent TB patients (LTB, n  = 113), were recruited in this study .46 features about blood routine indicators and the VCS parameters (volume, conductivity, light scatter) of neutrophils(NE), monocytes(MO), and lymphocytes(LY) were collected and was constructed classification model by four machine learning algorithms(logistic regression(LR), random forest(RF), support vector machine(SVM) and k-nearest neighbor(KNN)). And the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC) to estimate of the model’s predictive performance for dentifying active and latent tuberculosis infection. Results After verification,among the four classifications, LR and RF had the best performance (AUROC = 1, AUPRC = 1), followed by SVM (AUROC = 0.967, AUPRC = 0.971), KNN (AUROC = 0.943, AUPRC = 0.959) in the training set. And LR had the best performance (AUROC = 0.977, AUPRC = 0.957), followed by SVM (AUROC = 0.962, AUPRC = 0.949), RF (AUROC = 0.903, AUPRC = 0.922),KNN(AUROC = 0.883, AUPRC = 0.901) in the testing set. Conclusions The machine learning algorithm classifier based on leukocyte VCS parameters is of great value in identifying active and latent tuberculosis infection.
AbstractList Tuberculosis is a chronic infectious disease caused by mycobacterium tuberculosis (MTB) and is the ninth leading cause of death worldwide. It is still difficult to distinguish active TB from latent TB,but it is very important for individualized management and treatment to distinguish whether patients are active or latent tuberculosis infection. A total of 220 subjects, including active TB patients (ATB, n = 97) and latent TB patients (LTB, n = 113), were recruited in this study .46 features about blood routine indicators and the VCS parameters (volume, conductivity, light scatter) of neutrophils(NE), monocytes(MO), and lymphocytes(LY) were collected and was constructed classification model by four machine learning algorithms(logistic regression(LR), random forest(RF), support vector machine(SVM) and k-nearest neighbor(KNN)). And the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC) to estimate of the model's predictive performance for dentifying active and latent tuberculosis infection. After verification,among the four classifications, LR and RF had the best performance (AUROC = 1, AUPRC = 1), followed by SVM (AUROC = 0.967, AUPRC = 0.971), KNN (AUROC = 0.943, AUPRC = 0.959) in the training set. And LR had the best performance (AUROC = 0.977, AUPRC = 0.957), followed by SVM (AUROC = 0.962, AUPRC = 0.949), RF (AUROC = 0.903, AUPRC = 0.922),KNN(AUROC = 0.883, AUPRC = 0.901) in the testing set. The machine learning algorithm classifier based on leukocyte VCS parameters is of great value in identifying active and latent tuberculosis infection.
BackgroundTuberculosis is a chronic infectious disease caused by mycobacterium tuberculosis (MTB) and is the ninth leading cause of death worldwide. It is still difficult to distinguish active TB from latent TB,but it is very important for individualized management and treatment to distinguish whether patients are active or latent tuberculosis infection.MethodsA total of 220 subjects, including active TB patients (ATB, n = 97) and latent TB patients (LTB, n = 113), were recruited in this study .46 features about blood routine indicators and the VCS parameters (volume, conductivity, light scatter) of neutrophils(NE), monocytes(MO), and lymphocytes(LY) were collected and was constructed classification model by four machine learning algorithms(logistic regression(LR), random forest(RF), support vector machine(SVM) and k-nearest neighbor(KNN)). And the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC) to estimate of the model’s predictive performance for dentifying active and latent tuberculosis infection.ResultsAfter verification,among the four classifications, LR and RF had the best performance (AUROC = 1, AUPRC = 1), followed by SVM (AUROC = 0.967, AUPRC = 0.971), KNN (AUROC = 0.943, AUPRC = 0.959) in the training set. And LR had the best performance (AUROC = 0.977, AUPRC = 0.957), followed by SVM (AUROC = 0.962, AUPRC = 0.949), RF (AUROC = 0.903, AUPRC = 0.922),KNN(AUROC = 0.883, AUPRC = 0.901) in the testing set.ConclusionsThe machine learning algorithm classifier based on leukocyte VCS parameters is of great value in identifying active and latent tuberculosis infection.
Tuberculosis is a chronic infectious disease caused by mycobacterium tuberculosis (MTB) and is the ninth leading cause of death worldwide. It is still difficult to distinguish active TB from latent TB,but it is very important for individualized management and treatment to distinguish whether patients are active or latent tuberculosis infection. A total of 220 subjects, including active TB patients (ATB, n = 97) and latent TB patients (LTB, n = 113), were recruited in this study .46 features about blood routine indicators and the VCS parameters (volume, conductivity, light scatter) of neutrophils(NE), monocytes(MO), and lymphocytes(LY) were collected and was constructed classification model by four machine learning algorithms(logistic regression(LR), random forest(RF), support vector machine(SVM) and k-nearest neighbor(KNN)). And the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC) to estimate of the model's predictive performance for dentifying active and latent tuberculosis infection. After verification,among the four classifications, LR and RF had the best performance (AUROC = 1, AUPRC = 1), followed by SVM (AUROC = 0.967, AUPRC = 0.971), KNN (AUROC = 0.943, AUPRC = 0.959) in the training set. And LR had the best performance (AUROC = 0.977, AUPRC = 0.957), followed by SVM (AUROC = 0.962, AUPRC = 0.949), RF (AUROC = 0.903, AUPRC = 0.922),KNN(AUROC = 0.883, AUPRC = 0.901) in the testing set. The machine learning algorithm classifier based on leukocyte VCS parameters is of great value in identifying active and latent tuberculosis infection.
Background Tuberculosis is a chronic infectious disease caused by mycobacterium tuberculosis (MTB) and is the ninth leading cause of death worldwide. It is still difficult to distinguish active TB from latent TB,but it is very important for individualized management and treatment to distinguish whether patients are active or latent tuberculosis infection. Methods A total of 220 subjects, including active TB patients (ATB, n = 97) and latent TB patients (LTB, n = 113), were recruited in this study .46 features about blood routine indicators and the VCS parameters (volume, conductivity, light scatter) of neutrophils(NE), monocytes(MO), and lymphocytes(LY) were collected and was constructed classification model by four machine learning algorithms(logistic regression(LR), random forest(RF), support vector machine(SVM) and k-nearest neighbor(KNN)). And the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC) to estimate of the model's predictive performance for dentifying active and latent tuberculosis infection. Results After verification,among the four classifications, LR and RF had the best performance (AUROC = 1, AUPRC = 1), followed by SVM (AUROC = 0.967, AUPRC = 0.971), KNN (AUROC = 0.943, AUPRC = 0.959) in the training set. And LR had the best performance (AUROC = 0.977, AUPRC = 0.957), followed by SVM (AUROC = 0.962, AUPRC = 0.949), RF (AUROC = 0.903, AUPRC = 0.922),KNN(AUROC = 0.883, AUPRC = 0.901) in the testing set. Conclusions The machine learning algorithm classifier based on leukocyte VCS parameters is of great value in identifying active and latent tuberculosis infection. Keywords: Leukocyte VCS (volume, conductivity, light scatter) parameters, Machine learning algorithm, Active tuberculosis infection, Latent tuberculosis infection, Distinguish
Tuberculosis is a chronic infectious disease caused by mycobacterium tuberculosis (MTB) and is the ninth leading cause of death worldwide. It is still difficult to distinguish active TB from latent TB,but it is very important for individualized management and treatment to distinguish whether patients are active or latent tuberculosis infection.BACKGROUNDTuberculosis is a chronic infectious disease caused by mycobacterium tuberculosis (MTB) and is the ninth leading cause of death worldwide. It is still difficult to distinguish active TB from latent TB,but it is very important for individualized management and treatment to distinguish whether patients are active or latent tuberculosis infection.A total of 220 subjects, including active TB patients (ATB, n = 97) and latent TB patients (LTB, n = 113), were recruited in this study .46 features about blood routine indicators and the VCS parameters (volume, conductivity, light scatter) of neutrophils(NE), monocytes(MO), and lymphocytes(LY) were collected and was constructed classification model by four machine learning algorithms(logistic regression(LR), random forest(RF), support vector machine(SVM) and k-nearest neighbor(KNN)). And the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC) to estimate of the model's predictive performance for dentifying active and latent tuberculosis infection.METHODSA total of 220 subjects, including active TB patients (ATB, n = 97) and latent TB patients (LTB, n = 113), were recruited in this study .46 features about blood routine indicators and the VCS parameters (volume, conductivity, light scatter) of neutrophils(NE), monocytes(MO), and lymphocytes(LY) were collected and was constructed classification model by four machine learning algorithms(logistic regression(LR), random forest(RF), support vector machine(SVM) and k-nearest neighbor(KNN)). And the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC) to estimate of the model's predictive performance for dentifying active and latent tuberculosis infection.After verification,among the four classifications, LR and RF had the best performance (AUROC = 1, AUPRC = 1), followed by SVM (AUROC = 0.967, AUPRC = 0.971), KNN (AUROC = 0.943, AUPRC = 0.959) in the training set. And LR had the best performance (AUROC = 0.977, AUPRC = 0.957), followed by SVM (AUROC = 0.962, AUPRC = 0.949), RF (AUROC = 0.903, AUPRC = 0.922),KNN(AUROC = 0.883, AUPRC = 0.901) in the testing set.RESULTSAfter verification,among the four classifications, LR and RF had the best performance (AUROC = 1, AUPRC = 1), followed by SVM (AUROC = 0.967, AUPRC = 0.971), KNN (AUROC = 0.943, AUPRC = 0.959) in the training set. And LR had the best performance (AUROC = 0.977, AUPRC = 0.957), followed by SVM (AUROC = 0.962, AUPRC = 0.949), RF (AUROC = 0.903, AUPRC = 0.922),KNN(AUROC = 0.883, AUPRC = 0.901) in the testing set.The machine learning algorithm classifier based on leukocyte VCS parameters is of great value in identifying active and latent tuberculosis infection.CONCLUSIONSThe machine learning algorithm classifier based on leukocyte VCS parameters is of great value in identifying active and latent tuberculosis infection.
Background Tuberculosis is a chronic infectious disease caused by mycobacterium tuberculosis (MTB) and is the ninth leading cause of death worldwide. It is still difficult to distinguish active TB from latent TB,but it is very important for individualized management and treatment to distinguish whether patients are active or latent tuberculosis infection. Methods A total of 220 subjects, including active TB patients (ATB, n  = 97) and latent TB patients (LTB, n  = 113), were recruited in this study .46 features about blood routine indicators and the VCS parameters (volume, conductivity, light scatter) of neutrophils(NE), monocytes(MO), and lymphocytes(LY) were collected and was constructed classification model by four machine learning algorithms(logistic regression(LR), random forest(RF), support vector machine(SVM) and k-nearest neighbor(KNN)). And the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC) to estimate of the model’s predictive performance for dentifying active and latent tuberculosis infection. Results After verification,among the four classifications, LR and RF had the best performance (AUROC = 1, AUPRC = 1), followed by SVM (AUROC = 0.967, AUPRC = 0.971), KNN (AUROC = 0.943, AUPRC = 0.959) in the training set. And LR had the best performance (AUROC = 0.977, AUPRC = 0.957), followed by SVM (AUROC = 0.962, AUPRC = 0.949), RF (AUROC = 0.903, AUPRC = 0.922),KNN(AUROC = 0.883, AUPRC = 0.901) in the testing set. Conclusions The machine learning algorithm classifier based on leukocyte VCS parameters is of great value in identifying active and latent tuberculosis infection.
Abstract Background Tuberculosis is a chronic infectious disease caused by mycobacterium tuberculosis (MTB) and is the ninth leading cause of death worldwide. It is still difficult to distinguish active TB from latent TB,but it is very important for individualized management and treatment to distinguish whether patients are active or latent tuberculosis infection. Methods A total of 220 subjects, including active TB patients (ATB, n = 97) and latent TB patients (LTB, n = 113), were recruited in this study .46 features about blood routine indicators and the VCS parameters (volume, conductivity, light scatter) of neutrophils(NE), monocytes(MO), and lymphocytes(LY) were collected and was constructed classification model by four machine learning algorithms(logistic regression(LR), random forest(RF), support vector machine(SVM) and k-nearest neighbor(KNN)). And the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC) to estimate of the model’s predictive performance for dentifying active and latent tuberculosis infection. Results After verification,among the four classifications, LR and RF had the best performance (AUROC = 1, AUPRC = 1), followed by SVM (AUROC = 0.967, AUPRC = 0.971), KNN (AUROC = 0.943, AUPRC = 0.959) in the training set. And LR had the best performance (AUROC = 0.977, AUPRC = 0.957), followed by SVM (AUROC = 0.962, AUPRC = 0.949), RF (AUROC = 0.903, AUPRC = 0.922),KNN(AUROC = 0.883, AUPRC = 0.901) in the testing set. Conclusions The machine learning algorithm classifier based on leukocyte VCS parameters is of great value in identifying active and latent tuberculosis infection.
ArticleNumber 881
Audience Academic
Author Huang, Qing
Deng, Shaoli
Chen, Lijiao
Sun, Tingting
Liu, Ruiqing
Yuan, Lingke
Author_xml – sequence: 1
  givenname: Lijiao
  surname: Chen
  fullname: Chen, Lijiao
  organization: Department of Laboratory Medicine, Daping Hospital, Army Medical University
– sequence: 2
  givenname: Lingke
  surname: Yuan
  fullname: Yuan, Lingke
  organization: Science in Computational Finance, Carnegie Mellon University
– sequence: 3
  givenname: Tingting
  surname: Sun
  fullname: Sun, Tingting
  organization: College of Medical Technology, Chongqing Medical and Pharmaceutical College
– sequence: 4
  givenname: Ruiqing
  surname: Liu
  fullname: Liu, Ruiqing
  organization: Department of Laboratory Medicine, Daping Hospital, Army Medical University
– sequence: 5
  givenname: Qing
  surname: Huang
  fullname: Huang, Qing
  email: qinghuang@tmmu.edu.cn
  organization: Department of Laboratory Medicine, Daping Hospital, Army Medical University
– sequence: 6
  givenname: Shaoli
  surname: Deng
  fullname: Deng, Shaoli
  email: dengshaoli@tmmu.edu.cn
  organization: Department of Laboratory Medicine, Daping Hospital, Army Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38104064$$D View this record in MEDLINE/PubMed
BookMark eNqNk8tq3TAQhk1JaS7tC3RRBN0kkJPqYlv2qoTQSyAQaNJsxVge-yjY0qkkh-aN-piVc5ImJ5RStNAw-v7f8o9mN9uyzmKWvWX0iLGq_BAYr2S9oFwsaFUItuAvsh2Wy1QIkW89qbez3RCuKWWy4vWrbFtUjOa0zHeyX5dLJCv0nfMjWI3EdeTq5GL_xg3TiIdEO9tOOpobE28PyWD6ZSRBQ4zoD8gKPIyYykCMJa0J0dh-MmGZNjJARBtJnBr0ehpcMIGAbQnMbrjZb27JFGbRCDqJkQwI3s4NGHrnTVyOr7OXHQwB39zve9n3z58uT74uzs6_nJ4cny10Kcu4kA3ViHVZdLIsG6Z1WdeNFDmDSneVKEQDosyLVgPTLWBeNVVbtZR3oulkp7nYy07Xvq2Da7XyZgR_qxwYdddwvlfgo9EDKsqwTJlyzTjLcymrZEAZIKsZpW1Ok9fHtddqakZsdcrDw7BhunlizVL17kYxKnlR1PNt9u8dvPsxYYhqNEHjMIBFNwXFayoEL2pZJPT9M_TaTd6mrBLFcp6ul7NHqof0B8Z2Ln1Yz6bqWMqyEJKL2evoL1RaLY4mPQnsTOpvCA42BImJ-DP2MIWgTi--_T97frXJvnua4J_oHh5wAqo1oL0LwWOntIkQjZsDNUNKUs2zotazotKsqLtZUXO2_Jn0wf2fIrEWhQTbHv1jyv9Q_QbZpycE
CitedBy_id crossref_primary_10_4103_jpgm_jpgm_634_24
crossref_primary_10_1186_s12879_024_09613_5
crossref_primary_10_3390_info16030239
Cites_doi 10.1016/j.ijid.2020.05.109
10.1016/j.jclinepi.2020.03.002
10.1128/AAC.01846-18
10.3390/genes10020087
10.1111/imm.12833
10.1016/j.ebiom.2020.103094
10.7754/Clin.Lab.2018.181115
10.1016/j.cca.2018.03.015
10.1016/j.jacc.2016.08.062
10.1046/j.0019-2805.2001.01355.x
10.1111/ijcp.13831
10.3389/fcimb.2020.594030
10.1186/s12879-019-4026-z
10.1038/s41598-019-47923-w
10.1016/j.tube.2020.101993
10.3389/fimmu.2016.00150
10.1371/journal.ppat.1000392
10.5858/arpa.2011-0679-OA
10.1126/scitranslmed.aao5333
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QL
7T2
7U9
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
M7N
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1186/s12879-023-08531-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Health and Safety Science Abstracts (Full archive)
Virology and AIDS Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
Health & Safety Science Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database



MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2334
EndPage 9
ExternalDocumentID oai_doaj_org_article_01e60012c121447787fc01ae19100d40
PMC10725592
A776537235
38104064
10_1186_s12879_023_08531_2
Genre Journal Article
GeographicLocations China
United States--US
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: 973 project sub-topics(K2015CB755401)
– fundername: Major Military Logistics Research Sub-Project (grant number AWS17J010 and 2018-KY-0083)
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8C1
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
IOV
ISR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7T2
7U9
7XB
8FK
AZQEC
C1K
DWQXO
H94
K9.
M7N
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c676t-7b0cee965f766b1cc699b7341a8cf8353ba3645dca1cdae48b8d8d02f3bf7fc23
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001129153800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2334
IngestDate Fri Oct 03 12:44:41 EDT 2025
Tue Nov 04 02:06:14 EST 2025
Fri Sep 05 14:42:24 EDT 2025
Tue Oct 07 05:11:36 EDT 2025
Tue Nov 11 11:10:43 EST 2025
Tue Nov 04 18:32:20 EST 2025
Thu Nov 13 16:28:18 EST 2025
Thu Nov 13 16:34:18 EST 2025
Mon Jul 21 06:06:37 EDT 2025
Sat Nov 29 04:42:33 EST 2025
Tue Nov 18 22:53:31 EST 2025
Sat Sep 06 07:26:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Leukocyte VCS (volume, conductivity, light scatter) parameters
Latent tuberculosis infection
Machine learning algorithm
Active tuberculosis infection
Distinguish
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c676t-7b0cee965f766b1cc699b7341a8cf8353ba3645dca1cdae48b8d8d02f3bf7fc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/01e60012c121447787fc01ae19100d40
PMID 38104064
PQID 2914278741
PQPubID 42582
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_01e60012c121447787fc01ae19100d40
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10725592
proquest_miscellaneous_2903325975
proquest_journals_2914278741
gale_infotracmisc_A776537235
gale_infotracacademiconefile_A776537235
gale_incontextgauss_ISR_A776537235
gale_incontextgauss_IOV_A776537235
pubmed_primary_38104064
crossref_citationtrail_10_1186_s12879_023_08531_2
crossref_primary_10_1186_s12879_023_08531_2
springer_journals_10_1186_s12879_023_08531_2
PublicationCentury 2000
PublicationDate 2023-12-16
PublicationDateYYYYMMDD 2023-12-16
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC infectious diseases
PublicationTitleAbbrev BMC Infect Dis
PublicationTitleAlternate BMC Infect Dis
PublicationYear 2023
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References S Nusinovici (8531_CR9) 2020; 122
L Horvath (8531_CR20) 2020; 125
E Sweeney (8531_CR1) 2019; 19
CY Chen (8531_CR13) 2009; 5
TE Tavolara (8531_CR18) 2020; 62
L Shi (8531_CR14) 2016; 7
Y Luo (8531_CR17) 2021; 75
8531_CR2
NR Meier (8531_CR19) 2020; 10
T Shen (8531_CR11) 2018; 481
8531_CR3
A Soruri (8531_CR12) 2002; 105
8531_CR6
S Narula (8531_CR8) 2016; 68
8531_CR5
8531_CR7
X Qiu (8531_CR4) 2019; 9
Y Luo (8531_CR16) 2020; 97
H Tang (8531_CR15) 2012; 136
B Pathakumari (8531_CR10) 2018; 153
References_xml – volume: 97
  start-page: 190
  year: 2020
  ident: 8531_CR16
  publication-title: Int J Infect Dis
  doi: 10.1016/j.ijid.2020.05.109
– volume: 122
  start-page: 56
  year: 2020
  ident: 8531_CR9
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2020.03.002
– ident: 8531_CR2
  doi: 10.1128/AAC.01846-18
– ident: 8531_CR7
  doi: 10.3390/genes10020087
– volume: 153
  start-page: 325
  year: 2018
  ident: 8531_CR10
  publication-title: Immunology
  doi: 10.1111/imm.12833
– volume: 62
  start-page: 103094
  year: 2020
  ident: 8531_CR18
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.103094
– ident: 8531_CR5
  doi: 10.7754/Clin.Lab.2018.181115
– volume: 481
  start-page: 189
  year: 2018
  ident: 8531_CR11
  publication-title: Clin Chim Acta
  doi: 10.1016/j.cca.2018.03.015
– ident: 8531_CR3
– volume: 68
  start-page: 2287
  year: 2016
  ident: 8531_CR8
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2016.08.062
– volume: 105
  start-page: 222
  year: 2002
  ident: 8531_CR12
  publication-title: Immunology
  doi: 10.1046/j.0019-2805.2001.01355.x
– volume: 75
  start-page: e13831
  year: 2021
  ident: 8531_CR17
  publication-title: Int J Clin Pract
  doi: 10.1111/ijcp.13831
– volume: 10
  start-page: 594030
  year: 2020
  ident: 8531_CR19
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2020.594030
– volume: 19
  start-page: 397
  year: 2019
  ident: 8531_CR1
  publication-title: BMC Infect Dis
  doi: 10.1186/s12879-019-4026-z
– volume: 9
  start-page: 11408
  year: 2019
  ident: 8531_CR4
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-47923-w
– volume: 125
  start-page: 101993
  year: 2020
  ident: 8531_CR20
  publication-title: Tuberculosis (Edinb)
  doi: 10.1016/j.tube.2020.101993
– volume: 7
  start-page: 150
  year: 2016
  ident: 8531_CR14
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2016.00150
– volume: 5
  start-page: e1000392
  year: 2009
  ident: 8531_CR13
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000392
– volume: 136
  start-page: 1392
  year: 2012
  ident: 8531_CR15
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/arpa.2011-0679-OA
– ident: 8531_CR6
  doi: 10.1126/scitranslmed.aao5333
SSID ssj0017829
Score 2.404083
Snippet Background Tuberculosis is a chronic infectious disease caused by mycobacterium tuberculosis (MTB) and is the ninth leading cause of death worldwide. It is...
Tuberculosis is a chronic infectious disease caused by mycobacterium tuberculosis (MTB) and is the ninth leading cause of death worldwide. It is still...
Background Tuberculosis is a chronic infectious disease caused by mycobacterium tuberculosis (MTB) and is the ninth leading cause of death worldwide. It is...
BackgroundTuberculosis is a chronic infectious disease caused by mycobacterium tuberculosis (MTB) and is the ninth leading cause of death worldwide. It is...
Abstract Background Tuberculosis is a chronic infectious disease caused by mycobacterium tuberculosis (MTB) and is the ninth leading cause of death worldwide....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 881
SubjectTerms Accuracy
Active tuberculosis infection
Algorithms
Artificial intelligence
Classification
Computer-aided medical diagnosis
Conductivity
COVID-19
Decision trees
Diagnosis
Distinguish
Hematology
Humans
Infections
Infectious Diseases
Internal Medicine
Latent Tuberculosis - diagnosis
Latent tuberculosis infection
Learning algorithms
Leukocyte VCS (volume, conductivity, light scatter) parameters
Leukocytes (neutrophilic)
Light
Light scattering
Lymphocytes
Machine Learning
Machine learning algorithm
Mathematical models
Medical Microbiology
Medicine
Medicine & Public Health
Methods
Monocytes
Mycobacterium tuberculosis
Neutrophils
Pandemics
Parameter identification
Parasitology
Performance evaluation
Performance prediction
Regression analysis
Scattering
Support vector machines
Tropical Medicine
Tuberculosis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegQ4gXvj8KAxmEBGiNZidpnDyhbdoED5Rpg2lvluOPrFKblKZF4j_iz-QucVsytL3wGl-i2D7_7s4-_46Qt44ZJcDUBCq2DgIUa4PUMBMIxbljllmRtcUmxGiUnp9nx37DrfZplStMbIDaVBr3yHfDjGNVCDCAH2c_AqwahaervoTGTbKFTGVxj2ztH46OT9bnCGD_stVVmTTZrQGNRRaAnQrA1Yh4EHbMUcPa_y82_2WcLidOXjo9bYzS0b3_7c59cte7o3Sv1Z8H5IYtH5LbX_yB-yPyG9SIzjaXC2jl6NnB6fsW1AYUomkkjG0qUAzoBCN9WuuGs_MDRVrxKabb1HRcUoNoUhbLdtOLTsDJLRd0scztXC8nVT2uqSoNVQ0Ad5_nvyjm5xd02qR-WuprXRRUTQro1eJi-ph8Pzr8dvAp8MUdAp2IZBGInIF9zpKhE0mSc62TLMsF2FSVagduYZQrPCE1WnFtlI3TPDWgRaGLciecDqMnpFdWpX1GKBu6yOTgqiQmiY3JcxvHBixzah18T8R9wldzLLVnPscCHBPZREBpIlu9kKAXstELGfbJzvqdWcv7ca30PqrOWhI5u5sH1byQHgIk47bxLjVHmjoBk-8048pCxMyYiVmfvEHFk8jKUWLaT6GWdS0_fz2Te0Ikw0iE0fAqodOTjtA7L-Qq6KhW_qoFDBeyfXUktzuSgC2627zSXumxrZYb1e2T1-tmfBPz9UpbLVGGRRFE1gI-8bRdM-vBQU45cCNhWtLOauqMXrelHF80zOecCQyBYbwHq4W3-a-rp-f59d14Qe6ECAk8DHiyTXqL-dK-JLf0z8W4nr_ykPIH2_2A1g
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQQIgX7pfCQAYhAaIRdpLayeOYmOCBgVao9mb5mlVqk6lJkPhH_EyOnaQjgyHBa3wcNT73nuPvIPTcESM5uJpIptZBgmJtlBliIi4pdcQSy_Nu2AQ_PMyOj_PP_aWweuh2H0qSwVIHtc7YmxosKc8j8DERhAkJjcDwXgZ3l3l1PJovtrUD8Hn5cD3mj_tGLigg9f9uj39xSOebJc9VTIMjOrjxf59wE13vA0-810nKLXTJlrfR1Y99af0O-gECg0_PrhHgyuHF_vxlZ76mGPJmDw0bZk1M8crn9LjWAZ3zFfYA4mvfWFPjZYmNtxtl0XZ_b-EVhLNlg5tW2Y1uV1W9rLEsDZbB1I6fq-_Yd-IXeB2aPC3up1oUWK6KarNsTtZ30deDd1_230f9GIdIM86aiCsCnjhnM8cZU1RrlueKg_eUmXYQACZK-lqo0ZJqI22aqcyAvMQuUY47HSf30E5ZlfYBwmTmEqMgKGGGpcYoZdPUgA_OrIP38XSC6MBZoXuMcz9qYyVCrpMx0bFAAAtEYIGIJ-j1ds9ph_DxV-q3XmC2lB6dOzyoNoXolV0QakMcqakHpONgE50mVFrIjQkxKZmgZ17chMffKH2DTyHbuhYfPi3EHudslvA4mV1END8aEb3oiVwFH6plf6kCjsvjeo0od0eUYEX0eHkQfdFbsVrEOfWTWCDonKCn22W_03fmlbZqPQ1JEsihObzifqcp28Px6HEQMAJbspEOjU5vvFIuTwLGOSXcJ7tw3tNBlc5-18Xsefhv5I_QtdhrI40jynbRTrNp7WN0RX9rlvXmSTArPwGVd3Wm
  priority: 102
  providerName: Springer Nature
Title The performance of VCS(volume, conductivity, light scatter) parameters in distinguishing latent tuberculosis and active tuberculosis by using machine learning algorithm
URI https://link.springer.com/article/10.1186/s12879-023-08531-2
https://www.ncbi.nlm.nih.gov/pubmed/38104064
https://www.proquest.com/docview/2914278741
https://www.proquest.com/docview/2903325975
https://pubmed.ncbi.nlm.nih.gov/PMC10725592
https://doaj.org/article/01e60012c121447787fc01ae19100d40
Volume 23
WOSCitedRecordID wos001129153800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: 8C1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: RSV
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgIMQL4k5hVAYhAaLR7CS1k8et2sQeVqoWqvJkOb50ldpkahok_hE_k2Mn7ZahwQsvkRKfRKm_k3Opj7-D0DtLtOTgagIZGwsJijFBookOuKTUEkMMT-tmE3w4TGazdHSl1ZerCavpgeuJOyDUeJ-sqCP34qBfVhEqDeQZhOjYZ-sQ9WyTqWb9APxeut0ik7CDEqwwTwPwTwGEGBENwpYb8mz9f9rkK07pesHktVVT74xOHqIHTRSJD-u3f4RumfwxunfWrJM_Qb8AfXxxuScAFxZPB5MPtS3qYUiCHc-rbxzRw0uXoONSearNj9ixga9clUyJFznWzgjk86r-rwovITbNN3hTZWatqmVRLkosc42lt5vt69lP7Mrq53jlKzYNblpUzLFczov1YnO-eoq-nRx_HXwOmp4MgWKcbQKeEXCrKetbzlhGlWJpmnFwhTJRFqK5KJNuYVMrSZWWJk6yRAP4oY0yC8iF0TO0lxe5eYEw6dtIZxBhMM1irbPMxLEGh5oYC8_jcQfRLURCNYTlrm_GUvjEJWGihlUArMLDKsIO-rS756Km6_ir9JFDfifpqLb9BVBA0Sig-JcCdtBbpzfCkWnkrlpnLquyFKdfpuKQc9aPeBj1bxKajFtC7xshW8APVbLZIQHT5Ui6WpL7LUkwCao9vNVh0ZikUoQpdW1VIILsoDe7YXenK7PLTVE5GRJFkBBzeMTzWuV3k-Oo4CD6A1iS1sfQmr32SL4494TllHCXucJ897bfzeV73QzPy_8Bzyt0P3TfPQ0DyvbR3mZdmdforvqxWZTrLrrNZ9wfEzgmA9pFd46Oh6Nx19sTOBudno2-w9l4Mv0NI292WQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VLQIuvB-BAgsCASJWvbbjtQ8IlULVqE2paKnKaVnvI42U2CFOQP1HnPiNzPiR4KL21gNXe2zZszPfzO7OfkPIc-tqySHUODIwFiYoxjiRdrXDJWPWNa7hcdlsgu_uRkdH8d4S-V2fhcGyyhoTC6DWmcI18jUvZtgVAgLgu_F3B7tG4e5q3UKjNIttc_ITpmz52-4HGN8Xnrf58WBjy6m6Cjgq5OHU4YkLgSEOO5aHYcKUCuM44QDmMlIW8hE_kbg1p5VkSksTREmk4fM96yeWW4VEBwD5KwEYe7RMVva6vb2v830LiLdxfTQnCtdyQH8eOxAXHUhtfOZ4jfBXdAn4Nxb8FQxPF2qe2q0tguDm9f9NfTfItSrdpuulf9wkSya9RS73qoKC2-QXuAkdLw5P0MzSw439VyVot6nKUiTELTpstOkQVzJorgpO0tcUadNHWE6U00FKNaJl2p-Vi3p0CEl8OqXTWWImajbM8kFOZaqpLAJM83pyQvH8QZ-OitJWQ6teHn0qh33Q4vR4dId8uRA93SXLaZaa-4S6HevrBFKxUIeB1kligkBD5hEZC-_jQYuw2qaEqpjdscHIUBQzvCgUpR0KsENR2KHwWuTN_JlxyWtyrvR7NNW5JHKSFxeySV9UECdcZorsWTGk4eNgbFa5TBoGGamrA7dFnqGhC2QdSbGsqS9neS66nw7FOudhx-ee3zlLaP9zQ-hlJWQz-FElq6MkoC5kM2tIrjYkATtV83btLaLC7lwsXKVFns5v45NYj5iabIYyru97MBmHV9wrfXSuHOTMgzQZhiVqeG9De8076eC4YHZnLscpPui7XTv64rvOHp4H5__GE3Jl66C3I3a6u9sPyVUP4Yh5DgtXyfJ0MjOPyCX1YzrIJ48rOKPk20VDwB_7i-Cr
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tb9MwELbQQBNfeH8pDDAICRCNZidpnHwcg4oJKBODat8sxy9ZpTapmhaJf8TP5M5Ju2UwJMTX5JwmPt9zd_X5OUKeO2aUAFcTqNg6SFCsDVLDTCAU545ZZkXWNJsQo1F6fJwdnjnF76vd11uSzZkGZGkql7tz4xoTT5PdGlBVZAH4mwBChogHAMKXY2wahPn60XizjwD-L1sflfnjuI478qz9v2PzGed0vnDy3O6pd0rD6___OTfItTYgpXvNCrpJLtnyFtn-1G653yY_YSHR-enxAlo5Ot4_etnAWp_CLyFlrO9B0adTzPVprT1r5yuKxOIzLLip6aSkBvGkLFbN3150qvAV6XKV24VeTat6UlNVGqo8BHev5z8oVugXdOaLPy1tu10UVE2LajFZnszukG_Dd1_33wdte4dAJyJZBiJn4KGzZOBEkuRc6yTLcgFeVaXaQWAY5Qr3SI1WXBtl4zRPDayj0EW5E06H0V2yVValvU8oG7jI5BCsJCaJjclzG8cGfHNqHTxPxD3C11qWuuU-xxYcU-lzoDSRjQokqEB6FciwR15vxswb5o-_Sr_BxbORRNZuf6FaFLIFAcm49fGl5khUJwArnWZcWciZGTMx65FnuPQk8nKUWPhTqFVdy4PPY7knRDKIRBgNLhI6-tIRetEKuQo-VKv2sAVMF_J9dSR3OpKALrp7e20GskW3WoYZxw4tEIz2yNPNbRyJFXulrVYow6IIcmsBj7jXWM1mcpBVDgJJUEvasafO7HXvlJMTz33OmcAkGOa7vzar0_e6WD0P_k38Cdk-fDuUHw9GHx6SqyEaJg8DnuyQreViZR-RK_r7clIvHnu0-QXz4YFu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+performance+of+VCS%28volume%2C+conductivity%2C+light+scatter%29+parameters+in+distinguishing+latent+tuberculosis+and+active+tuberculosis+by+using+machine+learning+algorithm&rft.jtitle=BMC+infectious+diseases&rft.au=Lijiao+Chen&rft.au=Lingke+Yuan&rft.au=Tingting+Sun&rft.au=Ruiqing+Liu&rft.date=2023-12-16&rft.pub=BMC&rft.eissn=1471-2334&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1186%2Fs12879-023-08531-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_01e60012c121447787fc01ae19100d40
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2334&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2334&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2334&client=summon